Contents

Chapter 1

Chapter 2

Introduction to FMS-11

1.1

1.2

OVEIVIEW ..ovvveerirecrieiiveeeseeeesssesssessssssssssesssssessssssssssssssessessesssssesssressssssssassssnsssssneans 1-1
1.1.1 The Form Editor ...ccciviiiinriciieiieeecieecnereerreestreesseeessnsesneesesnesesensnns 1-2
1.1:22 “The Form Utilitysmemrmrmramandimm et s me i i i 1-2
1.1.3 The FOrm DIIVEL ...cccverierreiriierieereereeireesnreeneessesseresessssssssssessssesessnes 1-2
Developing Form Applications.......ccccccceceeiicviniiincnieinicnniecnieciicennesecssensne 1-3

The FMS-11 Form Editor (FED)

2.1
2.2

2.3
24

2.5
2.6

2.7

OVEIVIEW ...eiceveieriinriirresreessseteestessessesssesrsessresssessassseesssassnessessseesssesasasntesssesssassees 2-1
Form Editor Terminologycccccooiiviriinieiiniieceicccneccicesitsrieescesnessaesnenies 2-2
20 S 63 -1 -) oY 0] cia g T O 2-2
2.2.2 Form DescCription....ccccccvcvreriiiiininiiinniiniiiesnneennesercisnsseesanessesans 2-2
N3 Il e R T e A R A T R R 2-2
2.2.4 Form Description File........cocecvieieiniimninniniinenenicetcccceeeneceeeee e 2-2
2.2.5 Form Library File......cccocconcinniiniiniiiiniccicnccicnnes 2-2
Starting the Form Editor ...t 2-2
Form Editor Commands........cccecivviniiieininiinieniesenieniieeestesesseesessessesssessessenses 2-7
2.4.1 Assigning the Form-Wide Attributes: The FORM Command 2-8
2.4.2 Kditing the Form Display: The EDIT Command.......c..ccccovecvrrernnne 2-8
2.4.3 Assigning Field Attributes: The ASSIGN Commandsc.cccnen. 2-8
2.4.4 Specifying the Named Data: The NAME Command...........c...... 2-9
2.4.5 Storing the Form Description: The SAVE Command 2-9
2.4.6 Canceling the Session Without Saving the Form: The QUIT
COMMAN....oiiririreriieiiecerireeieeeeeeeesressesssesenssssessaessseesssssaasssasssaenn 2-9
Edit Status Displaycccccvvreeerreemrieieneneernesesesssesessmsoesssssssssssssnsssosssnssssrnessssaes 2-9
Form Editor Operations Referenceccoccvveeveevenncrininnccnnnncneneneeceneecnene 2-10
2.6.1 Creating the Form’s Screen Image.........c.ccooeeeiveeiiiiciiiiccinceiicciieees 2-10
2.6.2 The Text Bditor...cocvviiiienrinieeiieiiercrecrteienree et et saee e 2-10
2.6.3 Mode-Changing Operations........c.ccecvenmivuinniccnniinininiccniiineninnnss 2-11
2.6.4 Cursor Control Operationscc.coeevieineiniincnnniccnieenenennscneenseennne 2-13
2.6.5 Text Modification OpPerations.......cocoeeeeeereeereeesrreerrcerseriiesriessesserens 2-15
2.6.6 ScTOll OPerationcccucieeieriesieiiicrieeertesiesiereeneesessnosesssesseessosessnosssenees 2-19
2.8.7 Field PICLUTES cvevveierrereeieieieienvenesreseesssseemsressensestssessssesssesssrossessessorsoses 2-20
2.6.8 Assigning Form-Wide Attributes......ccocvvviiiininiiniinnniiiininan, 2-22
2.6.9 Assigning Field Attributes......c.ceecnnninenmi, 2-24
2.6.10 Assigning Named Data Attributes.......cccoovvinniniiniinnnnenene, 2-27
How to Use the Form Editor......cciciciiiiinininieeceieenecenceeesencessnesvesnis 2-29
2.7.1 The Printed FOIM ...ccveiiiieiieecieeciecsrecseeeeerereereeatesnnessesssassssnsnesns 2-30
2.7.2 Creating the Screen Form (Steps 1. and 2.) ccccocvvviniivniiininnnnnne. 2-32

iii

Chapter 3

Chapter 4

Chapter 5

iv

The FMS-11 Form Utility (FUT)

3.1 Starting and Stopping the Form UtIYoceereeereeereeeeresereeereeeeoseessns 3-1
3.1.1 Starting the Form Utility Directly with the Task Name FUT...... 3-2
3.1.2 Using the RSX-11M/M-PLUS MCR RUN Command................... 3-2
3.1.3 Stopping the Form Uityc.o.cceceviieeeeeeeeeeeeeeeeresesrese e 3-2
3.2 Form Utility Defaults.....c.ccciveiuieieiirieieeeeeeeeseeeeresseesesseesesseesesssssses e 3-3
3.3 Form UtiHEY EITOTS ..ot eeeenese e et es s 3-4
3.4 Prompts for Form Library File ProCesses.......coieoeeverereoesoseoseoeseeessssnn 3-4
3.5 Form Utility Command Optionscccoueueeeereueerneeresreseeeeseseoeesessosee e 3-5
3.5.1 Options for Control and HELP............coooowmeemmemmereeeeeeeeroeoon 3-6
3.5.2 Options for Creating Form Library Filescococvvevevevvreoieinns 3-8
3.5.3 Options for Processing and Converting Form Descriptions 3-12
Introduction to the FMS-11 Form Driver (FDV)
4.1 Form Driver Interaction with the Form Descriptionc..cooevveverererrnnnnn, 4-1
4.1.1 Media-Resident and Memory-Resident Forms........ococevvvvvevvvvinnn. 4-1
4.1.2 Defining Forms and Fields by Name.......ccccceceuvveveeomerereerreennnnnn, 4-2
4.1.3 Displaying the FOIM........ccooiviiiiiiitieeeeeeeeeceseee e seesesssseersesssens 4-2
4.1.4 The HELP FUNCHON .c.ooviviuiriiitieieee e seeeeeesrereesssses s 4-3
4.1.5 Internal Storage of Field Values - The Impure Area...................... 4-3
4.1.6 Guiding the Operator ReSponsesoceeeeveeueeereesseresssreressssesens 4-4
4.1.7 The Order in Which the Form Driver Concatenates Fields........... 4-5
4.1.8 Text, Field-Marker Characters, and Video Attributes 4-5
4.1.9 Processing Fields......cccumnmiiiiriiniiceieeneisiceeeeeeeeeeeeseeeseseseesesssons 4-5
42 Form Driver Interaction with the Terminal Operatorc..coevevvvverevenn.. 4-10
4.2.1 Signaling and Recovering from EITOrs......cccceetveevveereresseressererennns 4-10
4.2.2 Field Editing Principles and Functions.........ecoceeeevveereeeeeseeoesons 4-12
4.2.3 Switching the Insertion Modes: the INSERT/OVERSTRIKE
FUNCEION c.eteiietcstec ettt st e e sae e s e e e e e s saessesssnesssesasess 4-16
424 Field Terminating FUnctionscc.cceeveeriieiiinisenisecsseeeeeseeesenes 4-16
4.2.5 Typing and Editing Fixed-Decimal Valuescocccovovuvevereerrersseennn. 4-21
Form Driver Programming Requirements and Concepts
5.1 Features for Checking Call Status..........ccoeueueeeueeeveeveeeseesseeeeesserssssssssesessaees 5-1
5.1.1 Form Driver and System Status COodescooveurvererrversrsoserisssesins 5-2
5.1.2 Debug Mode Support for Application Development....................... 5-3
5.13 The Debug Mode and Application Programming Techniques 5-4
5.1.4 Signaling the Application Operator About Program Errors............ 5-4

5.2

5.3
5.4
5.5
5.6

5.7

5.8

5.9

5.10

5.11

5.12

The Role of Field Terminators......c..cocceverrerreenenueseeseenrinnessecesssessnessesesessesssens 5-5
5.2.1 Relationship Between Field Terminators and Form Driver Calls
... 5-5
5.2.2 Using the Alternate Keypad Mode Terminators........c..coevueuerneenses 5-9
The IMPULE ATEA ...oeuerreeeereiiciriniinsinirsiesessssassissssasesestssisessssssssss s sssanssessssnss 5-11
Task-Building Programs with Memory-Resident Formsccoccoiiniiinene 5-11
FCS and RMS System SUPPOTLL ...ccciriinirimienmeeseisecsnusiisniiniisssssassasnsess 5-12
Using the Form Driver as a Resident Library with FCS Support 5-12
5.6.1 Procedure for RSX-11M and RSX-11M-PLUS Systems 5-12
The High-Level Language Interface ... 5-13
5.7.1 General Description of the Argumentscccconeenniiinnininnnn. 5-14
5.7.2 General Description of Call Syntax for High-Level Languages 5-17
5.7.3 Status and Error Checking.......ccocoovvimniniinnncinniniiniiieccnine 5-19
The Interface for BASIC-PLUS-2....covviicirininiincreninsnnnnsnnesieesasiaen 5-19
5.8.1 Arguments for the Calls ... 5-20
5.8.2 Syntax for the Calls......cccoiiiiniinciiiiii e 5-20
5.8.3 Building a BASIC-PLUS-2 Taskcccocoeeuniimnimnriinniisnnninniencnne: 5-23
The Interface for COBOL-11 and COBOL-81cccovvmvniiinmnincnnnniiinniinns 5-24
59.1 Using the Form Utility (FUT) to Create the Communication....... 5-24
59.2 Arguments for the Calls ... 5-25
5.9.3 Syntax for the Calls.....cccocoiiiimmmninnininnneii e 5-26
5.9.4 Building a COBOL Program ..., 5-30
The Interface for DIBOL-83....ccceceiiirereineiniiiirenisessssesiessesssssnsnssssiens 5-31
5.10.1 Arguments for the Calls.......ccoonnnnniiiiiis 5-31
5.10.2 Syntax for the Calls......ccomiimnnnevi e 5-32
5.10.3 Building a DIBOL-83 TasK......cecevnerecserecrinniimnininininmiinisssneis 5-35
The Interface for FORTRAN IV and FORTRAN-T7 ..o 5-35
5.11.1 Arguments for the Calls.....ccoormimieiniiii 5-36
5.11.2 Syntax for the Calls......coiii 5-36
5.11.3 Building a FORTRAN Taskccocouneiiriicncniniiniiiiines 5-39
The Interface for MACRO-11....ccoiiiiennneniinniininiisieiensninesisssenesisississieoeans 5-40
5.12.1 F$FNC, the MACRO-11 Function Code....ccourrnciiiiscsisinininnnnnns 5-41
5.12.2 F$REQ, Required Argument List Pointer.......coovniiiniiviiniiiannn. 5-42
5.12.3 Function-Dependent Arguments......ccocoveeeieesionsiiimmnmissinonese: 5-43
5.12.4 Keyword Encoded Macros.....ccooccermneeriisiiiiinismsmnssisesensecasesines 5-45
5.12.5 Special Information for I/O from a MACRO-11 Program............ 5-50
5.12.6 Program Sections Used by FMS ...ccoovriviviinniimncnens 5-51
5.12.7 Form Driver Conditionals.......cccoviriniiiminenenniniiiie 5-52
5.12.8 Event FIags ..ot 5-53
5.12.9 Building a MACRO-11 Programcccovevnimininnnsisinenin: 5-53

Chapter 6

Chapter 7

vi

Form Driver Calls

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25

7.1
72

7.3

7.4

7.5
7.6

FCHIMP - Change the Impure ATeacooecovvveeommroeemoreooreeooeoooooosooessooon 6-1
FCLRSH - Clear Entire Screen and Display FOrm ... 6-3
FGCF - Return the Current Field Name..........coocooovvoovoovoooooooooooooooo 6-5
FGET - Get the Value From the Specified Field............ooooooooooooorn o 6-7
FGETAF - Get the Value for Any Field...........coooooomvoeooooooooooooooooo 6-10
FGETAL - Get All Field Values...........oooveeemmvesmomeoooooeooooooooeoooooooo o 6-13
FIDATA - Get Named Data by TndeX...........oooerovvemmveeooooooooooooooooooooonn 6-16
FINIT - Initialize Impure Area for High-Level Language Tasks 6-18
FINLN - Get Current Line of Scrolled ATea..............oooeoooooooooooooosoooooon 6-20
FLCHAN - Set I/0 Channel (LUN) for Form Library File......coeuvuenn... 6-23
FLCLOS - Close FOrm Library..........ocoveveeveomeeermoeessooooooeoooooooeoooooeoooooon 6-25
FLEN - Return the Length of the Specified Field ..o 6-27
FLOPEN - Open Form LibBrary.............ooceveoveeermeoommooeeorosoooooooooeoooeoeooeoooo 6-29
FNDATA - Get Named Data by Name...........o.cooovvvooovveoooooooooooooooo 6-31
FOUTLN - Output Data to Current Line of Scrolled Area.........oo............ 6-33
FPFT - Process the Field Terminatorco.oooovevveoosoooooeoooooeoooooooooo 6-35
FPUT - Output a Value to Specified Fieldc.ooovvmooeeoomoooooooooo 6-39
FPUTAL - Output Values to All FI€ldSovvveeveeeoeeoeeooeoeooooooooo 6-41
FPUTL - Output to Last Line of SCreenooovuvvmvveemmoooeoooooooeoooooooosoo 6-43
FRETAL - Return Values for All Fieldsoooveomvmeooooooooooooooooo 6-45
FRETN - Return the Value for the Specified Field ..o 6-47
FSHOW - Display @ FOIM..........cueivveceeeeeeeeeeeeeeseeseeoeeoeeoooeoeoeoeoseeooeeooe 6-49
FSPOFF - Turn Supervisor-Only Mode Offoooeovveoooooooooooooooooooo 6-51
FSPON - Turn Supervisor-Only Mode Onveevveeoooeeooooooooooo 6-52
FSTAT - Return the Status From the Last Callooooooooooooooo 6-53

Scrolling TeChIIQUEScvverveieeeeeeeeeeee oo 7-1
Three Common Scrolling Methodsoveeevveveeooeooeoeeeoooeoeeooeoooeooo 7-2
7.2.1 Entry, Edit, and RevIewcccoooveoverorooeoeeeooeoeoeeooeeeeeeoeesseon, 7-2
7.2.2 Normal and Display Only FIeldscococerevememoeeooeoeooeeoeoeesoeseans 7-4
723 Reviewing @ Data Listcoovvueeeeeeeivereeesesosoeoeeoeeoeoeeeoeoeeoooseoeen 7-4
Simultaneous Display of Multiple FOrmS.oovovvoveeooeoeoeooeoeooeoooeooeoooe 7-4
7.3.1 TIPUTE ATASouoveirreernienrrrreiesieseeeeeeesseesses s eeeeeesee s 7-5
7.3.2 HELP FOIMS.....ccotvmimmnreirniieeeseeseeeeeeeeseesces e 7-5
Emulating the FGETAL Call by Combining the FGET and FPFT Calls
.. 7-6
Using the FGETAF Call.....o.oovuuivmmiiooceeeeeeeeeoeeeeeeceeeeeoeeeoeeeoooeeoeoeeeeoeeeoo 7-6
Using Indexed Fields........oevcrmrivereremceeecenereoseeeeeseceee oo oo 7-7

Chapter 8

Appendix A

Appendix B

Appendix C

7.7 Examples of Programming Techniques

...

7.7.1 Emulating FGETAL with FGET and FPFT..........ooooooooooooooooonn
7.7.2 Table LOOKUPvvveermrreeneeeeneeeoseeeeessseeesseseeessesos oo oo
173 FOIM LINKAGE ... cveeverrrrerirertrsreereseeseeeenaeeaseesseessesssssssesseessessasssssssssns
7.714 Menus and Application Data..........coecvvvieineeeeeeeeeeeeeeeersreesssesasseens
7.7.56 Initializing a Scrolled Area.......ccocvuiiveieiiviriieiiiecteeeeeeeeeeeeversiess
7.7.6 MACRO-11 Programming EXamplesccccevevueverrvrereseresreressesesees

Preparing Your System for FMS-11 Applications

8.1 RSX System Generation OPtiONSceeeveeeceeeeereeeeererssesssssesssoresorsrssssessssses
8.1.1 Terminal Service OPtIONcciveevievirenrireerieerenresesesseressssesessessosens
8.1.2 Mapping OPtionsccoeeeeveerinrrrenriieerrireeresestinsssresestssesesesessscssssens
8.2 System Installation ProCe@UIEsoccveeecoreeeeeiressseeseisssesssessseressssssssssnss
8.2.1 The RSX Procedure. ... iiiieceeiiieeiicecieteeeeeeeeeesveersseeesssssessens
8.3 Configuration Procedure for the FOrm DIiver........occoovvevieeeeeeeeeeeseesoons
8.3.1 Question Types and Defaultsoocceveriviireceereeeeeeereeereeessseerenens
8.3.2 Do You Want to Build the Form Driver without the SOB............
8.3.3 Do You Want ONLY Memory-Resident Form Support? [Y/N]:...
8.3.4 Do You Want to Delete Fixed-Decimal Field Support? [Y/N]:.....
8.3.5 Do You Want to Delete Scrolled Area Support? [Y/NJ:.................
8.3.6 Do You Want Debug Error Messages? [Y/N]: c.ooveveereeeeeeeesrenas
8.3.7 Do You Want Support for the VT52? [Y/N]: .ooevrerreerrerserererenns
8.3.8 Size of the Directory Buffers in Blocks [D R:1.-2. D:L.Ji................
8.3.9 Number of Directory Buffers [D R:1.-20. D:1.]: cuoeeveeeeeeeereen
8.3.10 Number of Libraries Open at a Time [D R:1.-20. D:1.]:...cccou.......
8.3.11 Do You Want Support for Other than Full-Duplex Terminal.......
8.4 Building and Running Your Application TasKscceceeevieveeemoeoeoseeeoeseoeonon,
8.4.1 Building and Running Application Programs........c.ccceevveevovervnnn.n.
8.4.2 Considerations When Using ODLi........coovveeeeeeeeeeeieeeeneeeeeseeeenenns

FMS System MACRO Library
FMS Sample Forms

FMS Sample Application Programs

C.1 A Typical APPLCAtiON.....cccveveeeieereiieitccreeeteeceeees e e seeesesesesssssseesssssessssseeons
C.2 Running the Programs..........c..cceeiniuirieinieieieeneeeseeeeeseesssesseesssessssssesssensses
C.2.1 Running the BASIC-PLUS-2 Version........ccooeveeuereeeeevreseererssrerans
C.2.2 Running the COBOL-11 VerSiOnccouvuviiviimireeerereeeeesereeeseeeeeeseses
C.2.3 Running the COBOL-81 Versioncooecivirerireeereeeeeereeserereressssssssons
C.2.4 Running the DIBOL-83 Versionccccoeeeiiiiiciieeeereceeeeeeseeeresssseens
C.2.5 Running the FORTRAN IV Version.......ccoovuvvivruernenreeereessressseans
C.2.6 Running the FORTRAN-T7 Versionccucvereecereeeerereerssseesssssessrens
C.2.7 Running the MACRO-11 Versionccoeovvveriiccemeeeeereeerseeeeserssssssnans

vii

Appendix D

Appendix E

viii

C3
C4
C5
Cé
G

Listing of the BASIC Programi........c.cccoiminenninsensisssssmmassssmiassssssssessssoss C-4
Listing of the COBOL Program ... C-11
Listing of the DIBOL Program ... e, C-18
Listing of the FORTRAN PrOgram.........coocoooiiiooieeeeeeeeeeeeeeeeeeeeeaeeeeeeneens C-22
Listing of the MACRO-11 Programccccveveveirineveesiiesreseeresseosesseseons C-30

Task-Building FMS Sample Applications

FMS-11 Software Error Messages

E.1
E.2
E.3

E4
E.5

How to Use This APPendiX.........ccoceereiiiiiiiieiiiiiiceiceeseereeeeseeseeeeeeeeseeeeenes E-1
Order of Messages and Special Featurescccvvuivivireiirensinsereesesiseneenenens E-1
TYPES Of FIMS MESSAZEScrveeverererirriirereneiiiererereseessseesereseressssssesesssessssssasosens E-2
E.3.1 Types of Form Editor Messagesccccvevevieverierereerenneeeeeeseeeesennes E-2
E3.2 Types of Form Utility Messages......ccuvuvvermeeereereriiiereieieiseeeessaeeeseenes E-3
E.3.3 Types of Form Driver Messagescvevvereernvireerernsreseesesseeoreesnenes E-3
E.3.4 Bell Message Signalsccccoveeevivivivieienrisienienieniereciseesreeessseseessaseesens E-4
Suggestions to Follow if FMS Software Malfunctions..........cecoevereverievennnn. E-5
FMS SOftware MESSAges.......ccvuereiririciereiiriireerererisinsesesesersssssessssesessssssssssssssens E-6

Figures

Tables

B-2.

W w
w3 s dn s o

) 1
[

goggog gog o o
&k do

o>

oo
— O
=

>
=

2-1.
2-2.
2-3.
2-4.
2-5.

3-1.
3-2.
4-1.
5-1.
5-2.

Form Editor Commands........ccciveveerierinreeecriesiecirseensensessessessesserssssessesssosssssens 2-4
Form Editor Keypad Layout......c.ccuieeiincnrinieneirenioneenesssenessessessssesseees 2-7
Form-Wide Attributes QUEStIONNAILEovevveveceiceeereencriaeeeeenerreesrenenennes 222
Field Attributes QUEStIONNAITEccocucecemrierriiiiiniiiniriieiree s ssssssenens 2-24
Named Data QUESLIONNAITE ..ovecevrereereceriiiiriesireseriesrsrsssess s saesssessenens 2-28
Sketch of VENDOR......oooiiiiiriervinrerreeeressteessesnessesssesessassesssssssnssressssssssnsesens 2-32
The /HE Option and the HELP Display......cccooiomeiiiinnineiiinninnnncciiiens 3-6
The /RP OPUION .ovviiiiiriirereneeentirnsiesissesnesosssnssssnesssasnsnssestssesssesssnsissisistsnsnss 3-11
The /CC Option: Illustration of the COBOL Data Description.................. 3-14
The /FD Option: The Form Description Header.........cooevevieniiennincncniennee 3-16
The /FD Option: The Image Mapccocvvmvnnimiennnicriinsniesiinnnie 3-18
The /FD Option: The Video Attributes Map......ccoecvvennnnninniiiennnnns 3-19
The /FD Option: Field Descriptions.......oceceeeieriinennininicinnnnenienni, 3-20
The /FD Option: The Named Data Map........ccooeeermnneniincnnncccicnnniiisiens 3-33
FIRST Form and Named Data Information for FIRST Form........c.ccooeue. B-1
New Customer (CUSTO) Form and Named Data for Newccccoueunnneeee. B-2
Customer Profile Form and Named Data for Customer Profile................... B-3
LAST Form and Named Data for LAST Form......cccoccvvniniiiiniinnininnnnnn, B-4
Employee Data Form (EMPLOY) and Named Data........c.cccoevevcvniiiinnnns B-5
Part Description Form (PARTS) and Named Data for Part.......c.cccccceueee. B-6
OLEAR OB ..vovversssmmtivesassssssasossomisst s s aivasssmassssassssss (893 s e sasmas s sseomsasisess B-7
Command File and ODL File to Build BASIC-PLUS-2 Demo with FMS

and RIMS CIUSEETEAeovverireiiiierirrenreereeesseeseesiessnesesseessessessssssessessssseensansanes D-2
Command File and ODL File to Build BASIC-PLUS-2 Demo with

RMSRES Resident LiDrary ... D-3
Command File and ODL File to Build BASIC-PLUS-2 Demo.......ccceeun. D-4
Command File to Build COBOL-11 Democcccovervrviriniininnininineinenennes D-5
Command File to Build COBOL-11 Demo with RMSRES Resident

TR w57svevevevessvoresssnons 7531 FTTESmmmR TESRoRoFe2 2905 EE S S e e e e e Geam Y s Eev oo g wovsesnsy D-6
Command File to Build COBOL-11 Democccceeieeieviereneeieienecrecneeessanns D-7
Command File to Build COBOL-81 Democccccovceriirniiineinieniciiincnionnennns D-8
Command File to Build COBOL-81 Demo with RMSRES Resident

Libraryccccoeeennnd s e RS S S e TSe F b D-9
Command File to Build COBOL-81 Democccccovvviiiniiinnrinnrnnieinininisninenen D-10

. Command File to Build the DIBOL Version of the FMS Demo with
RIVIS cvencessssroneresesmammensemonssssssasssnsssssse ol oo e e e el D-11
. Command File to Build the DIBOL Version of the FMS Demo................. D-12

FED Command SUMMATY ...c.eoreerreeresiseremecsisesiiniisiorssssmmasisssssssssssenssssisses 2-6
FED Picture-Validation Characters.......cccccceevieiiiniinnimininienionmeeeen 2-20
Field-Marker CRharacterS......cooeiverreeneerenseersesiciaeismsmesissssrssssnssnsosesssesssassses 2-21
Field Characters Required for the Example......ccooeeiiiininiinninnni 2-41
Field Attributes Required for the Example.......cocooivecienieinniinn. 2-41
Form Driver Editing Functions Required for the Example.........cccocccevunenc 2-41
Default Values for RSX-11M and RSX-11M-PLUS Systemscccoveenee 3-3
The /FD Option: Video Attributes Codes and Meaningscoooveuieinennens 3-20
Field Editing Keys, Functions, and Usage for the Form Driver......c..cc....... 4-13
Summary of Returned Status Values and Codescccconunimieinnnnsinnincinens 5-2
Field Terminator Keys, Codes, and Typical Effects.......cccoocsniiivniiniianinns 5-7

ix

5-3. The Relationship Between the Calls to Get Operator Responses 5-8
5-4. Alternate Keypad Mode Field Terminator Keys and Codescrvernne.. 5-10
5-5. FCS and RMS System Requirements for the Form Driver ... 5-12
5-6. Summary of Form Driver Inputs and Outputs in High-Level Language
CalIS .ottt 5-15
95-7. Typical BASIC-PLUS-2 Data Types for Form Driver Arguments............. 5-20
5-8. Listing of BASIC-PLUS-2 Form Driver Callsovvoooooooooooooooo 5-21
5-9. Typical COBOL-11 and COBOL-81 Data Types for Form Driver
ATGUINENES.......oeviecireeeiensiae sttt eeeeseesesessses s e s s eseee e seese e seeee e 5-25
5-10. Listing of COBOL-11 and COBOL-81 Form Driver Callsooooooonnn.... 5-26
5-11. Typical DIBOL-83 Data Types for Form Driver Arguments..................... 5-31
5-12. Listing of DIBOL-83 Form Driver CallS...........ovveoooovoooooooooooooooooooooo 5-32
5-13. Typical FORTRAN IV and FORTRAN-77 Data Types for Form Driver
ATGUINENES.....o..oooittieereeceinrens e eeeee et e eeeees e 5-36
5-14. Listing of FORTRAN IV and FORTRAN-77 Form Driver Calls................ 5-37
5-15. Offsets and Meanings of Necessary and Function-Dependent Arguments
.. 5-40
5-16. MACRO-11 Function Codes and Meanings.........co...oooevveoveevoeooosoooosooosoon 5-41
5-17. Required Argument List Offsets and Meanings.........ccouveecvereeeerivecerennneenns 5-42
5-18. Summary of Arguments, Keywords, and Offsets for High-Level

Language and MACRO-11 Form Driver Calls...........oovvoooooooeoooooooooos 5-45

Preface

This manual describes the FMS-11 Software System for use with the
RSX-11M and RSX-11M-PLUS operating systems. Overview sections tell how
FMS-11 components work together. Detail sections introduce the features of
each component.

This manual and FMS-11 software are primarily for RSX-11M/M-PLUS
system programmers who have experience with BASIC-PLUS-2, COBOL-11,
COBOL-81, DIBOL-83, FORTRAN 1V, FORTRAN-77, and MACRO-11
programs.

The Chapter Summary section briefly describes the chapters in this manual.
The Symbols and Conventions section describes the documentation
conventions.

Chapter Summary

Chapter 1 introduces form processing and presents general information about
the FMS-11 software components.

Chapter 2 describes the FMS-11 Form Editor in detail. The Form Editor is the
FMS-11 component that creates and modifies computerized form descriptions
for later use in form applications.

Chapter 3 describes the FMS-11 Form Utility in detail. The Form Utility is a
system utility for manipulating form descriptions by creating form library files
(printable files that show how forms have been designed), object modules for
forms, and directories of library files.

Chapters 4, 5, 6, and 7 introduce and describe the FMS-11 Form Driver. The
Form Driver is the FMS-11 component that displays forms. It also accepts
data that operators type in response to the forms.

Chapter 4 introduces Form Driver concepts in two major sections:

1. How the Form Driver interacts with the form descriptions that you have
created with the Form Editor, including detailed descriptions of how the
Form Driver treats field attributes and form attributes.

2. How the Form Driver interacts with the terminal operator when an
FMS-11 application is running, including detailed descriptions of error
handling, field editing functions, and input termination in fields and
forms.

xi

xii

Chapter 5 details programming requirements and concepts. The first major
section presents requirements applicable to all programming languages.
Separate sections for BASIC-PLUS-2, COBOL-11, COBOL-81, DIBOL-83,
FORTRAN IV and FORTRAN-77, and MACRO-11 present the special details
that apply only to each of those languages.

Chapter 6 is the main reference chapter for the Form Driver calls. Detailed
descriptions of the calls are arranged in alphabetical order by the high-level
language call name. Each description is organized as follows:

1. The purposes and effects of the call - This information applies to all
programming languages.

2. The forms of the call - For each high-level language, the general forms of
the CALL statement are given in full, each with an argument abbrevia-
tion that represents the purpose of the argument. For MACRO-11, the
general form of the macro call to the Form Driver (3FDV) is given.

3. The input and output arguments for the call - The required and optional
inputs and outputs are listed in tables that show the argument abbrevia-
tions and explain the requirement on input or the value on output. This
information applies to all programming languages.

4. The codes and values for the status of the call - The high-level language
status values and the MACRO-11 status codes are listed and explained in
separate tables.

Chapter 7 presents programming techniques that illustrate special Form Driver
capabilities and show useful combinations of Form Driver calls. Examples are
included for MACRO-11 and the high-level languages.

Chapter 8 describes how to prepare your system for FMS applications.
Separate sections cover the relevant RSX-11 system generation options, FMS-
11 installation procedures, and the FMS-11 configuration procedure for the
Form Driver, including a full listing of the interactive configuration dialog for
running FMS-11 applications.

Five appendixes supplement the manual. Appendix A contains a listing of the
FMS-11 system macro library (FMSMAC.MAC). Appendix B contains FMS
sample forms. Appendix C contains source listings of executable examples of
FMS-11 that DIGITAL has distributed as part of your kit. Appendix D
contains source listings of task building FMS sample applications. Appendix E
lists and explains all of the FMS-11 error messages.

Symbols and Conventions

This manual and the FMS-11/RSX Mini-Reference use the following symbols
and conventions. Although most of them are the same as the symbols and
conventions used in other documents for PDP-11 software, the VT200
terminal and the video orientation of the keypad editor require a few changes.

System prompts

Red print
Black print

Uppercase letters
(In commands and
calls)

Lowercase letters
(In commands and
calls)

Square brackets ([])
(In general forms or
commands)

Braces ({ })

Dot matrix letters

Indicate the system is ready for your command.
System prompts are:

For RSX-11M systems: the characters MCR> or a
right-angle bracket () by itself.

For RSX-11M-PLUS systems: the dollar sign (s) or
the RSX-11M prompts (when the MCR is running).

Indicates characters typed on the keyboard in
examples.

Indicates the characters displayed by the system or
by the FMS-11 software in examples.

Indicate the characters you must type on the
keyboard (see also “Lowercase letters”).

Indicate the parts of commands or command strings
you must supply (see also “Uppercase letters”).

Indicates a combination of the control key and
another keyboard key. For example, for hold
down the CTRL key and press the U key.

Enclose an optional term or optional characters (do
not type square brackets as part of a command
unless the instructions explicitly require them).

Enclose a list of two or more terms from which you
must choose and type one (do not type braces as
part of a command).

Indicate prompts, short status messages, and
examples. .end;

Xiil

Chapter 1
Introduction to FMS-11

1.1 Overview

FMS-11 is DIGITAL’s Form Management System. FMS-11 software contains
the tools for developing form applications and running them on VT200,
VT100, and VT52 terminals. In the past, printed forms have been the most
common tool for collecting and transmitting data in an orderly manner. FMS-
11 software now brings the speed, convenience, accuracy and low cost of
computerized processing to users who have been using printed forms.

The FMS-11 software described in this manual is designed to run on
RSX-11M and RSX-11M-PLUS systems for user application development and
execution. In addition, many FMS-11 application programs developed for
RSX-11M or RSX-11M-PLUS systems can be executed on RSX-11S Version
B2

Forms are designed by typing them directly onto the terminal screen. Neither
layout charts nor a special forms design language is required. FMS-11
associates constant data with the form, not with the application program. This
makes for simplified application program maintenance and increased
application program flexibility. You can modify forms later without
recompiling your application program.

Form application programs can be written in one of several programming
languages. FMS-11 provides language support for BASIC-PLUS-2, COBOL-
11, COBOL-81, DIBOL-83, FORTRAN IV, FORTRAN-77, and MACRO-11.

FMS-11 software contains three main components for developing and
executing form application programs:

e The Form Editor (FED)
e The Form Utility (FUT)
e The Form Driver (FDV)

1-1

1.1.1 The Form Editor

The Form Editor (FED) simplifies designing, modifying, and storing form
descriptions for video display. Your screen always displays your form in its
current state. Keypad and keyboard functions allow you to specify video
display characteristics for either constant text or fields that contain picture
characters. In the form descriptions, you can include short, helpful
explanations about individual fields or about each form as a whole. This will
help future operators understand the purpose of each form.

When you design forms, you assign form names and field names and you refer
to named data that will be used (but not displayed) by the Form Driver when
the form is used by an application task. The actual design of the form and the
specific application task requirement control the desired operator response to
information displayed or data to be entered on forms.

1.1.2 The Form Utility

The Form Utility (FUT) allows you to create versions of form descriptions that
are suitable for hardcopy listings, to create and modify form libraries, to list the
names of forms contained in a form library, and to produce object modules of
form descriptions. You can task build the object modules with form application
code to produce form applications that are entirely memory-resident. The
Form Utility also generates COBOL data division code suitable for copying
into a COBOL program to correspond to a form definition.

1.1.3 The Form Driver

The Form Driver (FDV) is a set of subroutines that permit your application
program to access forms you created by using the Form Editor. Application
programs access forms by issuing Form Driver calls that are embedded in the
program and are written in the source language of the program. All Form
Driver calls refer to specific forms, or fields within forms, by using names that
you assign during the form editing process. The Form Driver performs field
and character validation for operator input based on the form description
(validation is based on picture-validation characters and field attributes). The
Form Driver also responds to operator HELP requests by displaying
appropriate help text associated with the form and field being processed.

1-2 Introduction to FMS-11

1.1 Developing Form Appicationg

Seven stages comprise the typical development cycle for form application
programs:

PLAN

Study the existing process that the FMS-11 application will improve; list
the data that operators can provide; list the hardware resources that opera-
tor sites will have; describe the current skills and the additional skills they
will need; specify the features that FMS-11 forms for the application are to
have and the processes that the form application programs are to perform.

DESIGN FORMS

Use the Form Editor to lay out and modify the forms that the form
application programs will use. Use the Form Utility to print form descrip-
tions for reference, to create object modules for form descriptions that are
to be memory resident, to store forms in a form library file, and to list the
names of forms in a form library file.

WRITE TASKS

Use the Form Driver calls in the form application program to process form
descriptions, to handle form-related terminal I/0, and, to a limited extent,
to check the validity of operator responses.

DEBUG TASKS WITH FORMS
Confirm that all processes using the application’s forms work correctly.

VALIDATE ON OPERATOR SITE SYSTEMS

Confirm that the forms and application software work correctly on each
type of target system on which they will be used.

PREPARE APPLICATION SYSTEM DOCUMENTATION

Provide complete documentation for operators who will use the FMS-11
forms and application program software.

DISTRIBUTE

Package and distribute the FMS-11 forms, application program software,
and user documentation as a complete application system package.

Introduction to FMS-11 1-3

The two major steps requir(_ed when developing form applications are designing
forms and writing application programs. Chapter 2 contains the information
that you will need to design and modify forms. After forms have been designed,

the Form Utility allows you to create and maintain form library files. The
Form Utility is described in detail in Chapter 3.

The application program writing stage deals with the use of the Form Driver.
Details for writing Form Driver application programs are contained in
Chapters 4 through 7. These chapters include information on Form Driver
interaction between forms and the operator as controlled by Form Driver calls
issued by the application program, application programming requirements and
concepts, Form Driver calls, programming techniques and examples, and
building and running form application programs.

1-4 Introduction to FMS-11

Chapter 2
The FMS-11 Form Editor (FED)

2.1 Overview

The FMS-11 Form Editor (FED) allows you to create, modify, and store
customized forms on a VT200 or VT100 terminal. Your application programs
use these forms to collect data entered by an operator at a video terminal.

Creating or editing a form with the Form Editor is an interactive and iterative
process. You need not know in advance all the details or all the modifications
you intend to specify for a form. The Form Editor allows you to test various
possibilities, observe their appearance on the screen, and choose the design you
consider most successful.

The product of your work with the Form Editor is a form description that can
be saved in a file or form library and be retrieved from the file or form library
for additions or changes. You can change individual fields or text portions of
the form without affecting other fields or text. For example, you might want to
reposition items on the screen to make the form more attractive to the eye or
easier for an operator to handle, add or remove fields, or supply additional
HELP text. You can make these and other changes by starting the Form
Editor, editing the screen image of the form to make the desired changes in the
form description, and saving the modified form description in the file or form
library.

The purpose of the form description is to provide information to another
software component called the Form Driver. The Form Driver handles the
interaction of the terminal operator with the form displayed on the screen and
with the application program. The Form Driver is described in Chapter 4.

In summary, the Form Editor allows you to perform these operations:

1. Creation and modification of a form’s screen image by means of the termi-
nal’s main keyboard and the text editor keypad.

9. Storage and retrieval of form descriptions from form files or libraries.

2-1

2.2 Form Editor Terminology

2.2.1 Screen Form

The screen form is a video display that resembles a paper form. The computer
creates the display from a form description that specifies to the computer the
proper characters to display on the screen.

2.2.2 Form Description

The form description is the computer’s specification of a screen form. It
indicates which characters to display on the screen as well as the location, size,
and other characteristics of each field. The specification also includes the name
of the form and how the form and its fields are processed.

2.2.3 Field

A field is a set of contiguous characters (either picture-validation or field-
marker) terminated by a blank, a non-field character, an end-of-line delimiter,
or a change in video attributes. A field can be left blank for some of the
information a form is designed to use.

2.2.4 Form Description File

The form description file is a computer file containing only one form
description that might or might not be complete or accurate. It is a binary file
that has been arranged so FMS can use it to display screen forms.

2.2.5 Form Library File

The form library file is a computer file containing at least one form description
and a directory of the names for each form description. It is a binary file but is

arranged so that individual form descriptions can be taken out by name for use
by FMS.

2.3 Starting the Form Editor

The Form Editor (FED) requires a VT200 or VT100 terminal. The terminal
must be made known to the system as a VT200 or VT100.

RSX-11M/M-PLUS system users can use the MCR SET command for this:
SET /VT200=ti:

The RSX MCR Operations Manual describes the SET command.

2-2 The FMS-11 Form Editor (FED)

If you are using your VT200 in 8-bit mode, you must make sure you have set
the terminal characteristic to 8-bit with the following command:

SET TERM /EIGHT.BIT

If you do not set this terminal characteristic, you might receive erroneous
results.

The Form Editor requires the full-duplex terminal driver to run.

The main keyboard performs normally when you are using the Form Editor,
allowing you to insert characters, delete them, etc. The keypad to the right of
the keyboard provides operations specifically related to the Form Editor.

The following operations are used to design a form:

Start the Form Editor

By using the standard commands to load the Form Editor into memory,
you begin program execution.

When the Form Editor prompt (FED>) is displayed on the screen, you can
type in a response. The response describes the form file you want to create
or edit, or the library that contains the desired form. The response requires
a prescribed syntax, which will be described in the “File Specification”
section.

To start the Form Editor if it is in the system account, type:
RUN $FED

The Form Editor clears the screen, displays the prompt FED> at the bot-
tom of the screen, and accepts a command line.

If the Form Editor is installed on your system, you can start it by typing:

FED

The Form Editor is built with buffer space that should be sufficient to edit
almost any form. It will allow you to create or edit a form description of up
to 2048 words.

However, if you are editing forms larger than 2048 words or are editing
forms smaller than that, you can change the size of the FED task. FED can
be installed or run with a different task increment for RSX-11M and 11M-
PLUS systems:

INS $FED/ INC=words
or
UN $FED/ INC=words

The default task extension FED is built with 4096 words. The minimum
extension required for FED to run is 1024 words.

The FMS-11 Form Editor (FED) 2-3

g 21 shovs exaunples of commands {nat allow you 1 ¢4 int the Fom

Editor, create a new form, find the version number of the Form Editor, load an
old form, and exit the FED utility.

>RUN S$FED (get into Form Editor)
FED> /CR (create a new form)
FED>» /ID (find version number of FED)

FED> formname (load an old form)

FED> «<ctrl>-Z (exit Form Editor utility)

Figure 2-1. Form Editor Commands

Make File Specifications

The output of the Form Editor always goes to a form file. Each form file
contains only one form description. (To create or update form libraries, use
the Form Utility (FUT), described in Chapter 3.)

To create a new form description, use the /CR option:
FED>/CR

To edit a form description contained in a form file, type the name of the
form file, for example, “VENDOR”.

FED>VENDOR. FRM

To extract a form description from a form library for editing, type the name
of the library file and respond to the FED prompt Form name? with the
name of the form. The default file type is .FRM, indicating a form file. If
the file type is .FLB, you must type .FLB explicitly:

FED>DEMLIB.FLB

Form name? FIRST

If the specified form is not found, FED repeats the Form name ? prompt. If
you press the RETURN (@) key in response to the Form name?
prompt, FED displays the FED> prompt again and waits for a new
command line.

It isn’t necessary to distinguish between a form file and a library file on the
command line. FED determines whether the input file is a form file or a
library file, and proceeds accordingly.

If you want to know the version number of the Form Editor, display its
identification message by typing:

FED>/ID

2-4 The FMS-11 Form Editor (FED)

unjo¢

File specification formats may differ according to the operating system you

use.

The syntax for the RSX-11M/M-PLUS system form file and library file

specifications is:
dev:[UIClfilename.type;version

If the device is not specified for the input file, FED assumes the system
device. For RSX systems, if the User Identification Code (UIC) is omitted,
FED defaults to the currently assigned UIC.

The default file type for the input file is .FRM (a form file). If an explicit
version number is not specified for an input file, FED uses the latest
version of the file.

The output file that FED creates during an editing session is always a form
file with the file specification “form.FRM”. “Form” is the name of the
form when the session ends. On RSX-11M and RSX-11M-PLUS systems,
FED creates the output file on the system device in the RSX account under
which the Form Editor is running.

Issue Form Editor Commands

You can use any of the several commands summarized in Table 2-1 to enter
a particular phase of the Form Editor. You type the commands in response
to the COMMAND: prompt. If you type HELP in response to the COM-
MAND: prompt, the Form Editor displays the valid responses to the
prompt.

The FMS-11 Form Editor (FED) 2-5

Table 2-1. FED Command Summary 3

Abbreviated ey
Command Command Function
HELP H List the commands available in the
Form Editor.
EDIT ED Create or edit the form’s screen
image.
ASSIGN [option) A [option] Assign field attributes. (“Attributes”

are characteristics of fields that you
assign with FED for use by the Form

Driver.)

where option can be one of the

following;

ALL A Assign attributes for old and new
fields.

NEW N Assign attributes for changed or
newly created fields.

FIELD nam F nam Assign attributes for the field called
nam.

FORM F Assign form-wide attributes. (Form-
wide attributes apply to an entire
form rather than to a particular field.)

NAME N Enter and edit named data. (Named ; -
data is information that is to be W o
associated with a form, but not
displayed with it.)) S5 o

SAVE None Store the form, and return to the
FED> prompt. Both input and output
files are preserved.

QUIT None Cancel a session without saving

output files, and return to the FED>
prompt. The input file is preserved.

¢ Use Keypad Operations —

The keypad layout for the Form Editor in Figure 2-2 shows the operations
that are associated with certain keys or key combinations.

2-6 The FMS-11 Form Editor (FED)

N \(ald

DELLINE
GOLD
L L QJNDELLINE
_ Y y Y
aYe N N
VIDEO TEXT INSERT

COMMAND FIELD PVERSTNKE
g I Y, AN J
e N/ N N ™
ADVANCE BACKUP CcuT DELCHAR
BOTTOM TOP PASTE
. A J_ J\ Y,
e N ~ e
EOQOL 1 \
ENTER
SCROLL DELEOL
- L J J
S
BLINE SELECT
NORMAL
OPENLINE RESET
_ A A J

Figure 2-2. Form Editor Keypad Layout

2.4 Form Editor Commands

You can type any one of the commands shown in Table 2-1, FED Command
Summary, in response to the COMMAND : prompt. The Form Editor enters the
specified command after you press the ENTER key on the keypad. If you want
to cancel your last command, type the combination before you press
the ENTER key. If you want to change a command, use the key to delete
the characters that make up the command. You can use to delete the
entire command line and then type in a new command.

You can type the HELP command to display a list of the Form Editor
commands and their functions.

Begin an editing session with a rough pencil sketch of the form you want to
create. You can perfect the details of the form interactively with the Form
Editor by looping back through the command functions (using the
GOLD/COMMAND key sequence) and adding or deleting features gradually
during the development of the form design.

During a form editing session, the various command operations let you move in
an orderly manner from one phase of your work to another, allowing you to
control the phases of your work. You can enter any phase at any time. The
FORM, ASSIGN, and NAME phases use the Form Driver to display and
collect responses with questionnaire forms.

The FMS-11 Form Editor (FED) 2-7

Form Driver key operations are active while you are completing any of the
questionnaires. For example, when you are assigning form-wide, field, and
named data attributes, the TAB key has the effect of moving the cursor to the
first character position of the next field, and the BACKSPACE key moves the
cursor to the previous field. Chapter 4, Introduction to the FMS-11 Form
Driver (FDU), describes Form Driver key operations in detail.

2.4.1 Assigning the Form-Wide Attributes: The FORM Command

The FORM command displays the Form-Wide Attribute Questionnaire
(Figure 2-3). The operator enters the necessary information into the
questionnaire to create a form file.

2.4.2 Editing the Form Display: The EDIT Command

The EDIT command causes the Form Editor to enter the edit phase. During
this phase, the operator creates and modifies a screen image of the form.
During the edit phase, it is possible to type background text, create fields and
scrolled areas, and assign certain attributes. Use the GOLD/COMMAND key
sequence to return to the COMMAND : prompt.

2.4.3 Assigning Field Attributes: The ASSIGN Commands

The ASSIGN command with any of its options tells the Form Editor to enter
the field attribute assignment phase. For a new form, the ASSIGN command is
often used after the completion of the edit phase. The Form Editor displays the
Field Attributes Questionnaire (Figure 2-4) that requests field attributes for
each field in the form. For an existing form, the operator need only enter field
attributes not assigned earlier.

It is possible, during the ASSIGN phase, to exit before completion of all field
attribute assignments. To do this, press the period (.) key on the keypad. This
will cause a return to the COMMAND : prompt and assign default attributes to
all remaining fields.

2.4.3.1 For All Fields: The ASSIGN ALL Command — Causes the Form
Editor to request attributes for all fields. To display the questionnaire for the
next field, press the ENTER key.

2.4.3.2 For New and Changed Fields Only: The ASSIGN NEW
Command — Causes the Form Editor to request attributes for new fields
only. To display the questionnaire for the next field, press the ENTER key.

2.4.3.3 For a Specified Field Only: The ASSIGN FIELD Command — This
must be followed by a field name. It allows the operator to assign attributes to a
particular field.

2-8 The FMS-11 Form Editor (FED)

2.4.4 Specifying the Named Data: The NAME Command

The NAME command causes the Form Editor to enter the named data
assignment phase. The Form Editor displays a questionnaire that collects
names and data to be associated with those names. Named data is used
typically to hold information about a form in the form description, but outside
the form itself. Named data is not displayed with a form.

2.4.5 Storing the Form Description: The SAVE Command

SAVE causes the Form Editor to place the present form description in the
output file and return to either the FED> or system prompt, depending on how
the program began.

If field attributes have not been assigned to all fields when the SAVE operation
is performed, the Form Editor supplies default values for any fields whose
attributes have been left unspecified; a default name of all blanks is supplied as
the field name.

2.4.6 Canceling the Session Without Saving the Form: The QUIT
Command

The QUIT command causes the Form Editor to return to the FED> or system
prompt without saving the current form in an output file; this form is deleted.

2.5 Edit Status Display

During the EDIT phase, the bottom line (Line 24) of the screen displays
information about the current status of the Form Editor. The format for the
line is:

CURSOR: TXT NOR LIN t COL 1 MODES: TXT ADV INS SELECT: LIN 1 COL 1
FLD SCR 23 132 FLD BCK 0OVS 23 132

The second line (above) indicates the alternative choice or the limitations of
the items in the display.

The fields on Line 24 are displayed in reverse video.

The following list includes each status and its description.

CURSOR This section indicates the cursor line and character locations.

TXT/FLD The cursor character is either a text (TxT) character or a field
(FLD) character.

NDR/SCR The cursor line is either a normal screen line (NOR) or a part of
a scrolled region (scr).

LIN 1-23 The line number at which the cursor is located.

coL 1-132 The column number at which the cursor is located.

The FMS-11 Form Editor (FED) 2-9

2.6 Form

MODES This section indicates the status of the internal mode
indicators of the editor.

TXT/FLD The current input mode is either text (TxT) or field (FLD).

DVS/INS The current input mode is either overstrike (ovs) or insert
(1INS).

ADV/BCK The current direction for move operations is either advance

(ADV) or backup (Bck).

SELECT This section is present only if a select range is active.
Otherwise, this portion of the line is blank.

LIN 1-23 The line number at which the select point is located.

coL 1-132 The column number at which the select point is located.

Editor Operations Reference

This section describes the creation of the form’s screen image during the EDIT
phase and the assignment of all attributes during the FORM, EDIT, ASSIGN,
and NAME phases.

2.6.1 Creating the Form’s Screen Image

The Form Editor includes a text editor for creating and modifying screen
images. The text editor lets you use standard operations for mode-changing,
cursor control, and text modification.

The Form Editor lets you define fields and background text in the form for
data input/output between your application and the terminal operator. It also
enables you to assign video attributes (such as bold, blink, and underline) to
any character or set of characters on the terminal screen, and to define a block
of lines as a scrolled area.

NOTE

To run the Form Editor, you need a VT'100 or VT200 terminal.
Neither FED nor FDV supports the double-high or double-wide
video attributes.

2.6.2 The Text Editor

The keyboard performs like a typewriter when you use the Form Editor; it lets
you input and delete characters. The keypad to the right of the keyboard
provides operations specifically related to the Form Editor. It is recommended
that you make a copy of the keypad layout and keep it at the terminal.

2-10 The FMS-11 Form Editor (FED)

This keypad provides four kinds of operations:

¢ Mode-Changing Operations

You change modes by pressing the appropriate key or key combination on
the keypad. Modes determine placement of characters, movement forward
or backward through the form, and definition of fields and background text.

e Cursor Control Operations

These operations change the cursor position but do not affect the text. The
cursor can advance only to the margin boundaries.

e Text Modification Operations
These operations insert, delete, and modify text.
e Scroll Operation

This operation permits the definition of a scrolled line. Together with
identical lines that immediately follow it, the line becomes a scrolled area.

2.6.3 Mode-Changing Operations

The Form Editor works in several modes. The mode choices are
TEXT/FIELD, OVERSTRIKE/INSERT, and ADVANCE/BACKUP. Only
one of each pair can be active at one time.

The TEXT/FIELD modes tell the Form Editor whether the characters you
enter are background text characters for the form (TEXT mode) or the special
set, of field characters that define the picture format of a field (FIELD mode).
The special set of field characters includes field-marker (such as slashes and
hyphens that delimit fields) and picture-validation characters.

The OVERSTRIKE/INSERT modes determine how the Form Editor places
characters in the form with respect to characters already there.

The ADVANCE/BACKUP modes determine whether the Form Editor
executes an operation in a forward (right and down) or backward (left and up)
direction.

2.6.3.1 TEXT/FIELD — TEXT mode is activated by pressing the TEXT key
on the keypad. FIELD mode is activated by pressing the GOLD/FIELD key
sequence. In TEXT mode, the Form Editor accepts any character as input. It
enters any printable character or space in the background text of the form. The
Form Driver does not see these characters as data. Rather, it treats the
characters as constant text that is always displayed on the form. TEXT mode
is deactivated by pressing the GOLD/FIELD key sequence, which places you
in FIELD mode.

The FMS-11 Form Editor (FED) 2-11

2-12

In FIELD mode, the Form Editor accepts as input only the picture-validation
characters A, C, N, X, and the digit 9, as well as a set of ASCII field-marker
characters. Picture-validation characters tell the Form Editor whether to
accept alphabetic (A), alphanumeric (C), numeric (9), signed numeric (N), or
any characters (X) as input for each character position in a field. Field-marker
characters are text characters that you can define as part of a field. Valid field-
marker characters include the hyphen (-), slash (/), asterisk (*), dollar sign ($),
pound sign (#), and comma (,).

If, while in FIELD mode, you enter a character that is neither a field-marker
nor a picture-validation character, the Form Editor sounds the terminal bell
and rejects the input. The Form Editor accepts a blank as input in FIELD
mode, but does not make it part of the field. Field-marker and picture-
validation characters are treated as such only when the Form Editor is
explicitly in FIELD mode. For example, the digit 9 is associated with a field as
a picture-validation character if it is typed in FIELD mode; otherwise, it is
treated as a text character.

You can deactivate FIELD mode and return to TEXT mode by pressing the
TEXT key.

2.6.3.2 ADVANCE/BACKUP — The ADVANCE/BACKUP modes affect
the beginning of line (BLINE) and end of line (EOL) operations. They do not
affect character insertion or deletion.

ADVANCE mode causes the Form Editor to implement operations in the
direction moving from the current cursor position toward the end of the line or
form. You can deactivate ADVANCE mode by pressing the BACKUP key.

BACKUP mode causes the Form Editor to implement operations in the
direction toward the beginning of the line or form. You can deactivate
BACKUP mode by pressing the ADVANCE key.

2.6.3.3 INSERT/OVERSTRIKE — The INSERT/OVERSTRIKE modes
affect the way characters are placed or moved when you type or make deletions.

INSERT mode places typed characters at the current cursor location and
moves the cursor to the right. Any other characters on the line are moved over
to make room for the inserted character. If characters would be lost by being
pushed beyond the margin, the Form Editor sounds the terminal bell and
rejects the insertion.

If you delete a character in INSERT mode, the Form Editor removes the
character to the left of the cursor and characters to the right slide over to close
the space.

Deactivate INSERT mode by pressing the GOLD/OVERSTRIKE key
sequence.

The FMS-11 Form Editor (FED)

OVERSTRIKE mode causes the Form Editor to replace the character at the
current cursor position with the new character typed at the terminal. When a
character is deleted, adjacent characters do not close up the line. The character
is erased. The deleted character is replaced by a blank, and the cursor is
positioned on that character’s space. You can enter OVERSTRIKE mode by
pressing the GOLD/OVERSTRIKE key sequence.

Deactivate OVERSTRIKE mode by pressing the INSERT key.

2.6.4 Cursor Control Operations

The following operations change the cursor’s position during an editing
session.

The cursor symbol (either a solid rectangle or an underline) blinks on the
character cursor location. A row-column counter in the lower right-hand corner
of the screen displays the precise character position where the cursor symbol is
blinking.

Uparrow (7) Press the UPARROW key once to move the cursor up
one line. If you attempt to move the cursor above the top
margin of the form, the Form Editor will not allow you
to do so and the terminal bell will sound.

Downarrow (|) Press the DOWNARROW key once to move the cursor
down one line. If you attempt to move the cursor below
the bottom margin of the form, the Form Editor will not
allow you to do so and the terminal bell will sound.

Rightarrow (—) Press the RIGHTARROW key once to move the cursor
one character position to the right. If you attempt to
move the cursor beyond the right margin, the Form
Editor will not allow you to do so and the terminal bell
will sound.

Leftarrow (—) Press the LEFTARROW key once to move the cursor
one character position to the left. If you attempt to move
the cursor beyond the left margin, the Form Editor will
not allow you to do so and the terminal bell will sound.

BLINE Press the BLINE key to move the cursor to the
beginning of a line. The cursor will move either forward
or backward, depending on whether the Form Editor is in
ADVANCE or BACKUP mode when you press the
BLINE key.

If the Form Editor is in ADVANCE mode, BLINE
moves the cursor to the beginning of the next line.
Pressing BLINE again moves the cursor to the beginning
of the subsequent line.

The FMS-11 Form Editor (FED) 2-13

If the Form Editor is in BACKUP mode, BLINE moves
the cursor to the beginning of the current line. Pressing

BLINE again moves the cursor to the beginning of the
previous line.

If you attempt to move the cursor to a line beyond the
top or bottom screen boundary, the Form Editor will not
allow you to do so and the terminal bell will sound.

RETURN The RETURN key on the keyboard is equivalent to
BLINE when the Form Editor is in ADVANCE mode.
Pressing RETURN moves the cursor to the beginning of
the next line.

EOL Pressing the EOL key moves the cursor to the end of a
line. The cursor will move either forward or backward,
depending on whether the Form Editor is in ADVANCE
or BACKUP mode when you press the EOL key.

If the Form Editor is in ADVANCE mode, EOL moves
the cursor to the end of the current line. If you press
EOL again, the cursor moves to the end of the next line.

If the Form Editor is in BACKUP mode, EOL moves the
cursor to the end of the previous line.

BOTTOM Pressing the GOLD/BOTTOM key sequence on the
keypad moves the cursor to the bottom-right corner of
the screen.

TOP Pressing the GOLD/TOP key sequence on the keypad
moves the cursor to the top-left corner of the screen.

REPEAT If you press the GOLD key, a number, and an operation

that you want to perform, the Form Editor repeats that
operation the number of times you have specified. After
you type the first digit of the number, you see the
prompt REPEAT: and the number itself on the screen. The
first command or key typed after the digits is repeated
that number of times. You can edit the number using the
DELETE key to increase or decrease the repetitions.

2-14 The FMS-11 Form Editor (FED)

2.6.5 Text Modification Operations

Text modification operations allow you to insert, modify, and delete characters
and lines in the form, as well as to assign video attributes to background text

and fields.

2.6.5.1 Inserting ASCIHl Characters — When you type any ASCII character,
the Form Editor inserts that character at the current cursor location and
moves the cursor one character position to the right.

If you type a character at the end of a line, the Form Editor inserts the
character in the last available position, sounds the terminal bell, and causes the
cursor to “bounce back,” leaving the cursor symbol at the last character
position on the line.

The Form Editor handles typed characters differently depending on whether
INSERT or OVERSTRIKE mode is in effect.

2.6.5.2 Inserting Characters in INSERT Mode — In INSERT mode, the
Form Editor inserts the character at the current cursor position. The character
previously located there moves one character position to the right. All other
characters on the line to the right of the cursor move one character position to
the right. If the last character on the line is not a blank, the Form Editor
rejects any operation that would cause that character to be lost by pushing it
off the end of the line. If any fields are moved on a line, the Form Editor
automatically updates their field descriptors in the form description to reflect
the change in the field’s screen location.

Press the DELETE or key on the keyboard to delete the character to the
left of the cursor. If the cursor position is column 1 when this key is pressed,
the Form Editor rejects the operation and sounds the terminal bell.

If the Form Editor is in INSERT mode, DELETE moves the cursor and the
remaining characters on the line one character position to the left. A blank is
inserted at the end of the line.

2.6.5.3 Inserting Characters in OVERSTRIKE Mode — In OVERSTRIKE
mode, the Form Editor replaces the character at the current cursor position
with the character that is typed.

Press the DELETE or key on the keyboard to delete the character to the
left of the cursor. If the cursor position is Column 1 when this key is pressed,
the Form Editor rejects the operation and sounds the terminal bell.

If the Form Editor is in INSERT mode, DELETE moves the cursor and the
remaining characters on the line one character position to the left. A blank is
inserted at the end of the line.

The FMS-11 Form Editor (FED) 2-15

If the Form Editor is in OVERSTRIKE mode, DELETE replaces the
character to the left of the cursor with a blank and moves the cursor one
character position to the left. If a field’s position is changed, the corresponding
descriptor is updated. However, if a field’s picture is modified, it is a new field
and old attributes are lost.

2.6.5.4 DELCHAR — Press the Delete Character (DELCHAR) key on the
keypad to delete the character at the current cursor position. If a field’s
position is changed, the descriptor is updated. However, if a field’s picture is
changed, it is a new field and the old attributes are lost.

If the Form Editor is in INSERT mode, DELCHAR deletes the character,
moves the remaining characters on the line one position to the left, and inserts
a blank at the end of the line. The cursor remains in its current position.

If the Form Editor is in OVERSTRIKE mode, DELCHAR replaces the
character on which the cursor is positioned with a blank and moves the cursor
one position to the right. This is equivalent to typing a blank while in
OVERSTRIKE mode. If the cursor is on the last character position on the line,
the Form Editor deletes the character, sounds the terminal bell, and leaves the
cursor in its current position. The Form Editor updates the field descriptors of
fields affected by the change.

2.6.5.5 OPENLINE — Press the OPENLINE key to insert a blank line
before the current line and move all remaining lines down one line. The Form
Editor reassigns screen locations on the form to affected fields that already
have field descriptors. If the next to last line on the screen (the last line
available for your form) is not blank, the Form Editor rejects the OPENLINE
operation, sounds the terminal bell, and prints an error message.

2.6.5.6 — Press the combination to redisplay the current
screen and restore the keypad to application mode. This command is useful
when there are power failures, static problems, or distortions.

2.6.5.7 — Press the combination to delete all characters
between the current cursor position and the beginning of the line. The cursor
remains at its current position.

2.6.5.8 DELEOL — Press the Delete to End of Line (DELEOL) key on the
keypad to delete all characters between the cursor location and the end of the
line including the cursor location, replacing them with blanks. The cursor
remains at its current position.

2.6.5.9 DELLINE — Press the Delete Line (DELLINE) key to delete the
current line, move all the lines below it up one line, and insert a blank line at
the bottom. The Form Editor updates the field descriptors of any affected
fields. The entire line is deleted regardless of the cursor position in the line.

2-16 The FMS-11 Form Editor (FED)

2.6.5.10 UNDELLINE — Press the Undelete Line (UNDELLINE) key to
restore the last line or line segment that you have just deleted. This operation
saves you from mistaken or accidental deletions. It also provides you with an
easy way to duplicate lines. For example, UNDELLINE can be used to create
many identical lines in a scrolled area.

The effect of the UNDELLINE operation depends on how the original deletion
was performed.

If the deletion was performed by using a DELEOL or , the Form Editor
places the contents of the buffer containing the deleted characters at a position
starting at the current cursor location. If deleted by , the characters are
placed to the left of the cursor location; if by DELEOL, they are placed to the
right of the cursor location. This restoration can be performed only if the
deleted characters will be replacing blanks. Field descriptors for the original
fields are restored only if the cursor remains at the location where the original
deletion was made.

If the deletion was performed with DELLINE, the Form Editor performs an
OPENLINE operation at the current cursor position. The deleted line is
replaced on the screen in the blank line created by OPENLINE. The Form
Editor updates all old field descriptors for fields affected by the OPENLINE
operation when the field’s position changes, but not the picture. The field
descriptors for the deleted line are restored only when UNDELLINE is
performed the first time and on the same line where the deletion was done.

2.6.5.11 REPEAT — If you press the GOLD key, a number, and the
operation you want to perform, the Form Editor repeats that operation the
number of times you have specified. After you type the first digit of the
number, the prompt REPEAT : and the number appear on the screen. The first
command or key typed after the digits is repeated that number of times. You
can edit the number to increase or decrease the repetitions by using the
and operations. is not a repeatable function.

2.6.5.12 SELECT — Press the SELECT key to mark the current cursor
position as a reference point for video attribute assignment and CUT
operations. SELECT defines the first character of the select range. The end of
the select range is the final position to which the cursor has been moved. In
other words, the select range is the area defined by the place where SELECT
was pressed and the current cursor position. SELECT is used with the CUT,
PASTE, and VIDEO operations.

2.6.5.13 CUT — Pressing the CUT key saves all the characters contained in
the current select range. The characters are stored in a buffer, and blanks
replace the contents of the area in the screen image. If a SELECT operation
has not been performed, the Form Editor sounds the terminal bell in response
to an attempted CUT.

The FMS-11 Form Editor (FED) 2-17

2.6.5.14 PASTE — The PASTE operation inserts the characters saved by
the previous CUT operation into the same area relative to the current location
of the cursor as obtained when the original CUT operation occurred. The
PASTE operation makes sure the inserted material does not cross boundary
lines or any other text or fields in the form. If boundary lines are crossed, the
Form Editor displays the error message “Cannot paste over margins or non-
blanks or in scrolled areas” and sounds the terminal bell.

The PASTE operation is allowed only if the target paste area consists entirely
of blanks. If the target paste area is not blank, the target area is painted in
reverse video, and a message is displayed on line 24. When this occurs, press
any key to remove the reverse video attribute, move the cursor to define a
proper target area, and continue the operation.

2.6.5.15 VIDEO — Press the VIDEO key to activate video attribute
assignment. The prompt VIDED: appears on the terminal screen. Type any of
the following responses to assign the specified attribute within the select range.
Press the ENTER key after typing the response. The abbreviations are
separated from the rest of the word by an asterisk (*).

Bo*ld Displays all characters within the select range in
boldface.
Bl*ink Displays all characters within the select range in

alternately increasing and decreasing screen brightness.

Re*verse Displays all characters within the select range on a
reverse screen background. If the screen is white-on-
black, characters in reverse video appear in black-on-
white; if the screen is black-on-white, characters in
reverse video appear in white-on-black.

Un*derline Underlines all characters within the select range.

Cl*ear Deactivates or clears all the active video attributes in the
select range.

Ed*it This is not an attribute, but returns you to the normal
screen editing mode.

You must use the SELECT operation to delimit the characters affected. The
SELECT range includes both text and fields; it can cut a field in the middle,

creating two separate fields if the two parts of the field receive different video
attributes.

You can assign video attributes in either TEXT or FIELD mode.

Since you can use the CLEAR attribute to cancel the other video attributes,
you can easily experiment with the various attributes to achieve the best effect.
When you have the combination of attributes that you want to keep in your

form, end the video attribute assignment session by typing EDIT or pressing
the RETURN key.

2-18 The FMS-11 Form Editor (FED)

Note that a character can have more than one video attribute. For example, the
character can appear on the operator’s screen as both bold and blinking.
However, all characters in a field must have the same video attributes.

066 Conl Opration

FMS limits the amount of information that can appear on the terminal screen
at one time; the scrolling operation enables you to define sections within a
form for displaying portions of large data tables. A data table is considered
scrolled because you can “roll” it upward or downward to display the lines that
you want the operator to see or work on. A scrolled area is a window into a
form, displaying a relatively large amount of data a few lines at a time.

A scrolled area can be as small as two lines. Within one form, you can define as
many separate scrolled areas as will fit within 23 lines. Each line can have as
many separate fields as will fit on one screen line. Within each scrolled area,
however, all lines must be identical with respect to the number, size, and
attributes of fields and all other details.

Because the Form Driver can store field values only for the fields that are on
the terminal screen, your program must maintain all scrolled area field values
that are not displayed — all the values that are ‘“above” and “below” each
scrolled area. When your program scrolls up or down in a scrolled area, the
program must collect the lines of values scrolled out of the area and display any
line of values scrolled into the area.

The GOLD/SCROLL key sequence tells the Form Editor to define the current
line as scrolled.

The GOLD/NORMAL key sequence removes the scrolling attribute from a
line.

Once you have defined a line as scrolled, you can extend the scrolled area by
using the DELLINE and UNDELLINE operations. Delete the scrolled line
and then undelete (or restore) it as many times as you wish. In this way, you
can be sure that the lines of the scrolled area are identical.

The GOLD/SCROLL key sequence only defines the current line as scrolled.
The succeeding lines that are identical to the scrolled line are processed as part
of the scrolled area. The first line that differs in any detail from the original
scrolled line causes the Form Editor to terminate the scrolled area.

A scrolled area should not contain text except for field-marker characters. Once
the text scrolls off the screen, it is lost.

In the field attribute assignment phase, the Form Editor asks about the fields
on the first line of a scrolled area only. Fields on subsequent lines of the
scrolled area are considered to have the same attributes as the fields on the first
line. A form can contain more than one scrolled area.

The FMS-11 Form Editor (FED) 2-19

2.6.7 Field Pictures

* el e o contiguous el Giion Chaacters (oicurealition o

field-marker characters) terminated by a blank, a non-field character, an end-
of-line delimiter, or a change in video attributes. Picture-validation attributes
apply only to characters in fields. They tell the Form Driver whether the
operator may input a number, a letter, etc., in response to a given field.

The Form Editor recognizes the five picture-validation characters shown in
Table 2-2.

Table 2-2. FED Picture-Validation Characters

Character Type

© Alphanumeric
A Alphabetic

9 Numeric

N Signed Numeric
X Any Character

2.6.7.1 Alphanumeric Characters (C) -— The C in any character position
defines what is valid input in that position. The C character is a character
attribute rather than a field attribute. The C character allows the operator to
input the digits O through 9, the letters A through Z (either in uppercase or
lowercase), 8-bit characters with octal values from 300 through 375, and a
space. Any other attempted input sounds the terminal bell and causes an error
message.

2.6.7.2 Letters (A) — The A in a character attribute position allows the
operator to input the letters A through Z (either in uppercase or lowercase), 8-
bit characters with octal values from 300 through 375, and a space.

2.6.7.3 Unsigned Numbers (9) — The 9 in a character attribute position
allows the operator to input only the digits 0 through 9.

2.6.7.4 Signed Numbers (N) — The N in a character attribute position
allows the operator to input the digits 0 through 9, with only one decimal point
and with only one plus (+) sign or one minus (—) sign. Their positions within
the field are not checked by the Form Driver. Any other input is rejected.

2.6.7.5 Any Printable Characters (X) -— The X in a character attribute
position allows the operator to input any displayable character.

2-20 The FMS-11 Form Editor (FED)

26.7.6 Mixed Pictures — A single field can contain different picture-
validation characters. For example, a field constructed to accept both
alphabetic and numeric characters might look like this:

AAA999

Such a field allows the operator to enter alphabetic characters in the first three
field character positions and digits in the last three field character positions.
The field is said to have a “mixed picture.”

2.6.7.7 With Field-Marker Characters — The Form Editor treats all field-
marker characters — whether leading, trailing, or embedded — as part of the
field in which they occur. See Table 2-3 for a list of field-marker characters.

For example, a field that contains two field-marker characters, the pound sign
and the dash, looks like this:

999#AA-99

A field that contains field-marker characters but only one picture-validation
character does not have a mixed picture. Two or more picture-validation
characters in a single field constitute a mixed picture.

A field can contain the ASCII characters from 41 to 57 octal and 72 to 100
octal as field-marker characters (Table 2-3). The Form Editor accepts field-
marker characters when in FIELD mode. The Form Driver does not return
field-marker characters to the calling task or include them in the length of the
field. Field-marker characters are transparent to the task, which does not pass
them to the Form Driver in the data to be displayed in a field.

Table 2-3. Field-Marker Characters

Character Character Character
| (

”)

* <

$ i =

% , -

& 2

’ @

/

The FMS-11 Form Editor (FED) 2-21

2.6.8 Assigning Form-Wide Attributes

The Form Editor collects form-wide attributes by displaying the questionnaire
shown in Figure 2-3. The Form Editor automatically displays the Form-Wide
Attributes Questionnaire when you create a new form or when you type FORM

in response to the COMMAND : prompt. The questionnaire contains the default
conditions for each choice.

Form Name
Help Form Name

Reverse Screen C(Y,N) N

Current Screen C(Y,N) N

Wide Screen (Y,N> N
Starting Line 1,23) 1
Ending Line (1,23) 23
Impure Area bytes
Form Size words

Figure 2-3. Form-Wide Attributes Questionnaire

Press the TAB key to move from one question to the next. When you have
completed the necessary input and want to exit, return to the COMMAND:
prompt by pressing the ENTER key.

The following sections define the fields listed in the Form-Wide Attributes
Questionnaire.

2.6.8.1 Form Name — A response to this field is required. The name of the
form is used in the form library directory and by Form Driver calls.

A form is always saved in a file with the name form.FRM. When inserted in a
library, the name of the form is always taken from the form itself. The form
name cannot contain embedded blanks.

2.6.8.2 HELP Form Name — This field contains the name of an associated
HELP form. You can leave this field blank.

2.6.8.3 Reverse Screen — If this field contains a Y, the form is displayed
black-on-white. If it contains an N, the display is white-on-black. The default
is N.

2.6.8.4 Current Screen — If this field contains a Y, the Form Driver
displays the form in the current screen mode. An 80-column form with a Y
answer to this field does not require a change if the current mode is set at 132
columns.

The current screen also applies to reverse screen. If current screen is specified,
the Form Driver does not change the screen background or the screen width,

unless the form is specified for 132 columns and the screen is currently 80
columns.

2-22 The FMS-11 Form Editor (FED)

You cannot specify Y both to this option and to the wide screen option
described below. If the choice is N, the Form Driver resets the screen if
necessary to conform to the display mode for this form. The default value is N.

2.6.8.5 Wide Screen — If this field contains a Y, the form is displayed in
132-column mode and the Current Screen option described above is set to N. If
the field contains an N, the form is displayed in 80-column mode. The Form
Editor changes the terminal to the selected mode. The default is N.

2.6.8.6 Starting Line — This field contains a value from 1 to 23 inclusive,
indicating the first line of the screen to be cleared when the form is displayed.
If you specify a starting line number greater than the ending line number, the
Form Editor automatically replaces your entry with the default value of 1.

2.6.8.7 Ending Line — This field contains a value from 1 to 23 inclusive,
indicating the last line of the screen to be cleared when the form is displayed. If
the value is less than or equal to the starting line number, the default value of
23 is used.

Starting and ending line number defines the area of the screen to be cleared
when the form is displayed using the FSHOW call (which does not
automatically clear the entire screen) or when the form is displayed as a HELP
form.

2.6.8.8 Impure Area — This is a display-only field that indicates the length
of the impure area required when the form is displayed by the Form Driver. For
applications written in a high-level language, the impure area must be 64 bytes
larger than specified by FED. When you create a new form, this field is initially
displayed as question marks.

2.6.8.9 Form Size — This is a display-only field that indicates the length of
the form. This value is used in calculating the media or memory storage
requirements for the form. When you create a new form, the field is initially
displayed as question marks until the Form Editor determines the correct
value.

The FMS-11 Form Editor (FED) 2-23

2.6.9 Assigning Field Attributes

The Form Editor collects field attributes by displaying the Field Attributes
Questionnaire shown in Figure 2-4. Each entry in the questionnaire designates
a single attribute for a field. If the form or field is a new one, the Form Editor
supplies default values in the questionnaire. If the attributes for the field were
assigned in a previous editing session, those values are displayed.

Name § Right Just (Y,N) N Clear Char Cchr) Zero Fill (Y,N) N

Default

Help

Autotab (Y,N)> N Resp Reqd (Y,N> N Must Fill CY,N) N Fixed Dec (Y,N)> N
Indexed (N,H,V) N Disp Only (Y,N) N Echo Off C(Y,N) N Supv Only (Y,N) N

Figure 2-4. Field Attributes Questionnaire

Enter the attribute assignment phase by typing ASSIGN and any of the
following options in response to the COMMAND : prompt.

ASSIGN NEW Assign attributes only to new fields.

ASSIGN ALL Assign or edit attributes for all fields in the
form.

ASSIGN FIELD fldnam Assign or edit attributes for the field named
fldnam.

ASSIGN is used to assign field attributes after creating the form’s screen
image. Any new fields placed in the form may have their field attributes
defined by using either ASSIGN or ASSIGN NEW. If you exit from the field
attribute assignment phase and then return to change any assigned fields, you
must use the ASSIGN ALL or ASSIGN FIELD commands.

Fields that have changed their locations as a result of the OPENLINE or
DELLINE operations, or as a result of character insertion or deletion on
another part of the line, are recognized as existing fields. Fields whose pictures
are modified must be redefined.

If you select ASSIGN NEW or ASSIGN ALL, you proceed to assign attributes
to the next field by pressing the ENTER key. To return to the COMMAND :
prompt before you have finished all the fields, type the period (.) on the
keypad. (Remember that this results in assignment of default values to all
remaining fields in the form. The default value for a field name is 6 blanks.) If
you used ASSIGN FIELD, the Form Editor returns to the COMMAND : prompt
when you press ENTER to terminate attribute assignment for that field.

2-24 The FMS-11 Form Editor (FED)

The Form Editor displays the Field Attribute Questionnaire for each field on
the form. The TAB key moves the cursor from one field to the next within the
questionnaire. Pressing the ENTER key after going through the questionnaire
for the last field in a form causes the Form Editor to reissue the COMMAND:

prompt.

NOTE

The assignment of invalid combinations of attributes to a field
will result in an error message. To continue, press the ENTER
key to redisplay the questionnaire for that field and correct the
attribute that caused the error message.

The following field attributes appear in the Field Attributes Questionnaire:

Name

Right Just

Clear Char

Zero Fill

The name by which the field is known and referred to by your
task. Unique field names are not required if a form is to be
accessed by the FGETAL call. However, if the application is
to access one field at a time, unique names should be
assigned. (If a form contains more than one field with the
same name, the Form Driver can access only the first one.)
The default value for a field name is 6 blanks.

If you type a Y, the field is right-justified. If you type an N,
the field is left-justified. A Right Justified field may not
contain a mixed picture. The default is N.

The character that you type in this field is displayed in place
of the fill character (either zero or blank for the field). For
zero-filled fields, it must be a zero. For blank-filled fields, the
clear character may be any character. Underline, period, and
blank are the most common choices. A blank is the default.

If you type a Y, the field is filled with zeros before the
operator enters any data in the field. If you type an N, blanks
are stored in the field. Note that the Clear Character attribute
must be set to zero if the field is zero-filled. The default is N.
The fill character is also returned to the calling program in
any positions where the terminal operator does not enter data.

The FMS-11 Form Editor (FED) 2-25

Default Specifies the initial value to be stored in the field when the
form is loaded by the Form Driver. If you do not respond, the
field contains either blanks or zeros, depending on your
response to the Zero Fill attribute. Your answer to Default
should be consistent with the picture-validation type of the
field. If a default value is not specified, the internal
representation of the field is blank or zero-filled depending on
the definition. The fill character is always displayed as the
clear character. If a field has no default value, it is initially
displayed with clear characters. The default value must not be
longer than the field.

NOTE

The Form Editor does not validate default data values to be

certain that they are legal and conform to the picture-validation
type of the field.

HELP Specifies a line of information associated with the field that
the user can read by pressing the HELP key. The HELP
message appears on the last line of the terminal screen. The
default is that no HELP message is displayed. If this field is
left blank, the HELP form for the entire form is displayed if
there is one. Otherwise, the message “NO HELP
AVAILABLE” is displayed.

Autotab Determines whether entering the last character in the field
causes the cursor to advance automatically to the next field.
Typing a Y specifies that Autotab is in effect. The default is
N.

Resp Reqd At least one character that is not the fill character must be
entered in the field. If you type a Y, the operator at the
terminal must respond to the field with some kind of input
before continuing. If you type an N, the operator does not
have to respond to the field. The Form Driver uses this
attribute to validate the operator’s responses for fields. The
default value is N.

Must Fill If data is entered in the field, the field must be filled so that
it does not contain a single fill character. The field must be
either empty or full. The default value is N.

A field defined as Must Fill, but not Response Reqd, must be
filled by the operator only if he or she enters data in it. It can
be left empty.

2-26 The FMS-11 Form Editor (FED)

Fixed Dec If you type a Y, the field is a fixed-decimal field, provided
that the picture is all 9s with an embedded decimal point.
Signed numeric is not valid. If you type an N, or if the
numeric picture-validation type is not in effect, the field is
not fixed decimal. The default value is N.

Indexed This attribute enables you to define identical fields, one below
the other, as indexed fields. Typing an N indicates that the
field is not indexed. Typing an H indicates that the field is
horizontally indexed and that the cursor should proceed
horizontally to the next indexed field on the same line in
response to the TAB key (or Autotab) if the next field is also
horizontally indexed. Typing a V indicates that the field is
vertically indexed and that the cursor should proceed
vertically to the next field in the same column in response to
the TAB key (or Autotab). The default value is N. The
Indexed attribute is illegal for fields in scrolled areas.

Disp Only If you type a Y, only your application program can place data
in the field. If you type an N, both the terminal operator and
your program may enter data in the field. The default is N.

Echo Off If you type a Y, data in the field is not displayed on the
terminal screen. If you type an N, the characters echo as in
normal operation. The default is N.

Supv Only If you type a Y, the field is display-only, unless the program
has turned off supervisor-only mode (by means of a Form
Driver call). If you type an N, the field is not display-only and
can be accessed by the terminal operator. The default is N.

The attribute that defines a field as scrolled does not appear on this
questionnaire. You can define scrolled lines by pressing the GOLD/SCROLL
key sequence during the EDIT phase.

2.6.10 Assigning Named Data Attributes

Named data is any data that is to be associated with a form but not displayed
with it. Usually, named data contains information that the application uses to
control task flow in a form-dependent manner. The information can consist of
the names of other forms or task modules. Named data might also contain field
specific data. Your task accesses named data with calls to the Form driver.

The Named Data Questionnaire in Figure 2-5 collects named data consisting of
two horizontally-indexed fields of 16 elements. When the questionnaire
appears, it includes all existing named data followed by blank named data

fields.

The FMS-11 Form Editor (FED) 2-27

Enter the named data phase by typing NAME in response to the COMMAND :
prompt. The Form Editor displays the Named Data Questionnaire. When the
questionnaire appears on the screen, the cursor is at the first character position
of the first field. Enter the name by which you want to reference the data that
you supply next. After you enter the name, press the TAB key to move into the
data field. Now enter or edit the named data itself. If a name already exists,
simply TAB over to the data field. Exit from the named data phase by pressing
the ENTER key. The fields in the Named Data Questionnaire (Figure 2-5) are:

NAME A 6-character field that receives the name of the data item.
Form Driver calls access a particular element of named data
by using either its name or its index number in the list of
named data for a form.

DATA A 60-character field that receives the data.

Figure 2-5. Named Data Questionnaire

2-28 The FMS-11 Form Editor (FED)

2.7 How to Use the Form Editor

This section presents a step-by-step example of creating and modifying screen
versions of forms. This example demonstrates some of the most common Form
Editor commands, functions, and design processes. However, the example does
not cover all Form Editor features, and it is not a complete tutorial. The
purposes of this example are as follows:

e To illustrate how you can design a computerized version of a simple printed
form.

e To show you what the screen looks like while you are working with the
Form Editor.

e To introduce how the Form Editor uses the VT200 special function keypad
to control editing functions.

e To introduce how the Form Editor uses the Form Driver and special
questionnaires that collect information from you about the form you are
designing.

This example has three major stages. The first stage describes a printed form.
Assume that the form was originally designed for a card file of a company’s
vendors. Before designing the computerized version of the form, read the
requirements of the fields in the original form (see Section 2.7.1.2).

In the second stage, you create the screen version of the form. Each step in this
stage starts with an instruction, and each step completes a part of the exercise
of designing the computerized version of the sample form. Read the
instruction, and then look at your screen while you follow the instruction.
Watch how the Form Editor responds. Finally, read the explanation that
follows the instruction.

In the third stage, you modify one of the demonstration forms that you
received as part of your FMS software kit. Use the same procedure for the steps
in this stage as for the second stage.

You are encouraged to try using this example. You will be able to add the new
form that you create and the demonstration form that you modify to the
demonstration form library file, DEMLIB.FLB. You can then demonstrate
how your new form works by running one of the demonstration programs
supplied in your FMS software kit.

The FMS-11 Form Editor (FED) 2-29

2.7.1 The Printed Form

The first steps in designing a screen version of the form are:

1.
2.
3.

4.

Provide an overview or a rough draft of the new form.
Describe the requirements for each field.

Describe the layout of the form and any special video features that it is to
include.

Sketch the screen form and include the maximum lengths of fields.

2.7.1.1 Overview of the New Form — The new form will have fields for all
of the information the printed form can contain. This example assumes that
the new form will be used only to enter the vendor information currently in a
card file.

VENDOR is the name to be assigned to the form. For now the form will not
have a HELP form associated with it. It will use the 80-column screen width
and the full screen height (Screen Lines 1 through 23).

2.7.1.2 Requirements of the Fields in the Original Form — This section
describes all the requirements for the fields in the original form.

1.

Vendor Number
Vendor numbers are in the following form:
B-67-0085

The first character can be any letter. Except for two hyphens as shown, the
remaining characters must be digits. An operator must enter the vendor
number. Programs that use the form can then use the vendor number to get
other vendor information from a computer file and display that
information.

Vendor Name

Vendor names may be as long as 38 characters and may include any printa-
ble character. When you first enter the name, you must type it exactly as it
appears on the file card.

Address

The top line in the address shows the vendor’s street address. The next line
shows the city and state. The bottom line shows foreign countries and mail
codes, such as the Zip Code.

Contact

Contact names are the names of the people in the vendor companies who
are most informed about the sample company’s business. Contact names
can be as long as 28 characters and can include any printable character.

2-30 The FMS-11 Form Editor (FED)

5. Phone

The form is designed for one standard North American telephone number
in the following format:

(123) 555-4678

As shown, parentheses enclose a 3-digit area code. A 7-digit number has a
hyphen separating the exchange code from the line number. All input
characters must be numbers. The telephone number is not required infor-
mation, but if a telephone number is entered, all 10 digits must be entered.
The area code has the default value 111 because most vendors are in that
area, but there is no default value for the balance of the telephone number.

6. Extension

The form must be designed for two telephone extension numbers. To make
the new form as flexible as the original printed form, the new form will
accept extension numbers up to seven digits, to cover the cases when
different vendor extensions are complete 7-digit telephone numbers. The
telephone extension is not required information. All input characters must
be numbers, but any number of characters is valid.

2.7.1.3 Layout and Video Features of the New Form — The layout of the
new form will follow the sketch that appears in Figure 2-6. With a screen width
of 80 columns, there is ample room. Abbreviations are not necessary. The
example assumes that the vendor number is the most important piece of
vendor data, and therefore, the sketch shows it at the upper-left corner of the
form.

The Vendor Number field is in reverse video and underlined to show its
importance. Other fields will have the bold video attribute to make the values
that operators enter more visible. The title of the form, “Vendor Data,” also
has the bold video attribute. Field labels will be in standard video. (The bold
video attribute really doesn’t look good in a form if it’s used as much as
specified here.)

2.7.1.4 Sketch of the Form Named VENDOR — Figure 2-6 is a sketch of
the form that you will be creating in this example. Several other designs would
be equally effective. In many cases the sketch you use can be less detailed than
the one in Figure 2-6. Since you can easily change any design by using the
Form Editor, you need only enough detail in a sketch to show the number of
fields on each line and the rough alignment of fields. More detail appears in
Figure 2-6 to increase the reliability of this sample.

The FMS-11 Form Editor (FED) 2-31

Comparzy Mame
“Vendpr Data’
Vendor No.: - =

Name .
Contact :
Prone : () =
Address :

Figure 2-6. Sketch of VENDOR

2.7.2 Creating the Screen Form (Steps 1. and 2)

This section guides you from the start of the Form Editor through each of the
other steps you must complete to create a screen version of the form named
VENDOR. Each step starts with an instruction. Read the instruction, and
then look at your screen while you follow the instruction. Watch how the Form
Editor responds. Finally, if an explanation follows the instruction, read it and
then go on to the next step.

The first time you work with this example, follow each instruction carefully.
Each step has been written to depend closely on the preceding step.

1. Log in to a system that includes the Form Editor. (Check with your system
manager if you are not sure whether the Form Editor is available on your
system.)

2. To set up your VT'100 or VT200 terminal, consult the appropriate terminal
user guide. As a general rule, you will need to set up your terminal for block
cursor, 80-column screen width, standard video display (light characters on
a dark background), and signaling with the terminal bell. Your user guide
has detailed instructions for terminal setup.

2-32 The FMS-11 Form Editor (FED)

NOTE

If your system runs with Packetnet System Interface (PSI) and
you will be using X.25 with FMS, you must first adjust the
CCITT X.3 parameters or FMS will not operate with your sys-
tem’s packet assembly/disassembly (PAD). Proper adjustment
for your terminal entails disabling the Data Forward and T1
Idle Timer facilities, to allow all characters to pass forward
immediately on data entry. Before you attempt to run FMS
with X.25, be sure to talk to your packet-switching vendor to
determine what values should be assigned to these parameters.

2.7.2.1 Starting the Form Editor (Step 3.)

3. Start the Form Editor by entering the following command or sequence of
commands from the following list. The prompts that your system types are
in black. The responses that you should type are in red.

For RSX-11 and 11M-PLUS systems

MCR> RUN $FED GeD)
FED> /CR (®rer

Explanation:

These commands start the Form Editor and allow screen form development
to begin. The Form Editor responds by displaying the Form-Wide Attrib-
utes Questionnaire.

2.7.2.2 Assigning the Form Name (Steps 4. and 5.)

4. Enter the name VENDOR. If you make a mistake, press the DELETE key
to erase incorrect characters, and then complete the form name correctly.
Later steps depend on the fact that the name of the new form is VENDOR.
When the form name is correct, press the RETURN key.

Explanation:
Each character you type appears in the Form Name field. The cursor
advances through the field from left to right.

When a questionnaire is displayed, press the RETURN key to do the
following:

o Assign to each questionnaire whatever value you put into the field.

e Store the questionnaire information internally until you change it or
save the form description you are creating.

The FMS-11 Form Editor (FED) 2-33

e Krase the questionnaire from the screen and in some cases ask for a
Form Editor command.

e Continue a process by changing your display in some other way.

With the Form-Wide Attributes Questionnaire displayed, the RETURN
key always causes the Form Editor to erase the screen and prompt for a
Form Editor command by displaying the prompt COMMAND: on the last
line.

5. Type the command EDIT. Press the DELETE key to correct mistakes.
When you complete the command, use the ENTER function — press the
ENTER key on the keypad, or press the RETURN key.

Explanation:

The ENTER or RETURN function keys cause the Form Editor to execute
the command you have just typed. When the Form Editor executes the
EDIT command, it displays the screen form that you are designing and
shows you each detail of the form that you have specified so far. In this
case, your new form is entirely blank - 23 lines long, with 80 spaces in each
line. The cursor appears in the upper-left corner of the screen on Line 1 and
Column 1.

While you are editing a form, the Form Editor uses Line 24 to show you
information about the cursor’s location and several Form Editor settings
that you change while you are editing. At this point, the different sections
of Line 24 and their meanings are:

e CURSOR TXT NORLIN 1 COL 1

The cursor is on a text character (TXT) and the line is a normal line of a
form (NOR), not a scrolled line. (Scrolling features are explained later in
this chapter.) The cursor’s position is on Line 1 and Column 1.

e MODES TXT QVS ADV

The description of current settings of the editing modes; later steps
demonstrate the effects of the different modes.

— The TEXT mode (TXT) is for entering background text. The FIELD

mode allows you to assign attributes to each field label you created in
TEXT mode.

— The OVERSTRIKE mode (0VS) is for replacing the character that
the cursor is on with the characters that you type.

— The ADVANCE mode (ADV) is for advancing the cursor to the right
and down when certain cursor movement functions are used.

NOTE

While using the Form Editor, you will be using the Form Editor
auxiliary keypad as well as the main keyboard to perform spe-
cific form editing functions. Refer to the Form Editor keypad
layout in Figure 2-2.

2-34 The FMS-11 Form Editor (FED)

2.7.2.3 Creating the Background Text (Steps 6. through 20 .)

6.

10.

aliL3

12.

Use the DOWNARROW function to move the cursor to Line 2 by pressing
the DOWNARROW key once.

Explanation:
The DOWNARROW function moves the cursor straight down one line at a
time. The Form Editor reports the cursor’s new position in Line 24.

. With the cursor on Line 2 and Column 1, type the name of your company

or any other company name that you would like to use. Press the DELETE
key to correct mistakes.

. Use the LEFTARROW function (by pressing the LEFTARROW key) to

move the cursor back to Line 2 and Column 1. Press the key several times.

. Use the INSERT function to set the Form Editor to insert mode. Press the

9 key on the keypad.

Explanation:

The standard function of the 9 key on the keypad is the INSERT function.
The function sets the Form Editor to insert mode. The abbreviation INS
replaces OVS in the modes section of Line 24. In the INSERT mode, the
Form Editor moves characters out of the way of insertions rather than
replacing the characters.

Move the company name to the right in Line 2 by inserting spaces at the
beginning of the line. Insert spaces until the company name is centered in
Line 2 on Column 39 or 40. Hold the space bar down for each space you
want to insert.

Use the BLINE function to move the cursor to Line 3 and Column 1. Press
the 0 key on the keypad.

The standard function of the 0 key on the keypad is BLINE. In the
advance mode, the BLINE function advances the cursor to the next line
and Column 1. In the BACKUP mode, the BLINE function backs up the
cursor to Column 1.

Use the following sequence of functions and keyboard keys to move the
cursor to Column 34.

Press the PF1 key on the keypad, then type 33 on the keyboard, and finally
press the RIGHTARROW key.

GOLD 33 RIGHTARROW

Explanation:

The PF1 key is used only for the GOLD function. When the operator uses
the GOLD function before typing a number on the keyboard and then uses
another Form Editor function, the Form Editor repeats the last function as
many times as specified. In this case, the Form Editor repeats the RIGHT-
ARROW function 33 times and the cursor moves from Column 1 to Col-
umn 34.

The FMS-11 Form Editor (FED) 2-35

13.

14.

15.

16.

L

18.

ek

20.

Type the title of the form, Vendor Data, or any other title you would like to
use. With the cursor at Column 34, the title Vendor Data will be centered.

Move the cursor back to Line 2. Press the BACKUP key on the editor
keypad, then press the BLINE key to get to Line 2. Press the DELCHAR
key to remove spaces and to center the company name.

Move the cursor to Line 5 and Column 1, using the ADVANCE and
BLINE functions.

With the cursor on Line 5 and Column 1, type the field label for the Vendor
Number field, Vendor Number:.

Use the RIGHTARROW function to move the cursor to Column 34. Press
the RIGHTARROW key and watch the column number in Line 24. You
can also press GOLD 19 RIGHTARROW. Then type the label for the
Vendor Name field, Name:.

Use the DOWNARROW and LEFTARROW functions to move the cursor
to Line 6 and Column 34, directly under the N of Name in Line 5. Then
type the label for the vendor contact field, Contact:.

Use the DOWNARROW and LEFTARROW functions again to move the
cursor to Line 7 and Column 34. Then type the label for the Vendor
Telephone field, Phone:.

Use the DOWNARROW and LEFTARROW functions again to move the
cursor down two lines to Line 9 and Column 34. Then type the label for the
three Vendor Address fields, Address:.

2.7.2.4 Creating the Fields (Steps 21. through 29.)

21.

Step 21. through 29. create the fields whose labels you have typed. Use the
BACKUP function to change the directional mode and the BLINE func-
tion to move the cursor back to Line 5 and Column 1. Press the 5 key on
the keypad once and the 0 key on the keypad several times until the cursor
is back on Line 5.

Explanation:

The standard function of the 5 key on the keypad is the BACKUP func-
tion. The BACKUP function sets the Form Editor to BACKUP mode. The
abbreviation BCK replaces ADV in the modes section of Line 24. In
BACKUP mode, the BLINE function backs up the cursor directly to Col-
umn 1,

2-36 The FMS-11 Form Editor (FED)

22,

23.

24.

Move the cursor to Line 5 and Column 15. Use the OVERSTRIKE and
FIELD functions to set the Form Editor to the OVERSTRIKE and FIELD
modes. Press the following sequences of keys:

e For the OVERSTRIKE function, the PF1 key and then the 9 key on the
keypad.

e For the FIELD function, the PF1 key and then the 8 key on the keypad.

Explanation:

The alternate function of each keypad key is the function whose name is at
the bottom of the key in the keypad diagram. The alternate function of the
9 key on the keypad is the OVERSTRIKE function, and the alternate
function of the 8 key on the keypad is the FIELD function. To use an
alternate function, press the GOLD key first and then press the key that
controls the function you want to use.

The OVERSTRIKE function sets the Form Editor to overstrike mode, as
described earlier.

The FIELD function sets the Form Editor to FIELD mode. To create a
field, the Form Editor must be in FIELD mode. In FIELD mode you can
type only field picture characters and field format characters.

The full sets of field picture and field format characters are described later
in this chapter. In this example you will use only the field characters listed
in Table 2-4.

In this example, vendor numbers are in the following form:
B-67-0085
To create the field for the vendor number, type A-99-9999.

Explanation:

A-99-9999 specifies the valid characters for each column in the field;
these make up a field picture. The picture specifies that the first character
in the field must be a letter or a space and the other characters must be
digits. The hyphens separate parts of the field. For a program that
processes the field the hyphens will not be part of the field value. Therefore,
the program uses only seven characters, although nine characters display.

Move the cursor to Line 5 and Column 43. Create the Vendor Name field
by inserting the letter X 37 times. The easiest way to do this accurately is
with the following sequence:

GOLD 37 X
Press the PF1 key, type 37 on the keyboard, and press the X key.

The FMS-11 Form Editor (FED) 2-37

25.

26.

27,

28.

Explanation:

The GOLD function sequence for repeating functions also repeats charac-
ters you want to insert.

Any character can appear in a vendor name. Therefore, the form has to
allow any character.

Move the cursor to Line 6 and Column 43. Create the Vendor Contact field
by inserting the letter A 28 times. Use the following sequence:

GOLD 28 A

Explanation:

Assume that only spaces and letters can appear in the contact name.
Periods (.) after initials and abbreviations will not be copied from the card
file. If an operator types a period or other invalid character, the Form
Driver will refuse to accept the character and will signal the operator with
the following message:

ALPHABETIC REQUIRED

Move the cursor to Line 7 and Column 43 by pressing GOLD 42 RIGHT-
ARROW. Create the Vendor Phone field by typing (999)999-9999.

Explanation:

Assume that only the digits 0-9 can appear in a phone number. If old phone
numbers that include letters in the exchange code are copied, the operator
should convert the letters to the corresponding numbers.

Move the cursor to Line 9 and Column 43 by pressing the DOWNARROW
key twice, and the LEFTARROW key until you see 43 in the Edit Status
Display field column on the bottom of the screen. Create the first Vendor
Addpress field by inserting the letter X 28 times.

Explanation:
Assume that any character can appear in an address.

To experiment with duplicating a field without retyping it, rove the cursor
back to the first X in the Vendor Address field. Then use the following
sequence of functions to erase the field picture and restore it to the form
description:

GOLD DELEOL GOLD UNDELLINE

Press the PF1 key, the 2 key on the keypad, the PF1 key again, and the
PF4 key.

2-38 The FMS-11 Form Editor (FED)

—

29.

Explanation:

The alternate functions of the 2 key and the PF4 key are DELEOL and
UNDELLINE. The DELEOL function erases the cursor’s character and
the other characters between the cursor and the end of the line. The Form
Editor stores the erasure in an internal line buffer, in case you want to
restore the last line you erased.

The UNDELLINE function restores the string in the line buffer to the
form description. Therefore, when you want to create several fields with the
same field picture, one easy method is to create a field picture, erase it, and
then restore it in as many locations as needed.

Move the cursor to Lines 10 and 11. With the cursor in Column 43 in each
line, create the other Vendor Address fields by using the UNDELLINE
function.

2.7.2.5 Assigning Field Attributes (Steps 30. through 40.)

30.

In Steps 30. through 40, you will complete the Field Attributes Question-
naire for each field you have created. To begin work with the Field Attrib-
utes Questionnaire, enter the ASSIGN command. Use the following
sequence:

GOLD COMMAND ASSIGN ENTER (or RETURN)

Explanation:

The alternate function of the 7 key on the keypad is the COMMAND
function. After the COMMAND function, the Form Editor erases Line 24
and displays the prompt COMMAND:. When the prompt appears, enter a
command by typing on the keyboard and use the ENTER function to cause
the Form Editor to execute the command.

The ASSIGN command causes the Form Editor to display the Form
Attributes Questionnaire for each new field. A new field is a field for which
no field attributes have been assigned. In this case, all the fields you have
created are new. The first new field is the Vendor Number field. The Form
Editor displays the Form Attributes Questionnaire so you can still see the
field itself. Then the Form Editor identifies the field by replacing each
picture character with an underline character (_). Within the Field Attrib-
utes Questionnaire, the cursor is displayed in the first field.

Like the Form-Wide Attributes Questionnaire, the Field Attributes Ques-
tionnaire is also an FMS form displayed by the Form Driver. The full set of
fields in the Field Attributes Questionnaire is explained later in this chap-
ter. For this example, the field attributes you must assign are listed in
Table 2-5.

The FMS-11 Form Editor (FED) 2-39

31. For the Vendor Number field, type the field name NUMBER and press the
TAB key to move tc the next field in the questionnaire. Press the
DELETE key to correct any typing errors.

Explanation:

When displaying a questionnaire, the Form Driver displays each character
as you type it. The TAB key signals that you are finished with the Name
field, although you can return to the field later and change it. The Form
Driver responds by moving the cursor to the next field that you should
complete. Table 2-6 lists the Form Driver editing functions that you will
need in this example. The full set of editing functions is explained in
Chapter 4.

32. Press the TAB key four times. With the cursor at the beginning of the Help
field, type a short, helpful message that describes how an operator is to type
a vendor number. For example:

Copy the vendor number from the old vendor card.

Press the DELETE or LINEFEED keys to remove mistakes.

Explanation:

Each time you press the TAB key, the cursor moves to the next field in the
questionnaire. For the Right Just, Clear Char, and Zero J7ill fields, the
default field attributes are unchanged. Therefore, in your new form, the
Vendor Number field will have the following corresponding attributes:

e Not right-justified.

e The space is the clear character. (It is better to assign a clear character
such as underline or if space is used assign the reverse video attribute so
the field is visible on the screen.)

e Not filled with zeros.

The Default field in the questionnaire remains blank. Therefore, in your
new form, the Vendor Number field will not have a default value.

2-40 The FMS-11 Form Editor (FED)

Table 2-4.

Field Characters Required for the Example

Character

Usage

Field-Picture Characters

9

A

X

For the positions in the vendor number and telephone number, where a
number is the only valid character.

For the first position in the vendor number, where a letter is the only valid
character.

For the vendor name, contact name, and vendor address fields, where any
printable ASCII character is valid.

Field-Marker Characters

For enclosing the area code in the telephone number.
For enclosing the area code in the telephone number.

For separating the two parts of the telephone number.

Table 2-5. Field Attributes Required for the Example

Attribute Usage

Name To provide a unique identifier for each field.

Default To specify the most common area code that occurs in vendor telephone
numbers.

HELP To provide reminders to the operator about completing fields.

Response To require the operator to enter the vendor number before finishing with

Required the form.

Must Fill To require the operator to enter all of the characters in the vendor number
and telephone number.

Table 2-6. Form Driver Editing Functions Required for the
Example

Function Usage

BACKSPACE To back up from field to field in a questionnaire.

DELETE To erase a single character in a questionnaire response field.

LINEFEED To erase an entire questionnaire response field.

RETURN To signal that all responses are correct in a questionnaire.

TAB To advance from field to field in a questionnaire.

The FMS-11 Form Editor (FED) 2-41

33. When you have typed the HELP message, move the cursor to the Resp
Reqd field, and type Y for “yes.”

Explanation:
In your new form, the Vendor Number is required information. By typing
Y, you assigned the Response Required field attribute. The Form Driver
responds by moving the cursor to the next field (as though you had pressed
the TAB key).

34. With the cursor on the Must Fill field, type Y.

Explanation:

In your new form, the operator response must fill the Vendor Number field.
By typing Y, you assigned the Must Fill attribute. The Form Driver
responds by moving the cursor to the next field automatically.

35. Press the RETURN key.

Explanation:

For the field attributes after the Must Fill field, the defaults are correct for
the Vendor Number field. The RETURN or ENTER key signals that you
are finished with the questionnaire. The Form Driver responds by display-
ing a fresh image of the Field Attributes Questionnaire. The Form Driver
also identifies the next field in your new form, the Vendor Name field, as
the field to which you should now assign field attributes. The cursor
appears at the beginning of the Name field in the questionnaire.

36. Type VNAME as the field name. Move the cursor to the HELP field with the
TAB key and type a HELP message such as:

Copy the vendor’s name from the old vendor card.

Explanation:

The other default attributes are correct for the Vendor Name field. There-
fore, press the RETURN key when you complete the HELP message. The
Form Driver identifies the next field in your new form, the Contact field, as
the field to which you should now assign field attributes.

37. Type CONTAC as the field name. If you want to specify a HELP message
for the Contact field, move the cursor to the Help field and type the
message. The other default attributes are correct for the Contact field.

Therefore, when the Name and Help fields are complete, press the
RETURN key.

38. Type the name PHONE for the next field. Move the cursor to the default
field and type 111 as the default area code. Then move the cursor to the
Help field if you would like to assign a HELP message for the Phone field.
One example of a HELP message is:

The area code and a 7-digit number are required.

2-42 The FMS-11 Form Editor (FED)

39.

40.

Explanation:

For the new form, the default area code is 111, although the design does not
call for a default number. With 111 as the only printing characters in the
default value, the field will look like the following example when the Form
Driver displays your new form:

Phone: (111) -- -- --

Assign the Must Fill attribute to the Phone field. Advance the cursor to the
Must Fill field and type Y. The other default field attributes are correct for
the Phone field. Press the RETURN key when you have finished assigning
the Must Fill attribute.

Explanation:

Although the telephone number is not required input data, if the operator
types a number, all 10 columns of the area code and number must be
complete. Therefore, the Must Fill field attribute must be assigned, but the
Resp Reqd field attribute is not assigned. Since this field contains data
already (the default value), it is going to have to be filled unless the default
area code is deleted. The way Must Fill works is that if a field contains any
data, it must be filled, as is the case here.

For each of the Address fields in your new form, complete the following
procedure:

e Assign field names to each - for example, ADDR1, ADDR2, and ADDRS.
e Assign a HELP message, if you would like to do so.

e For the other field attributes the defaults are correct. Press the
RETURN key when you finish assigning the field attributes for each
field.

When you press the RETURN key after assigning the field attributes for
the last Address field, you have finished assigning attributes to all fields in
your new form. The Form Editor will return you automatically to the
COMMAND: prompt.

2.7.2.6 Assigning Video Attributes (Steps 41. through 46.)

41.

Assigning video attributes is part of the process of editing a form descrip-
tion. To illustrate the video attributes, the following steps guide you in
making the following assignments:

e Make the company name display in boldface.

e Make the Vendor Number field label and field picture display in reverse
video.

With the COMMAND : prompt displayed in Line 24, type EDIT.

Explanation:
The Form Editor responds to the EDIT command by displaying your new
screen form.

The FMS-11 Form Editor (FED) 2-43

42. To assign video attributes to character positions in a form, you must first
mark the positions by putting them in a select range using the SELECT
function. Then you assign the combination of video attributes that you
want to the select range.

Move the cursor to the first character of your company name.

With the cursor in that position, use the SELECT function. Press the
period (.) on the keypad.

Explanation:
The Form Editor responds by adding information about your select range
to Line 24. When you are building a select range, the Form Editor shows

the line and column number of the cursor’s position when you used the
SELECT function.

43. Advance the cursor to the blank at the end of your company name. With
the cursor in that position, use the VIDEO function. Press the 7 key on the
keypad.

Explanation:
The Form Editor displays the VIDEQ: prompt on Line 24.

44. To assign the bold video attribute to the select range, respond to the
VIDEO: prompt by typing BOLD. Then press the ENTER key.

Explanation:
The Form Editor immediately displays the select range in boldface and
again displays the VIDEO: prompt.

45. To finish assigning the video attributes, press the ENTER key without
specifying a video attribute. Then advance the cursor to the V of the
Vendor Number and begin to build a new select range by using the
SELECT function.

Explanation:
The Form Editor updates the line and column numbers in the select range
report in Line 24.

46. Advance the cursor to the blank that follows the field picture (A-99-
9999) for the Vendor Number field, and use the VIDEOQ function. When
the Form Editor displays the VIDEQ: prompt, type REVERSE and press
the ENTER key. To stop assigning graphic attributes, press the RETURN
key.

Explanation:

The Form Editor responds by displaying the field label and picture in
reverse video.

2-44 The FMS-11 Form Editor (FED)

2.7.2.7 Assigning Named Data (Steps 47. through 50.)

47.

48.

49.

50.

This example assumes that you want to experiment with your new form by
having the demonstration program display the form. To make that possi-
ble, you must assign named data to your new form. The demonstration
program is listed and explained in Appendix C. The named data label that
you need to assign is “NXTFRM” and the named data value to be associ-
ated with that label is the string “.NONE.” Press GOLD COMMAND.

With the COMMAND : prompt displayed on Line 24, type NAME and press
the ENTER key.

Explanation:

The Form Editor responds by displaying the Named Data Questionnaire.
The fields on the left in each line of named data are the fields for a label
that are from 1 to 6 characters long. On the right is the data string that is
from 0 to 66 characters long. The label is simply an identifier by which a
program can request an associated data string (the Form Driver searches —
not the program). The cursor is at the beginning of the first field in the
questionnaire, the Name field.

To enter the label, type NXTFRM. To enter the data value, press the TAB
key to move the cursor to the data field and then type .NONE.

Explanation:
As in the other questionnaires, the Form Driver is actually processing the
entry form and your responses.

The form does not require any other named data. Therefore, press the
RETURN key to get the COMMAND : prompt.

Explanation:
When you press the RETURN key while working with the Named Data
questionnaire, the Form Editor displays the COMMAND : prompt.

You have now completed your new computerized version of the sample
form. To save the form description that you have created, use the SAVE
command. Complete the following sequence:

SAVE ENTER

Explanation:

The Form Editor responds to the SAVE command by saving your new form
description in an output file and displaying messages similar to the
following:

?FED-Form being saved

The Form Editor’s prompt for a command line is also displayed.

The FMS-11 Form Editor (FED) 2-45

2.7.2.8 Editing One of the Demonstration Forms
(Steps 51. through 57.)

51. With the prompt displayed, you can continue to use the Form Editor to
work on another form description or you can stop the Form Editor. The
following steps assume that you want to have the demonstration program
display your new form. To get the demonstration program to do that, you
must modify the named data for the first form that the demonstration uses.
The first form is a menu that is illustrated and explained in Appendix B.
The form is named FIRST and is stored in the form library file DEM-
LIB.FLB. You need to modify the form as follows:

 Add an alternative exercise to the list in the form by adding the following
line of background text:

4 Enter vendor data

e Add a named data label and value to the other named data that are
already associated with the form. The label and value are:

S VENDOR

To edit the form named FIRST, respond to the FED> prompt by typing the
following command:

FED>DEMLIB.FLB (@)

When the Form Editor responds with the Form name? prompt, type
FIRST and press the RETURN key.

Explanation:

The Form Editor displays the screen image of the form named FIRST and
the COMMAND : prompt. The form has only one field, the single character
field following the word DOQ. The field picture character 9 specifies that
only numeric responses are valid for the field. All other characters in the
form are background text.

52. Type EDIT. Then advance the cursor to the E in the line that reads 4
Exit. With the cursor in that position, replace the word Exit with Enter
vendor data. Check the report in Line 24 that you are in overstrike mode,
and type the new phrase.

Explanation:
In overstrike mode, each character that you type replaces the character at
the cursor’s position.

53. To restore the choice of exiting from the demonstration program, insert the
Exit choice. Advance the cursor to the character position directly below
the 4 and type 5 Exit.

54. The demonstration program uses the named data that are associated with
the forms in DEMLIB.FLB to transfer control from form to form and to
exit. Therefore, you must now change the named data that are associated
with the form named FIRST so that:

e The response S stops the demonstration.

2-46 The FMS-11 Form Editor (FED)

55.

56.

57.

e The response 4 makes the demonstration display the form named VEN-
DOR and store vendor data in an output file.

To edit the named data associated with the form named FIRST, enter the
NAME command. Use the following sequence:

GOLD COMMAND NAME ENTER

Explanation:

The Form Driver displays the Named Data Questionnaire, which has the
data and labels that are associated with the form named FIRST. The
cursor is at the beginning of the label in the Name field in the first line of
the entry questionnaire.

Press the TAB key several times to advance the cursor to the label associ-
ated with .EXIT (4). Then, press the LINEFEED key to erase the 4, and
type S to enter the new label.

Explanation:

When the Form Driver is displaying an entry form, press the LINEFEED
key to erase all of the characters in any field. The cursor must be in the
field you want to erase, but it can be at any character position in the field.

For programs that use named data labels to call for data, the named data
associated with a form can be in any order. Therefore, to associate the
response 4 with the form named VENDOR and the appropriate output file
for vendor data, you can add the new named data at the end of the original
data associated with the form. Do the following:

o Press the TAB key until the cursor is in the first blank Name field of the
entry form.

e Type the label 4, and press the TAB key to advance the cursor to the
Data field.

e Type VENDOR, the name of the form that is to be displayed for the
response 4 to the form named FIRST. Press the TAB key to advance the
cursor to the next blank Name field.

e Type 4F, a special label that the demonstration program will create.
Press the TAB key to advance the cursor to the Data field.

e Type VENDOR.DAT or another file name that you want the demonstra-
tion program to use for vendor data.

e To finish editing the named data, press the RETURN key.

Explanation:
When you press the RETURN key while working with the Named Data
Entry Form, the Form Editor displays the COMMAND : prompt.

To save the edited version of the form named FIRST, use the SAVE
command. Type SAVE and press the ENTER key. The Form Editor saves
a form description file named FIRST.FRM and displays a message similar
to the one illustrated in Step 50.

The FMS-11 Form Editor (FED) 2-47

2.7.2.9 Storing the New Forms in a Form Library File
(Steps 58. through 59.)

58. The preceding step is the last one in this example that deals with the Form
Driver and Form Editor. However, if you want to experiment with your
new form and the edited version of the form named FIRST, you must add
the form descriptions to the form library file DEMLIB.FLB. The FMS
component that manipulates form descriptions and form library files is the
Form Utility (FUT). The Form Utility is described in Chapter 3. The
following steps provide the instructions that you need for the forms that
you have just edited.

With the Form Editor prompt displayed, stop the Form Editor by typing
Ceriz) . When the system prompt is displayed, start the Form Utility for
RSX-11M and 11M-PLUS systems by using the following commands or
sequences:

MCR>RUN $FUT

or
FUT

59. With the Form Utility prompt (FUT>) displayed, type the following Form
Utility command line:

DEMLIB.FLB=DEMLIB.FLB,FIRST.FRM,VENDOR.FRM/RP

Explanation:

The Form Utility produces a new version of the form library file DEM-
LIB.FLB. Because the command line causes the new version of the form
named FIRST to replace the original version, the Form Utility reports the
full file specification of the replacement. The report is a message that looks
similar to the following:

DP0:[220,101FIRST.FRM;2 Form Name = FIRST
Form replaced

Therefore, the new version of the form library file DEMLIB.FLB now
contains your edited copy of the form named FIRST and the new form
description that you created for the sample vendor data form. You can use
this version of DEMLIB.FLB instead of the distributed version when you
run the demonstration program.

2-48 The FMS-11 Form Editor (FED)

Chapter 3
The FMS-11 Form Utility (FUT)

The Form Utility (FUT) is the program that creates and modifies FMS-11
form libraries. You should use only the Form Utility when you want to examine
FMS library files.

The Form Utility program provides the following services:

1.
2.
3.

Extracts and deletes form descriptions from form libraries.
Combines form descriptions and form libraries into large form libraries.

Converts form descriptions to MACRO-11 object format for applications
that use memory-resident forms.

Produce printable data descriptions in COBOL format and listing files for
form library directories and form descriptions.

Creates form libraries from form files.

3.1 Starting and Stopping the Form Utility

You can run the Form Utility in two ways:

1.

2k

By calling the Form Utility directly with the task name FUT, if the Form
Utility has been installed as a system utility.

By using the MCR command RUN.

3-1

3.1.1 Starting the Form Utility Directly with the Task Name FUT

With the Form Utility installed in your system, you can call the Form Utility
directly by typing the task name. The two general formats of the call are:

1. FUT file-specification-5trlng[/option5] (ReT)
2. FUT

In the first format, the types of the files in the file specification string and the
options that you add to the string specify a Form Utility process. The Form
Utility starts immediately and generally returns to the MCR> prompt when it
finishes the process.

In the second format, the Form Utility first displays the prompt FUT>». When
you respond to the prompt by typing a file specification string and options, the
Form Utility starts the process you have specified and generally returns to the
FUT> prompt when finished.

The different forms of the file specification string and the options that the
Form Utility accepts are described in later sections of this chapter.

3.1.2 Using the RSX-11M/M-PLUS MCR RUN Command

On RSX-11M and RSX-11M-PLUS systems you can also start the Form
Utility by using the MCR RUN command. The command and its options are
described in the RSX-1IM/M-PLUS MCR Operations Manual. With the
Form Utility in the system account, the general form of the command is:

RUN $FUT[/options] (G

The Form Utility starts by displaying the FUT> prompt. Later sections
describe how to respond to the prompt.

3.1.3 Stopping the Form Utility

The Form Utility stops in two ways, depending on how you start the Form
Utility. The two general cases are:

1. When you start the Form Utility with the direct call FUT and include a
Form Utility command line. In this case the Form Utility exits after com-
pleting the process you have specified and the system displays the MCR>
prompt.

2. When you start the Form Utility with the RUN command or with the
direct call FUT without a command line. In this case the Form Utility
remains active after completing a process and displays the prompt FUT>.
You can then enter a new file specification string or press to exit.

3-2 The FMS-11 Form Utility (FUT)

/

3.2 Form Utility Defaults

Table 3-1 summarizes the command default values for the Form Utility for
RSX-11M and RSX-11M-PLUS systems.

Table 3-1. Default Values for RSX-11M and RSX-11M-PLUS

Systems

Item

Default

Input and output UIC

Input and output volume

Input file name and type

Output file name and type

Input file version

Output file version

Option

Spooling and Block-Alignment

The LOGON UIC or the UIC specified in the latest
SET/UIC command.

The volume installed in the default device SY:.

The input file name must be specified. The default
input file type is .FLB.

With the /FF option, no output file name or type can
be specified. The form name becomes the file name and
the file type is .FRM. With the /FD option, the form
name is the default output file name. With the /LI
option, the input form library file name is the default
output file name. With the /CC option the output
extension is .LIB. With other options, the output file
name must be specified and the default file types are:

.FLB for any output form library file.
.FMD for printable form descriptions.
.LIB for COBOL data descriptions.

.LST for form library file directories.

.OBJ for MACRO-11 object module memory-resident
forms.

The latest version of the input file version that is on
the input volume.

Version 1 for an entirely new file. Otherwise, the Form
Utility assigns a version number that is one plus the
version number of the latest version on the output
volume.

The default option is /FD, to produce a printable
version of a form description.

The /-SP and /BA options are the defaults for spooling
and block-alignment of form descriptions. The default
is to block-align the form library.

The FMS-11 Form Utility (FUT) 3-3

3.3 Form Utility Errors

When an error occurs, the Form Utility displays a message and transfers
control in one of the three following ways:

1. When recovery is impossible, control transfers to your operating system.

2. When recoverable errors occur in processing form descriptions or files,
control transfers to the FUT> prompt.

3. When file specifications and options control transfers to the FUT> prompt.

Appendix C lists Form Utility messages and explains how to look messages up.

3.4 Prompts for Form Library File Processes

The following six options allow you to select individual forms from form library
files and process them in different ways:

1. /CC to produce a COBOL data description structure.
2. /DE to delete form descriptions from form library files.

3. /EX to select specific form descriptions from one form library file and store
them in a new form library file.

4. /FD, the default option, to produce a printable form description.

5. /FF to extract a form description from a form library file and store it in a
form description file.

6. /OB to convert form descriptions to object format for memory-resident
purposes.

For each of the six options, the Form Utility prompts you for a form name. The
general format of the prompt is the full file specification of the form library file
followed by the prompt Form name?. For example, with DMO:, [30,10], and
.FLB as the default input volume, UIC, and form library file type, and with
Version 6 as the latest version of the form library file DEMLIB, the Form
Utility would prompt you as follows:

MCR>FUT DESCR,FMD=DEMLIB/FD (&
DMO:[30,101DEMLIB.FLB;6 Form name?

You can respond to the Form name? prompt by typing:
1. A valid form name and pressing the RETURN key.

The Form Utility processes only the form description for the form name that
you type. It then requests another form name.

3-4 The FMS-11 Form Utility (FUT)

2.

An asterisk (*) and pressing the RETURN key.

The Form Utility processes all form descriptions that the form library file
contains.

3.

NOTE

Responding with an asterisk is not valid when you have speci-
fied the /FF option.

The RETURN key only.

The Form Utility begins processing the next input file that you have
specified, if there is another input file, or stops.

3.5 Form Utility Command Options

This section describes each of the Form Utility command options. The
descriptions are arranged in three groups, as follows:

1

Options for control and HELP.
e The /ID option to display the Form Utility identification.
e The /HE option to display the Form Utility HELP file.

e The /SP and /-SP options to control spooling of the files to the line
printer.

e The /LI option to list the names of forms in form library files.

Options for creating form library files.

The /BA and /-BA options to control form description block alignment.

The /CR option to create a form library file by combining files.

The /DE option to delete form descriptions from files.

The /EX option to extract form descriptions from files.
e The /RP option to update form descriptions in files.
Options for processing and converting form descriptions.

e The /CC option to create COBOL data declarations for form
descriptions.

e The /FD option to create a listing of a form description.

e The /FF option to create a form description file from a form in a library
file.

e The /OB option to create MACRO-11 object modules of form descrip-
tions for memory-resident forms.

The FMS-11 Form Utility (FUT) 3-5

3.5.1 Options for Control and HELP

3.5.1.1 The /ID Option: Displaying the Form Utility Identification — Use
the /ID option alone in the command line to make the Form Utility display its
identification. The identification includes the Form Utility’s task name (FUT),
version number, and patch level.

The following examples illustrate how the Form Utility responds to the /ID
option:

MCR>FUT /1D
FUT v02.00
MCR>

MCR>»RUN $FUT
FUT>/ID

FUT v02.00

FUT>

3.5.1.2 The /HE Option: Using Form Utility HELP File — Use the /HE
option alone in the command line to have the Form Utility display a short
summary of the Form Utility command line forms, as well as a list of the
command line options and their meanings.

Figure 3-1 shows how to use the /HE option and includes a copy of the Form
Utility HELP display. Later sections in this chapter explain the other options
fully.

RUN $FUT
FUT> /HE

HELP FOR FUT v02.00

Command line:

output-file = input-file, ... ,input-file/option
Options:
/1D Print identification on terminal
/HE Print this help text on terminal
/FD Write form description (default)
/L1 Write library directory listing
/0B Write object module of forms
/CR Create library from libraries and forms
/RP Replace forms in library
/DE Delete forms from library
/EX Extract forms to build library
/CC Create COBOL form description
/FF Create a form file from a library form
/-BA Do not block align forms in library
/SE Spool listing output to line printer
FUT>

Figure 3-1. The /HE Option and the HELP Display

3-6 The FMS-11 Form Utility (FUT)

3.5.1.3 The /SP and /-SP Options: Requesting Line Printer Listings —
Use the /SP option with one of the following options to direct the Form Utility
output to the default line printer on your system:

o With the /LI option, for form library file directories.
e With the /FD option, for printed descriptions of forms.
e With the /CC option, for COBOL data descriptions of forms.

When you use the /SP option, the Form Utility creates the output file and
spools the file to your line printer after you specify the form name or indicate
with an asterisk that you want all forms listed.

When you use the /-SP option with the same specifications, you prohibit line
printer listings explicitly. The default option is /-SP.

If you don’t specify output file with the /SP option, the default output device is
the terminal, not the line printer.

3.5.1.4 The /LI Option: Listing Directories of Form Library Files — Use
the /LI option to create a printable file that lists the names of the forms in
form library files. The output file includes the following information:

The Form Utility identification and the current date.
The full file specification for the form library file.
The date the form library file was last updated.

e S

The size of the directory within the form library file.

This directory size is larger than one block only when the file contains an
unusually large number of forms. To use a form library file whose directory
is larger than one block in an FMS application, you will need to configure
the Form Driver for the larger directory.

5. For each form description in the form library file:
e The form name (as assigned by using the Form Editor).
e The date the form description was last edited with the Form Editor.

e The size of the impure area that the form requires in an application.

The FMS-11 Form Utility (FUT) 3-7

The following example illustrates the /LI option and the format of the output
file that the Form Ultility produces. Because the command line also includes
the /SP option, the Form Utility spools the output file to the line printer after
creating the file.

FUT v02.00

4-JUN-85

Library DMO0:[30,101DEMLIB.FLB; created: 4-DEC-79
Directory is 1 blocks long

Form Date Impure Area (bytes)

FIRST 4-DEC-79 369

CUSTPR 4-DEC-79 326

LAST 4-DEC-79 27§

EMPLOY 4-DEC-79 812

PARTS 4-DEC-79 794

CUSTO 4-DEC-79 612

3.5.2 Options for Creating Form Library Files

3.5.2.1 The /BA and /-BA Options: Using Block-Aligned Form
Descriptions — Use the /BA option with one of the following options to align
each form description explicitly from the beginning of a block to the output
mass storage volume (/BA is the default option):

e With the /CR option.
e With the /DE option.
o With the /EX option.
e With the /RP option.

The input form library files can be aligned or unaligned.

Block-aligned form libraries might result in faster access times for an
application. Block-aligned form descriptions require larger form library files
than non-block-aligned form descriptions. The maximum increase in form
library file size is one block for each form description.

In practice, block-aligned form library files are usually used unless space is
severely limited. For example, if you are packaging an FMS-11 application
with its form library files on RX01 diskettes or other media with small
capacity, you might want to use non-block-aligned form libraries.

Use the /-BA option with the same specifications to prohibit block-aligned
form descriptions.

Section 3.5.2.2 includes an example of the /BA option.

3-8 The FMS-11 Form Utility (FUT)

3.5.2.2 The /CR Option: Combining Form Library Files and Description
Files — Use the /CR option to combine all input form descriptions in. one
form library file. The option has no effect on any of the input files. If the Form
Utility finds a form name more than once in the input files that you specify,
the following message is displayed:

FUT - Illegal replacement of form, use /RP

The following example illustrates use of the /CR option. Because the /BA
option is also used, the form descriptions in the output file will be block-
aligned.

MCR>FUT DEPTS2.FLB/CR/BA=PROJ0Y,ECO12.FRM;5,PROJ23

When the Form Utility completes the command, the form library file
DEPT52.FLB contains the following form descriptions:

e All form descriptions in the latest version of the form library file
PROJO1.FLB.

e The single form description in the form description file ECO12.FRM;5.

e All form descriptions in the latest version of the form library file
PROJ23.FLB.

3.5.2.3 The /DE Option: Deleting Form Descriptions from Form Library
Files — The /DE option lets you delete some form descriptions from form
library files and combines the remaining form descriptions into a new form
library file.

The Form Utility does not change any of the input files. For each input file
that is a form library file, the Form Utility displays the full file specification
and prompts you for the names of the forms you want to exclude from the
output file.

NOTE

The Form Utility accepts form description files as input files
with the /DE option. However, none of the form description
files will be combined in the output file. In effect, form descrip-
tion files are ignored in this case.

The FMS-11 Form Utility (FUT) 3-9

The following example illustrates the /DE option and the responses that
exclude two forms from each of the input form library files:

MCR>FUT
FUT)FILMGD/DE=SLIDE.FLB;4,MDVIE.FLB;6

DM0:[30,101SLIDE.FLB;4 Form name?F IRST (ReT)
DMO:[30,101SLIDE.FLB;4 Form name?SECOND
DM0:030,10)SLIDE.FLB;4 Form name? (TFer
DM0:[30,10IMOVIE.FLB;6 Form name?THIRD
DM0:[30,10IMOVIE.FLB;6 Form name?FOURTH
DMO:[30,10IMOVIE.FLB;6 Form name? (FREeT

FUT>

When the Form Utility finishes, the form library file FILMGD.FLB;1 contains
the following:

e All of the form descriptions that are in SLIDE.FLB;4 except for the forms
named FIRST and SECOND.

e All of the form descriptions that are in MOVIE.FLB;6 except for the forms
named THIRD and FOURTH.

3.5.2.4 The /EX Option: Extracting a Form Library File — Use the /EX
option to extract form descriptions from form library files and combine them
in a new form library file. When you include an input file that is a form
description file, the Form Utility also adds the form description to the output
file.

The Form Utility does not change any of the input files. For each input file
that is a form library file, the Form Utility displays the full file specification
and prompts you for the names of the forms you want to extract.

The following example illustrates the /EX option and the responses to extract
two form descriptions from each input form library file:

MCR>FUT PICHLP/EX=SLIDE.FLB;4,005HLP.FRM,MOVIE.FLB;6
DMO:[30,10)SLIDE.FLB;4 Form name?001HLP
DMO:[30,101SLIDE.FLB;4 Form name?002HLP
DM0O:[30,101SLIDE.FLB;4 Form name? RET
DMO0:(30,10IMOVIE.FLB;6 Form name?003HLP
DMO0:[30,10IMOVIE.FLB;6 Form name?004HLP
DMO0:[30,10IMOVIE.FLB;6 Form name? RET

MCR>

When the Form Utility finishes, the form library file PICHLP.FLB;1 contains
the form descriptions for the forms named 001HLP, 002HLP, 003HLP,
004HLP, and 005HLP.

3-10 The FMS-11 Form Utility (FUT)

3.5.2.5 The /RP Option: Updating Form Descriptions in Form Library
Files — You can use the /RP option to:

1. Replace a form description that is in a form library file with a new version
that is in a form description file.

2. Create a form library file that contains all of the different forms (by form
name) that are in several form library files.

The Form Utility can process the /RP option if each form stored in a form
library file has a unique name. The Form Utility processes the input files one
at a time from left to right. For input form descriptions with unique form
names, the output form library file includes each one. For input form
descriptions with the same form names, the output form library file includes
only the last one processed. Therefore, the final contents of the output form
library file in some cases depends on the order you used when typing input file
specifications.

Figure 3-2 illustrates how the final contents of a form library file are different
for two Form Utility commands. In the first case, the last version of the form
named TESTO02 that the Form Utility processes is in the input file TIN.FRM,
and the output form library file includes only that version of TEST02. In the
second case, the last version of TESTO02 that the Form Utility processes is in
the input file T.FLB, and the output form library file includes only that
version.

Effects of Input File Order on Output File Contents

Form Library Form Description
File T.FLB File TIN.FRM

TESTO1

TEST02

TESTO2

(original} (new)

TESTO3

LT-’UT TEIUT‘-.FLE-T.F..B,TIN.FRM/RFJ 4—'—* IFUT TGUTZ.FLB-TlN.FRM,T.FLB/Rﬂ

Output Form Output Form
Library File Library File
TOUT1.FLB TOUT2.FLB

TESTO1 TESTO1

TEST02 TEST02

(new) (original)

TESTO3 ESTOS

Figure 3-2. The /RP Option

The FMS-11 Form Utility (FUT) 3-11

3.5.3 Options for Processing and Converting Form Descriptions

3.5.3.1 The /FF Option: Creating Form Description Files from Form
Library Files — Use the /FF option to extract a form description from a form
library file and store the description in a form description file. With this
option, you cannot specify an output file name and you cannot extract more
than one form description at a time. To create a form description file from a
form library file, use the general form:

form-library-file-spec/FF

The Form Utility displays the full form library file specification and prompts
you for the name of the form you want to extract. The Form Utility then uses

the form name that you specify as an output file name, adding the file type
JFRM.

In the following example, the /FF option extracts a form description from the
form library file DM0O:FRMLIB.FLB;5 in the account [100,30]. The Form
Utility creates the form description file named HELP1.FRM.

>FUT
FUT>SY:FRMLIB.FLB;S/FF
DM0:[100,30)FRMLIB.FLB;S Form name? HELP1 (&
FUT>

3.5.3.2 The /OB Option: Creating MACRO-11 Object Modules for
Forms — Use the /OB option to convert form descriptions to MACRO-11
object format. You can then task build the object files with your FMS
application to add memory-resident forms to the application.

The Form Utility processes the input files in the order that you type the file
specifications. For each input form library file, the Form Utility prompts you
for the names of the forms you want to convert. Conversion is automatic for
each input form description file.

For each form that you specify, the Form Utility creates an object module with
the following two program sections (PSECTs).

1. $FIDX$

Contains the name of the form and a pointer to the beginning of the form’s
data structure.

2. $FORMS$

Contains the form description, including display attributes, default field
values, named data, and field help.

3-12 The FMS-11 Form Utility (FUT)

The format used by the Form Utility for the object module is the same as for
the following MACRO-11 module:

.TITLE frmnam sTitle of the module

. IDENT /v02.00/ iForm Utility version number

.PSECT $FIDX$,D,GBL ;Index that the Form Driver uses

.RADS0 /frmnam/ sto find the data structure for
;a form that is called by name

.WORD FSTR ;Pointer to the beginning of the

sform data structure

.PSECT $FORMS$,D ;Form data structure PSECT
FSTR: . sForm
3 data

) 8 structure
.END

When you specify more than one form name, the Form Utility converts each
form description and produces a concatenated object module of all the forms.

The following example illustrates the /OB option and responses to convert one
form description from the form library file DMO0:[30,10]BILL.FLB and the
form description file DMO0:[30,10]BILHLP.FRM to object format:

FUT BILFRM.0BJ=DR1:030,101BILL.FLB,DMO:BILHLP.FRM/0OB
DMO:[30,10)BILL.FLB;6 Form name? STARTUP
DM0O:[30,10]BILL.FLB;6 Form name? RET

MCR>

The TKB command file order is important:
HLLCBL ,FDVLRM/LB:FDVDAT,BILFRM.0OBJ,FDVLRM/LB

The Form Driver data module (FDVDAT) must come before any memory-
resident forms to be included in the task.

3.5.3.3 The /CC Option: Producing COBOL Data Declarations for
Forms — Use the /CC option to produce an ASCII file that contains the data
declaration statements that COBOL applications require for forms. You can
then use the COBOL COPY statement in the data division of your COBOL
program to refer to files that contain the data declaration statements, or you
can use a text editor to add the data declaration statement file to your COBOL
data division.

For each form that you specify, the Form Utility produces a three-level
COBOL structure in the Terminal Format, as illustrated in Figure 3-3. COBOL
also supports the Conventional (ANS) Format. You can use the COBOL
REFORMAT utility to convert the Form Utility’s data declaration structure to
the Conventional Format. Refer to the COBOL User’s Guide for a description
of the REFORMAT utility and to the COBOL Language Reference Manual for
a description of the Terminal and Conventional Formats.

The FMS-11 Form Utility (FUT) 3-13

Figure 3-3 shows a simple three-field form named PARTS and the COBOL
data declaration structure that the Form Utility produces for the form. Assume
that the field names PARTNO, DESCRP, and SUPPLR were assigned by
using the Form Editor and that the Suppliers field has been designed as a
vertically indexed field.

* COBOL Form Library Structure
* This structure contains three types of data items:
* Form Name, prefixed with “FORM-"
& Named, prefixed with “N-'", and
2 Data, prefixed with "D-*.
01 FORM-PARTS-DEF.
03 FORM-PARTS PIC X(6) VALUE '"PARTS .
03 N-PARTS-PARTNDO PIC X(6) VALUE *"PARTNO".
03 D-PARTS-PARTND PIC X(9).
03 N-PARTS-DESCRP PIC X(6) VALUE "DESCRP"™.
03 D-PARTS-DESCRP PIC X(28).
03 N-PARTS-SUPPLR PIC X(86) VALUE “SUPPLR".
03 D-PARTS-SUPPLR PIC X(25) OCCURS 3 TIMES.

Figure 3-3. The /CC Option: Illustration of the COBOL Data Description

The following example illustrates the /CC option and responses to produce
concatenated COBOL data descriptions for the form that is in the form
description file DM0:[30,10]JHELP04.FRM;2 and all forms in the form library
file DMO0:[30,10]FRMLIB.FLB;1.

MCR> FUT

D.LIB=DMO:([30,101HELP04.FRM;2,DM0:[30,10JFRMLIB.FLB;1/CC
DMO:[30,10)JFRMLIB.FLB;1 Form name?* RET
MCR>

NOTE

1. If the same name is used for more than one field in a form,
the COBOL compiler will flag one of the fields as an error.

2. A COBOL data declaration cannot be created for a form
description that contains blank field names.

3-14 The FMS-11 Form Utility (FUT)

3.5.3.4 The /FD Option: Producing Form Descriptions for Printed
Listings — Use the /FD option to produce an ASCII file that describes all of
the features of a form. You can print the file that the Form Utility produces or
display it on your video terminal.

The printable description produced by the Form Utility is arranged in the
following five major sections:

1. The form description header

This section lists all form-wide information. For example, the form name,
the associated HELP form name, and the impure area size the form
requires.

In unusual cases, the Form Utility might also detect a problem with a form
that the Form Editor did not detect. In this case, the Form Utility prints a
brief summary of each possible problem in this section.

2. The image map

This section shows all of the constant text in the form and the default value
that has been assigned to each field. When no default has been assigned,
the image map shows the clear character that has been assigned.

3. The video attributes map

This section shows the video attributes of all constant text and fields in the
form.

4. The field descriptions

For each field in the form, this section lists the field name, length, position,
picture, clear character, and other assigned features.

The FMS-11 Form Utility (FUT) 3-15

5. The named data map

This section includes a full list of the names, associated data, and order of
the named data that have been assigned to the form.

The following example illustrates use of the /FD option and responses to
produce printable descriptions for one form from each of two form library
files:

MCR>RUN $FUT
FUT>FD.TXT=DM0:[30,101AM.FLB
DMO:[30,101AM.FLB;1 Form name? CHILA
DMO:[30,101AM.FLB:;1 Form name? (Fer
DMO0:[30,10]JAM.HLP;1 Form name? CHIOO1 RET
DMO:[30,101AM.HLP;1 Form name? (®er

FUT>

The following sections describe each section of the output file that the Form
Utility creates when you use the /FD option.

3.5.3.5 The /FD Option: Form Description Header — Figure 3-4 shows an
example of the form description header in a printable form description.

Form name: BYE

Help form name: BYEHLP
First line: 1

Last line: 23

Date created: 29-DEC-79
Owner ID: 0

Form length: 1478 bytes
Number of fields: 4

Impure area size: 2010 bytes

Figure 3-4. The /FD Option: The Form Description Header

The individual lines in the form description header provide the following
information:

¢ Form name

As assigned by completing the Form-Wide Attributes Questionnaire in the
Form Editor.

e HELP form name

As assigned by completing the Form-Wide Attributes Questionnaire in the
Form Editor.

3-16 The FMS-11 Form Utility (FUT)

First line

As assigned by completing the Form-Wide Attributes Questionnaire in the
Form Editor.

Last line

As assigned by completing the Form-Wide Attributes Questionnaire in the
Form Editor.

Date created

The most recent date on which the form was processed with the Form
Editor.

Owner ID
Reserved for future use.
Form attributes

If the reverse screen, current screen, and wide screen attributes have been
selected in the Form-Wide Attributes Questionnaire, they are reported on
this line.

Form length

As reported in the Form-Wide Attributes Questionnaire in the Form
Editor.

Number of fields

The number of fields with different names. Each occurrence of a scrolled or
indexed field is counted.

Impure area size

As reported in the Form-Wide Attributes Questionnaire in the Form
Editor.

The FMS-11 Form Utility (FUT) 3-17

3.5.3.6 The /FD Option: The Image Map — Figure 3-5 shows an example of
the 80-column image map that the Form Utility produces in a printable form
description. (Although the Form Utility shows all 24 lines in the image map,
the figure has been compressed for printing in this manual.)

1 2 3 4 5
1234567890123456789012345678901234567890123456789012345678

41 CUSTOMER PROFILE

5t

61

714

81

91 Annual Income in Thousands $000000
1014 Expected Purchases $000000
1114 Number of employees 000000
1214

1314

Figure 3-5. The /FD Option: The Image Map

For 80-column forms, the borders of the image map include scales that show
the line and column numbers for the map. For 132-column forms, the line
numbers do not appear. Except for the video attributes of the form, the image
map shows the form as the operator will see it before the Form Driver or the
operator enters information in any fields. Each character of the constant text
appears in the correct line and column position. Each field appears in the
image map with the clear character that was assigned by using the Form
Editor, and each field includes any field-marker characters, such as the hyphen

().

3-18 The FMS-11 Form Utility (FUT)

3.5.3.7 The /FD Option: The Video Attributes Map — Figure 3-6 shows an
example of the 80-column video attributes map that the Form Utility produces
in a printable form description. (Although the Form Utility shows all 24 lines
in the map, the figure has been compressed for printing in this manual.)

1 2 3 4 S
1234567890123456789012345678901234567890123456789012345678

21
31 22222222222222222222
41 22222222222222222222
51 22222222222222222222
61

!

|

! 00000000000000000000000000000000222222
104 0000000000000000000 0222222
111 00000000000000000000 222222
1
131

Key to Video Attributes

Code Attributes
0 Normal

2 Reverse Video
4 Bold
6 Bold, Reverse Video

Figure 3-6. The /FD Option: The Video Attributes Map

For 80-column forms, the borders of the video attributes map include scales
that show the line and column numbers for the map. For 132-column forms,
the line numbers do not appear. Within the map, a one-digit or one-letter code
for the video attributes of each character appears at the character’s position.
The codes that appear in each map are listed at the bottom. Table 3-2 contains
a complete list of all the codes and their meanings. In each map, the codes that
actually appear are described below the map under the heading “Key to Video
Attributes.”

The FMS-11 Form Utility (FUT) 3-19

Table 3-2. The /FD Option: Video Attributes Codes and Meanings

Code Meaning

Normal

Underline

Reverse video

Reverse video, Underline

Bold

Bold, Underline

Bold, Reverse video

Bold, Reverse video, Underline
Blinking

Blinking, Underline

Blinking, Reverse video
Blinking, Reverse video, Underline
Blinking, Bold

Blinking, Bold, Underline
Blinking, Bold, Reverse video

Blinking, Bold, Reverse video, Underline

3.5.3.8 The /FD Option: Field Descriptions — Figure 3-7 shows an example
of the field description that the Form Utility produces in the printable form
description.

1 B89 Field INV of length 10
Display attributes: Autotab, Vertical
Field Type: Numeric, Scrolled, Indexed and repeated
6 times
Clear characters: "@’
Help text: "Invoice number is required information’
Picture value: "99999999.99’

Figure 3-7. The /FD Option: Field Descriptions

3-20 The FMS-11 Form Utility (FUT)

The individual lines in each field description provide the following
information:

Field name, size, and position

The first line of the field description describes the starting position of the
field in terms of the row and column numbers for the first character (“1 39”
in the example above). The line also provides the field name and the length
of the field as used by the application.

Display attributes ’

Any of the following field attributes, as assigned with the Form Editor:

- Autotab

- No Echo

- Display Only

- Right Justify

- Fixed Decimal

- Zero Fill

- Zero Suppress

- Uppercase

- Must Fill

- Response Required

- Supervisor Only

- Clear Char

- Vertical (indexed)

- Horizontal (indexed)

Field type

The type of characters that an operator can enter in the field, correspond-
ing as follows with the field picture characters that the Form Editor
accepts:

- 9 Numeric type
- A Alphabetic type
- C Alphanumeric type

N Signed numeric type
- X Any printing character

The FMS-11 Form Utility (FUT) 3-21

The other field type features listed in this section are:

- Indexed

- Mizxed picture

- Scrolled
e Clear character

As assigned with the Form Editor Field Attributes Questionnaire.
e Help text

As assigned with the Form Editor Field Attributes Questionnaire.
o Picture value

As entered in the Form Editor’s FIELD mode.

3.5.3.9 The /FD Option: The Named Data Map — Figure 3-8 shows an
example of the named data map that the Form Utility produces in the
printable form description.

Named Data Information

Name Data
ONE 216 295 23 6 171 93 END
ONEOUT DM2:[2,60)BYWAYS.DAT

Figure 3-8. The /FD Option: The Named Data Map

3-22 The FMS-11 Form Utility (FUT)

4.1 Form

Chapter 4
Introduction to the FMS-11 Form Driver (FDV)

The Form Driver is a library of routines that is a subcomponent of your
program. In an application that uses video images of forms on the terminal
screen, using the Form Driver can reduce your programming effort by
manipulating the screen, checking responses that an operator types, and
displaying HELP messages and forms when the operator requests them.

This chapter discusses how the Form Driver interacts with:

e The form description, which is created with the Form Editor.

e The terminal operator, who enters information into the fields in a dis-
played form.

This chapter provides general programming requirements and mentions (but
does not describe in detail) specific subroutine calls. Chapter 5 covers the
programming requirements for each of the high-level languages and MACRO-
11 in detail. Chapter 6 contains an alphabetical list of the calls and gives a full
description of each one. Chapter 7 describes programming techniques for
typical Form Driver applications.

Driver Interaction with the Form Description

This section provides a general description of how the Form Driver uses forms
to display information for the operator, how it guides the operator through a
form, and how it collects the responses the operator types. Throughout the
section, and in many of the other descriptions in this and later chapters, the
term “form” refers to the image the operator sees and to the computerized
form description the Form Driver manipulates internally.

4.1.1 Media-Resident and Memory-Resident Forms
Your program can use form descriptions in two ways:

e As media-resident forms, by reading them directly from a form library file
stored on a mass storage volume, such as a disk.

e As memory-resident forms, for which the form descriptions are included
with the program itself as a part of the task-building procedure.

4-1

Both ways use form descriptions that have been created with the Form Editor
and processed with the Form Utility. For example, after using the Form Editor
to create a form description, you must use the Form Utility to store the
description in a form library file or to produce the object module that memory-
resident usage requires. Chapter 2 describes how to use the Form Editor, and
Chapter 3 describes how to use the Form Utility. Chapter 5 describes the task-
building procedure for each language.

For each call to display a form, the Form Driver first checks the set of memory-
resident forms. When memory-resident and media-resident form descriptions
have the same form name, the Form Driver uses only the memory-resident
version.

4.1.2 Defining Forms and Fields by Name

To read the form from its form library file or find its memory-resident
description, the Form Driver needs only the name assigned to that form by the
Form Editor. To find a field within a form, the Form Driver requires only the
name assigned to that field, regardless of where the field is located within that
form. As long as changes to form and field characteristics have no effect on the
logic of your programs, these characteristics can be changed without program
modification.

4.1.3 Displaying the Form

A typical procedure for displaying a form at the beginning of an FMS
application follows. (The calls are described in full in Chapter 6, and the
MACRO-11 procedures are explained in Chapter 5.)

1. If your program uses media-resident forms:

e Identify the I/O channel the Form Driver is to use for reading form
descriptions from the form library file. With high-level languages, use the
FLCHAN call. With MACRO-11, complete the Required Argument List.

e Open the form library file using the FLOPEN call.

2. For all applications, identify an internal storage area, called the impure
area, that the Form Driver is to use for field values and other form require-
ments. With high-level languages, use the FINIT call. With MACRO-11,
complete the Required Argument List.

4-2 Introduction to the FMS-11 Form Driver (FDV)

3. Display a form. Use the FCLRSH or FSHOW call.

The Form Driver provides two calls for displaying a form: FCLRSH and
FSHOW. The FCLRSH call clears the entire terminal screen before dis-
playing a form. The FSHOW call clears only the screen lines that are
required by the form you want to display. If you use short forms, you can
use the FSHOW call to create a screen display for the operator that is
composed of more than one form or part of a form. In this case, only one
form would normally be active for the operator, but you could also use
special techniques like the ones described in Chapter 7 to keep more than
one form active at the same time.

4.1.4 The HELP Function

Whenever your program issues a call for an operator response, the Form Driver
can display two levels of help if the operator requests it: help for the field in
which the cursor is located and help for the entire form. When the operator
uses the Form Driver’s HELP function once, the Form Driver displays the help
text that was typed in the Field Attribute Questionnaire. When the operator
uses the HELP function again, the Form Driver displays the HELP form that
was specified in the Form-Wide Attributes Questionnaire.

The operator can erase any HELP form and have the Form Driver restore the
original form at any time. The position of the cursor in the original form and
all field values will be unchanged.

For each form in your application, both the help text for fields and the HELP
forms have to be specified when the form is created or changed with the Form
Editor. For applications that use media-resident forms, the HELP forms must
be stored in the same form library file as the forms with which they are
associated.

4.1.5 Internal Storage of Field Values - The Impure Area

When a form is displayed, its form description is stored internally by the Form
Driver in a special area called the impure area. Internal buffers are set up for
the fields in the display and for the other characteristics of the form, such as
named data labels and values. When you issue calls to get or display values,
identify fields, and complete other processes, the Form Driver uses and updates
the impure area, it displays information for the operator, and it provides values
to your program.

Introduction to the FMS-11 Form Driver (FDV) 4-3

Both the Form Editor and the Form Utility report the size of the impure area
needed for each specific form for a MACRO-11 application. For high-level
language programs, the impure area requires an additional 64 bytes. Although
you can vary the size of the impure area to match the exact needs of each form,
for practical purposes you need only define one impure area large enough to
accommodate the largest form your application uses. With high-level
languages, use the FINIT call to define the impure area. With MACRO-11,
complete the Required Argument List,

The impure area is used only by the Form Driver. Your program cannot use it
directly. You can, however, use the FRETN and FRETAL calls to determine
any field value stored in the impure area. The FRETN call returns the value for
a specified field, and the FRETAL call returns a concatenated string of values
for all fields.

4.1.6 Guiding the Operator Responses

In guiding the operator from field to field, the Form Driver moves as follows:
first, from left to right within a screen line, then line by line from the top of the
form to the bottom. On the other hand, the field attributes, such as the Vertical
Indexed attribute and your call order, usually define a unique sequence for each
form. In fact, your program is entirely in control of the order in which the
operator works with the fields.

For example, you can control the order completely by using only the FGET call
to get the value of a specified field. By repeating the call and specifying
different fields, you require the operator to complete the fields in the order you
specify.

You can also allow the operator partial control by using the FGETAF call. This
call allows the operator to choose any field in the form. The operator can
respond in only one field, but this can be any of the non-display-only fields in
the form. Since this call also identifies the name of the completed field, your
program can then direct the operator to any other field.

The call for all field values, the FGETAL call, gives the operator complete
control over the order in which the fields are completed. The Form Driver
returns the field values to your program and updates the impure area only
when the operator signals the entire form is complete.

4-4 Introduction to the FMS-11 Form Driver (FDV)

4.1.7 The Order in Which the Form Driver Concatenates Fields

Two of the calls for operator responses get more than one field value. The
FGETAL call gets a concatenated string of all field values for the form. The
FINLN call gets a concatenated string of the field values in one line of a
scrolled area. Regardless of the order in which the operator has entered and
corrected the field values, the Form Driver concatenates them according to the
following conventions:

1. Except for fields that have the Vertical Indexed attribute, field values are
concatenated from left to right within each line and then line-by-line from
the top of the form to the bottom. This convention includes fields with the
Horizontal Indexed attribute and fields in scrolled areas.

9 Fields with the Vertical Indexed attribute are concatenated line-by-line (in
index order).

3. Within the concatenated string, the length of each field value is the full
length of the field. Each value shorter than the field is padded out to the
field length with the fill character assigned to the field. For a Right Justi-
fied field, the fill characters precede the value; for a Left Justified field,
they follow the value.

Two calls display more than one field value. The FPUTAL call displays all
field values in the form. The FOUTLN call displays the field values for one
line of a scrolled area. For these calls, you must create a concatenated string
of the values, including fill characters, where they are needed for padding.
The values must be in the same order the Form Driver would use in
processing the call to get all field values.

4.1.8 Text, Field-Marker Characters, and Video Attributes

After displaying a form, the Form Driver normally uses only the information
that relates to the fields, such as a field picture, the fill and clear characters, the
default value, and the line of HELP information. Unless the operator uses the
CTRL/W function to have the Form Driver redisplay the entire form, the
Form Driver makes no further use of information not related to the fields, such
as the text in the form, the field-marker characters, and the video attributes of
the characters displayed.

In particular, the field values the Form Driver returns do not contain any of
the field-marker characters the operator sees, such as the hyphen (-), decimal
point (.), slash (/), and minus sign (-). Also, the field values your program
passes to the Form Driver to display must not include field-marker characters.

4.1.9 Processing Fields

This section describes how the Form Driver processes fields in terms of the
field attributes.

Introduction to the FMS-11 Form Driver (FDV) 4-5

4.1.9.1 The Field Pictures — The Form Driver uses field pictures only
when the operator is typing field values. The values your program passes to the
Form Driver for display are not validated against the field pictures.

When the operator is responding, a field picture is used to:

e Validate that each character satisfies the requirements of the picture char-
acter at the corresponding position. For example, in a field with the mixed
picture 999AAA, the Form Driver accepts only digits in the first three
positions and only letters in the last three positions.

e Limit the operator’s use of the INSERT and OVERSTRIKE modes of
entering field values. For example, the operator cannot change the combi-
nation of modes used for a fixed-decimal field or use the INSERT mode

when he or she is completing a field that has a mixed picture. (Section 4.2.3
describes the INSERT and OVERSTRIKE modes in detail.)

Section 2.6.7 describes the field picture characters and the valid operator
responses in detail.

4.1.9.2 The Right Justified and Left Justified Field Attributes — The
Form Driver uses the Right Justified and Left Justified attributes to:

e Determine the position of the cursor when it is first displayed in a field.
(Section 4.2.2.2. describes this position, called the initial position of the
cursor, in detail.)

e Align the field value both on the screen and in the impure area when the
value is shorter than its field. For example, the value in a Right Justified
field always ends at the last character position in the field.

¢ Determine when the operator has filled the field if the field has the Autotab
attribute. (Section 4.1.8.5 describes in detail the effect of the Autotab
attribute.)

¢ Set the default mode of entering values in the field. For example, the
INSERT mode is the default for a Right Justified field. (Section 4.2.3
describes in detail the INSERT and OVERSTRIKE modes.)

4.1.9.3 The Clear Character and Zero Fill Attributes — The Clear
Character and Zero Fill attributes affect how field values are padded on the
screen and in the impure area. The clear character is displayed and the fill
character is used as padding in the impure area. When a field has no value, it is
displayed with only the assigned clear character; it is stored in the impure area
with only the assigned fill character.

If a field has the Zero Fill attribute, the clear character must be zero (0), and, if
necessary, the field value is padded with zeroes in the impure area. The Form
Editor does not allow other combinations. If a field does not have the Zero Fill
attribute, the clear character can be any printing character, and, if necessary,
the field value is padded with spaces in the impure area.

4-6 Introduction to the FMS-11 Form Driver (FDV)

4.1.9.4 The Default Value — When the Form Driver displays a form, it
displays the default field values and stores them as the current field values in
the impure area. However, neither the Form Editor nor the Form Driver
validates the default value in any way. For example, the Form Editor does
allow you to assign the numeric default value 13467 for a field with the picture
AAAAA, and the Form Driver does display the value in such a case, even
though the Form Driver does not allow the operator to enter the value.
Therefore, when you develop your application, you must make sure the default
value is correct for the field.

4.1.9.5 The Autotab Attribute — When the operator types the character
that fills a field with the Autotab attribute, the Form Driver terminates the
field as if the operator had pressed the TAB key. (Section 4.2.4 describes the
use of the TAB key and the other field terminators in detail.)

With respect to the Autotab attribute, the Form Driver determines that a field
has been filled as follows:

e The Must Fill attribute, if assigned to the field, must be satisfied. (Section
4.1.8.6 describes the Must Fill attribute in detail.)

e For a Left Justified field, the operator must have typed a character in the
rightmost character position.

e For a Right Justified field, the leftmost character position must contain a
character other than the Fill Character.

4.1.9.6 The Response Required and Must Fill Attributes — The Form
Driver uses the Response Required and Must Fill attributes to validate the
completeness of an operator’s response in a field.

In a field with the Response Required attribute, the operator must type at least
one character other than the assigned fill character.

In a field with the Must Fill attribute, the operator can type nothing or fill the
field completely. The Form Driver will not accept a field value shorter than its
field or a value that contains a fill character.

The Form Driver validates the Response Required and Must Fill attributes at
different times depending on the call your program issues for an operator
response. For the call to get all field values from the operator, the Form Driver
validates these attributes for each field:

e When the operator terminates input in the field with the TAB key.

e When the operator signals completion of the form by pressing the ENTER
or RETURN key.

For the other calls, the Form Driver validates these attributes when the
operator terminates the field. (Section 4.2.4 describes in detail how to use the

ENTER and RETURN keys to terminate a field and how to use the other field
terminators.)

Introduction to the FMS-11 Form Driver (FDV) 4-7

4.1.9.7 The Fixed Decimal Attribute — The Form Driver uses the Fixed
Decimal attribute to:

e Determine the position of the cursor when it is first displayed in a field.
This position is called the initial cursor position. (The initial cursor posi-
tion is described in detail in Section 4.2.2.2.)

 Align the parts of the field value to the left and right of the decimal point.
For example, the Form Driver displays the part to the left of the decimal
point as a Right Justified field and the part to the right of the decimal
point as a Left Justified field.

e Determine the fill and clear characters for the left and right parts of the
field. For example, the Form Driver always displays the decimal part of the
field value as a Zero Fill and Left Justified field, regardless of whether the
Zero Fill or Clear Character attribute is assigned. The Form Driver applies
the assigned Zero Fill or Clear Character attribute to the part of the value
to the left of the decimal point only.

Section 4.2.5 describes the special characteristics of fixed-decimal fields with
respect to typing and editing the field values.

4.1.9.8 The Horizontal and Vertical Indexed Attributes — The Form
Driver uses the Horizontal and Vertical Indexed attributes to:

* Define the indexes for the individual fields that make up the indexed field.

e Move the cursor to the proper individual field when your program issues a
call for the value of a specific indexed field.

For example, when your program issues the FGETAL call to get all field
values, the TAB function moves the cursor through an indexed field as
shown in Figure 4-1. (Section 4.2.4 describes the TAB function and the
other field terminator functions in detail.)

e Determine the order in which the field values are concatenated for the call
to get all field values. Figure 4-1 illustrates the concatenated order.

4.1.9.9 The Display Only Attribute — The Form Driver uses the Display
Only attribute to allow your program to display variable field values without
allowing the operator to type or change the field values. The Form Driver does
not allow the operator to position the cursor in a display-only field. When the
operator uses the TAB function or other functions to move the cursor from
field to field, the cursor jumps past the display-only fields as if they were part
of the form’s background text. (Section 4.2.4 describes the TAB function and
the other field terminator functions in detail.)

4.1.9.10 The Echo Off Attribute — The Form Driver uses the Echo Off
attribute to prohibit field values from being displayed in fields. When the
operator responds in an Echo Off field or when your program issues a call to
display a field value in an Echo Off field, the Form Driver returns the field
value to your program and stores it in the impure area but does not display the
field value.

4-8 Introduction to the FMS-11 Form Driver (FDV)

4.1.9.11 The Supervisor Only Attribute — When your program uses the
FSPON call to turn on the supervisor-only mode, the Form Driver prevents the
operator from typing or changing values for fields that have the Supervisor
Only attribute. In effect, after the program issues the FSPON call the Form
Driver treats all fields with the Supervisor Only attribute as display-only fields.

This treatment, which remains in effect until the program issues the FSPOFF
call, applies to all forms displayed. When the program issues the FSPOFF call,
the Form Driver ignores the Supervisor Only attribute until the program issues
the FSPON call again.

4.1.9.12 The Scrolling Attributes — Although the Form Editor and Form
Driver allow a form length of 23 lines or less, both FMS components allow the
definition of multiline sections within a form for displaying data tables of as
many lines as are needed. Each of these sections is called a scrolled area
because it can be used to treat a long data table like a scroll, winding it up or
down to expose in the scrolled area the specific lines you want the operator to
see or complete. In effect, a scrolled area is like a separate window within a

form and the terminal screen. In the window, you can show any part of a longer
file.

Each scrolled area must be at least two lines long. Within one form you can
define as many separate scrolled areas as will fit within 23 lines. Each line can
have as many separate fields as will fit on one screen line, but for each scrolled
area, all lines must be identical with respect to the number of fields, their sizes
and attributes, and all other details.

Because the Form Driver can store field values only for the fields on the
terminal screen, your program must maintain all scrolled area field values not
displayed, that is, all of the values “above” and “below” each scrolled area.
When your program scrolls the lines of a scrolled area up or down, the program
must collect the line of values, if any, scrolled into the area.

Chapter 7, Form Driver Programming Techniques and Examples, includes

detailed explanations of scrolled area usage and summaries of typical
programming methods applicable to scrolled areas.

Introduction to the FMS-11 Form Driver (FDV) 4-9

4.2 Form Driver Interaction with the Terminal Operator

While working with an FMS application, the terminal operator might feel he or
she is always in control of the form displayed on the screen. In fact, the
operator has no control until your program permits it by issuing one of the
following Form Driver calls for an operator response:

o FGET, to get the value of a specified field.
o FGETAF, to get the value of the field the operator chooses.

o FGETAL, to get a concatenated string of all field values for the current
form.

e FINLN, to get a concatenated string of all the field values for a line of a
scrolled area.

Each of these four calls puts the operator in control until the requirements of
the call have been satisfied. For example, after your program issues the FGET
call for the value of a specific field, the operator can type and correct the
response for as long as he or she wishes. The operator can also request help by
using the HELP function. When the operator terminates the field with a field
terminator function such as the TAB function, the Form Driver returns
control to the program. Then, until the the program issues another call for an
operator response, the operator has nothing to do.

This section introduces the three general kinds of operator activity:
e Correcting errors and requesting HELP.
o Editing fields.

e Terminating and choosing fields.

4.2.1 Signaling and Recovering from Errors

The Form Driver responds to typographical errors and invalid use of editing
and field termination functions as follows:

e For all errors, the Form Driver rings the terminal bell and ignores the
invalid character or function.

e For some errors, the Form Driver also displays a one-line explanation on
the bottom screen line. For example, when an operator tries to enter a letter
in a field that has been designed to accept only numbers, the Form Driver
rings the bell and displays the following message:

NUMERIC REQUIRED

4-10 Introduction to the FMS-11 Form Driver (FDV)

Appendix E lists and explains each of the messages that can appear in these
cases.

The Form Driver also provides a special operating mode, called the debug
mode, which produces an extensive set of error messages useful to you while
you are developing and refining your FMS application programs. If an error
occurs while you are using the Form Driver with the debug mode feature, the
Form Driver stops your program, rings the terminal bell, displays the debug
mode message on the bottom screen line, and then waits for you to press the
ENTER or RETURN key before resuming your program. (Section 5.1
describes the debug mode in detail.)

4.2.1.1 The HELP Key and Help Messages — The HELP function can
display two levels of information.

When the operator presses the HELP key for the first time, the Form Driver
determines whether a help message exists for the current field. If such a one-
line help message exists, the Form Driver displays it in the last line of the
screen. The cursor remains in place within the field.

If the operator does not find the one-line help message sufficiently helpful, he
or she may press the HELP key a second time. The Form Driver then
determines whether a help form exists for the current form.

If a help form exists, the Form Driver displays the help form while saving the
context of the current form. Each help form can have yet another help form
associated with it. Until the last of the chain of help forms is displayed, the
HELP function causes the next form in the chain to appear.

To return to the form he or she was originally working on, the operator presses
the ENTER key. In response, the Form Driver restores the form and cursor as
they were before the HELP key was pressed.

If no one-line HELP message exists for a particular field, the Form Driver
displays the HELP form directly. When no HELP is available, the Form
Driver displays a message to that effect on the last line of the screen. When, in
the course of continuing work on the form, the operator types a field
terminator, the Form Driver clears the last line.

4.2.1.2 Messages Controlled by the Program — There are two cases in
which the Form Driver cannot distinguish between valid and invalid operator
responses.

1. Although the Form Driver accepts only the operator responses that meet
the requirements of the field picture that was assigned with the Form
Editor, the Form Driver cannot detect a field value that is invalid in your
application.

2. When an operator uses certain functions to terminate work within a field,
the Form Driver waits for your program to respond rather than processing
the terminator automatically.

Introduction to the FMS-11 Form Driver (FDV) 4-11

For both of these cases, you can design the program to detect errors and other
conditions and display messages to the operator. Chapter 5 describes the
typical processes and techniques in detail.

4.2.1.3 Repainting the Screen: The CTRL/W Function — VT200 Keys:
Hold down the CTRL key and at the same time press the W key on the
keyboard.

The CTRL/W function repaints the current form and its current field values
on the screen. The function is useful for ensuring that the screen is displaying
the field values stored in the impure area and the background text for the form.

If part or all of an earlier form was left on the screen when the current form was
displayed, the CTRL/W function erases the earlier form completely and
repaints only the current form. (The FSHOW call can be used to leave an
earlier form on the screen when another form is displayed.)

The CTRL/W function is always valid.

4.2.2 Field Editing Principles and Functions

Table 4-1 summarizes the field editing functions the Form Driver provides and
lists the keys that control the functions. These functions are executed entirely
by the Form Driver. You can implement added functions within your program
by switching the LK201 keyboard of the VT200 to the alternate keypad mode
and using the numeric keypad keys to control the functions you design. Keys
followed by an asterisk (*) denote changes from the VT100. Appropriate
VT100 keys and functions follow this table. Keys without an asterisk (*) are
the same for the LK201 and the VT100 keyboards.

Unless otherwise indicated, VT200 keys referred to in Table 4-1 are identical
to the corresponding VT100 keys.

4-12 Introduction to the FMS-11 Form Driver (FDV)

Table 4-1. Field Editing Keys, Functions, and Usage for the Form

Key

Function

Usage

LEFTARROW ()

RIGHTARROW (—)

DELETE

Fi2*

F13*
PF1

HELP*

CTRL/W

Most keyboard keys

Cursor Left
Cursor Right

Erase Character

Backspace

Erase Field

INSERT/
OVERSTRIKE

HELP

Repaint Screen

Insertion

Moves the cursor to the preceding position
within the field.

Moves the cursor to the next position within
the field.

In the INSERT mode, erases the character to
the left of the cursor and closes the space.

In the OVERSTRIKE mode, moves the cursor
to the preceding character position within the
field but erases it only when the character is
the last one in a Left Justified field.

Moves the cursor to the initial position of the
previous non-display-only field.

Erases the entire field.

Switches from the INSERT mode to the
OVERSTRIKE mode, or vice versa.

First, displays the HELP text for the cursor’s
field, and then displays successive HELP
forms for the current form.

Repaints the screen with the current form,
field values, and cursor location.

The keys for the printing characters on the
keyboard insert their characters. In the normal
(numeric) keypad mode, the numeric and
punctuation keys on the keypad also insert
their characters.

The following functions are for VT100 keyboards only:

LINEFEED
BACKSPACE

PF2

Erase Field

Backspace

HELP

Erases the entire field.

Moves the cursor to the initial position of the
previous non-display-only field.

First, displays the HELP text for the cursor’s
field, and then displays successive HELP
forms for the current form.

The following control characters are for any keyboard:

CTRL/H
CTRL/I
CTRL/J

Backspace
Tab
Linefeed

Introduction to the FMS-11 Form Driver (FDV) 4-13

4.2.2.1 Terminators and Alternate Keypad Mode — The terminal can be
set to an alternate keypad mode or a normal (numeric) keypad mode, as
described in the Terminal Programmer’s Reference. The Form Driver does not
change the keypad mode at any time, and, regardless of the terminal’s keypad
mode, the editing and terminator functions are always the same. If your
program requires either of the keypad modes, you must set the mode from
within the program. Section 5.2 provides further information about setting the
alternate keypad mode so the numeric keys on the keypad can be used as
special field terminators.

4.2.2.2 The Cursor’s Initial Position in a Field — The location of the cursor
when it is first displayed in a field is called the initial cursor position. The
initial position depends on whether the field has the Right Justified, Left
Justified, or Fixed Decimal attribute.

For Right Justified fields, the initial position is just to the right of the last
character position in the field. This position is called the hanging cursor
position, because the cursor hangs off the end of the field.

For Left Justified fields, the initial position is the leftmost character position
in the field.

For fixed-decimal fields, the initial position is the decimal point. Section 4.2.5
describes the special characteristics of fixed-decimal fields with respect to
typing and editing field values.

4.2.2.3 Inserting a Field Value: The Default Function —

VT200 Keys: The Form Driver accepts the standard letters, numbers, and
special characters on the keyboard that meet the requirements of the field.

For the keyboard keys, insertion of values in fields is the default function. For
the numeric and punctuation keys on the keypad, insertion is also the default
when the keypad is in the normal (numeric) mode. In both cases, the operator
types values as if he or she were using a typewriter.

Insertion is invalid only when it does not meet the field’s requirements. For
example, letters are invalid where numbers are required, and for a field that
does not have the Autotab attribute, all characters are invalid when the field is
full.

4.2.2.4 Erasing a Character: The DELETE Function —
VT200 Key: The DELETE key on the keyboard.

The DELETE function normally erases the character to the left of the cursor.
The function has different effects, however, in the INSERT and
OVERSTRIKE modes. The modes are explained in detail in Section 4.2.3.

4-14 Introduction to the FMS-11 Form Driver (FDV)

In the INSERT mode, the Form Driver erases the character to the left of the
cursor and closes up the space. In a Left Justified field, the value remains left-
justified; in a Right Justified field, the value remains right-justified.

In the OVERSTRIKE mode, the DELETE function always moves the cursor

one character to the left. However, to prevent an operator from accidentally
introducing errors in a field with a mixed picture, the function does not erase a
character in OVERSTRIKE mode except for the rightmost character in a Left
Justified field.

The DELETE function is invalid when the cursor is on the leftmost character
in the field.

4.2.2.5 Erasing a Field: The LINEFEED Function —

VT100 Key: The LINEFEED key on the keyboard.
VT200 Key: The F13 key on the LK201 keyboard.

Regardless of the cursor’s position in a field, the LINEFEED function erases
all characters (except field-marker characters) in the field. The Form Driver
then displays the assigned clear character for the field and in the impure area
fills the field with the assigned fill character. When the function is complete,
the cursor is located at the initial position for the field (the leftmost character
for a Left Justified field and to the right of the rightmost character for a Right
Justified field).

The LINEFEED function is always valid input in a field.
4.2.2.6 Moving the Cursor to the Right: The RIGHTARROW Function —
VT200 Key: The RIGHTARROW key (—) on the keyboard.

The RIGHTARROW function normally moves the cursor one character to the
right within a field. However, the cursor always skips the field-marker
characters, such as the hyphen (-) and slash (/) in a field.

The RIGHTARROW function is invalid when the cursor is to the right of the
rightmost character in a field.

4.2.2.7 Moving the Cursor to the Left: The LEFTARROW Function —
VT200 Key: The LEFTARROW key (—) on the keyboard.

The LEFTARROW function normally moves the cursor one character to the
left within a field. However, the cursor always skips the field-marker characters
in a field.

The LEFTARROW function is invalid when the cursor is on the leftmost
character of a field.

Introduction to the FMS-11 Form Driver (FDV) 4-15

4.2.3 Switching the Insertion Modes: the INSERT/OVERSTRIKE
Function

VT200 Key: The PF1 key on the keypad.

While the operator is typing a field value, the INSERT and OVERSTRIKE
insertion modes control how the Form Driver displays the characters. For most
of the different types of fields that can be designed, the operator can control
the insertion mode by using the INSERT/OVERSTRIKE function.

When either the operator or your program first moves the cursor to a field, the
Form Driver sets the insertion mode according to the attributes of the field.
The INSERT mode is the default for Right Justified fields, and the
OVERSTRIKE mode is the default for Left Justified fields.

While the operator types in INSERT mode in a Left Justified field, the Form
Driver inserts each character at the position of the cursor. The cursor, the
character at the cursor, and all characters within the field to the right of the
cursor are shifted to the right. In a Right Justified field, all characters to the
left of the cursor are shifted to the left and the new character is inserted
directly to the left of the cursor.

In the OVERSTRIKE mode, the Form Driver replaces the character at the
cursor with the character typed and moves the cursor one character to the
right.

The INSERT/OVERSTRIKE function switches the insertion mode from one
to the other. For example, when the Form Driver is initially in the INSERT
mode, by pressing the PF1 key once, the operator switches the Form Driver to
the OVERSTRIKE mode; by pressing PF1 again, the operator switches the
Form Driver back to the INSERT mode.

In fields with mixed pictures, the INSERT mode is invalid. In fixed decimal
fields, the INSERT/OVERSTRIKE function is ignored entirely because of the
special data entry conventions fixed-decimal fields require. (Section 4.2.5
describes how the Form Driver handles operator responses in fixed-decimal
fields.) In all other cases, the INSERT/OVERSTRIKE function is valid.

4.2.4 Field Terminating Functions

The operator uses the field terminating functions for the Form Driver to signal
that he or she wishes to work with a different field or a different form. The
Form Driver processes these functions differently depending on what Form
Driver call is currently being executed. In many cases, the Form Driver gives
your program an opportunity to intercept and change the terminator function
the operator has used. The Form Driver identifies each terminator function
with a unique terminator code.

This section describes the normal effects of the terminator functions and lists
the terminator codes for both high-level languages and MACRO-11. (Section

5.2 describes the field terminator processing in detail, including use of the
terminator codes.)

4-16 Introduction to the FMS-11 Form Driver (FDV)

4.2.4.1 Signaling the Form Is Complete: The ENTER and RETURN
Functions —

VT200 Keys: The ENTER key on the keypad and the RETURN key on the
keyboard both control this terminator.

Terminator Code and Value:
MACRO-11 Code: FTSNTR
High-Level Language Value: 0

The ENTER and RETURN functions signal that the operator has completed
the current form. The operator uses either function when he or she does not
want to enter or change any field values.

When an FGETAL call is issued, the Form Driver does not accept either the
ENTER or the RETURN function until all field values satisfy their field
requirements. For example, a Response Required field must have a response
and a Must Fill field must be filled. However, the Form Driver cannot
determine if the field values are valid. Your program must do this.

For any other Form Driver call, control is returned to the program if the
requirements for the current field value are satisfied.

4.2.4.2 Moving the Cursor to the Next Field: The TAB Function —
VT200 Key: The TAB key on the keyboard.

Terminator Code and Value:

MACRO-11 Code: FT$NXT (when terminating a
field outside a scrolled area)

FT$SNX (when terminating
the last field in a line within a
scrolled area)

High-Level Language Value: 1 (when terminating a field
outside a scrolled area)

6 (when terminating a field
within a scrolled area)

The TAB function is valid only when the requirements for the current field
value (Response Required and/or Must Fill) are satisfied.

The effects of the TAB function depend on what Form Driver call is being
executed.

Introduction to the FMS-11 Form Driver (FDV) 4-17

For the FGETAL and FINLN calls and for the FGETAF call before the
operator enters or changes a field value, the Form Driver processes the function

directly and moves the cursor to the initial position of the next modifiable

field. (Section 4.1.6 describes the order in which the Form Driver moves from
field to field.)

For the FGET call and for the FGETAF call after the operator enters or
changes a field value, the Form Driver transfers control to the program. The
next call in your program determines what the operator sees. For example, after
the operator terminates a field with the TAB function, your program can
display a new form, calculate and display a value in a display-only field, or issue
another call for another operator response in a specific field.

The function is invalid when the cursor is in the last non-display-only field of
the form.

4.2.4.3 Moving the Cursor to the Previous Field: The BACKSPACE
Function —

VT100 Key: The BACKSPACE key on the keyboard.
VT200 Key: The F12 key on the LK201 keyboard.

Terminator Code and Value:

MACRO-11 Code: FT$PRV (when terminating a
field outside a scrolled area)

FT$SPR (when terminating
the first field in a line within a
scrolled area)

High-Level Language Value: 2 (when terminating a field
outside a scrolled area)

7 (when terminating a field
within a scrolled area)

The effects of the BACKSPACE function depend on what Form Driver call is
being executed.

For the FGETAL and FINLN calls, and for the FGETAF call before the
operator enters or changes a field value, the Form Driver processes the function
directly and moves the cursor to the initial position of the previous non-
display-only field. (Section 4.1.6 describes the order in which the Form Driver
moves from field to field.)

For the FGET call, and for the FGETAF call after the operator enters or
changes a field value, the Form Driver transfers control to the program. The
next call in your program determines what the operator sees.

The function is invalid when the cursor is in the first non-display-only field of
the form.

4-18 Introduction to the FMS-11 Form Driver (FDV)

4.2.4.4 Scrolled Area Moves: The UPARROW Function —
VT200 Key: The UPARROW key (7) on the keyboard.

Terminator Code and Value:
MACRO-11 Code: FT$SBK
High-Level Language Value: 9

The UPARROW function is valid only when the cursor is in a field within a
scrolled area. This function always transfers control to your program.
Therefore, you can use the function any way you wish, and the effects the
operator sees depend on the next calls your program issues.

The Form Driver processes the UPARROW function only when you specify its
code in the FPET call. The Form Driver either moves the cursor to the
preceding data line within the scrolled area and places the cursor at the initial
position of the first non-display-only field in that data line, or scrolls the area
backward and places the cursor at the initial position of the first non-display-
only field in the current line.

When the cursor is in the top screen line of the scrolled area, or if the program
specifies data to update the top line, the UPARROW function scrolls the
bottom line of information off the screen, scrolls a new line of information into
the top scrolled line, and moves the intermediate scrolled lines downward. If
the cursor is in the top line and your program specifies values for the new line
of information, these values are displayed; otherwise, the default field values
are displayed.

The function is valid only when the cursor is in a field within a scrolled area.
4.2.4.5 Scrolled Area Moves: The DOWNARROW Function —
VT200 Key: The DOWNARROW key (|) on the keyboard.

Terminator Code and Value:

MACRO-11 Code: FT$SFW

High-Level Language Value: 8
The DOWNARROW function is valid only when the cursor is in a field within
a scrolled area. The function always transfers control to your program.

Therefore, you can use the function any way you wish, and the effects the
operator sees depend on the next calls your program issues.

Introduction to the FMS-11 Form Driver (FDV) 4-19

The Form Driver processes the DOWNARROW function only when you
specify its code in the FPFT call. The Form Driver either moves the cursor to
the next data line within the scrolled area and places the cursor at the initial
position of the first non-display-only field in that data line, or scrolls the area

forward and places the cursor at the initial position of the first non-display-
only field in the current line.

When the cursor is in the bottom screen line of the scrolled area, or if the
program specifies data to update the bottom line, the DOWNARROW function
scrolls the top scrolled line of information off the screen, scrolls a new line of
information into the bottom scrolled line, and moves the intermediate scrolled
lines upward. If the cursor is in the bottom line and your program specifies
values for the new line of information, these values are displayed; otherwise,
the default field values are displayed.

The function is valid only when the cursor is in a field within a scrolled area.

4.2.4.6 Scrolled Area Moves: The EXIT SCROLLED AREA
BACKWARD Function —

VT200 Key: The PF3 key on the keypad.

Terminator Code and Value:

MACRO-11 Code: FT$XBK

High-Level Language Value: 4
The EXIT SCROLLED AREA BACKWARD function is valid only when the
cursor is in a field within a scrolled area. The function always transfers control

to your program. Therefore, you can use the function any way you wish, and
the effects the operator sees depend on the next calls your program issues.

The Form Driver processes the EXIT SCROLLED AREA BACKWARD
function only when you specify its code in the FPFT call. The Form Driver

moves the cursor to the initial position of the first non-display-only field above
the scrolled area.

The function is invalid when:

1. The cursor is in a field not within a scrolled area.

2. There is no non-display-only field above the scrolled area.

4-20 Introduction to the FMS-11 Form Driver (FDV)

4,2.4.7 Scrolled Area Moves: The EXIT SCROLLED AREA
FORWARD Function —

VT200 Key: The PF4 key on the keypad.

Terminator Code and Value:
MACRO-11 Code: FT$XFW
High-Level Language Value: 5

The EXIT SCROLLED AREA FORWARD function is valid only when the
cursor is in a field within a scrolled area. The function always transfers control
to your program. Therefore, you can use the function any way you wish, and
the effects the operator sees depend on the next calls your program issues.

The Form Driver processes the EXIT SCROLLED AREA FORWARD
function only when you specify its code in the FPFT call. The Form Driver
moves the cursor to the initial position of the first non-display-only field below
the scrolled area.

The function is invalid when:

1. The cursor is in a field not within a scrolled area.

2. There is no modifiable field below the scrolled area.

4.2.5 Typing and Editing Fixed-Decimal Values

The initial position of the cursor in a fixed-decimal field is the decimal point
the Form Driver displays. The decimal point is a field-marker character. It is
not stored in the impure area or returned to your program as part of the field
value.

While typing a fixed-decimal value, the operator will observe that the Form
Driver treats the area to the left of the decimal point as if it were a Right
Justified field and the area to the right of the decimal point as if it were a Left
Justified field. When the operator types digits into a field with the cursor at the
initial position, the Form Driver displays all these digits to the left of the
decimal point until the operator actually types a decimal point. Thereafter,
when the operator types additional digits into the field, the Form Driver
displays these digits to the right of the decimal point.

As the operator edits a fixed-decimal value, the LINEFEED function erases
the entire value and leaves the cursor at the initial position. Normally, the
DELETE function also erases the digits in the field value. However, with the
cursor just to the right of the decimal point, the DELETE function moves the
cursor back to the decimal point but does not erase it.

Introduction to the FMS-11 Form Driver (FDV) 4-21

Chapter 5
Form Driver Programming
Requirements and Concepts

This chapter provides a technical overview of the Form Driver for the high-
level language and MACRO-11 programmer. (Although several sections of this
chapter discuss the Form Driver calls, the principal description of each call
appears in Chapter 6.)

The topics in this chapter are arranged in three general groups:

I

3.

Information important to programmers who design or write Form Driver
applications (e.g., checking the status of Form Driver calls or using field
terminator features).

Information that applies only to the high-level languages. The sections in
this group cover BASIC-PLUS-2, COBOL-11, COBOL-81, DIBOL-83,
FORTRAN 1V, and FORTRAN-77. The section for each language
describes the data types, syntax requirements, arguments used, and typical
procedures for task-building an FMS application program.

Information that applies only to MACRO-11.

5.1 Features for Checking Call Status

To improve the effectiveness of FMS applications and reduce the time required
for production of fully debugged applications, the Form Driver maintains the
completion status of each call and provides four general ways to obtain the
status:

For high-level language applications, the FSTAT call returns the Form
Driver status code for the last call processed. The FSTAT call also returns
the FCS or RMS system error code when a call fails because of an error in
opening or reading a form library file.

For MACRO-11 applications, a two-word Status Block holds the Form
Driver and system status codes for the last call processed.

5-1

e For added support while an FMS application is being developed, a special
debug mode is available for displaying explicit messages about the status of
calls.

¢ For customized support of FMS applications in the field, the FPUTL call
can be used to signal the application operator about program conditions
using any message you think appropriate.

5.1.1 Form Driver and System Status Codes

Table 5-1 lists and describes the returned status values and codes. For FMS
applications in high-level languages, the FSTAT call returns one of the listed
numeric codes in the first of its two status arguments. For applications in
MACRO-11, DIGITAL recommends you use the listed global symbols instead
of the numeric codes to ensure greater application compatibility with later
versions of FMS software.

Two of the status conditions listed in Table 5-1 indicate an error in trying to
open or read a form library file (code values —4 and —18). In these two cases,
the FSTAT call also returns (in the second status argument) FCS or RMS
system error codes that help to define the exact cause of the problem. For the
full list of FCS system errors, refer to the RSX-11 M/M-PLUS 1/0 Operations
Reference. For RMS errors, refer to the RMS-11 User’s Guide.

Note the status code FE$DLN, value —16., (data specified too long for output),
is returned to the program only in debug mode. Regardless of whether the Form
Driver provides support for debug mode, the specified data is truncated when
displayed and the Form Driver completes the call in the normal way.

Table 5-1. Summary of Returned Status Values and Codes

Status Value
in High-Level

Languages Status Code

(Decimal) (MACRO-11) Meaning

>0 >0 Successful completion of call,

1. FS$SUC Successful completion.

% FS$INC Current form incomplete.

-1, FESFCD Specified function code undefined.

~ 2. FESIMP Impure area too small.

=31 FE$FSP Invalid file specification.

-4, FE$IOL Error encountered opening form library (an
FCS or RMS system error code that provides
more detail can be found with the FSTAT call
and is returned in the second word of the
Status Block).

=15} FE$FLB Specified file not form library.

—~ 6. FES$ICH Invalid channel number specified.

- 1. FE$FCH Form library not open on specified channel.

5-2 Form Driver Programming Requirements and Concepts

i~

Table 5-1. Summary of Returned Status Values and Codes (Cont.)

Status Value Yiatus Code ~~ Meanmg

~8. FESFRM Tnvalid form definition.

-9 FE$FNM Specified form does not exist.

-10. FESLIN Invalid first line number to display form.

—11. FESFLD Specified field does not exist (invalid field
name or index).

-12. FE$NOF No fields defined for current form.

—13. FE$DSP Get call illegal for display-only field(s).

—14. FE$NSC Specified field not in scrolled area.

—15. FE$DNM Named data specified does not exist.

-16. FE$DLN Data specified for output too long (truncated

by Form Driver). This error is returned by the
Form Driver only when debug mode support is

included.
-17. FE$UTR Undefined field terminator.
-18. FES$IOR Error encountered reading form library (an

FCS or RMS system error code that provides
more detail can be found with the FSTAT call
and is returned in the second word of the
status block).

-19. FES$IFN Specified call invalid in current context of
form.
—20. None Wrong number of arguments in call. (For high-

level language programs only.)

—21. None Impure area not yet initialized. (For high-level
language programs only.)

—22. None Returned string is longer than the declared
variable length. (BASIC-PLUS-2 only.)

5.1.2 Debug Mode Support for Application Development

The Form Driver debug mode is available to both high-level language and
MACRO-11 programmers. The debug mode is a Form Driver configuration
option that adds explicit messages for the status conditions to the Form
Driver. Chapter 8 describes the configuration dialogue and procedure in detail.
To obtain debug mode support, programmers generally configure two versions
of the Form Driver: one version that includes the support and another version
that does not include it. The version with the debug mode support is used
during application development and the version without the debug mode
support is used for final testing and distribution.

In the debug mode, the Form Driver rings the terminal bell and uses the
bottom screen line to display a message for each of the status conditions
(except “Successful completion” and “Current form incomplete”) listed in
Table 5-1. Appendix E lists the messages. After displaying a debug mode
message, the Form Driver places the cursor in the lower right corner of the
screen, where it remains until you press the ENTER or RETURN key. This

Form Driver Programming Requirements and Concepts 5-3

Except for status code FE$DLN, value —16 (data specified for outp

' ut too long),
the appropriate error code is returned to the calling program.

5.1.3 The Debug Mode and Application Programming Techniques

Because the Form Driver explicitly signals all errors with calls in the debug
mode, you can use the Form Driver to debug your program (with respect to
Form Driver mistakes). Therefore, after debugging a program, you might
choose not to test for certain errors that should not occur in a fully debugged
application, such as an incorrect field name or form name, or an incorrect
number of arguments in a call.

Some errors can occur even in a fully debugged program. In particular, even in
a finished FMS program, you should check for I/O errors after calls that;

e Open and close a form library file.
® Display a form (and must therefore read a form library file).

¢ Solicit operator responses.

5.1.4 Signaling the Application Operator About Program Errors

In many cases, FMS application operators cannot be expected to learn much
about the hardware or software they use. With respect to error conditions that
are not totally avoidable, the application designer and programmer are under
pressure to signal the problem and its solution as clearly as possible. The
FPUTL call is especially useful for giving operators the messages about the
application program status they will find most useful. For example, the
following general illustration shows one way the FPUTL call can be used with
the other status and error-checking features:

1. The program encounters an 1/0 error while trying to display a form.

2. The program detects the error by using the FSTAT call. The call returns
the error code —18 for an error in reading a form library file.

3. The program uses the status code as an index into a list of program-specific

messages and finds the following message: “Proper form not available.
Contact Ms. Jackson.”

4. The program uses the FPUTL call to display the message on the bottom
screen line. Immediately thereafter, the program uses a call for an operator
response (the FGET call) to ensure that the message remains visible until
the operator sees and responds to it.

Chapter 6 provides a full description of the FPUTL call.

5-4 Form Driver Programming Requirements and Concepts

5.2 The Role of Field Terminators

The field terminators define one of the following conditions:

1. The operator wants to work on the next form.

9. The operator wants to work on a different field from the current field.

Each key listed in Table 5-2 controls a field terminator. The Autotab field
attribute also controls a unique terminator. When an operator presses a key or
completes a field with the Autotab attribute, the Form Driver either processes
the terminator itself and displays the effect for the operator or returns a unique
field terminator code to your program and leaves the choice of processes to the
program. Table 5-2 also lists the process and code the Form Driver uses for
each field terminator key.

When you set the VT200 keypad to the alternate keypad mode, the Form
Driver also treats the keypad’s numeric keys, comma (,) key, hyphen (-)
key, and decimal point, or period (.) key as field terminators. The codes for
these alternate keypad mode terminators are always returned to your program
immediately.

This section describes how your program can use field terminators and Form
Driver calls to guide an operator in any order through the fields in a form.

5.2.1 Relationship Between Field Terminators and Form Driver Calls

In effect, the Form Driver works between the operator and the application
program the operator is using. When the program initiates a call to get an
operator response, the Form Driver allows the operator to type an entry in a
field. When the operator presses a field terminator key that completes the call,
the Form Driver passes the response and the field terminator code to the
program and prohibits the operator from typing anything else.

Only the following four Form Driver calls allow the operator to respond:

1. FGET, to get the value for a specified field and the field terminator.

2. FGETATF, to get the value, field name, or field terminator for any field the
operator chooses.

3. FGETAL, to get a concatenated string of all field values for the current
form and the last field terminator used.

4. FINLN, to get a concatenated string of the field values from the current
line of the specified scrolled area to the last field terminator used.

For each of these four calls, the Form Driver validates all field terminators. For
example, with the cursor in the first field in a form, the Form Driver accepts
the field terminator for the TAB key but does not accept the field terminator
for the BACKSPACE key.

Form Driver Programming Requirements and Concepts 5-5

Table 5-3 lists the four calls and the field terminator keys that Complcw CﬁCh

call. Tlle pGET call gives the program total control over responding to any

field terminator, The FGETAF call allows the operator to choose one field but

returns control to the brogram as soon as the operator completes an Autotab
field or modifies a field and bresses any field terminator key. The FGETAL call
leaves the Form Driver in control of responding to any field terminator except
when the operator presses the ENTER or RETURN key. The FINLN call
leaves the Form Driver in control within a line of a scrolled area.

For a general illustration of the flexibility you get from the set of field
terminator features and related calls, compare the following two methods for
getting all the current field values from the operator. (The illustration assumes

none of the fields has any special attributes, such as the Response Required
attribute.)

1. Using the FGETAL call.
¢ The program initiates the FGETAL call.

® The operator uses the field terminator keys that move the cursor from
field to field at any time. The Form Driver processes these field termina-
tors without returning them to the program.

® When the operator presses the ENTER or RETURN key, the Form
Driver returns the field terminator code and the string of field values to
the program.

* The program is then in control of what the operator does next.
2. Using a series of FGET calls.

o The program initiates the FGET call. The operator can only type and
change the entry in the specified field.

e When the operator presses any field terminator key, the Form Driver
returns the field terminator code and the single field value to the pro-
gram. The program is then in control of what the operator does next. For
example, on the basis of the field value or the field terminator, the

program can specify the same field or another field in the next FGET
call.

5-6 Form Driver Programming Requirements and Concepts

——

- Table 5-2. Field Terminator Keys, Codes, and Typical Effects

Key

Usage or Meaning

ENTER or
RETURN

TAB

BACKSPACE

None
(Autotab)

PF3
(Exit
Scrolled
Area
Backward)

PF4
(Exit
Scrolled
= Area
Forward)

Code
High-Level MACRO-11
Languages (Global)
(Decimal)

0. FT$NTR
b, FT$NXT
6. FT$SNX
2 FT$PRV

i FT$SPR

3k FT$ATB

4, FT$XBK
5.

Terminates all entries in the form. If the
call being processed is an FGETAL, and
required entries are not complete, the Form
Driver refuses to accept the terminator and
the operator remains in control. If required
entries are complete, the terminator is
always returned to the program. Therefore,
the final effect depends on the next call the
program initiates for an operator response.

If any other call is being processed, only the
requirements for the current field must be
satisfied. If so, control is returned to the
program.

Valid only when the current field is not the
last field in the form that is not display-
only. Moves the cursor to the initial
position of the next field.

Processed by the Form Driver for the
FGETAL and FINLN calls and, until an
entry is typed or modified, for the
FGETATF call. Returned to the program for
the FGET call and, after an entry is typed
or modified, the FGETAF call.

Scroll forward to the next field. The TAB
key terminated input in last field of a
scrolled line. Always returned to the
program.

Valid only when the current field is not the
first field in the form that is not display-
only. Moves the cursor to the initial
position of the previous field.

Processed as for the TAB key.

Scroll backward to the previous field. The
BACKSPACE key terminated input in the
first field in a scrolled line. Always returned
to the program.

Processed as for the TAB key.

Moves the cursor out of the scrolled area to
the initial position of the previous field the
operator is allowed to complete. (Valid
input only when the current field is in a
scrolled area.)

(Valid input only when the current field is
in a scrolled area). Moves the cursor out of
the scrolled area to the initial position of
the next field the operator is allowed to
complete.

Form Driver Programming Requirements and Concepts 5-7

Table 5-2. Field Terminator Keys, Codes, and Typical Effects

(Cont.)
Key Code Usage or Meaning
DOWNARROW 8. FT$SFW (Valid input only when the current field is
(Scroll in a scrolled area). The scrolled area is
Forward) scrolled up and the current line remains the
same physical line (with new data) or the
cursor moves down one line and that line
becomes the new current line. The cursor
moves to the initial position of the first
field the operator is allowed to complete in
the current line.
UPARROW 9. FT$SBK (Valid input only when the current field is
(Scroll in a scrolled area). The scrolled area is
Backward) scrolled down and the current line remains

the same physical line (with new data) or
the cursor moves up one line and that line
becomes the new current line. The cursor
moves to the initial position of the first
field the operator is allowed to complete in
the current line.

Table 5-3. The Relationship Between the Calls to Get Operator
Responses and the Field Terminators

Call Field Terminator Keys that Complete the Call

FGET Any valid field terminator key or the Autotab code.

FGETAF ENTER, RETURN, or any typed field entry followed by any valid field
terminator key or the Autotab code.

FGETAL ENTER or RETURN.

FINLN Any valid field terminator key or the Autotab code.

In terms of designing forms and programs for FMS applications, the following
principles provide a useful summary of Tables 5-2 and 5-3:

1. Except for the ENTER, RETURN, PF3, and PF4 keys, the effects of the
field terminator keys cannot be changed from what DIGITAL has designed
in the following cases:

e For the FGETAL call.
e For the FINLN call.
» For the FGETAF call before the operator makes a field entry.

2. When the operator uses the ENTER, RETURN, PF3, or PF4 key, or, in
response to the FGET call, any field terminator key, the program alone
controls the results the operator sees.

5-8 Form Driver Programming Requirements and Concepts

If you use the FGETAL call in a program, the TAB key will always advance the
cursor from field to field according to the default order DIGITAL has
implemented. However, if you use a series of FGET calls instead of the
FGETAL call, the program is passed the field terminator code for the TAB key

and can react to it in any way you specify.

For example, you can use the FPFT call. After the operator uses any field
terminator that returns control to the application program, the program can
initiate the FPFT call, making the Form Driver display the effects of any field
terminator key. In the example of an FGET call terminated by pressing the
TAB key, the program can react by specifying the BACKSPACE key code in
the FPFT call. Then, the effect of the next FGET call would be to move the
cursor back to the previous field in the form. Or, you can use another FGET
call. Again in the example of an FGET call terminated by pressing the TAB
key, the program can react with another FGET call that specifies by name the
next field the operator is to complete, regardless of where the field appears on
the operator’s screen.

5.2.2 Using the Alternate Keypad Mode Terminators

Normally, the numeric and punctuation keys on the VT200 keypad produce
the same numbers and characters that the corresponding keyboard keys
produce. Therefore, for many common applications the operator can enter
numeric data by using the keypad rather than the more cumbersome keyboard
arrangement.

For special applications, you can set the VT200 to the alternate keypad mode
from your program and then design the applications to use the numeric and
punctuation keys on the keypad as field terminator keys. In this case, the Form
Driver always passes the alternate keypad mode terminators to the program
immediately, regardless of whether the Input Required and Must Fill
requirements are satisfied for the form. The VT200 User Guide describes how
to set the alternate keypad mode. Table 5-4 lists the keypad keys affected by
the alternate keypad setting and the code returned to your program for each
key.

In each case, the character returned is the last character in the escape sequence
generated by the key in alternate keypad mode.

Form Driver Programming Requirements and Concepts 5-9

Table 5-4. Alternate Keypad Mode Field Terminator Keys and

Codes for the VT200

Keypad or Code Returned
Function Key Symbol Value (Decimal)
Comma (,) FT$KPC 108.
Hyphen (-) FT$KPH 109.
Decimal (.) FT$KDP 110.
0 FT$KPO 112.
1 FT$KP1 113
2 FT$KP2 114.
3 FT$KP3 115.
4 FT$KP4 116.
5 FT$KP5 117.
6 FT$KP6 118.
i FT$KP7 119.
8 FT$KP8 120.
9 FT$KP9 12
Fo6 FT$F06 49.
Fo7 FT$F07 50.
Fog FT$F08 51.
Fo9 FT$F09 52.
F10 FT$F10 53.
F11 FT$F11 55.
F12 FT$F12 56.
F13 FT$F13 57.
F14 FT$F14 58.
F15 FT$F15 60.
Fi6 FT$F16 61.
F17 FT$F17 63.
F18 FT$F18 64.
F19 FT$F19 65.
F20 FT$F20 66.
Find FT$FND 33.
Insert Here FT$INS 34.
Remove FT$RMV 35.
Select FT$SEL 36.
Prv Screen FT$PRS 3t
Nxt Screen FT$NXS 38.

5-10 Form Driver Programming Requirements and Concepts

—

5.3 The Impure Area

The size of the impure area must satisfy the requirements of the largest form
used. The actual size also depends on the programming language you are using

for your application. For any high-level language, create an impure area 64

bytes (decimal) larger than the impure area size reported by the Form Editor or
Form Utility. For MACRO-11, you do not need to add the 64 bytes (decimal).

NOTE

Because of operating system factors, a form description on
RSX-11M and RSX-11M-PLUS systems requires an impure
area 44 bytes (decimal) larger than on RT-11 systems, regard-
less of the language used for the application. On RSX-11M and
RSX-11M-PLUS systems, the Form Editor and Form Utility
include this extra requirement when they report the impure area
size. On RT-11 systems, they do not include the extra
requirement.

The impure area is used by the Form Driver to maintain terminal context
between calls. If you issue direct calls from your program to display data on or
solicit input from the terminal, rather than using the Form Driver for all
terminal I/0, the results of the next Form Driver call might not be as expected.

5.4 Task-Building Programs with Memory-Resident Forms

Memory-resident forms are easily created and included in your FMS
application. Use the Form Utility to create object modules of the forms you
wish to include in your program, as in the following example:

FUT> FORMS.0BJ=DEMLIB.FLB/0B
DMO:[30,10]1DEMLIB.FLB;1 Form name? PARTS
DMO0:[30,10)1DEMLIB.FLB;1 Form name? FIRST
DMO:[30,10)IDEMLIB.FLB; Form name? RET

Both form descriptions are included in the module FORMS.OBJ. If you wish,
you can put forms in separate files.

When your application is task-built with memory-resident forms, the
FDVDAT module of the Form Driver must be referenced before any of the
memory-resident forms. This is done by including the Form Driver library with
an explicit reference to the FDVDAT in the Task Builder command sequence
before any of the files containing forms. The following example illustrates this:

TKB» FORDEM,FORDEM/-SP=FORDEM

TKB» HLLFOR,FDVLIB/LB:FDVDAT,FDVLIB/LB

TKB> FORMS

TKB> LB:[1,11FOROTS/LBFDVLIB/LB:FDVDAT,LB:FDVLIB/LB
TKB> //

Form Driver Programming Requirements and Concepts 5-11

5.5 FCS and RMS System Support
Two versions of the Form Driver are supplied as object libraries:

¢ FDVLIB.OLB - the Form Driver library for FCS I/0 support.
e FDVLRM.OLB - the Form Driver library for RMS I/0 support.

The choice you make depends on the programming language you use for your
application as well as the overall design of the application. In regard to the
design, base your choice on your experience with and knowledge of the FCS
and RMS systems. In regard to the relationship between the programming

languages and the two systems, Table 5-5 summarizes the Form Driver
requirements.

Table 5-5. FCS and RMS System Requirements for the Form

Driver
Requirements for Requirements for

Language FCS Support RMS Support
BASIC-PLUS-2 None Required

COBOL-11 None Required

COBOL-81 None Required

DIBOL-83 None Required

FORTRAN IV Required None

FORTRAN-77 Optional Optional

MACRO-11 Optional Optional

5.6 Using the Form Driver as a Resident Library with FCS Support

The command file FDVRES.CMD builds the Form Driver as a resident library
with FCS support. This command file can be modified to include additional
routines, such as a high-level language interface, in the library.

5.6.1 Procedure for RSX-11M and RSX-11M-PLUS Systems

To use the Form Driver as a resident library, you must allocate a partition
named FDVRES and then install the resident library when you build your
application system.

The following command to VMR allocates the partition:
SET /MAIN=FDVRES:*:400:C0OM

The partition size (400) must be adjusted for any additional modules added to
the Form Driver.

The base address of the partition (*) is specified here in the format of RSX
V3.2 VMR. As a command to MCR, the address must be specified as a number.

5-12 Form Driver Programming Requirements and Concepts

Details on the allocation of partitions can be found in the operator’s procedures
manual under the SET command and in the SYSGEN manual in the section
describing VMR.

When you build your application system, a privileged user can use the following
MCR command to install the resident library from UIC [30,10]:

INSTALL [30,10]1FDVRES
To replace a resident library, install a new copy.
The Form Driver cannot be built as a resident library with RMS support.

The following is an example of a Task Builder command procedure to build a
program with resident library support:

TASK,TASK=TASK,[30, 101FDVDRS
/

RESLIB=[30,101FDVRES/RO
PAR=FDVRES:100000:0

//

The base of the PAR option must agree with the base given in the PAR option
in the FDVTKB command file. The Form Driver is not position independent
code (PIC). See Chapter 7 of the RSX-11M Task Builder Reference Manual

for more details on building and using resident libraries.

5.7 The High-Level Language Interface

A special component of the Form Driver, called the high-level language
interface, processes your high-level language Form Driver calls. The interface
passes the values you supply to the Form Driver and returns values to your
program from the Form Driver.

The high-level language interface is entirely transparent to you and to your
program except when you build your FMS application. To use forms, you need
only the Form Driver calls. However, as part of the procedure for building a
running application, you must link the proper high-level language interface
component with the Form Driver and your program. The details for building
applications in each language are described later in this chapter.

Form Driver Programming Requirements and Concepts 5-13

Most of the mutual requirements for the Form Driver and each high-level
language are the same. They are grouped in the following four categories and
described in the sections that follow:

1. The input and output arguments for the Form Driver calls.

2. The syntax of the calls and conventions used in this manual to define the
syntax for the different languages.

3. The completion status of calls for success and failure.

4. Interpretation of the field terminators that an operator uses while working
with your application and using the terminators flexibly.

5.7.1 General Description of the Arguments

Collectively, high-level language calls use arguments to pass values to the Form
Driver and to receive values the Form Driver returns. For each call, this
manual uses the term Input Arguments (or Inputs) to refer to the arguments
that pass values from your program to the Form Driver. The term Output
Arguments (or Outputs) refers to the arguments for values the Form Driver
returns to your program. For example, the FGET call allows an operator to
enter data in a field and then returns the field value to the program when the
operator finishes. The input arguments for the FGET call are the field name
and, if the field is indexed, the field index. The output arguments for the FGET
call are the field value when the operator terminated the field and the code for
the field terminator.

Table 5-6 shows the abbreviations this manual uses for all the Form Driver call
arguments and describes briefly the requirements or value for each input

argument and output argument. (In Section 5.11, Table 5-16 is a similar list for
MACRO-11))

The full descriptions of the Form Driver calls in Chapter 6 also use the
abbreviations that appear in Table 5-6.

5-14 Form Driver Programming Requirements and Concepts

Table 5-6. Summary of Form Driver Inputs and Outputs in
High-Level Language Calls

High-Level Language

Argument
Abbreviation Requirement or Value
Inputs
CHAN A channel number for a form library file.
FID A field name or a named data label, six characters long,

including padding (for FORTRAN IV and FORTRAN-77, add a
NULL byte also). To specify a scrolled area, use the name of
any field in the scrolled area.

FIDX A field index for the specified field (when the field is indexed)
or the index for a named data value. The argument is ignored
unless the Form Driver is processing an indexed field or
accessing named data by index.

FLNM A form library file specification.

FNAME A form name, six characters long, including padding (for
FORTRAN IV and FORTRAN-77, add a NULL byte also).

FVAL As an input value, the single value or the concatenated values to

be displayed:

e in a field.

e in the top, bottom, or current line of a scrolled area.
e in the last line of the screen.

e in an entire form.

IMPURE The name of a subscripted variable (or array) of bytes for the
impure area.

LINE The explicit starting line number for the form, overriding the
line number assigned with the Form Editor.

SIZE The size of the impure area in bytes.

TERM As an input value, the numeric code for the terminator that the

Form Driver is to process.

Outputs
The status code is set for all calls.
FID The current field name or a named data label.
FIDX A field index.
FLEN The length of a specified field (not the length of the data the
field contains).
FVAL A named data value, a single field value, or a concatenated

string that is composed of several field values (including padding
when a value is shorter than its field).

Form Driver Programming Requirements and Concepts 5-15

Table 5-6. Summary of Form Driver Inputs and Outputs in
High-Level Language Calls (Cont.)

High-Level Language Requirement or Value

TERM The numeric code for the key that the operator used to
terminate input:

e in a field.
e in a line of a scrolled area.

e in an entire form.

STATUS A numeric code for the completion status of the last call that
was executed.

STAT2 A numeric RMS or FCS status code for detailed information
when the STATUS value is —4 or —18.

As shown in Table 5-6, the maximum length of form names and field names is
six characters. For FMS applications in the high-level languages except
FORTRAN 1V, the Form Driver pads form names and field names shorter
than six characters with spaces. Form names and field names longer than six
characters are truncated when passed to the Form Driver. Field names

returned by the Form Driver are six characters long, including any spaces that
have been added.

5.7.1.1 Argument Data Types — The data types of the Form Driver
arguments depend on the language you are using. Therefore, specific
requirements are listed later in this chapter in the sections that provide
information specific to the languages.

The general data types the Form Driver uses regularly are integers and
alphanumeric strings. Examples of arguments that pass integer values to and
from the Form Driver are the arguments for:

e The starting line number for a form.
e The code for the key that an operator uses to finish a field.

e The size of the impure area.

5-16 Form Driver Programming Requirements and Concepts

Examples of arguments that pass alphanumeric strings to and from the Form
Driver are the arguments for:

e The name of a field.
o A named data value.

e A value to be displayed in a field.

5.7.1.2 Relationship Between Field Lengths and Values — Regardless of
the practical purposes of the fields in a form, the Form Driver always treats
field values as strings. For example, when the Form Driver returns a field value
to your program as an argument to the FGET call, your program receives a
string of characters exactly as long as the field you specified. (Except for
FORTRAN IV and FORTRAN-77, in which case the data is one byte longer
because it is terminated with a null byte.) If the value is shorter than the field,
Fill Characters (either zeroes or spaces, as assigned with the Form Editor) are
added.

As another example of the relationship between field lengths and values, when
you use the FPUTAL call to display specified values in the first three fields of a
form, a concatenated string of the three field values passes to the Form Driver.
For any value shorter than the field in which it is to be displayed, you add
enough Fill Characters so that the value and the field are the same length.

5.7.2 General Description of Call Syntax for High-Level Languages

The syntax of the Form Driver calls follow the requirements and conventions
of the language you use. BASIC-PLUS-2, COBOL-11, COBOL-81, FORTRAN
IV, and FORTRAN-77 calls all use the CALL statement. DIBOL-83 uses the
XCALL statement. In this manual, only the CALL statement forms are listed
in the detailed descriptions of the calls. For example, the CALL statement
syntax for the calls to get a field value from the operator and then display a
message on the last line of the operator’s screen is as follows:

1. For BASIC-PLUS-2, FORTRAN IV, and FORTRAN-77
CALL FGET(fval,term,fid/[,fidx])
CALL FPUTL(fval)

Form Driver Programming Requirements and Concepts 5-17

2. For COBOIL-11 and COBOL-81

CALL "FGET" USING BY DESCRIPTOR fval,
BY REFERENCE term,

BY DESCRIPTOR fid

[,BY REFERENCE fidx]

CALL "FPUTL" USING BY DESCRIPTOR fval
3. For DIBOL-83

XCALL FGET(fval,term,fid/ fidx])

XCALL FPUT(fval)

The argument abbreviations printed in lowercase letters stand for arguments
that you must provide. They must be in the order shown for each call and must
meet the functional requirements described in Table 5-6.

In the call descriptions in this manual, square brackets ([and 1) enclose
optional arguments. For example, in the FGET call illustrated above, the

argument for a field index (fidx) is required only to specify a particular field in
an indexed field.

For calls with more than one optional field, omitting one requires omission of
any others to its right. For example, if you omit the optional field name

argument (fid) in the following call, you must also omit the field value
argument (fval).

CALL FPFT(term/ fid[fvall])

CALL "FPFT" USING term
[,BY DESCRIPTOR fid/,fval]]

For some calls, you can omit the entire list of arguments. For added clarity in
this manual, these calls are listed both with and without the argument lists. For
example, the full syntax of the FPUTAL call is shown as follows:

CALL FPUTAL(fval)

CALL FPUTAL

The Form Driver high-level language interface does not support null argument
lists in calls. Using the second form of the FPUTAL call above as an example,
the following format is invalid at all times within an FMS application:

CALL FPUTALCO) !The null argument form is
always invalid with FMS.

5-18 Form Driver Programming Requirements and Concepts

With FORTRAN IV and FORTRAN-77, you can also use the standard syntax
for calling a function subprogram. The function subprogram syntax for the
FGET and FPUTL calls is:

M= FOET o dermyfa

frncval = FPUTL(fval)
The argument fncval stands for the value of the function.

When you use a Form Driver call as a function, the value of the function is the
Form Driver completion status for the call. The next section explains status
and error checking in greater detail.

5.7.3 Status and Error Checking

As described in Section 6.25, the Form Driver includes a specific call, the
FSTAT call, that returns status codes for the completion status of the last call
processed. Table 5-1 lists the status codes and their meanings.

5.8 The Interface for BASIC-PLUS-2

In BASIC-PLUS-2 applications, all numeric values passed to and from the
Form Driver must be integer variables or constants. String values must also be
string variables or constants. When the Form Driver returns a string value, the
length is the length of the field, including any trailing spaces or fill characters.
String values that are shorter than the BASIC-PLUS-2 variables to which they
are assigned are left-justified and the fields are blank-filled. String values that
are longer than the variables to which they are assigned are truncated and
cause the Form Driver to set the status code to —22.

BASIC-PLUS-2 programs should use RMS support.
To avoid loss of typeahead on RSX-11M and RSX-11M-PLUS systems, FMS

applications must attach the terminal. This is done by calling the subroutine
“WTQIO,” which is the queue I/O request and wait call (see the description of
QIOWS$ in the RSX-11M Executive Manual). The arguments are the same as
for the FORTRAN form of the call: INUM is 768 and LUN is the LUN
assigned to the terminal for the Form Driver, as shown in the following
example:

CALL WTQI0 (768%,5%,5%)

Form Driver Programming Requirements and Concepts 5-19

5.8.1 Arguments for the Calls

Tme 57 hﬂtﬂ wmﬂﬂl RMICDLU@Q Mé {ypes an<l (la{a s{rucjoures por eaclx

of the arguments in the Form Driver calls.

Table 5-7. Typical BASIC-PLUS-2 Data Types for Form Driver

Arguments

Argument

Abbreviation Purpose, Data Type, and Data Structure

CHAN Channel number: integer variable or constant.

FID Field name: 6-byte string variable or constant.

FIDX Field and named data index: integer variable or constant.

FLEN Field length: integer variable or constant.

FLNM Form library file specification: string variable or constant. (The size
depends on application requirements and conventions.)

FNAME Form name: 6-byte string variable or constant.

FVAL Named data value, one or more field values, text for display on the
bottom screen line: string variable or constant. (The size depends on
the application.)

IMPURE Impure area: byte array (using the impure area size that the Form
Editor and Form Utility report, the size of the array should be 64.
bytes larger than the largest impure area for the forms that the
application uses).

LINE Starting line number for a displayed form: integer variable or
constant.

SIZE The size of the impure area in bytes.

STATUS Call completion status: integer variable.

STAT?2 FCS or RMS system error code: integer variable.

TERM Field terminator code: integer variable or constant.

5.8.2 Syntax for the Calls

All of the Form Driver calls use the CALL statement. Table 5-8 contains a
summary of the function and the full CALL statement syntax for each call.
Lowercase letters represent the arguments you must supply; optional
arguments are enclosed in square brackets ([and]). Calls that need no

arguments are listed separately. Argument abbreviations and functions are
described in Table 5-7.

5-20 Form Driver Programming Requirements and Concepts

Table 5-8. Listing of BASIC-PLUS-2 Form Driver Calls

Call

Abbreviation Summary and Forms

FCHIMP For high-level languages only, switches control from one impure area
to another.

The form is: CALL FCHIMP(impure)

FCLRSH Clears the entire screen and displays the form with the default field
values. If a line number is specified, uses it as the starting line
number for the form.

The form is: CALL FCLRSH(fnam/ line])

FGCF Returns the field name from the Form Driver Argument List (and if it
is an indexed field, its index).

The form is: CALL FGCF(fid/ fidx])

FGET If a field name is specified, gets and returns the value for the field and
the field terminator used. If no field name is specified, places the
cursor at the lower right corner of the screen and deactivates all
operator responses except the RETURN and ENTER keys.

The forms are: CALL FGET(fval,term,fid[fidx])
CALL FGET

FGETAF Gets and returns the value, field name (and, if the field is indexed, its
index) and the field terminator used for the field that the operator
chooses.

The form is: CALL FGETAF (fual,term,fid[fidx])

FGETAL If the call includes an argument, gets and returns a concatenated
string of all field values (and optionally the last field terminator used).
If no arguments are specified, gets all values from the operator but
only stores them in the impure area.

The forms are: CALL FGETAL(fval[,term])
CALL FGETAL

FIDATA Gets and returns the named data value that has the specified index.
The form is: CALL FIDATA(fidx,fvall.fid])

FINIT Initializes the impure area for high-level languages and supplies the
name and size of that impure area to the Form Driver.

The form is: CALL FINIT(impure,size/[,status])

FINLN Gets and returns a concatenated string of the field values for the
current line of the scrolled area that contains the specified field name
and the last terminator used.

The form is: CALL F INLN(fid,fual,term)

FLCHAN Supplies to the Form Driver the I/O channel (LUN) to use for
reading a form library file.

The form is: CALL FLCHAN(chan)

FLCLOS Closes the current form library file.

The form is: CALL FLCLOS

Form Driver Programming Requirements and Concepts 5-21

Table 5-8. Listing of BASIC-PLUS-2 Form Driver Calls (Cont.)

Call
Abbreviation

Summary and Forms

FLEN

FLOPEN

FNDATA

FOUTLN

FPFT

FPUT

FPUTAL

FPUTL

FRETAL

FRETN

Returns the length of the specified field.

The form is: CALL FLEN(flen.fid/[fidx])
Opens the specified form library file.

The form is: CALL FLOPEN(flnm)

Gets and returns the named data value that has the named data label
specified.

The form is: CALL FNDATA(fid,fval)

Displays the specified string of field values in the current line of the
scrolled area that contains the specified field.

The form is: CALL FOUTLN(fid,fval)

If the call includes an argument, processes the specified field
terminator and identifies the appropriate field as the current field.
(To get the name of the field, use the FGCF call.) If the specified
terminator is a scrolled area terminator, the name of a field in the
intended scrolled area must be specified, and if a string of values is
specified, the values will be displayed on the top or bottom line of the
scrolled area after the terminator is processed. If no argument is
included, the call processes the last terminator that was used.

The forms are: CALL FPFT(term/ fid[,fvall])
CALL FPFT

Displays the specified value in the specified field.

The form is: CALL FPUT(fvalfid/ fidx])

Displays values in all fields of the form. If a concatenated string of
values is supplied, each value must be the same length as the field in
which it is to be displayed and the values must be in the same order
that the FGETAL call would produce for the form. Values from the
supplied string are displayed in the first fields of the form, and
defaults are displayed in any fields that remain. If no string of values
is supplied, default values are displayed in all fields.

The forms are: CALL FPUTAL(fval)
CALL FPUTAL

If an argument is specified, displays the specified string on the bottom
line of the screen. If no argument is specified, clears the bottom line.

The forms are: CALL FPUTL (fval)
CALL FPUTL

Returns the current values for all fields in the form in the same order
that the FGETAL call would produce.

The form is: CALL FRETAL(fval)

Returns the current value of the specified field.

The form is: CALL FRETN(fval fid[fidx])

5-22 Form Driver Programming Requirements and Concepts

Table 5-8. Listing of BASIC-PLUS-2 Form Driver Calls (Cont.)

Call
Abbreviation

Summary and Forms

FSHOW

FSPOFF

FSPON

FSTAT

Clears the part of the screen that the specified form requires and
displays the form with default field values. If a line number is
specified, uses it as the starting line number for the form.

The form is: CALL FSHOW(fnam/,linej)

Turns off the supervisor-only mode and allows the operator to enter
and change data in fields to which the Supervisor Only attribute was
assigned with the Form Editor.

The form is: CALL FSPOFF

Turns on the supervisor-only mode and prevents the operator from
entering or changing data in fields to which the Supervisor Only
attribute was assigned with the Form Editor.

The form is: CALL FSPON

Returns the status code for the last call that was processed as the
value of the first argument. The value of the second argument is
meaningful as an FCS or RMS system error code (depending on the
version of the Form Driver in use) only if the value of the first
argument is —4 or —18, indicating an error while trying to open or
read a form library file.

The form is: CALL FSTAT(status/,stat2])

5.8.3 Building a BASIC-PLUS-2 Task

Building BASIC-PLUS-2 tasks involves editing the command and ODL files
produced by BASIC-PLUS-2.

Appendix D contains source listings of command files used to task-build FMS
BASIC-PLUS-2 sample application programs.

Form Driver Programming Requirements and Concepts 5-23

5.9 The Interface for COBOL-11 and COBOL-81

In COBOL programs, only data names can be passed as arguments, except in
the cases of FPUTL and FLOPEN. All values that are passed must have been
defined in the data division of the program. No string literals or numeric
constants are allowed.

'The COBOL interface assumes two specific data types when passing data to
and from the Form Driver. These data types are:

for strings: left-justified sign separate

for numbers: computational

See Table 5-9 for a list of COBOL arguments showing the necessary data types.
You can create your own data structure provided you use the listed data types
in your Form Driver calls.

COBOL tasks should use the Form Driver with RMS support.

To avoid loss of typeahead on RSX-11M and RSX-11M-PLUS systems, FMS
applications must attach the terminal. This is done by calling the subroutine
“WTQIO,” which is the queue I/0O request and wait call (see the description of
QIOWS in the RSX-11M Executive Manual). The arguments are the same as
for the FORTRAN form of the call: INUM is 768 and LUN is the LUN
assigned to the terminal for the Form Driver. For example:

INUM PIC 999 comp value 768.
LUN PIC 9 comp value 1.

CALL "WTQIO™ USING INUM,LUN,LUN.

5.9.1 Using the Form Utility (FUT) to Create theCommunication
Structure for a COBOL Program

The Form Utility (FUT) creates the communication structure for a form used
by a COBOL program. (See Chapter 3 on the Form Utility.) In response to the
/CC option, FUT creates a COBOL library file. The output is a text file with
the default file type .LIB.

At compile time, you request the library file with a COPY command in the data
division of your program. (See the PDP-11 COBOL Language Reference
Manual for details on the COPY command.)

Group items created by FUT have the same names as the field names in the
form you are using.

5-24 Form Driver Programming Requirements and Concepts

The library file contains the necessary communication structure. If you do not
wish to use the structure provided, you can create your own.

The output of the Form Utility is in terminal format with respect to the
COBOL program. If you want to use conventional format, you must reformat
the file. (See the Reformat utility in the PDP-11 COBOL User’s Guide. On
COBOL program formats, see the PDP-11 COBOL Language Reference
Manual.)

Chapter 3 includes an example of the COBOL structure that the Form Utility
can produce.

5.9.2 Arguments for the Calls

Table 5-9 lists typical PDP-11 COBOL data types and data structures for each
of the arguments in the Form Driver calls.

Table 5-9. Typical COBOL-11 and COBOL-81 Data Types for
Form Driver Arguments

Argument
Abbreviation Purpose, Data Type, and Picture Attributes
CHAN Channel number: binary index
Picture: one-word computational, synchronized left
FID Field name: 6-character string
Picture: any character, blank padded, left-justified, sign separate,
synchronized left
FIDX Field and named data index: binary index
Picture: one-word computational, synchronized left
FLEN Field length: binary index
Picture; one-word computational, synchronized left
FLNM Form library file specification: a string whose length is the length of

the file specification plus two characters for the delimiters that
enclose the specification.

Picture: any character, blank padded, left-justified, sign separate,
synchronized left

FNAME Form name: 6-character string.
Picture: any character, blank padded, left-justified, sign separate,
synchronized left

FVAL Named data value, one or more field values, text for display on the
bottom screen line. A string whose length is:

e For a single field value, the length of the field.

e For a string of field values, the sum of the lengths of all fields to
be processed.

e For a named data value, the length of the named data field
maximum 60— actual length is variable.

e For text to be displayed on the bottom line, the length of the text
plus 2 characters for the delimiters that enclose the text.

IMPURE Impure area: (using the impure area size that the Form Editor and
Form Utility report, the size of the variable should be 64 bytes
(decimal) larger than the largest impure area for the forms that the
application uses).

Form Driver Programming Requirements and Concepts 5-25

Table 5-9. Typical COBOL-11 and COBOL-81 Data Types for
Form Driver Arguments (Cont.)

Argument Purpose, Data Type, and Picture Attributes
LINE Starting line number for a displayed form: binary index.
Picture: one-word computational, synchronized left.
SIZE The size of the impure area in bytes.
STATUS Call completion status: binary index.
Picture: one-word signed computational, synchronized left.
STAT2 FCS or RMS system error code: binary index.
Picture: one-word signed computational, synchronized left.
TERM Field terminator code: binary index.

Picture: one-word (two bytes) computational, synchronized left.

5.9.3 Syntax for the Calls

All of the Form Driver calls use the CALL statement. Table 5-10 summarizes
the principal purposes and shows the full CALL statement syntax for each call.
The arguments you must supply are in lowercase letters, and optional
arguments are enclosed in square brackets ([and]). The forms of calls that
have no arguments are listed separately. The argument abbreviations and
purposes are fully described in Table 5-10.

Table 5-10. Listing of COBOL-11 and COBOL-81 Form Driver

Calls
Call
Abbreviation Summary and Forms
FCHIMP For high-level languages only, switches control from one impure area
to another.

The form is: CALL *FCHIMP* USING BY DESCRIPTOR impure

FCLRSH Clears the entire screen and displays the form with default field
values. If a line number is specified, uses it as the starting line
number for the form.

The form is: CALL “*FCLRSH" USING BY DESCRIPTOR fnam
[,BY REFERENCE linel

FGCF Returns the field name from the Form Driver Argument List (and if it
is an indexed field, its index).

The form is: CALL "FGCF* USING BY DESCRIPTOR fid
[,BY REFERENCE fidx1

5-26 Form Driver Programming Requirements and Concepts

Table 5-10. Listing of COBOL-11 and COBOL-81 Form Driver
Calls (Cont.)

(all

Abbreviation Summary and Forms

FGET If a field name is specified, gets and returns the value for the field and
the field terminator used. If no field name is specified, synchronizes
the program with the operator.

The forms are: CALL “GET*" USING BY DESCRIPTOR fval
BY REFERENCE ter,
BY DESCRIPTOR fid
[,BY REFERENCE fidx]
CALL “FGET"™

FGETAF Gets and returns the value, field name (and if the field is indexed, its
index), and the field terminator used for the field that the operator
chooses.

The form is: CALL "FGETAF" USING BY DESCRIPTOR fval,
BY REFERENCE term,
BY DESCRIPTOR fid
[,BY REFERENCE fidx]

FGETAL If the call includes an argument, gets and returns a concatenated
string of all field values (and optionally the last field terminator used).
If no arguments are specified, gets all values but only stores them in
the impure area.

The forms are: CALL "FGETAL" USING BY DESCRIPTOR fval
[,BY REFERENCE term]l
CALL "FGETAL"

FIDATA Gets and returns the named data value that has the index specified.
The form is: CALL “FIDATA® USING BY REFERENCE fidx,

BY DESCRIPTOR fval,
{BY DESCRIPTOR fid1.

FINIT
Supplies to the Form Driver the name of the impure area to use and
its size. This call returns its own status code if the third argument is
specified.
The form is: CALL *FINIT" USING BY DESCRIPTOR impure,
BY REFERENCE size/,status].
FINLN Gets and returns a concatenated string of the field values for the

current line of the scrolled area that contains the specified field name
and the last terminator used.

The form is: CALL *FINLN* USING BY DESCRIPTOR fid,
BY DESCRIPTOR fval,
BY REFERENCE term.

FLCHAN Supplies to the Form Driver the I/O channel (LUN) to use for
reading a form library file.

The form is: CALL "FLCHAN®" USING BY REFERENCE chan.
FLCLOS Closes the current form library file.

The form is: CALL *"FLCLOS"

Form Driver Programming Requirements and Concepts 5-27

Table 5-10. Listing of COBOL-11 and COBOL-81 Form Driver

Oalls monw

Call

Abbreviation

Summary and Forms

FLEN

FLOPEN

FNDATA

FOUTLN

FPFT

FPUT

FPUTAL

FPUTL

Returns the length of the specified field.

The form is: CALL "FLEN" USING BY REFERENCE flen,
BY DESCRIPTOR fid
[,BY REFERENCE fidx1.

Opens the specified form library file.

The form is: CALL "FLOPEN" USING BY DESCRIPTOR flnm.

Gets and returns the named data value that has the named data label
specified.

The form is: CALL "FNDATA* USING BY DESCRIPTOR fid,
BY DESCRIPTOR fval

Displays the specified string of field values in the current line of the
scrolled area that contains the specified field.

The form is: CALL *FOUTLN* USING BY DESCRIPTOR fid,
BY DESCRIPTOR fuval.

If the call includes an argument, processes the specified field
terminator and identifies the appropriate field as the current field.
(To find the current field name, use the FGCF call.) If the specified
terminator is a scrolled area terminator, the name of a field in the
intended scrolled area must be specified, and if a string of values is
specified, the values will be displayed on the top or bottom line of the
scrolled area after the terminator is processed. If no argument is
included, the call processes the last terminator that was used.

The forms are: CALL "FPFT" USING BY REFERENCE term
[,BY DESCRIPTOR fid/,fval]].
CALL “FPFT™.

Displays the specified value in the specified field.

The form is: CALL “FPUT*" USING BY DESCRIPTOR fval,
BY DESCRIPTOR fid
[,BY REFERENCE fidx1.

Displays values in all fields of the form. If a concatenated string of
values is supplied, each value must be the same length as the field in
which it is to be displayed and the values must be in the same order
that the FGETAL call would produce for the form. Values from the
string supplied are displayed in the first fields of the form, and
defaults are displayed in any fields that remain. If no string of values
is supplied, default values are displayed in all fields.

The forms are: CALL "FPUTAL" USING BY REFERENCE foal.
CALL “FPUTAL".

If an argument is specified, displays the specified string on the bottom
line of the screen. If no argument is specified, clears the bottom line.

The forms are: CALL "FPUTL" USING BY REFERENCE foal.
CALL "FPUTL".

5-28 Form Driver Programming Requirements and Concepts

Table 5-10. Listing of COBOL-11 and COBOL-81 Form Driver

Calls (Cont.)

Call

Abbreviation

Summary and Forms

FRETAL

FRETN

FSHOW

FSPOFF

FSPON

FSTAT

Returns the current values for all fields in the form in the same order
that the FGETAL call would produce.

The form is: CALL “FRETAL" USING BY REFERENCE fuval.

Returns the current value of the specified field.

The form is: CALL "FRETN" USING BY REFERENCE fuval,
BY REFERENCE fid/[fidx].

Clears the area of the screen specified when the form was created and
displays the form with default field values. If a line number is
specified, uses it as the first line for the form.

The form is: CALL "FSHOW" USING BY REFERENCE fnam/,line].

Turns off the supervisor-only mode and allows the operator to enter
and change data in fields to which the Supervisor Only attribute was
assigned with the Form Editor.

The form is: CALL "FSPOFF*.

Turns on the supervisor-only mode and prevents the operator from
entering or changing data in fields to which the Supervisor Only
attribute was assigned in the Form Editor.

The form is: CALL “FSPON".

Returns the status code for the last call that was processed as the
value of the first argument. The value of the second argument is
meaningful as an FCS or RMS system error code (depending on the
version of the Form Driver in use) only if the value of the first
argument is —4 or —18, indicating an error while trying to open or
read a form library file.

The form is: CALL "FSTAT' USING BY REFERENCE status/,stat2].

Form Driver Programming Requirements and Concepts 5-29

5.9.4 Building a COBOL Program

Appendix D contains examples of the command files used to build the
following COBOL demos:

e CIl1IRMSCLS.CMD, a command file to build a COBOL-11 demo

e C11RMSRES.CMD, a command file to build a COBOL-11 demo with
RMSRES resident library

e C11RMSTKB.CMD, a command file to build a COBOL-11 demo
e C81RMSCLS.CMD, a command file to build a COBOL-81 demo

e C81RMSRES.CMD, a command file to build a COBOL-81 demo with
RMSRES resident library

e C8IRMSTKB.CMD, a command file to build a COBOL-81 demo
For more information refer to the RSX-11M Task Builder Reference Manual.
Here is a complete sample session to compile and build the COBOL-81 demo:

»C81 C81DEM, C81DEM=COBDEM/CVF/-CIS/ERR: 1
>TKB @C81RMSTKB
>RUN C8 1RMSDEM

You should use the /ERR:1 compiler option because Form Driver calls allow a
variable number of arguments. If you do not use the /ERR:1 switch option,
COBOL will produce warnings when you use optional argument lists. However,
the /ERR:1 option also suppresses other warning diagnostics.

If you elect to build an overlaid COBOL application, problems may arise during
task-building. This can occur if the COBOL MERGE utility is used and the
resulting ODL file edited. This is because the Task Builder will not accept files
with lines longer than 80 characters (decimal). COBOL MERGE creates lines
that are blank filled to exactly 80 characters (decimal). If you use an editor to
modify the ODL file, it is possible characters will be inserted and the lines will
be longer than the Task Builder’s maximum. You can solve this problem by
deleting all trailing blanks from any line modified by an editor.

5-30 Form Driver Programming Requirements and Concepts

5.10 The Interface for DIBOL-83

In DIBOL-83 applications, all values passed to and from the Form Driver must
be ASCII string variables or literals. When the Form Driver returns a string
value, the length is the length of the field, including any trailing spaces or fill
characters. String values that are shorter than the DIBOL-83 variables to
which they are assigned are left-justified and the fields are blank-filled. String
values that are longer than the variables to which they are assigned result in
DIBOL-83 run-time error message ‘’ERR 31 ARGUMENT WRONG SIZE’
and cause the Form Driver to set the status code to —22.

5.10.1 Arguments for the Calls

Table 5-11 lists typical DIBOL-83 data types and data structures for each of
the arguments in the Form Driver calls.

Table 5-11. Typical DIBOL-83 Data Types for Form Driver

Arguments
Argument
Abbreviation Purpose, Data Type, and Data Structure
CHAN Channel number: ASCII numeric string variable or literal
FID Field name: 6-byte ASCII string variable or literal
FIDX Field and named data index: ASCII numeric string variable or literal
FLEN Field length: ASCII numeric variable or literal
FLNM Form library file specification: ASCII string variable or literal (must
incorporate a trailing space)
FNAM Form name: 6-byte ASCII string variable or literal
FVAL Named data value, one or more field values, text for display on the

bottom screen line: ASCII string variable or literal (the size depends
on the application).

TID Keyboard string that identifies the terminal. The default can be
identified by KB:; a specific terminal can be identified by KBn:,
where n is the terminal number.

IMPURE Impure area: byte array (using the impure area size that the Form
Editor and the Form Utility report, the size of the array should be 64
bytes larger than the largest impure area for the forms that the
application uses).

LINE First line for a displayed form: ASCII numeric variable or literal
SIZE The size of the impure area in bytes: ASCII numeric variable
STATUS Call completion status: ASCII numeric string variable

STAT2 RSTS/E system error code: ASCII numeric string variable
TERM Field terminator code: ASCII string variable or literal

Form Driver Programming Requirements and Concepts 5-31

5.10.2 Syntax for the Calls

All DIBOL-83 Form Driver calls use the XCALL statement. Table 5-12
summarizes the functions and shows the full XCALL statement syntax for
each call. The arguments that you must supply are in lowercase letters, and
optional arguments are enclosed in square brackets ([and). The formats of
calls that have no arguments are listed separately. (The argument
abbreviations and functions are described in Table 5-11.)

Since DIBOL-83 external subroutine names must have five characters or less,
all six-character names of Form Driver routines are truncated to five
characters by removal of the first character (“F”).

The name of the Forms Library opened by FLOPEN (in DIBOL-83, LOPEN)
must have a trailing space following the name.
Table 5-12. Listing of DIBOL-83 Form Driver Calls

Call
Abbreviation Summary and Forms

CLRSH Clears the entire screen and displays the form with the default field
values. If a line number is specified, uses it as the first line for the
form.

The format is: XCALL CLRSH(fnam/,line])

DETCH The detach terminal call should be issued by a program prior to
exiting to ensure that the terminal is not left in an unusual state (e.g.,
with video attributes set or a scrolled area other than the entire
screen). This call may also be used to allow an application program to
issue standard terminal input requests. If the FDETCH call is used to
allow standard terminal input, the FATTCH call must be issued to
attach the terminal before any other Form Driver calls are issued.

The format is: XCALL DETCH

FGCF Returns the field name from the Form Driver Argument List (and, if
it is an indexed field, its index).

The format is: XCALL FGCF(fid/ fidx])

FGET If a field name is specified, gets and returns the value for the field and
the field terminator used. If no field name is specified, places the
cursor at the lower right corner of the screen and deactivates all
operator responses except the RETURN and ENTER keys.

The formats are: XCALL FGET(fval,term,fid/ fidx])
XCALL FGET

GETAF Gets and returns the value, field name (and, if the field is indexed, its

index), and the field terminator used for the field that the operator
chooses.

The format is: XCALL GETAF(fval, term,fid [fidx])

5-32 Form Driver Programming Requirements and Concepts

Table 5-12. Listing of DIBOL-83 Form Driver Calls (Cont.)

Call

Abbreviation Summary and Forms

GETAL If the call includes an argument, gets and returns a concatenated
string of all field values (and optionally the last field terminator used).
If no arguments are specified, gets all values from the operator but
only stores them in the impure area.

The formats are: XCALL GETAL(fval[,term])
XCALL GETAL

IDATA Gets and returns the named data value that has the specified index.
The format is: XCALL IDATA(fidx,fuall,fid])

FINIT Supplies to the Form Driver the name of the impure area to use and
its size. (The ‘size’ argument need not be passed unless the ‘status’
argument is also being passed since size is already conveyed by the
DIBOL-83 ‘size, origin descriptor’ passed for every argument.)

The format is; XCALL F INIT(impure,size[,status])

FINLN Gets and returns a concatenated string of the field values for the
current line of the scrolled area that contains the specified field name
and the last terminator used.

The format is: XCALL F INLN(fid,fval,term)

LCHAN Supplies to the Form Driver the I/O channel (LUN) to use for
reading a form library file.

The format is: XCALL LCHAN(chan)

LCLOS Closes the current form library file.

The format is: XCALL LCLOS

FLEN Returns the length of the specified field.
The format is: XCALL FLEN(flen,fid[,fidx])

LOPEN Opens the specified form library file.

The format is: XCALL LOPEN(flnm)

NDATA Gets and returns the named data value that has the specified named
data label.

The format is: XCALL NDATA(fid,fval)

OUTLN Displays the specified string of field values in the current line of the
scrolled area that contains the specified field.

The format is: XCALL QUTLN(fid,fval)
FPFT If the call includes an argument, processes the specified field

terminator and identifies the appropriate field as the current field. To
get the name of the field, use the FGCF call. If the specified
terminator is a scrolled area terminator, the name of a field in the
intended scrolled area must be specified, and if a string of values is
specified, they will be displayed on the top or bottom line of the
scrolled area after the terminator is processed. If no argument is
included, the call processes the last terminator that was used.

The formats are: XCALL FPFT(term/,fid[,fual]])
XCALL FPFT

Form Driver Programming Requirements and Concepts 5-33

Table 5-12. Listing of DIBOL-83 Form Driver Calls (Cont.)

Call

Abbreviation Summary and Forms

FPUT Displays the specified value in the specified field.

The format is: XCALL FPUT(fval fid[fidx])

PUTAL Displays values in all fields of the form. If a concatenated string of
values is supplied, each value must be the same length as the field in
which it is to be displayed and the values must be in the same order
that the GETAL call would produce for the form. Values from the
supplied string are displayed in the first fields of the form, and
defaults are displayed in any fields that remain. If no string of values
is supplied, default values are displayed in all fields.

The formats are: XCALL PUTAL(fuval)
XCALL PUTAL

FPUTL If an argument is specified, displays the specified string on the bottom
line of the screen. If no argument is specified, clears the bottom line.
The formats are: XCALL FPUTL(fual)

XCALL FPUTL

RETAL Returns the current values for all fields in the form in the same order

that the GETAL call would produce.
The format is: XCALL RETAL(fval)
FRETN Returns the current value of the specified field.

The format is: XCALL FRETN(fval,fid[fidx])

FSHOW Clears the area of the screen specified when the form was created and
displays the form with default field values. If a line number is
specified, uses it as the first line for the form.

The format is: XCALL FSROW(fnam/,line])

SPOFF Turns off the supervisor-only mode and allows the operator to enter
and change data in fields to which the Supervisor Only attribute was
assigned with the Form Editor.

The format is: XCALL SPOFF

FSPON Turns on the supervisor-only mode and prevents the operator from
entering or changing data in fields to which the Supervisor Only
attribute was assigned with the Form Editor.

The format is: XCALL FSPON

FSTAT Returns the status code for the last call that was processed as the
value of the first argument. The value of the second argument is
meaningful as an RMS system error code (depending on the version of
the Form Driver in use) only if the value of the first argument is —4

or —18, indicating an error while trying to open or read a form library
file.

The format is: XCALL FSTAT(status/,stat2])

5-34 Form Driver Programming Requirements and Concepts

5.11 The

5.10.3 Building a DIBOL-83 Task

Appendix D contains source listings of command files used to task-build FMS
DIBOL-83 sample application programs.

Interface for FORTRAN IV and FORTRAN-77
The calling sequences for FORTRAN IV and FORTRAN-77 are identical.

Numeric arguments must be one-word integers. If you use real numbers of
bytes instead, the calls will not work properly.

Strings returned from the Form Driver are ASCIZ, and strings input to the
Form Driver must be ASCIZ. “ASCIZ strings” contain a null byte as their last
character. Therefore, programs must allocate an extra byte for data returned
from the Form Driver.

For literals, enclosed in quotation marks, that are passed as arguments,
FORTRAN generates ASCIZ strings. The best way to implement string
variables is by byte arrays. The variables can be passed as arguments and
manipulated one character at a time. The data in the array must end with a
null.

All subroutines can be called either as subprograms or as functions. If they are
called as functions, the name of the routine must be declared in an integer
statement or an implicit integer statement (for example, IMPLICIT
INTEGER (F)). If called as functions, the subroutines return the status of the
call from the Form Driver on output.

FORTRAN-77 programs can use the Form Driver with FCS or RMS support.

FORTRAN IV programs should use the Form Driver with FCS support. To
avoid loss of typeahead, FMS applications must attach the terminal. The
FORTRAN programmer attaches the terminal with the high-level language
interface “WTQIO” call, (see the description of QIOWS$ in the RSX-11M
Executive Manual) which is the queue I/O request and wait call. The INUM is
768. LUN is the LUN assigned as terminal for the Form Driver.

CALL WTQIO (768,5,5)

Form Driver Programming Requirements and Concepts 5-35

5.11.1 Arguments for the Calls

Tﬂblﬁ Bll hm t%léél EGHWHAN IU an(l DUDWDANW Ja{a {ypes an(l (la{a

structures for each of the arguments in the Form Driver calls.

Table 5-13. Typical FORTRAN IV and FORTRAN-77 Data Types
for Form Driver Arguments

Argument

Abbreviation Purpose, Data Type, and Data Structure

CHAN Channel number: integer variable or constant

FID Field name: 7-byte string variable

FIDX Field and named data index: integer variable

FLEN Field length: integer variable or constant

FLNM Form library file specification: string or constant. (The size depends
on application requirements and conventions.)

FNAME Form name: 7-byte string variable or constant

FVAL Named data value, one or more field values, text for display on the
bottom screen line: string variable or constant. (The size depends on
the application.)

IMPURE Impure area: byte array (using the impure area size that the Form
Editor and Form Utility report, the size of the array should be 64
bytes (decimal) larger than the largest impure area for the forms that
the application uses).

LINE Starting line number for a displayed form: integer variable or constant

SIZE The size of the impure area array in bytes

STATUS Call completion status: integer variable

STAT2 FCS or RMS system error code: integer variable

TERM Field terminator code: integer variable

5.11.2 Syntax for the Calls

All of the Form Driver calls use the CALL statement. Table 5-14 summarizes
the principal purposes and shows the full CALL statement syntax for each call.
The arguments you must supply are in lowercase letters, and optional
arguments are enclosed in square brackets ([and]). The forms of calls that
have no arguments are listed separately. The argument abbreviations and
purposes are described in Table 5-11.

5-36 Form Driver Programming Requirements and Concepts

Table 5-14. Listing of FORTRAN IV and FORTRAN-77 Form

Driver Calls

Call

Abbreviation Summary and Forms

FCHIMP For high-level languages only, switches control from one impure area
to another.

The form is: CALL FCHIMP (impure)

FCLRSH Clears the entire screen and displays the form with the default field
values. If a line number is specified, uses it as the starting line
number for the form.

The form is: CALL FCLRSH (fnam/,line])

FGCF Returns the field name from the Form Driver Argument List (and, if
it is an indexed field, its index).
The form is: CALL FGCF (fid/[,fidx])

FGET If a field name is specified, gets and returns the value for the field and
the field terminator used. If no field name is specified, synchronizes
the program with the operator.

The forms are: CALL FGET(fuul,term,fid[fidx])
CALL FGET

FGETAF Gets and returns the value, field name (and, if the field is indexed, its
index) and the field terminator used for the field that the operator
chooses.

The form is: CALL FGETAF(fval,term,fid[,fidx])

FGETAL If the call includes an argument, gets and returns a concatenated
string of all field values (and optionally the last field terminator used).
If no arguments are specified, gets all values from the operator but
only stores them in the impure area.

The forms are: CALL FGETAL(fvall,term])
CALL FGETAL

FIDATA Gets and returns the named data value that has the index specified.
The form is: CALL F IDATA(fidx,fval/,fid])

FINIT Supplies to the Form Driver the name of the impure area to use, and
its size.

The form is: CALL F INIT(impure,size[,status])

FINLN Gets and returns a concatenated string of the field values for the
current line of the scrolled area that contains the specified field name
and the last terminator used.

The form is: CALL FINLN(fid,fval,term)

FLCHAN Supplies to the Form Driver the I/0 channel (LUN) to use for
reading a form library file.

The form is: CALL FLCHAN(chan)

FLCLOS Closes the current form library file.

The form is: CALL FLCLOS

Form Driver Programming Requirements and Concepts 5-37

Table 5-14. Listing of FORTRAN IV and FORTRAN-77 Form
Driver Calls (Cont.)

Call

Abbreviation Summary and Forms

FLEN Returns the length of the specified field.
The form is: CALL FLEN(flen,fid/ fidx])

FLOPEN Opens the specified form library file.
The form is: CALL FLOPEN(fInm)

FNDATA Gets and returns the named data value that has the named data label
specified.
The form is: CALL FNDATA(fid,fual)

FOUTLN Displays the specified string of field values in the current line of the
scrolled area that contains the specified field.
The form is: CALL FOUTLN(fid, fval)

FPFT If the call includes an argument, processes the specified field
terminator and identifies the appropriate field as the current field.
(To get the name of the field, use the FGCF call.) If the specified
terminator is a scrolled area terminator, the name of a field in the
intended scrolled area must be specified, and if a string of values is
specified, the values will be displayed on the top or bottom line of the
scrolled area after the terminator is processed. If no argument is
included, the call processes the last terminator that was used.
The forms are: CALL FPFT(term/ fid[fval]])

CALL FPFT
FPUT Displays the specified value in the specified field.

The form is: CALL FPUT(fval fid/ fidx])

FPUTAL Displays values in all fields of the form. If a concatenated string of
values is supplied, each value must be the same length as the field in
which it is to be displayed and the values must be in the same order
that the FGETAL call would produce for the form. Values from the
supplied string are displayed in the first fields of the form, and
defaults are displayed in any fields that remain. If no string of values
is supplied, default values are displayed in all fields.

The forms are: CALL FPUTAL(fval)
CALL FPUTAL

FPUTL If an argument is specified, displays the specified string on the bottom
line of the screen. If no argument is specified, clears the bottom line.

The forms are: CALL FPUTL(fval)
CALL FPUTL

FRETAL Returns the current values for all fields in the form in the same order
that the FGETAL call would produce.

The form is: CALL FRETAL(fval)
FRETN Returns the current value of the specified field.

The form is: CALL FRETN(fval fid/ fidx])

5-38 Form Driver Programming Requirements and Concepts

Table 5-14. Listing of FORTRAN IV and FORTRAN-77 Form

Driver Calls (Cont.)

Call

ADDreviation

Summary and Forme

FSHOW

FSPOFF

FSPON

FSTAT

Clears the part of the screen that the specified form requires and
displays the form with default field values. If a line number is
specified, uses it as the starting line number for the form.

The form is: CALL FSHOW(fnam/,line])

Turns off the supervisor-only mode and allows the operator to enter
and change data in fields to which the Supervisor Only attribute was
assigned with the Form Editor.

The form is: CALL FSPOFF

Turns on the supervisor-only mode and prevents the operator from
entering or changing data in fields to which the Supervisor Only
attribute was assigned with the Form Editor.

The form is: CALL FSPON

Returns the status code for the last call that was processed as the
value of the first argument. The value of the second argument is
meaningful as an FCS or RMS system error code (depending on the
version of the Form Driver in use) only if the value of the first
argument is -4 or —18, indicating an error while trying to open or
read a form library file.

The form is: CALL FSTAT(status/,stat2])

5.11.3 Building a FORTRAN Task

Appendix D contains source listings of command files used to task-build FMS
FORTRAN sample application programs.

Form Driver Programming Requirements and Concepts 5-39

5.12 The Interface for MACRO-11

In MAODO-H programs, you can can {Le porm Driver Widl dle {DSJLI‘UCHOHZ

JSR PC, $FDV

$FDV is global

RO must point to a list that includes both necessary and function-dependent
arguments. Table 5-15 summarizes the Argument List.

Table 5-15. Offsets and Meanings of Necessary and
Function- Dependent Arguments

Offset Meaning

F$FNC One-word function code.

F$REQ One-word Required Argument List pointer.

F$NAM One-word pointer to ASCIZ form library file specification or pointer to 6-byte
ASCII form name, field name, or data name.

FENUM One-word starting line number to display form or index value for field or
named data.

F$TRM One-word field terminator code.

F$VAL One-word data pointer.

F$LEN One-word data length (in bytes).

F$ASIZ is the size in bytes of the Argument List.

NOTE

The offsets to the arguments in the Argument List are defined
as global symbols. The values for the offsets might change
between releases of the software. For this reason, you should
always refer to these offsets by name in your applications.

You must specify the $FDVDF macro in a . MCALL statement and invoke it in
a MACRO task to define F$ASIZ to use the symbol to allocate space for the
Argument List at assembly time. F$RSIZ and F$TSIZ are also defined by the
$FDVDF macro. The $FDVDF macro is provided in the library.

You must specify a function code (F$FNC) and a pointer to the Required
Arguments List (FSREQ) for each call to the Form Driver. You do not need to
specify all the remaining arguments for each call. What arguments you must
supply to the Form Driver depend on the call you are issuing (in other words,
which function code you specify).

5-40 Form Driver Programming Requirements and Concepts

On return from the Form Driver, the carry bit is clear if the Form Driver
completed the call successfully and the status code is positive (>0). All registers
are preserved across a call to the Form Driver. If an error occurred, the carry
bit is set and the Form Driver returns an error code in the status block. If you
specified an invalid (undefined) function code, the error code FE$FCD is
returned. Each call description in Chapter 6 includes the errors specific to that
call.

The two necessary arguments in the Argument List are F§FNC and FSREQ.
The other arguments listed in Table 5-15 are function-dependent arguments.

5.12.1 F$FNC, the MACRO-11 Function Code

Table 5-16 lists the MACRO-11 function codes for the different Form Driver
calls and notes the corresponding high-level language calls.

In your application, you should always refer to the functions by the specified
symbols in order to ensure compatibility with future versions of the software.

Table 5-16. MACRO-11 Function Codes and Meanings

Function
Code Meaning

FC$ALL FGETAL - Get the responses for all fields.

FC$SANY FGETAF - Get the response for any field that the user inputs.
FC$CIA FCHIMP - Change active impure area.

FC$CLS FLCLOS - Close form library.

FC$CSH FCLRSH - Clear the entire screen and show the specified form.
FC$DAT FIDATA & FNDATA - Get named data by index or by name.
FC$GET FGET - Get the response for the specified field.

FC$GSC FINLN - Get the current line of a scrolled area.

FC$LST FPUTL - Output data to last line of display.

FC$OPN FLOPEN - Open form library.

FC$PAL FPUTAL - Output data to all fields.

FC$PSC FOUTLN - Output data to the current line of a scrolled area.
FC$PUT FPUT - Output data to a specified field.

FC$RAL FRETAL - Return the contents of all fields.

FC$RTN FRETN - Return the contents of the specified field.

FC$SHO FSHOW - Show the specified form.

FC3$SPF FSPOFF - Turn supervisor-only mode off.

FC$SPN FSPON - Turn supervisor-only mode on.

FC$TRM FPFT - Process field terminator.

Form Driver Programming Requirements and Concepts 5-41

5.12.2 F$REQ, Required Argument List Pointer

Table 5-17 lists the contents of the Required Argument List to which F$REQ

must point.

Table 5-17. Required Argument List Offsets and Meanings

Offset Meaning

F$STS One-word status block pointer.

F$CHN One-word channel number (LUN) for form 1/0.

F$IMP One-word pointer to the impure area provided for the Form Driver.

F$RSIZ is the size in bytes of the Required Argument List.

You must use the $FDVDF macro to define F$RSIZ at assembly time. F$RSIZ
should be used to allocate space for the Required Argument List.

5.12.2.1 FS$STS, the Status Block Pointer — This word points to a two-
word status block that the Form Driver maintains for each active call. The first
word of the Status Block reflects the status of a call to the Form Driver as
follows:

>0 - Successful completion
<0 - Error encountered

Table 5-1 in Section 5.1.1 lists the MACRO-11 status codes and their
meanings.

Your MACRO-11 application should always use the global symbols listed in
Table 5-1 to ensure compatibility with future versions of the software. Values

are also given for each symbol because it is not possible to refer to the global
symbols from high-level language programs.

If the first word of the status block contains FE$IOL or FE$IOR, the code
corresponding to the specific error is returned in the second word. See RMS
documentation for a list of these error codes. (MACRO-11 tasks can use either
RMS or FCS, depending on which one you have configured in your version of
the Form Driver.)

5.12.2.2 FS$CHAN, the Form Channel Number — This word contains the
channel number (LUN) information that the Form Driver uses to access a
form library.

5-42 Form Driver Programming Requirements and Concepts

5.12.2.3 F$IMP, the Impure Area Pointer — This word points to the
beginning of the impure area available to the Form Driver. The impure area
stores:

¢ Information pertaining to the current form.

e Operator responses in the context of that form.

The first word of the impure area must contain its total length in bytes. Both
the Form-Wide Attributes Questionnaire of the Form Editor and the listing of
your form produced by the Form Utility (FUT) in response to the /FD option
tell you the length of the necessary impure area.

To preserve the context of a form, the impure area pointer must be the same
for all calls to the Form Driver that refer to that form. Your program cannot
modify the impure area, which is reserved for use by the Form Driver.

5.12.3 Function-Dependent Arguments

Each function code can require a different set of function-dependent
arguments. Chapter 6 lists the required and optional arguments in the file
descriptions of each call.

Table 5-18 summarizes all MACRO-11 function-dependent arguments. The
following sections describe these arguments in detail.

5.12.3.1 F$SNAM, the Name Pointer — This argument points to various
names, depending on which call is associated with them.

In a call to open a form library, FENAM on input contains a pointer to the file
specification for the form library. The file specification must be an ASCII
string terminated with a null.

In a call to display a form, FSNAM on input contains a pointer to a 6-byte
ASCII form name. The name must be left-justified, with unused positions
blank filled.

In a call that requires a field name, FENAM points to the 6-byte ASCII field
name associated with the field when the form was defined.

In a call to get named data, F$NAM points to a 6-byte ASCII data name that
you specified using the Form Editor.

Form Driver Programming Requirements and Concepts 5-43

5.12.3.2 F$NUM, the Line Number and Field Index — F$NUM can
contain two kinds of information, depending on whether the call displays a
form or requires a field name.

In a call to display a form, FSNUM on input contains a line number from 0 to
23, specifying display of the first line to be cleared.

In calls that require a field name, FSNUM is used to pass a field index
identifying the specific field between the Form Driver and the application task.
The field index is a positive integer specifying the element referred to for a field
defined as an array. For fields not defined as arrays, the Form Driver ignores
the index value and returns it to the application task as 1.

5.12.3.3 FS$VAL, the Data Value Pointer — In a call to output data (to a
specified field, to all fields, or to the last line) F$VAL on input contains a
pointer to the data to be displayed. If the corresponding length of data
(F$LEN) is zero, the Form Driver ignores F$VAL and uses default values.

On returning from a call to get data (get a field, get any field, get all fields,
return a specified field or all fields, or get named data), $FVAL contains a
pointer into the Form Driver impure area to the data requested.

5.12.3.4 FSLEN, the Data Length — You must provide the data length in
bytes for all calls to output data. The Form Driver uses a length greater than
zero as the length of the data to output. The F$VAL argument points to this
data.

The Form Driver uses a length less than zero as an indicator that the data ends
with a null. See descriptions of individual calls for use of a length of zero, which
specifies that default values are to be used.

For all calls to get data, the Form Driver returns the data length in bytes in
F$LEN. Responses returned to the calling task are always the length of the
field (minus field-marker characters) and are blank-filled or zero-filled
according to the field definition.

5.12.3.5 F$TRM, the Field Terminator Code — F$TRM is one word in
which the Form Driver returns to your task an integer code for the key that the

operator used to terminate a field entry. The argument is also input for the
FPFT call.

In Section 5.2.1, Table 5-2 summarizes the field terminator keys, codes, and
meanings. In Section 5.2.2, Table 5-4 summarizes the codes for the alternate
keypad mode terminators. Values of the terminators are given for use by high-

level language tasks, which cannot refer to global symbols. These are also the
terminators that the FPFT call processes.

5-44 Form Driver Programming Requirements and Concepts

5.12.4 Keyword Encoded Macros

To simplify the interface to the Form Driver for the MACRO-11 programmer,
the software provides the following keyword macro in the macro library

FMSMAC.MLB:
$FDV ARG,FNC,REQ,NAM,NUM,TRM,VAL,LEN

Table 5-18 summarizes the requirements and meanings of the keywords and
shows the relationships between the keywords on input and the global offsets
for function-dependent arguments on output. The high-level language
arguments are also listed in Table 5-18 to show the correspondence between
them and their MACRO-11 counterparts.

Table 5-18. Summary of Arguments, Keywords, and Offsets for
High-Level Language and MACRO-11
Form Driver Calls

High-Level MACRO-11

Language Keyword

Argument or

Abbreviation Offset Requirement or Value

Inputs

- ARG A pointer to the Argument List.

- REQ A pointer to the Required Argument List.

CHAN * None A channel number for a form library file.

FID NAM A field name or a named data label, six
characters long, including padding (for
FORTRAN IV and FORTRAN-77, add a null
byte also.) For MACRO-11 only, a pointer to a
6-byte ASCII field name or named data label.
To specify a scrolled area, use the name of any
field in the scrolled area.

FIDX NUM A field index for the specified field (when the
field is indexed) or the index for a named data
value.

LEN The total length of the data to be displayed.

The value must be —1 for ASCIZ strings and 0
for restoring default values or clearing the last

line of the screen. (An input value for
MACRO-11 only.)

FLNM NAM A form library file specification. For MACRO-
11 only, a pointer to an ASCIZ form library
file specification.

FNAME NAM A form name, 6 characters long, including
padding (for FORTRAN IV and FORTRAN-
77, add a null byte also). For MACRO-11 only,
a pointer to a 6-byte ASCII form name.

Form Driver Programming Requirements and Concepts 5-45

Table 5-18.

Summary of Arguments, Keywords, and Offsets for
High-Level Language and MACRO-11
Form Driver Calls (Cont.)

High-Level

MACRO-11

Requirement or Value

FVAL

IMPURE

LINE

TERM

Outputs

VAL

* None

NUM

TRM

As an input value, the single value or the
concatenated values to be displayed:

e in a field.

in the top, bottom, or current line of a
scrolled area.

in the last line of the screen.

e in an entire form.

The name of a subscripted variable (or array)
of bytes for the impure area.

The explicit starting line for the form,
overriding the line number assigned with the
Form Editor.

As an input value, the numeric code for the
terminator that the Form Driver is to process.

The Status Code is set for all calls. Most calls are processed by the Form Driver, and for
these (with MACRO-11 only) RO points to the Argument List when the call processing is

complete.

FID

FIDX
FLEN

FVAL

FSNAM(RO)

F$NUM(RO)
F$LEN(RO0)

F$VAL(RO)

A named data label or the current field name.
For MACRO-11 only, a pointer to a named
data label or data name.

A field index.

For the FLEN high-level language call, the
length of a specified field (not the length of
the data the field contains). For MACRO-11
calls, the total length of the fields for which
values are returned by the Form Driver, such
as:

e a named data value.
o a single field.
e all fields in one line of a scrolled area.

e all fields in a form.

A named data value, a single field value, or a
concatenated string that is composed of
several field values (including padding when a
value is shorter than its field). For MACRO-11
only, a pointer to the value or string in the
impure area.

5-46 Form Driver Programming Requirements and Concepts

Table 5-18. Summary of Arguments, Keywords, and Offsets for
High-Level Language and MACRO-11
Form Driver Calls (Cont.)

High-Level MACRO-11 Requirement or Value

TERM F$TRM(RO) The numeric code for the key that the
operator used to terminate input:

e in a field.
e in a line in a scrolled area.

e in an entire form.

STATUS * None A numeric code for the completion status of
the last call that was executed.
STAT?2 * None A numeric FCS or RMS status code for

detailed information when the STATUS value
is —4 or —18 (for MACRO-11, the equivalent
codes are FE$IOL and FE$IOR.)

* For MACRO-11 only, the channel number and pointers to the impure area and status block
must be specified in the Required Argument List.

The $FDV macro should be used in accordance with the keyword calling
convention of MACRO-11. The argument names correspond to the last three
characters of the Global Argument List offsets defined by the Form Driver.

The following information should enable you to use the $FDV macro in most

instances. For further details about calling macros with keyword arguments,
see the PDP-11 MACRO-11 Language Reference Manual.

All arguments to the $FDV macro must be in the form of instruction source
operands to be used in MOV instructions on the source operand side as shown
below:

MOV arg,destination

The destination of all the arguments is either RO, in the case of ARG, or
F$xxx(R0) in the case of all other arguments, where xxx is the name of the
argument. Any arguments that do not appear in the macro call are not changed
in the Argument List by the macro expansion.

Since the list of arguments to the macro can be quite long, a single call to the
Form Driver can be broken up into several calls to the macro. If the FNC
argument specifying the function code is missing, the call to the Form Driver is
not generated, and the next call to the macro can fill in further arguments.
Argument blocks should be built at execution time or by symbolic means at
assembly time.

Form Driver Programming Requirements and Concepts 5-47

The following macro call loads the Required Argument List pointer into the
Argument List. Loading the pointer normally needs to be done only once in a
program. -

$FDV ARG=arglst,REQ=reqlst

As a result of this call, RO points to the specified Argument List. The Form
Driver is not called by the macro call.

The following variations on a call to the Form Driver to write data to a
specified field (FPUT) illustrate the syntax of the $FDV macro:

Example 1
MOV #REQLST,RO ; REQUIRED ARGUMENTS LIST
; POINTER
MOV #STAT,F$STSC(RO) ; STATUS BLOCK POINTER
MoV #1,F$CHNCRO) ; LIBRARY CHANNEL NUMBER .
MoV # IMPURE ,F$ IMP(R0) ; IMPURE AREA POINTER
$FDV ARG=#ARGLST,REQ=#REQLST ; PUT REG ARG

3 LIST PTR IN ARG LIST
$FDV ARG=#ARGLST,FNC=PUT,
VAL=#BUFFER,LEN=DATLN,
NAM=4FLD1,NUM=#1

In this call, the Argument List is ARGLST, the function is FC$PUT, the data
to output is in BUFFER, the data length is in DATLN, the field name is in
FLD1, and the index is 1. The following data are associated with the call. ~

ISIZ = 1024.

BUFFER: .ASCII /TEN CHARS?/ ;DATA
DATLN: .WORD 110ne ;s LENGTH OF DATA
FLD1: .ASCII /FIELD1/ ; FIELD NAME (6 CHARS)

ARGLST: .BLKB F$ASIZ
; ALLOCATE SPACE FOR
;3 ARGUMENT LIST
REGQLST: .BLKB F$RS1Z
; ALLOCATE SPACE FOR
; REG@ ARG LST
IMPURE: .WORD ISIZ
; SIZE OF IMPURE AREA IN BYTES
.BLKB Is12-2 ; THE IMPURE AREA
STAT: . BLKW 2 ;2 WORD STATUS BLOCK

5-48 Form Driver Programming Requirements and Concepts

Example 2

The call in Example 1 can be broken into two lines as follows:

$FDV ARG=#ARGLST,VAL=#BUFFER,LEN=DATLN
$FDV FNC=PUT,NAM=#FLD1,NUM=#1

After the first call to the macro, the Form Driver is not called because the
function code (FNC=PUT) is not included. It is the second call to the Form
Driver that, in addition to providing values for further arguments, calls the
Form Driver.

Example 3

In the following example of an FPUT call, RO is assumed to point to the
argument block.

The field name is in FLDI.

The index is in R2.

R1 points to the data to be output.
R3 points to the length.

R3 is advanced by the call.

On pw 88 NI

$FDV FNC=PUT,NAM=#FLD1,NUM=R2,VAL=R1,LEN=(R3)+

This format for issuing the macro call is an alternative to those shown in the
first two examples.

Chapter 6 provides a detailed description of each call to the Form Driver.

5.12.5 Special Information for I/O from a MACRO-11 Program

A MACRO-11 program can use either RMS or FCS. The program must
initialize FCS before calling the Form Driver if media-resident forms are used.
(See the RSX-11M I/0O Operations Manual, Chapter 2 for details.) If RMS is
chosen, the program must initialize RMS with a call to the $INIT or $INITIF
macros if media-resident forms are used.

To avoid loss of typeahead in MACRO-11 programs using the Form Driver,
attach the terminal with the QIO system directive.

Example: GI0W$S #I0.ATT,#5,4#5

Form Driver Programming Requirements and Concepts 5-49

5.12.6 Program Sections Used by FMS

The following Program Section (PSECT) names are reserved for use by FMS.

PSECT Usage

$$FMS Task specific data and buffers
$$FMSV Offsets to vector area

$$SFMSB Offsets to buffer descriptor
$$FMS1 Data areas for form driver
$FIDX$ Memory-resident form index
$FIDY$ End of memory-resident form index
$FORMS$ Memory-resident form descriptions
FDV. Form driver and support code
$HLDAT High-level language data area
$HLEXE High-level language call definitions
.ERR. Error messages

.DBG. Debug error messages

Three PSECTSs are used to keep information about memory-resident forms.

$FIDX$ Form Index
$FIDY$ End of Form Index
$FORM$ Form Descriptions

In the Form Driver data area (FDVDAT) there is a pointer to the form index
PSECT $FIDX$. FDVDAT must be the first contribution to this PSECT.
That 1is, it must be referenced in the task-build command before any of the
memory-resident forms. PSECTs must be ordered such that $FIDX$ and
$FIDY$ are adjacent. This is normally the case since PSECTs are usually
ordered alphabetically.

Any of these PSECTs can be in overlays, but $FIDX$ and $FIDY$ are
normally in the root. It is quite reasonable to place forms in overlays. The
index entries will be pulled into the root, since $FIDX$ and $FIDY$ have the
GBL attribute.

5-50 Form Driver Programming Requirements and Concepts

5.12.7 Form Driver Conditionals

All Form Driver conditionals are in the file FSYCND.MAC. The values of the
following conditionals are set by the configuration procedure.

Symbol Default Meaning

BUFS$B 1 Buffer size in blocks.

DRB$ il Number of directory buffers.

FDB$N 1 Number of form libraries that can be open
simultaneously.

RMSI$0 0 0 for FCS
1 for RMS

Terminal support code varies for the systems that FMS supports. This
conditional selects the terminal service required.

Symbol Value Meaning

TIOTS$P 0 RSX-11M Half-duplex driver (V3.1)
1 RSX-11M, M+ Full-duplex driver.
2 Reserved.
4 Reserved.

The default is 1.

The Form Driver uses several conditionals for internal processing of event flags
and I/O management. The following table lists the conditionals and their
default values.

Symbol Default Meaning

RESLS$B 0 FDVDAT conditional data and offsets.
1 Library offsets.
2 Data only for task.
IOES$F 32 Event flag for form library 1/0.
TLUS$N 5 Terminal LUN.
TEF$N 31 Terminal output event flag.
TIEF$N 30 Terminal input event flag.

Form Driver Programming Requirements and Concepts 5-51

5.12.8 Event Flags

The terminal event flags (TEF$N and TIEF$N) are selected to not interfere
with event flags used by the task for other purposes.

5.12.9 Building a MACRO-11 Program

When assembling MACRO-11 programs, include the macro library.

FMSMAC/ML

In the command line to resolve MACRO-11 definitions for $FDV and other
FMS macros.

Appendix D contains a sample task-building command file that illustrates
task-building a MACRO-11 application program.

5-52 Form Driver Programming Requirements and Concepts

Chapter 6
Form Driver Calls

A flexible set of Form Driver calls provides functions that display forms,
display data in fields, and handle terminal input. (Additional calls are provided
for high-level language programs only.) The descriptions describe what each
call does, the input arguments it requires, and the output it returns to your
task. For each call, syntax in high-level languages and MACRO-11 is indicated.

See Chapter 5 for information on each programming language.

6.1 FCHIMP - Change the Impure Area

The FCHIMP call changes the impure area pointer within the FMS vector
area. The impure area must be initialized with the FINIT call before you can
use the FCHIMP call.

When you use FCHIMP, the library channel number is moved from the old
impure area to the new impure area.

BASIC-PLUS-2 and FORTRAN

CALL FCHIMP(impure)

COBOL

CALL “FCHIMP* USING BY DESCRIPTOR impure.
DIBOL-83

XCALL FCHIMP(impure)

MACRO-11

$FDV ARG=arglst,FNC=CIA,REQ=reqlst,VAL=impure

6-1

Inputs and Outputs

High-Level

Language MACRO-11

Argument Keyword or

Abbreviation Offset Requirement or Value

Inputs

IMPURE * None The name of a subscripted variable (or
array) of bytes for the impure area to
change to.

Outputs

Positive return status values imply a new impure area is now in use.
Negative return status values imply the old impure area is still in use.

*For MACRO-11 only, the pointers to the impure area and status block are contained in the
Required Arguments List.

Returned Status Values and Codes

Status Value

High-Level Status Code
Languages (MACRO-11) Meaning
1 FS$SuC Successful completion.
-2 FE$IMP Impure area too small.
-20 None Wrong number of arguments in call.

(For high-level language programs only.)

6-2 Form Driver Calls

6.2 FCLRSH - Clear Entire Screen and Display Form

The Form Driver clears the entire screen and displays the specified form as

described under FSHOW.

BASIC-PLUS-2 and FORTRAN

CALL FCLRSH(fnam/[,line])

COBOL

CALL "“FCLRSH" USING BY DESCRIPTOR fnaml ,BY REFERENCE linel.
DIBOL-83

XCALL CLRSH(fnam/[,line])

MACRO-11

$FDV ARG=arglst,FNC=CSH,REG= reqlst,NAM=form,NUM=line

Inputs and Outputs

High-Level

Language MACRO-11

Argument Keyword or

Abbreviation Offset Requirement or Value

Inputs

- ARG A pointer to the Argument List.

- REQ A pointer to the Required Argument
List.

FNAM NAM A form name. For MACRO-11 only, a
pointer to a 6-byte form name.

LINE NUM The explicit first line for the form,
overriding the line number assigned with
the Form Editor.

Outputs

None None The status code is set. For MACRO-11

only, RO points to the Argument List.

Form Driver Calls 6-3

Returned Status Values and Codes

Status Value

High-Level Status Code
Languages (MACRO-11) Meaning
1 FS$SUC Successful completion.

- 6 FE$ICH Invalid channel number specified.

= 7 FE$SFCH Form library not open on specified
channel.

-8 FE$SFRM Invalid form definition.

-9 FE$FNM Specified form does not exist.

-10 FESLIN Invalid first line number to display
form.

—18 FE$IOR Error encountered reading form library
(an FCS or RMS system error code that
provides more detail can be found with
the FSTAT call and is returned in the
second word of the status block).

-20 None Wrong number of arguments in call.
(For high-level language programs only.)

-21 None Impure area not yet initialized. (For

high-level language programs only.)

6-4 Form Driver Calls

6.3 FGCF - Return the Current Field Name

The FGCF call does not call the Form Driver. It merely returns arguments
from the Form Driver argument block. FGCF is to be used in conjunction with
the FGET call to allow immediate processing of fields and immediate feedback
to the terminal operator (as well as implementing scrolling).

In a high-level language task, this call must follow a call to process a field
terminator if you wish to access the name of the new current field and its index
value.

There is no MACRO-11 equivalent for this call.

BASIC-PLUS-2 and FORTRAN

CALL FGCF (fid)

COBOL

CALL “FGCF" USING BY DESCRIPTOR fid[,BY REFERENCE fidx1.
DIBOL-83

XCALL FGCF(fid[.fidx])

Form Driver Calls 6-5

Inputs and Outputs

High-Level

Language MACRO-11
Argument Keyword or
Abbreviation Offset

Inputs

None -
Outputs

FID -

FIDX -

Requirement or Value

The field name for the current field. (An
output value for high-level languages
only.)

The field index for the current field
(when that field is an indexed field). (An
output value for high-level languages
only.)

Returned Status Values and Codes

Status Value

High-Level Status Code

Languages (MACRO-11)
1 FS$SUC

-20 None

—21 None

—22 None

6-6 Form Driver Calls

Meaning
Successful completion.

Wrong number of arguments in call.
(For high-level language programs only.)

Impure area not yet initialized. (For
high-level language programs only.)

Returned string is longer than the
declared variable length. (BASIC-PLUS-
2 only.)

6.4 FGET - Get the Value From the Specified Field

The Form Driver places the cursor in the initial position of the specified field
and accepts input by the operator in that field. (Section 4.2.2.2 describes the
initial cursor position for fields that have different attributes.) When the Form
Driver returns control to the application, the specified field is the current field.

If the first character of the field name specified is an asterisk (*), the Form
Driver sets as the current field the first field in the form that is not display-
only and not within a scrolled area. The field name and index value for that
field are returned to your task. A high-level language program must use the
FGCF call to get the field name and index.

If you do not specify a field name, the Form Driver places the cursor in the
lower right corner of the screen and waits for the operator to press the ENTER
key, indicating readiness to proceed; at that point, the field terminator code 0
(or, for MACRO-11 only, FT$NTR) is returned to your program. This “special
get” call serves to synchronize the operation of your program with the pace of
the terminal operator.

BASIC-PLUS-2 and FORTRAN
CALL FGET(fval,term,fid[fidx])
CALL FGET

COBOL

CALL “FGET"™ USING BY DESCRIPTOR fval,BY REFERENCE term,
BY DESCRIPTOR fidl ,BY REFERENCE fidx].

DIBOL-83

XCALL FGET(fval,term,fid[.fidx])
XCALL FGET

CALL “FGET"™

MACRO-11

$FDV ARG=arglst,FNC=GET, REQ=reglst,NAM=fld NUM=idx

Form Driver Calls 6-7

Inputs and Outputs

High-Level
Language
Argument
Abbreviation

Inputs

FID
FIDX

Outputs

None

FVAL
TERM

6-8 Form Driver Calls

MACRO-11
Keyword or
Offset

ARG
REQ

NAM

NUM

None

F$LEN(RO)

FSNAM(RO)

F$NUM(RO)

F$VAL(RO0)
F$TRM(RO)

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments
List.

A field name. For MACRO-11 only, a
pointer to a 6-byte ASCII field name.

A field index for the specified field
(when the field is indexed).

The status code is set. For MACRO-11
only, RO points to the Argument List,

The length of the field. (An output value
for MACRO-11 only.)

When the input field name begins with
an asterisk (*), a pointer to the 6-byte
ASCII name of the field name for the
first field that is not display-only and
not within a scrolled area. (An output
value for MACRO-11 only.)

When the input field name begins with
an asterisk (*), the field index for the
first field that is not display-only and
not within a scrolled area. (An output
value for MACRO-11 only.)

The field value, including padding.

The numeric code for the key the
operator used to terminate input in the
field.

Returned Status Values and Codes

Status Value
High-Level
Languages

1
-6
=

-11

-12
-13
-18

-20
—21

—22

Status Code

(MACRO-11) Meaning

FS$SUC
FE$ICH
FE$FCH

FES$FLD

FE$NOF
FE$DSP
FE$IOR

None

None

None

Successful completion.
Invalid channel number specified.

Form library not open on specified
channel.

Specified field does not exist (invalid
field name or index).

No fields defined for current form.
GET call illegal for display-only field(s).

Error encountered reading form library
(an FCS or RMS system error code that
provides more detail can be found with
the FSTAT call and is returned in the
second word of the status block).

Wrong number of arguments in call.
(For high-level language programs only.)

Impure area not yet initialized. (For
high-level language programs only.)

Returned string is longer than the
declared variable length. (BASIC-PLUS-
2 only.)

Form Driver Calls 6-9

6.5 FGETAF - Get the Value for Any Field

The Form Driver waits for the operator to respond to any field. The operator
can move the cursor to any field that is not display-only. The Form Driver
accepts as valid responses either the ENTER key alone or any field terminator
entered in a field the operator has modified. The field that is entered becomes
the current field.

The FGETAF call is invalid for a form that contains a scrolled area.
BASIC-PLUS-2 and FORTRAN

CALL FGETAF (fual,term,fid/ fidx])

COBOL

CALL "“FGETAF'" USING BY DESCRIPTOR fval,BY REFERENCE term,
BY DESCRIPTOR fid[,BY REFERENCE fidx1.

DIBOL-83 .

XCALL GETAF(fval,term,fid/ fidx])
MACRO-11

$FDV ARG=arglst, FNC=ANY , REQ=reqlst

6-10 Form Driver Calls

Inputs and Outputs

High-Level
Language
Argument
Abbreviation

Inputs

Outputs

None

FID

FIDX

FVAL
TERM

MACRO-11
Keyword or
Offset

ARG
REQ

None

F$NAM(RO)

F$NUM(RO)

F$LEN(RO)
F$VAL(RO)
F$TRM(RO)

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Argument
List.

The status code is set. For MACRO-11
only, RO points to the Argument List.

The field name for the field in which
the operator responds. (For MACRO-11
only, a pointer to the 6-byte ASCII field
name.)

The field index for the field in which
the operator responds (when that field is
an indexed field).

The length of the field.
The field value, including padding.

The numeric code for the key that the
operator used to terminate input in the

field.

Form Driver Calls 6-11

Returned Status Values and Codes

Status Value
High-Level

Languages
1

-6

= [

=12
—13
-18

=20

—22

6-12 Form Driver Calls

Status Code
(MACRO-11)

FS$SUC
FE$ICH
FE$FCH

FE$NOF
FE$DSP
FE$IOR

None

None

None

Meaning
Successful completion.
Invalid channel number specified.

Form library not open on specified
channel.

No fields defined for current form.
GET call illegal for display-only field(s).

Error encountered reading form library
(an FCS or RMS system error code that
provides more detail can be found with
the FSTAT call and is returned in the
second word of the status block).

Wrong number of arguments in call.
(For high-level language programs only.)

Impure area not yet initialized. (For
high-level language programs only.)

Returned string is longer than the
declared variable length. (BASIC-PLUS-
2 only.)

6.6 FGETAL - Get All Field Values

Beginning with the first field in the form, the terminal operator can move
around in the form and enter and change values in any fields he or she chooses.
The Form Driver waits for the operator to press the ENTER key as a signal of
completion of the entire form. The values of all fields are then returned to your
program as a concatenated string of the default values and new entries that are
displayed. Fields are returned in left-to-right, top-to-bottom order, except
when a form contains vertically indexed fields. (See Section 4.1.7 for a
description of the order of return for indexed fields.)

Normally, when a form includes fields with the Response Required or Must Fill
attribute, all fields of the form must be completed before the Form Driver will
return to the program. Otherwise, a message is displayed, the bell rings, and the
cursor is located at the first incomplete field.

However, when the program has set the terminal to the alternate keypad mode,
the alternate keypad mode terminators are always passed immediately to the
program. (See Section 4.2.2 for a description of the alternate keypad mode
feature.)

The FGETAL call with no arguments only stores the values for all fields in the
Form Driver impure area. You can then access the values with the FRETN or
FRETAL call. The calls are described later in this chapter.

The FGETAL call is invalid for a form that contains a scrolled area.
BASIC-PLUS-2 and FORTRAN

CALL FGETAL(fvall,term])

CALL FGETAL

COBOL

CALL "FGETAL'" USING BY DESCRIPTOR fvall ,BY REFERENCE terml.
DIBOL-83

XCALL GETAL(fval[,term])

XCALL GETAL

CALL “FGETAL™"™

MACRO-11

$FDV ARG=arglst,FNC=ALL ,REQ=reqlst

Form Driver Calls 6-13

Inputs and Outputs

High-Level
Language
Argument
Abbreviation

Inputs

Outputs

None

FVAL

TERM

6-14 Form Driver Calls

MACRO-11
Keyword or
Offset

ARG
REQ

None

FSLEN(RO)

F$VAL(RO)

F$TRM(RO)

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Argument
List.

The status code is set. For MACRO-11
only, RO points to the Argument List.

The total length for all fields in the
form. (An output value for MACRO-11
only.)

The concatenated values for all fields in
the form. For MACRO-11 only, a
pointer to the concatenated values in
the impure area.

The numeric code for the key the
operator used to terminate input in the
form.

Returned Status Values and Codes

Status Value
High-Level
Languages

=4l

—12
—13
-18

-19

-20

Status Code

(MACRO-11) Meaning

FS$SUC
FESICH
FESFCH

FE$FLD

FE$NOF
FE$DSP
FE$IOR

FESIFN

None

None

None

Successful completion.
Invalid channel number specified.

Form library not open on specified
channel.

Specified field does not exist (invalid
field name or index).

No fields defined for current form.
GET call illegal for display-only field(s).

Error encountered reading form library
(an FCS or RMS system error code that
provides more detail can found with the
FSTAT call and is returned in the
second word of the status block).

Specified call invalid in current context
of form.

Wrong number of arguments in call.
(For high-level language programs only.)
Impure area not yet initialized. (For
high-level language programs only.)

Returned string is longer than the
declared variable length. (BASIC-PLUS-
2 only.)

Form Driver Calls 6-15

6.7 FIDATA - Get Named Data by Index

Thi call accevsea named (ata by using the index inio e named data rauiee

than the name of the data.
BASIC-PLUS-2 and FORTRAN
CALL FIDATA(fidxfuvall,fid])
COBOL

CALL “FIDATA"™ USING BY REFERENCE fidx,BY DESCRIPTOR fval
[,BY DESCRIPTOR fid1.

DIBOL-83

XCALL IDATA(fidx,fvall fid])
MACRO-11

$FDV ARG=arglst,FNC=DAT ,REQ=reqglst, NAM=#0 ,NUM=num

6-16 Form Driver Calls

Inputs and Outputs

High-Level
Language
Argument
Abbreviation

Inputs

Outputs

None

FID

FVAL

Returned Status

Status Value
High-Level
Languages

1
—15
—20

=21

—22

MACRO-11
Keyword or
Offset

ARG
REQ

None

F$NAM(RO)

F$LEN(RO)

F$VAL(RO)

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Argument
List.

The status code is set. For MACRO-11
only, RO points to the Argument List.

A pointer to the named data label in the

impure area. (An output value for
MACRO-11 only.)

The length of the named data value. (An
output value for MACRO-11 only.)

The named data value for the index
requested. For MACRO-11 only, a
pointer to the named data value in the
impure area.

Values and Codes

Status Code

(MACRO-11) Meaning

FS$SUC
FE$DNM

None

None

None

Successful completion.
Named data specified does not exist.

Wrong number of arguments in call.
(For high-level language programs only.)

Impure area not yet initialized. (For
high-level language programs only.)

Returned string is longer than the
declared variable length. (BASIC-PLUS-
2 only.)

Form Driver Calls 6-17

6.8 FINIT - Initialize Impure Area for High-Level Language Tasks.

The FINIT call initializes the space for the impure area. The FINIT call must
precede any other Form Driver calls in a program.

For the size of the impure area, add 64 bytes to the size reported by the Form
Editor for the largest form that your program uses. The high-level language
interface uses the first 64 bytes of the impure area for the Argument List for
Form Driver calls.

BASIC-PLUS-2 and FORTRAN
CALL FINIT(impure, size,trmctl[,status])
COBOL

CALL "FINIT" USING BY DESCRIPTOR impure, BY REFERENCE size,
BY DESCRIPTOR ¢rmctll ,BY REFERENCE status] .

DIBOL-83

XCALL FINIT(impure,size, trmetl [, status])

6-18 Form Driver Calls

Inputs and Outputs

High-Level

Language MACRO-11
Argument Keyword or
Abbreviation Offset
Inputs

IMPURE * None

SIZE

Outputs

STATUS * None

Requirement or Value

The name of a subscripted variable (or
array) of bytes for the impure area.

The size of the impure area.

A numeric code for the completion
status of the call.

* For MACRO-11 only, the pointers to the impure area and status block are contained in the

Required Argument List.

Returned Status Values and Codes

Status Value

High-Level Status Code
Languages (MACRO-11) Meaning
1 FS$SUC Successful completion.
-2 FE$IMP Impure area too small.
—20 None Wrong number of arguments in call.

(For high-level language programs only.)

Form Driver Calls 6-19

6.9 FINLN - Get Current Line of Scrolled Area

Within the current line of the specified scrolled area, the Form Driver usually
places the cursor at the initial position of the first field that is not display-only.
However, if the last call to the Form Driver was an FPFT call to process the
terminator to scroll backward to the previous field (value = 7, MACRO-11
global = FT$SPR), the cursor is placed at the initial position of the last field on
the line that is not display-only. The terminal operator can complete the line to
his or her satisfaction. The Form Driver then returns the contents of the line
as a concatenated string of field values.

BASIC-PLUS-2 and FORTRAN
CALL FINLN(fid, fual[,term])
COBOL

CALL "FINLN'" USING BY DESCRIPTOR fid,
BY DESCRIPTOR fvall ,BY REFERENCE term].

DIBOL-83
XCALL FINLN(fid,fval[term])
MACRO-11

$FDV ARG=arglst,FNC=GSC ,REQ= reglst, NAM=fld

6-20 Form Driver Calls

Inputs and Outputs

High-Level

Language MACRO-11

Argument Keyword or

Abbreviation Offset Requirement or Value

Inputs

- ARG A pointer to the Argument List.

- REQ A pointer to the Required Argument
List.

FID NAM A field name for any field within the
scrolled area to be processed. For
MACRO-11 only, a pointer to a 6-byte
ASCII field name.

Outputs

None None The status code is set. For MACRO-11

only, RO points to the Argument List.

= FSLEN(RO) The total length of all fields in the line.
(An output value for MACRO-11 only.)

FVAL F$VAL(RO) The values for all fields in the line,
concatenated from left to right. For
MACRO-11 only, a pointer to the
concatenated values in the impure area.

TERM FSTRM(RO) The numeric code for the key the
operator used to terminate input in the
line.

Form Driver Calls 6-21

Returned Status Values and Codes

Status Value
High-Level
Languages

1
& b
=R

-11

-14
-18

-20

—22

6-22 Form Driver Calls

Status Code

(MACRO-11) Meaning

FS$SUC
FES$ICH
FE$FCH

FESFLD

FE$NSC
FESIOR

None

None

None

Successful completion.
Invalid channel number specified.

Form library not open on specified
channel.

Specified field does not exist (invalid
field name or index).

Specified field not in scrolled area.

Error encountered reading form library
(an FCS or RMS system error code that
provides more detail can be found with
the FSTAT call and is returned in the
second word of the status block).

Wrong number of arguments in call.
(For high-level language programs only.)

Impure area not yet initialized. (For
high-level language programs only.)

Returned string is longer than the
declared variable length. (BASIC-PLUS-
2 only.)

—

6.10 FLCHAN - Set I/O Channel (LUN) for Form Library File

The FLCHAN call sets the I/0 channel (LUN) to open or access a form library
file. The FLCHAN call must be issued after the FINIT call and before the first

FLOTEN all

The FLCHAN call has two uses: it sets the channel for the next FLOPEN call,
and it sets the channel on which forms will be accessed by FSHOW and
FCLRSH calls. More than one form library file can be open at one time by
using FLCHAN to switch channels between FLOPEN calls. Forms can be
selected from one of several libraries by using FLCHAN to select the desired
library before the FSHOW or FCLRSH call. The library channel should not be
switched until just before the next call to show a form, since operator HELP or
SCREEN REFRESH functions require reaccessing of the form description for
the current form the operator is using.

The channel named must be legal for the program and must have been
designated as such when the program was built.

BASIC-PLUS-2 and FORTRAN

CALL FLCHAN (chan)

COBOL

CALL "FLCHAN'" USING BY REFERENCE chan.
DIBOL-83

XCALL LCHAN(chan)

Form Driver Calls 6-23

Inputs and Outputs

High-Level

Language MACRO-11

Argument Keyword or

Abbreviation Offset Requirement or Value

Inputs

CHAN * None A channel number for a form library
file.

Outputs

None -

* For MACRO-11 only, the channel number is specified in the Required Argument List.

Returned Status Values and Codes

Status Value

High-Level Status Code
Languages (MACRO-11) Meaning
1 FS$SUC Successful completion.
=) None Wrong number of arguments in call.
(For high-level language programs only.)
—21 None Impure area not yet initialized. (For

high-level language programs only.)

6-24 Form Driver Calls

6.11 FLCLOS - Close Form Library

The Form Driver closes the form library open on the current channel (LUN).
BASIC-PLUS-2 and FORTRAN

CALL FLCLOS

COBOL

CALL "FLCLOS"™.

DIBOL-83

XCALL LCLOS

MACRO-11

$FDV ARG=arglst,FNC=CLS,REQ=reqlst

Form Driver Calls 6-25

Inputs and Outputs

High-Level

Language MACRO-11

Argument Keyword or

Abbreviation Offset Requirement or Value

Inputs

- ARG A pointer to the Argument List.

- REQ A pointer to the Required Argument
List.

Outputs

None None The status code is set. For MACRO-11

only, RO points to the Argument List.

Returned Status Values and Codes

Status Value

High-Level Status Code
Languages (MACRO-11) Meaning
1 FS$SUC Successful completion.

= o FES$ICH Invalid channel number specified.

-7 FE$FCH Form library not open on specified
channel.

=20 None Wrong number of arguments in call.
(For high-level language programs only.)

-21 None Impure area not yet initialized. (For

high-level language programs only.)

6-26 Form Driver Calls

— 6.12 FLEN - Return the Length of the Specified Field

The FLEN call returns the length of the specified field. The high-level

language forms of the call are the only ones that exist. No MACRO-11
! J

equiva enl 18 supplle(l.
BASIC-PLUS-2 and FORTRAN

CALL FLEN(flen,fid[.fidx])
COBOL

CALL "FLEN" USING BY REFERENCE flen,BY DESCRIPTOR fid
[,BY REFERENCE fidx1.

DIBOL-83

A XCALL FLEN(flen,fid[,fidx])

Form Driver Calls 6-27

Inputs and Outputs

HighLoval

Language MACRO-11

Argument Keyword or

Abbreviation Offset Requirement or Value

Inputs

FID - A field name.

FIDX = A field index for the specified field
(when the field is indexed).

Outputs

FLEN = The field length.

Returned Status Values and Codes

Status Value

High-Level Status Code
Languages (MACRO-11) Meaning
1 FS$SUC Successful completion.
=20 None Wrong number of arguments in call.
(For high-level language programs only.)
=21 None Impure area not yet initialized. (For

high-level language programs only.)

6-28 Form Driver Calls

- 6.13 FLOPEN - Open Form Library

The Form Driver opens the specified form library file on the current form
library channel. The channel (LUN) must be valid for the task and not
attached by the program for another use. Except for COBOL, which uses LUN
1, LUN 5 is the default used for terminal service by the Form Driver and is
therefore not available to your program. DIBOL-83 requires a trailing space for
the argument “flnm”. The form library file specification must have the
following format (optional elements are enclosed in square brackets, but the
UIC, if specified, must be enclosed in square brackets).

[device:1[UICIfile.typl;version]

The default file type for a form library file is .FLB.
BASIC-PLUS-2 and FORTRAN

CALL FLOPEN(flnm)

COBOL

CALL "“FLOPEN" USING BY DESCRIPTOR flnm.
DIBOL-83

XCALL LOPEN(flnm)

MACRO-11

$FDV ARG=arglst, FNC=0PN,REQ=reqlst, NAM=1ib

Form Driver Calls 6-29

Inputs and Outputs

High-Level
Language
Argument
Abbreviation

Inputs

FLNM

Outputs

None

Returned Status

Status Value
High-Level
Languages

1
-3
-4

-21

6-30 Form Driver Calls

MACRO-11
Keyword or
Offset

ARG
REQ

NAM

None

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments
List.

A form library file specification. For
MACRO-11 only, a pointer to an ASCIZ
form library file specification.

The status code is set. For MACRO-11
only, RO points to the Argument List.

Values and Codes

Status Code

(MACRO-11) Meaning

FS$SUC
FE$FSP
FE$IOL

FESFLB
FESICH
FES$IOR

None

None

Successful completion.
Invalid file specification.

Error encountered opening form library
(an FCS or RMS system error code that
provides more detail can be found with
the FSTAT call and is returned in the
second word of the status block).

Specified file not form library.
Invalid channel number specified.

Error encountered reading form library
(an FCS or RMS system error code that
provides more detail can be found with
the FSTAT call and is returned in the
second word of the status block).

Wrong number of arguments in call.
(For high-level language programs only.)

Impure area not yet initialized. (For
high-level language programs only.)

6.14 FNDATA - Get Named Data by Name

This call is used to access, by name, data that has previously been associated
with a form as named data. The Form Driver can access the named data that is
attached to a form description but does not display the data with the form.

You can use the FSTAT call to determine whether the FNDATA call returns a
valid named data value. If the FSTAT call returns a status value of —15, no
named data value was found.

BASIC-PLUS-2 and FORTRAN

CALL FNDATA(fid,fval)

COBOL

CALL "FNDATA"™ USING BY DESCRIPTOR fid, BY DESCRIPTOR fual.
DIBOL-83

XCALL NDATA(fid,fval)

MACRO-11

$FDV ARG=arglst,FNC=DAT ,REQ=reqlst, NAM=nam

Form Driver Calls 6-31

Inputs and Outputs

High-Level
Language
Argument
Abbreviation

Inputs

FID

Outputs

None

FVAL

Returned Status

Status Value
High-Level
Languages

1
—15
-20

—21

=22

6-32 Form Driver Calls

MACRO-11
Keyword or
Offset

ARG
REQ

NAM

None

F$LEN(RO0)

F$VAL(RO0)

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments
List.

A named data label. For MACRO-11
only, a pointer to a 6-byte ASCIT named
data label.

The status code is set. For MACRO-11
only, RO points to the Argument List.

The length of the named data value. (An
output value for MACRO-11 only.)

The named data value for the label
requested. For MACRO-11 only, the
pointer to the named data value in the
Impure area.

Values and Codes

Status Code

(MACRO-11) Meaning

FS$SUC
FE$DNM

None

None

None

Successful completion.
Specified named data does not exist.

Wrong number of arguments in call.
(For high-level language programs only.)

Impure area not yet initialized. (For
high-level language programs only.)

Returned string is longer than the
declared variable length. (BASIC-PLUS-
2 only.)

6.15 FOUTLN - Output Data to Current Line of Scrolled Area

The Form Driver outputs the specified data to the current line of the scrolled
area. The scrolled area is identified by specifying the name of any field in that
area.

If the data is too long for the line, the Form Driver returns an error to your
program and truncates the data when it is displayed. If the data is too short for
the line, default values are displayed for fields for which no data is provided. If
the length of the data is zero, the Form Driver restores default values to all
fields in the current line of the scrolled area.

The Form Driver does not validate data output to fields from the application
task. This is true for both explicit output and default values.

BASIC-PLUS-2 and FORTRAN

CALL FOUTLN(fid/ fval])

COBOL

CALL "FOUTLN'" USING BY DESCRIPTOR fidl ,BY DESCRIPTOR fvall.
DIBOL-83

XCALL OUTLN(fid/[,fval])

MACRO-11

$FDV ARG=arglst,FNC=PSC,REQ= reqlst, NAM=fld VAL =val, LEN=len

Form Driver Calls 6-33

Inputs and Outputs

High-Level
Language
Argument
Abbreviation

Inputs

FID

FVAL

Outputs

None

Returned Status

Status Value
High-Level
Languages

1
-11

~14
-16

-20

-21

6-34 Form Driver Calls

MACRO-11
Keyword or
Offset

ARG
REQ

NAM

LEN

VAL

None

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments
List.

A field name for any field within the
scrolled area to be processed. For
MACRO-11 only, a pointer to a 6-byte
ASCII field name.

The total length of the data to be
displayed (must be —1 for ASCIZ strings
and O for restoring the default values to

all fields in the line). (An input value for
MACRO-11 only.)

The field value(s) to be displayed in the
current line of the scrolled area.

The status code is set. For MACRO-11
only, RO points to the Argument List.

Values and Codes

Status Code

(MACRO-11) Meaning

FS$SUC
FE$FLD

FE$NSC
FE$DLN

None

None

Successful completion.

Specified field does not exist (invalid
field name or index).

Specified field not in scrolled area.

Data specified for output too long
(truncated by Form Driver).

Wrong number of arguments in call.
(For high-level language programs only.)

Impure area not yet initialized. (For
high-level language programs only.)

6.16 FPFT - Process the Field Terminator

The Form Driver processes the specified field terminator. Then, if the field
terminator is valid, the Form Driver returns the name and index for the new

conrenh I o your progranm. In hngh Il nmuagee, the RCC ool e o

issued immediately after the FPFT call to get the name of the new current
field.

If the specified field terminator is the EN'T ER key, the Form Driver checks the
form for Response Required and Must Fill fields. If the form contains such
fields and the requirements are not met for every field in the form, the status
code (as shown below) is set to show that the form is incomplete.

In MACRO-11 tasks, the Form Driver returns the pointer to the name of the
first incomplete field and the index value of that field. In high-level language
programs, the FGCF (“Get the Name of the Current Field”) call is used to
obtain the field name and index value.

If the field terminator indicates scrolling, you must provide the name of a field
in the call. The field name identifies the scrolled area the Form Driver is to
manipulate. The name of any field in the scrolled area is sufficient.

If the field terminator indicates the TAB or DOWNARROW key, your task
can also specify data to be displayed in the bottom line of the scrolled area
when the area is scrolled forward.

If no data is specified and the current line is not the bottom line of the scrolled
area, the cursor moves down one line and that line becomes the new current
line. If no data is specified and the current line is the bottom line, the area is
scrolled up and default values restored to the bottom line. If data is specified,
the area is always scrolled up, the data displayed on the bottom line, and the
current line remains the same line. If the terminator is for the BACKSPACE
or UPARROW key, your task can specify the data to be displayed in the top
line of the scrolled area when the area is scrolled backward. If no data is
specified and the current line is not the top line of the scrolled area, the cursor
moves up one line and that line becomes the new current line. If no data is
specified and the current line is the top line, the area is scrolled down and
default values are restored to the top line. If data is specified, the area is always
scrolled down, the data displayed on the top line, and the current line remains
the same.

Form Driver Calls 6-35

If a field terminator is not specified in the call, the last field terminator
returned from the Form Driver is processed.

BASIC-PLUS-2 and FORTRAN
CALL FPFT(term[fid[fval]])

or

CALL FPFT

COBOL

CALL "FPFT" USING BY REFERENCE term
[,BY DESCRIPTOR fid1

{,BY DESCRIPTOR fvall.
DIBOL-83

XCALL FPFT (term/[fid[fvall])
MACRO-11

$FDV ARG=arglst, FNC=TRM , REQ=regqglst, TRM=¢trm,NAM=fld,
VAL=val,LEN=len

6-36 Form Driver Calls

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

FID

FVAL

TERM

Outputs

None

MACRO-11
Keyword or
Offset

ARG
REQ

NAM

LEN

VAL

TRM

None

F$NAM(RO)

F$NUM(RO)

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments
List.

A field name, identifying the scrolled
area to be processed. For MACRO-11
only, a pointer to a 6-byte ASCII field
name. (An input value only if a scrolled
area terminator is specified.)

The length of the data to be displayed
(must be —1 for ASCIZ strings and O if
no data is specified). (An input value for
MACRO-11 only and only if a scrolled
area terminator is specified.)

The field value(s) to be displayed in the
top or bottom line of the scrolled area.
(An input value only if a scrolled area
terminator is specified.)

A numeric code for the terminator that
the Form Driver is to process.

The status code is set. (For MACRO-11
only, RO points to the Argument List.)

A pointer to the 6-byte ASCII field
name for the current field. (An output
value for MACRO-11 only.)

The field index for the current field
(when that field is an indexed field). (An
output value for MACRO-11 only.)

Form Driver Calls 6-37

Returned Status Values and Codes

Status Value
High-Level
Languages

1
2
-11

—-14
=17
-19

-20

=2

6-38 Form Driver Calls

Status Code

(MACRO-11) Meaning

FS$SUC
FS$INC
FES$FLD

FE$NSC
FE$UTR
FE$IFN

None

None

Successful completion.
Current form incomplete.

Specified field does not exist (invalid
field name or index).

Specified field not in scrolled area.
Undefined field terminator.

Specified call invalid in current context
of form.

Wrong number of arguments in call.
(For high-level language programs only.)

Impure area not yet initialized. (For
high-level language programs only.)

- 6.17 FPUT - Output a Value to Specified Field

The Form Driver displays the value in the specified field and stores the value
in the impure area. If the value to be displayed is shorter than the field for
which it is intended, the Form Driver right or left justifies and zero or blank
fills the field according to the definition of the field. If the value is longer than
the field, the Form Driver truncates the displayed value, and if it contains
Debug support, the Form Driver sets the status code to —16.

If the length of the value to be output is zero and the field has a default value,
the Form Driver restores the default value to the screen and the impure area. If
the field has no default value, the Form Driver clears the field.

The Form Driver does not validate either the specified or the default values.
BASIC-PLUS-2 and FORTRAN

CALL FPUT(fvalfid[fidx])

COBOL

CALL "FPUT"™ USING BY DESCRIPTOR fual,
BY DESCRIPTOR fidl ,BY REFERENCE fidx1.

DIBOL-83

N XCALL FPUT(fvalfid[.fidx])

MACRO-11

$FDV ARG=arglst, FNC=PUT ,REQ= reqlst, NAM=fld,NUM=idx,
VAL=val,LEN=len

Form Driver Calls 6-39

Inputs and Outputs

High-Level

Language MACRO-11

Argument Keyword or

Abbreviation Offset Requirement or Value

Inputs

- ARG A pointer to the Argument List.

- REQ A pointer to the Required Arguments
List.

FID NAM A field name. For MACRO-11 only, a
pointer to a 6-byte ASCII field name.

FIDX NUM A field index for the specified field
(when the field is indexed).

- LEN The length of the data to be displayed
(must be —1 for ASCIZ strings and 0 for
restoring the default field value). (An
input value for MACRO-11 only.)

FVAL VAL The field value to be displayed.

Outputs

None None The status code is set. For MACRO-11

only, RO points to the Argument List.

Returned Status Values and Codes

Status Value

High-Level Status Code
Languages (MACRO-11) Meaning
1 FS$SUC Successful completion.

-11 FES$FLD Specified field does not exist (invalid
field name or index).

—-16 FE$DLN Data specified for output too long
(truncated by Form Driver).

—20 None Wrong number of arguments in call.
(For high-level language programs only.)

—-21 None Impure area not yet initialized. (For

high-level language programs only.)

6-40 Form Driver Calls

6.18 FPUTAL - Output Values to All Fields

The Form Driver outputs the specified data to all fields in the form. The data
for each field must match the length of that field. Data must be arranged in the
order in which the Form Driver would retrieve the fields if an FGETAL call
were issued for the form.

If the data supplied is too long, the Form Driver returns an error to the task
and truncates the data. If the data is too short, the Form Driver outputs the
default for any fields for which no data is provided.

If the length of the specified data is zero, the Form Driver restores default
values for all fields in the form and clears any fields that do not have defaults.
(If the form contains any scrolled areas, the offset to the current line for each
of those areas is reinitialized to zero, with the top line as the current line.)
Thus, the FPUTAL call with data length of zero provides one method of
reinitializing a form. It is the only form of the call valid for a form that
contains a scrolled area.

The Form Driver does not validate data output to fields from the application
task. This is true for both explicit output and default values.

BASIC-PLUS-2 and FORTRAN

CALL FPUTAL(fval)

CALL FPUTAL

COBOL

CALL "FPUTAL® USING BY DESCRIPTOR fual.
CALL "“FPUTAL™"™.

DIBOL-83

XCALL PUTAL(fval)

XCALL PUTAL

MACRO-11

$FDV ARG=arglst,FNC=PAL ,REQ= reglst,VAL=val,LEN=len

Form Driver Calls 6-41

Inputs and Outputs

High-Level

Language MACRO-11
Argument Keyword or
Abbreviation Offset
Inputs

= ARG

= REQ

- LEN

FVAL VAL
Outputs

None None

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments
List.

The length of the data to be displayed
(must be —1 for ASCIZ strings and 0 for
restoring the default field values). (An
input value for MACRO-11 only.)

The concatenated field value(s) to be
displayed.

The status code is set. For MACRO-11
only, RO points to the Argument List.

Returned Status Values and Codes

Status Value

High-Level Status Code
Languages
1 FS$SUC
-12 FE$NOF
—16 FE$DLN
-19 FE$IFN
-20 None
-21 None

6-42 Form Driver Calls

(MACRO-11) Meaning

Successful completion.
No fields defined for current form.

Data specified for output too long
(truncated by Form Driver).

Specified call invalid in current context
of form.

Wrong number of arguments in call.
(For high-level language programs only.)

Impure area not yet initialized. (For
high-level language programs only.)

6.19 FPUTL - Output to Last Line of Screen

The Form Driver clears the last line of the screen and displays the specified
string on that line. On the VT200 terminal with the advanced video option, the
Form Driver always applies the bold attribute to the last line of the screen
when data is displayed there with the FPUTL call. On other VT200 terminals,
the line appears underlined or in reverse video matching the cursor the
terminal is set to use. (The VT200 User Guide describes how to change the
VT200 cursor.)

If the string is longer than the current maximum line length for the terminal
(80 or 132 characters), the Form Driver sets the status code as shown below
and truncates the string when displaying it. If the length of the string is zero,
the Form Driver clears the last line.

This call provides the only means by which your task can access the last line of
the screen. Otherwise, the last line is reserved for use by the Form Driver to
display error messages and help text.

The Form Driver does not examine data output to the last line from the
application task.

BASIC-PLUS-2 and FORTRAN

CALL FPUTL(fval)

CALL FPUTL

COBOL

CALL "FPUTL'" USING BY DESCRIPTOR fval.
CALL “FPUTL™.

DIBOL-83

XCALL FPUTL(fval)

XCALL FPUTL

MACRO-11

$FDV ARG=arglst,FNC=LST,REQ= reglst,VAL=val,LEN=len

Form Driver Calls 6-43

Inputs and Outputs

High-Level

Language MACRO-11

Argument Keyword or

Abbreviation Offset Requirement or Value

Inputs

- ARG A pointer to the Argument List.

- REQ A pointer to the Required Arguments
List.

- LEN The length of the data to be displayed

(must be —1 for ASCIZ strings and 0 for
clearing the last line of the screen). (An
input value for MACRO-11 only.)

FVAL VAL The string to be displayed on the last
line of the screen.

Outputs

None None The status code is set. For MACRO-11
only, RO points to the Argument List.

Returned Status Values and Codes

Status Value

High-Level Status Code
Languages (MACRO-11) Meaning
1 FS$SUC Successful completion.

-16 FE$DLN Data specified for output too long
(truncated by Form Driver).

—20 None Wrong number of arguments in call.
(For high-level language programs only.)

-21 None Impure area not yet initialized. (For

high-level language programs only.)

6-44 Form Driver Calls

6.20 FRETAL - Return Values for All Fields

FRETAL returns a concatenated string of the current values for all fields in
the form. The order of the fields is the same as for the FGETAL call.

BASIC-PLUS-2 and FORTRAN

CALL FRETAL(fval)

COBOL

CALL "FRETAL" USING BY DESCRIPTOR fval.
DIBOL-83

XCALL RETAL(fval)

MACRO-11

$FDV ARG=arglst, FNC=RAL ,REQ= reglst

Form Driver Calls 6-45

Inputs and Outputs

High-Level
Language
Argument
Abbreviation

Inputs

Outputs

None

FVAL

MACRO-11
Keyword or
Offset

ARG
REQ

None

F$LEN(RO)
F$VAL(RO)

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments
List.

The status code is set. For MACRO-11
only, RO points to the Argument List.

The total length of all fields in the form.

The concatenated values for all fields in
the form. For MACRO-11 only, a
pointer to the concatenated fields in the
impure area.

Returned Status Values and Codes

Status Value
High-Level
Languages

1
12
—20

-21

~22

6-46 Form Driver Calls

Status Code

(MACRO-11) Meaning

FS$SUC
FE$NOF

None

None

None

Successful completion.
No fields defined for current form.

Wrong number of arguments in call.
(For high-level language programs only.)

Impure area not yet initialized. (For
high-level language programs only.)

Returned string is longer than the
declared variable length. (BASIC-PLUS-
2 only.)

- 6.21 FRETN - Return the Value for the Specified Field

The most common use of the FRETN call is to get the value of a particular
field, after a call to get all fields (FGETAL). The FRETN call can be issued at
any time after the Form Driver displays the form. The FRETN call always
returns the current contents of a field.

By using the FGETAL and FRETN calls to complement each other, you avoid
having your task deal with a buffer that contains all the operator responses for
the form. You can still take advantage of the Form Driver’s management of all

terminal interaction and use the FRETN call to access one field at a time.
Other calls can be issued between FGETAL and FRETN.

BASIC-PLUS-2 and FORTRAN
CALL FRETN(fval,fid[fidx])
COBOL

CALL "FRETN"™ USING BY DESCRIPTOR fval, BY DESCRIPTOR fid
[,BY REFERENCE fidx].

DIBOL-83
XCALL FRETN(fval fid[fidx])
~ MACRO-11

$FDV ARG=arglst,FNC=RTN ,REQ= reqlst, NAM=fld,NUM=idx

Form Driver Calls 6-47

Inputs and Outputs

High-Level

Language MACRO-11
Argument Keyword or
Abbreviation Offset
Inputs

= ARG

-~ REQ

FID NAM

FIDX NUM
Outputs

None None

= FSLEN(RO)
FVAL F$VAL(RO)

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments
List.

A field name. For MACRO-11 only, a
pointer to a 6-byte ASCII field name.

A field index for the specified field
(when the field is indexed).

The status code is set. For MACRO-11
only, RO points to the Argument List.

The length of the field.
The field value, including padding.

Returned Status Values and Codes

Status Value

High-Level Status Code
Languages (MACRO-11) Meaning
1 FS$SUC Successful completion

-11 FE$FLD Specified field does not exist (invalid
field name or index).

-20 None Wrong number of arguments in call.
(For high-level language programs only.)

! None Impure area not yet initialized. (For
high-level language programs only.)

-22 None Returned string is longer than the

6-48 Form Driver Calls

declared variable length. (For high-level
language programs only.)

6.22 FSHOW - Display a Form

The Form Driver clears only the portion of the screen required for the specified
form and, beginning at the starting line number, clears the screen and displays
the form. When first displayed, the form includes all text and the default values
for all fields. The Form Driver clears any fields for which defaults were not
assigned with the Form Editor.

If a starting line number is not specified in the call, the Form Driver uses the
starting line number that was assigned with the Form Editor.

If a first line is specified in the call, the Form Driver starts to display the form
at that line. If the form description specifies that the entire screen is to be
cleared (Lines 1 through 23), the Form Driver ignores the line number
specified in the call.

BASIC-PLUS-2 and FORTRAN

CALL FSHOW(fnam/,line])

COBOL

CALL “"FSHOW'" USING BY DESCRIPTOR fnam[,BY REFERENCE linel.
DIBOL-83

XCALL FSHOW(fnam/,line])

MACRO-11

$FDV ARG=arglst,FNC=SHO,REQ= reqlst,NAM=form,NUM=line

Form Driver Calls 6-49

Inputs and Outputs

High-Level

Language MACRO-11
Argument Keyword or
Abbreviation Offset
Inputs

= ARG

- REQ

FNAM NAM

LINE NUM
Outputs

None . None

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments
List.

A form name. For MACRO-11 only, a
pointer to a 6-byte form name.

The explicit starting line number for the
form, overriding the line number
assigned with the Form Editor.

The status code is set. For MACRO-11
only, RO points to the Argument List.

Returned Status Values and Codes

Status Value

High-Level Status Code
Languages (MACRO-11) Meaning
1 FS$SUC Successful completion.

-6 FE$ICH Invalid channel under number specified.

-7 FE$FCH Form library not open on specified
channel.

- 8 FE$FRM Invalid form definition.

-9 FE$FNM Specified form does not exist.

-10 FE$LIN Invalid first line number to display
form.

-18 FES$IOR Error encountered reading form library
(an FCS or RMS system error code that
provides more detail can be found with
the FSTAT call and is returned in the
second word of the status block).

-20 None Wrong number of arguments in call.
(For high-level language programs only.)

-21 None Impure area not yet initialized. (For

6-50 Form Driver Calls

high-level language programs only.)

6.23 FSPOFF - Turn Supervisor-Only Mode Off

When supervisor-only mode is on (the default choice), the Form Driver treats
fields with the Supervisor Only attribute as display-only. The operator cannot
enter data in such fields. With the FSPOFF call, your program can turn
supervisor-only mode off, making fields with the Supervisor Only attribute
accessible to the operator.

BASIC-PLUS-2 and FORTRAN
CALL FSPOFF

COBOL

CALL "FSPOFF".

DIBOL-83

XCALL SPOFF

MACRO-11

$FDV ARG=arglst,FNC=SPF ,REQ=reqlst,

Inputs and Outputs

High-Level

Language MACRO-11

Argument Keyword or

Abbreviation Offset Requirement or Value

Inputs

- ARG A pointer to the Argument List.

- REQ A pointer to the Required Arguments
List.

Outputs

None None The status code is set. For MACRO-11

only, RO points to the Argument List.

Returned Status Values and Codes

Status Value

High-Level Status Code
Languages (MACRO-11) Meaning
1 FS$SUC Successful completion.
-20 None Wrong number of arguments in call.
(For high-level language programs only.)
-21 None Impure area not yet initialized. (For

high-level language programs only.)

Form Driver Calls 6-51

6.24 FSPON - Turn Supervisor-Only Mode On

The FSPON call turns supervisor-only mode on (the original or default
condition). Fields having the Supervisor Only attribute are handled by the
Form Driver as display-only; the terminal operator cannot access them.

BASIC-PLUS-2 and FORTRAN
CALL FSPON

COBOL

CALL "FSPON".

DIBOL-83

XCALL FSPON

MACRO-11

$FDV ARG=arglst,FNC=SPN, REQ=reglst

Inputs and Outputs

High-Level

Language MACRO-11

Argument Keyword or

Abbreviation Offset Requirement or Value

Inputs

- ARG A pointer to the Argument List.

- REQ A pointer to the Required Arguments
List.

Outputs

None None The status code is set. For MACRO-11

only, RO points to the Argument List.

Returned Status Values and Codes

Status Value

High-Level Status Code
Languages (MACRO-11) Meaning
1 FS$SUC Successful completion.
—20 None Wrong number of arguments in call.
(For high-level language programs only.)
-21 None Impure area not yet initialized. (For

high-level language programs only.)

6-52 Form Driver Calls

6.25 FSTAT - Return the Status From the Last Call

The FSTAT call returns the status from the last call to the Form Driver. The
secondary status, STAT2, returns an RMS error code, depending on the
version of the Form Driver you are using. This STAT2 value is useful only
when the value of STATUS is —4 or —18, indicating a problem while opening
or reading a form library file. The FCS error codes are documented in the
RSX-11 I/O Operations Manual. The RMS error codes are documented in the
RMS-11 User’s Guide.

BASIC-PLUS-2 and FORTRAN

CALL FSTAT(stat/ stat2])

COBOL

CALL “FSTAT"™ USING BY REFERENCE statl ,BY REFERENCE stat2].
DIBOL-83

XCALL FSTAT(stat/,stat2])

Inputs and Outputs

High-Level

Language MACRO-11

Argument Keyword or

Abbreviation Offset Requirement or Value

Inputs
None -
Outputs
STATUS

A numeric code for the completion
status of the last Form Driver call that
was executed.

STAT2 = A numeric RMS or FCS status code for
detailed information when the status
value is —4 or —18.

Form Driver Calls 6-53

Returned Status Values and Codes

Status Value
High-Level
Languages

6-54 Form Driver Calls

Status Code
(MACRO-11)

FS$SUC

None

None

Meaning
Successful completion.

Wrong number of arguments in call.
(For high-level language programs only.)

Impure area not yet initialized. (For
high-level language programs only.)

Chapter 7
Form Driver Programming
Techniques and Examples

This chapter discusses programming techniques for using the Form Driver.
The techniques discussed include scrolling, simultaneous display of multiple
forms, emulating the FGETAL call with FGET and FPFT, and using indexed
fields. The last section contains examples of Form Driver programming
techniques.

7.1 Scrolling Techniques

A scrolled area is defined as a number of consecutive lines with identical
format. The purpose of the scrolled area is to allow entry, edit, and review of
more data than can be displayed on the screen at one time. It is, in effect, a
window into a data base managed by your calling task. The size of the data
base is determined by your task, and size is not limited by the Form Driver’s
impure area.

Under the direction of your task, the Form Driver controls the scrolled area
using a series of calls to get data and to process field terminators. The Form
Driver maintains a current line in a scrolled area and restricts your task to
accessing that line only. Thus, the Form Driver ignores the index value
argument in a scrolled area.

When a form is displayed, the current line in each scrolled area is initialized to
the top line. The current line’s identity is updated when the Form Driver
processes field terminators.

To provide complete support for scrolling, your task must analyze the field
terminators to be processed and update the screen with the appropriate data
from the data base. To do this, the task must maintain pointers into the data
base to the current line and the current window of the scrolled area. With this
information, your task can control the scrolled area and the position of the
current line..

When lines are scrolled forward, the task must provide the data to be displayed
on the bottom line of the scrolled area. When lines are scrolled backward, the
task must provide the data to be displayed on the top line of the scrolled area .
Therefore, your task must know the number of lines in the scrolled area and
maintain pointers into the data base for the current top and bottom lines of
your screen as the data is scrolled forward and backward.

7-1

To some extent, when a scrolled area is scrolled physically, it is under the
control of the application program. If the current line of a scrolled area is the
bottom line, the Form Driver will always scroll the area when the scroll forward
terminator is processed. If the current line is not the bottom line, the area is
scrolled only if the application program specifies data to update the bottom line
in the Form Driver call to process the scroll forward terminator (FPFT).
Otherwise, the cursor moves down one line and that line becomes the new
current line.

The opposite applies to scroll backward. If the current line is the top line, scroll
backward always causes the scrolled area to scroll. If the current line is any
other line, the area scrolls only if data to update the top line is specified in the
Form Driver call to process the scroll backward terminator. Otherwise, the
cursor moves up one line, and that line becomes the new current line.

The Form Driver provides calls to get the current scrolled line (FINLN) and to
output data to the current scrolled line (FOUTLN) to aid you in implementing
support for scrolled areas. If you wish to validate fields within a scrolled area
on an individual basis, you can use calls to get a specified field (FGET) in
combination with the call to process a field terminator (FPFT) to handle input
in a scrolled line.

The calls to get all fields (FGETAL) and to get any field (FGETAF) are illegal
for a form that contains a scrolled area. The call to output data to all fields
(FPUTAL) is legal for a form with a scrolled area only in the special case that
restores the default values to all fields.

When you define forms containing scrolled areas, remember that the Form
Driver does not maintain text within a scrolled area (other than field-marker
characters) after the text scrolls off the screen.

If, however, you do not wish to support all the features of scrolling, you can opt
to display error messages instead of processing certain field terminators.

7.2 Three Common Scrolling Methods

The three common methods described below for using scrolled areas do not
exhaust the possibilities. You might think of other methods more suitable for
your application.

7.2.1 Entry, Edit, and Review

The first method can be called entry, edit, and review. This method uses a
scrolled area to gather many lines of data, each one of which contains several
fields. In this case, operator interaction with the form is similar to operator
interaction with an FGETAL call. The scrolled area acts as a window into a
segment of the data being collected. The operator is free to move about the
form arbitrarily and to change the input data. When finished, the operator
presses the ENTER key to signal that the data is complete.

7-2 Form Driver Programming Techniques and Examples

If this method is to be used, your task must establish a data array containing
enough space for the maximum number of scrolled lines desired. Employing the
calls to get a scrolled line (FINLN) and process a field terminator (FPFT), the
task exchanges control with the Form Driver and saves the data line-by-line as
it is entered. Whenever the Form Driver passes a scrolling field terminator
back to the application, the task must take appropriate action to position itself
in the array.

Your task can control on which line of the scrolled area the Form Driver
accepts data by using the call to process a field terminator (FPFT). Data to be
displayed can be passed on the top or bottom line of the scrolled area. If no
data is passed, the Form Driver simply moves the cursor up or down one line,
provided the cursor is not on the first or last line of the scrolled area.

While scrolling, it is possible to reach the boundary of the available data space.
In this situation, your task might, without processing the field terminator,
print a line of text on the last line of the screen informing the terminal
operator of the situation. The task can then reissue the call to get a scrolled
line (FINLN).

If you wish to initialize the scrolled area to values other than the defaults for
the fields it contains, you can issue calls to output a scrolled line (FOUTLN)
and to process a field terminator (FPFT) along with the scroll forward and
scroll backward terminators. Each line is filled by the FOUTLN call, followed
by the FPFT call scrolling forward with no data passed. In this way, each line
is filled in turn. After the last line is filled, no scroll forward is performed. You
can reposition the cursor to the desired line by issuing several FPFT calls with
scroll backward terminators.

If you want to reinitialize all scrolled area lines on the screen with their default
field values, you can use the call to put all fields (FPUTAL); this passes no
data. The entire form is then reinitialized.

A form can have more than one scrolled area, or can be complex, because
several nonscrolled fields are scattered on either side of the scrolled areas. In
this situation, your task can emulate a get all fields operation using the
following procedure: the task uses a field name of asterisk (*) to get the first
field. Get-field (FGET) and process-field-terminator (FPFT) calls are then
used until the field returned from the FPFT call is in a scrolled area. The
method of scrolling through an area line-by-line can then be used until the
terminator received is one of the exit-scrolled-area terminators. At that point,
control returns to the previous loop, with the ENTER key terminator signaling
that the form is complete.

Form Driver Programming Techniques and Examples 7-3

7.2.2 Normal and Display Only Fields

The second programming method for scrolled areas employs scrolled lines
containing both normal and Display Only fields. In this method, the
application task uses calls to get a field (FGET) to accept data from the
operator. The task then validates fields individually. Using data entered by the
operator, the task also computes, or finds in a data base, new values for Display
Only fields. These new values are then output to the form by means of the call
to put a field (FPUT).

With this method, the task must build scrolled lines from the individual fields
so that the call to process a field terminator (FPFT) can be used data can be
output to the top and bottom lines of the area when scrolling takes place. (The
algorithm employed for the actual scrolling is essentially the same as in the
first method described above.)

7.2.3 Reviewing a Data List

A third method of scrolling is useful for reviewing a list of data. In this method,
a task provides access to a long list of data or other information and allows the
operator to review the data or read the information. It is not possible, however,
to get a scrolled line (FINLN) in a scrolled area whose fields are all Display
Only. To circumvent this difficulty, you can use a single character field with
the No Echo attribute to obtain a field terminator, thus allowing the task to
scroll lines of data. The cursor appears on the line in the No Echo field to mark
the point of interest for the operator.

7.3 Simultaneous Display of Multiple Forms

You can, if you wish, display more than one form at a time. If you specify a line
number other than zero as the beginning of a form and use FSHOW rather
than FCLRSH, the Form Driver offsets the form dynamically at run-time to
overlay the currently displayed form. Keep in mind, however, that unless you
provide a separate impure area for each form on the screen, the Form Driver
knows about only the last form displayed, and your task can reference only that
form.

In designing an application to display multiple forms simultaneously, it is
important to define the HELP forms correctly. When the Form Driver restores
the screen after a HELP form has been displayed, only the form for which the
Form Driver currently has the impure area pointer can be restored. If, for
example, two forms were displayed and the HELP form cleared the entire
screen, only one form would be restored. To avoid this, each HELP form
should clear only the area of the screen cleared by the form with which it is
associated (as defined by the first and last line numbers).

The screen refresh function redisplays only the current form. Any

HELP or other forms that are also on the screen are not refreshed and are
therefore erased from the screen.

7-4 Form Driver Programming Techniques and Examples

7.3.1 Impure Areas

Separate impure areas are required only if several forms are to be accessed
interchangeably by calls to the Form Driver to get or put fields. If your
application program is going to display one form, complete the processing for it
and then display the next form without erasing the first. Only one impure area
is required as long as your application makes no attempt to access the first
form again. In this manner, any number of forms can be displayed
simultaneously using only one impure area.

When you use more than one impure area to display multiple forms
simultaneously, the task can switch control freely between the two forms. The
forms themselves and any HELP forms they call upon must be defined with
line numbers that do not interfere with each other.

7.3.2 HELP Forms

Displaying multiple forms simultaneously is particularly useful for HELP
forms. It is possible to define HELP forms so that when displayed they leave
the current form intact on the screen. Only the portion of the screen specified
in the HELP form definition is cleared. Thus, if the HELP form is defined to
be displayed between lines 15 and 23, the Form Driver clears only that portion
of the screen. The original form occupies the remainder of the screen. Note,
however, that if the Form Driver displayed the initial form with a line offset, it
will use the same number to offset the HELP form. If the HELP form does not
fit on the screen after the offset is applied, the Form Driver returns an error to
your task. If you define a HELP form or any other form in its form description
as being displayed between lines 1 to 23, the Form Driver clears the entire
screen and, ignoring the starting line number in a call, displays the form as
defined. When a HELP form and a current form are displayed simultaneously,
the Form Driver redisplays the current form completely when the terminal
operator signals that he or she is finished with the HELP form. All or any part
of the HELP form that does not overlap the current form remains on the
screen.

Form Driver Programming Techniques and Examples 7-5

7.4 Emulating the FGETAL Call by Combining the FGET and FPFT

Calls

The principal advantage of using the FGETAL call to get all fields in a form
(FGETAL) is that this causes the Form Driver to take charge of all input at
the terminal. An FGETAL call returns to your task only when the terminal
operator signals completion by pressing the ENTER or RETURN key. The
disadvantage of FGETAL, however, is that your task cannot respond to and
edit input on a field basis as it is entered by the operator.

You can, however, emulate an FGETAL call with a combination of the get field
(FGET) and process-field-terminator (FPFT) calls. A similar emulation can be
performed with the FGETAF (get any field) and FPFT calls. (See Section 7.7.1
for an example of this.)

The call to return all fields (FRETAL) can be used to obtain the entire record
for processing after the terminal operator has entered the form.

7.5 Using the FGETAF Call

If a form contains a number of fields any one of which would be sufficient input
for the form, the call to get any field (FGETAF) is particularly useful. For
example, a form might contain fields for an account number and a name. Your
task needs one of these to locate a customer’s record in a data base. The call to
get any field (FGETAF) allows the terminal operator to enter data in either of
the two fields. The operator can choose the one for which information is
available. The Form Driver returns only the data for the chosen field to the
task.

In a form that contains a menu from which the operator is to select one item,
FGETATF can be used to allow the operator to position the cursor in the chosen
field and press the ENTER key.

7-6 Form Driver Programming Techniques and Examples

7.6 Using Indexed Fields

Identical fields on consecutive lines of a form can be defined as indexed.
Indexed fields make it possible to design smaller forms with smaller impure
area requirements. If a form has many fields, indexing can be an important
advantage.

Your task can reference any field in a form, whether indexed or not indexed, by
specifying the field name and index value (the index is an integer from 1 to n,
where n is the repeat count for the field). If the field is not indexed, the Form
Driver ignores the index value.

The order in which the Form Driver moves through indexed fields depends on
whether the fields are defined as a vertical or horizontal array. If the array is
defined as vertical, the Form Driver moves down the form through each
element of the array before moving to the field after the first element.

You can define multiple fields as a horizontal array if:

1. The first occurrence of each field is on the same line of the form.
2. The repeat count is the same for all fields.

3. There are no intervening fields on the first line of the array.

If a field defined as a horizontal array does not meet all the above
requirements, it will default to a vertical array.

In a horizontal array, the Form Driver moves across each line of the array,
through each field, before going on to the next line. Thus, horizontally indexed
fields allow grouping of related fields together, not only in the order in which
data is entered on the screen but also in the order of the data returned by a call
to get all fields (FGETAL).

Form Driver Programming Techniques and Examples 7-7

7.7 Examples of Programming Techniques

This section contains several code segments written in FORTRAN IV, The
programming techniques are the same for all languages. The last part of this
section is a series of MACRO-11 program examples.

7.7.1 Emulating FGETAL with FGET and FPFT

The FGET and FPFT calls can be used to emulate a call to get all fields yet still
allow the calling task to validate responses immediately on entry, before
proceeding to the next field in the form.

CALL FCLRSH C(FORM)

CALL FGET (RESP, TERM, n#u)

CALL FGCF (FIELD>

GOTO0 2

' Display the form

! Get first field in form

! Get the name of the field
! Validate response if

L necessary

1 CALL FGET (RESP, TERM, FIELD) ! Get a field

Validate the user’s response.
Following validation, the variable "“ERRVAL"™ is zero
if the response is valid, non-zero if invalid.

IF CERRVAL .NE. 0) 60TQ 1 ! Get field again on error
IF CTERM .EG. 0) GOTO 190 ! Branch if terminator was

CALL
CALL
GOTOo

10 CALL

FPFT
FGCF (FIELD)
1

FRETAL (DATA)

! MENTER"

! Else process field terminator
! Get name of field to get

! Get next field

! Return responses for all
' fields

7-8 Form Driver Programming Techniques and Examples

7.7.2 Table Lookup

Get tbe response for a field and validate it against a table of valid responses.
The list of valid responses is contained in the form as named data. (The data

TATIE 1§ (e Same 28 0F (el Tame,

As an example, consider the field '"MONTH’ defined as picture AAA. The
corresponding named data '"MONTH’ contains the table of valid responses for
the field in the form.

Note that the named data is returned as an ASCII string terminated with a
null.

1 CALL FGET (VALUE, TERM, FIELD) ! Get the field
CALL FLEN (LENGTH, FIELD) ! Get the field length
CALL FNDATA (FIELD, VALID) ! Get corresponding named data
PTR = 1 ! Initialize index

2 DO 3 I = 1,LENGTH ! Check for valid response

IF (VALID(PTR+I-1) .EX. 0> GOTO S ! Error if not
IF (VALID(PTR+I-1)> .NE. VALUECI)) GOTO 4

<] CONTINUE
GOTO 6
4 PTR = PTR + LENGTH ! Update index
GOTO 2
S CALL FPUTL ("Illegal response to field") ! Display error
! message
GOTO 1 ! Get field again
6

Form Driver Programming Techniques and Examples 7-9

7.7.3 Form Linkage

Name(l (laJLa can Le use(l to provic]e automatic form linkage independent of the

application program.

CALL FCLRSH (“FIRST™) ! Display form
[1]
1 CALL FGET (RESP, TERM, ") 1 Get first field in form
CALL FGCF (FIELD) ! Get the name of the field
GOTO 3 ! Process response
2 CALL FGET (RESP, TERM, FIELD) ! Get a field
3
Process response
IF CERRVAL .NE. 0) GOTO 2 ! Get field again on error
IF C(TERM .EQ. 0) GOTO 4 ! Branch if terminator “ENTER"
CALL FPFT ! Else process field terminator
CALL FGCF (FIELD) ! Get name of field to get
GOTO 2 ! Get next field
4 IF CFNDATA ("NXTFRM", FORM) .LT. 0) GOTO S ! Get name of
! next form
CALL FCLRSH (FORM) ! Display it if there is one
5 STOP ! Else exit

7-10 Form Driver Programming Techniques and Examples

7.7.4 Menus and Application Data

Named data can be used to facilitate development of menu driven applications
and to store form-specific information.

As an example, consider the menu form named FIRST in Appendix B, Figure
B-1. The named data contains the name of the appropriate form to display for
each of the possible functions and the name of the corresponding file to be
written.

CALL FCLRSH ("™MENU"™) ! Display menu form

1 CALL FGET (RESP, TERM, "FIELD") ! Get response

IF C(FNDATA (RESP, FORM) .GT. 0) GOTO 2 ! Get corresponding
! named data

CALL FPUTL ("lllegal choice") ! If none, invalid response

GOTO 1 ! Get the field again
2 DNAM = RESPC1:1)//"F" 1 Get named data name for file
CALL FNDATA (DNAM, FILE)D ! Get name of corresponding
t file
CALL FCLRSH C(FORM) ! Display form and process

Form Driver Programming Techniques and Examples 7 -11

- —

7.7.5 |Initializing a Scrolled Area

This example

illustrates how to initialize a five line scrolled area in a form.

CALL FCLRSH (“FORM") ! Display form
c
C Initialize the first line in the scrolled area
C
CALL FOUTLN C“™FIELD"™, AC1,1)) ! Initialize first line
[of
C Now scroll forward and initialize the next line until the
C screen is initialized.
(3
DO 11 = 2 T0 S
CALL FPFT (8, “FIELD") ! Scroll forward to next line
CALL FOUTLN C"FIELD"™, AC1,1)) ! Initialize line
1 CONTINUE

c

C Now move back to the first line of the scrolled area to
C solicit input.

(G
DO 21 =170 4
CALL FPFT (3, "FIELD"™) ' Scroll backward to previous
! line
2 CONTINUVE

7-12 Form Driver Programming Techniques and Examples

7.7.6 MACRO-11 Programming Examples

This section contains MACRO-11 examples. Each of the following examples
assumes that the initialization code precedes it.

.MCALL $FDV,$FDVDF,$EXIT
$FDVDF ; DEFINE ARGUMENT LIST SIZES
; (F$ASIZ AND F$RSI12)

1S1z = 1024. ; IMPURE AREA SIZE IN BYTES

ARGLST: .BLKB F$ASIZ ; ALLOCATE SPACE FOR ARGUMENT
3 LTSI

REQLST: .BLKB F$RSIZ ; ALLOCATE SPACE FOR REGUIRED
3y ARG LIST

IMPURE: .WORD 1s12 ; SIZE OF IMPURE AREA IN BYTES
; IN FIRST WORD

.BLKB IS1z-2 ; THE IMPURE AREA
STAT: .BLKW 2 ; 2 WORD STATUS BLOCK REQUIRED

; Initialize the required arguments list

mov #REQLST,RO ; REQUIRED ARGUMENTS LIST
; POINTER
mMov #STAT,F$STS(RO)D s STATUS BLOCK POINTER
MOVE #1,F$CHNCROD ; LIBRARY CHANNEL NUMBER
Mov # IMPURE ,F$IMP(RO) ; IMPURE AREA POINTER
$FDV ARG=#ARGLST ,REQ=#REQLST ; INIT REQ ARG LIST
;3 POINTER

Form Driver Programming Techniques and Examples 7-13

In each of the following examples, the Argument List pointer is specified in the
first call to the Form Driver only. The pointer does not have to be specified in

succeeding calls unless RO (which contains the Argument List pointer) is
modified.

The following examples also assume a debugged application. In such an
application, the Form Driver should return no errors except for I/O errors
resulting from reading forms. For this reason, the examples below check for
errors only on return from calls to display forms or to solicit input from the
terminal operator. An I/O error can result if the terminal operator requests a
HELP form or screen refresh.

7.7.6.1 Example 1: FGET/FPFT in Place of FGETAL — This example
emulates a call to get all fields by using successive calls to get a specified field
and process a field terminator.

FIELD1: .ASCII /* / ; FIRST CHARACTER OF FIELD

; NAME 7/

; TO GET FIRST FIELD IN FORM
FORM: .ASCII /FORM / ; FORM NAME

$FDV ARG=#ARGLST,FNC=CSH,NAM=#FORM, NUM=4#0

; DISPLAY
s FORM
BCS ERROR ;3 BR IF 1/0 ERROR

108: $FDV NAM=4FIELD1 i INITIALIZE ARGUMENT LIST FOR
s FIRST

;3 FIELD TO GET

;s Get a specified field

208: $FDV FNC=GET ;3 GET THE SPECIFIED FIELD
BCS ERROR ; BR IF 1/0 ERROR
Mav F$NAMCRO) ,R1 ; GET POINTER TO FIELD NAME
CALL PRSFLD ;3 CALL ROUTINE TO PROCESS
; FIELD
BCC 30¢ ; ON RETURN C-CLR IF VALID
3 INPUT

3 ELSE R1 POINTS TO ASCIZ
; ERROR MESSAGE

7-14 Form Driver Programming Techniques and Examples

; Invalid input

; Valid

30¢:

$FDV FNC=LST,VAL=R1,LEN=#-1
; OUTPUT ERROR MESSAGE TO

; LAST LINE
BR 20¢ ; GET SAME FIELD AGAIN
input
$FDV FNC=TRM ; PROCESS FIELD TERMINATOR
CcmP HFTSNTR,FS$TRM(ROD ; FIELD TERMINATOR = ENTER?
BNE 20¢ ; BR IF NOT
CMP #FS$INC,STAT ; ELSE CHECK FOR INCOMPLETE
; FORM
BEQ 20¢ ; GET FIELD IF FORM INCOMPLETE

; Done with form, reinitialize to get again

40¢:

ERRMSG:

ERROR:

$FDV FNC=PAL,LEN=#0 s RESTORE DEFAULT VALUES TO
i ALL FIELDS
BR 10¢ ;7 GET FORM AGAIN

.ASCIZ *Fatal 1/0 Error*

.EVEN

$FDV FNC=LST, VAL=#ERRMSG, LEN=#-1
$EXIT

Form Driver Programming Techniques and Examples 7-15

7.7.6.2 Example 2: Named Data — This example illustrates a possible use
of the named data feature.

MENU:

.ASCII /MENU / ; FORM NAME
SELERR: .ASCII /ERROR - SELECT ANOTHER FORM/ ; ERROR MESSAGE
ERRLEN = . ~ERRMSG

.EVEN
; Display menu form - a form with a list of functions with a
; number from 1-S associated with each function. The form
i contains only one field - a 1-byte numeric field. Therefore

; the data returned from a call to get all fields is

; guaranteed

$FDV
BCS

$FDV
BCS
MOVB
SUB

to be a 1-byte ASCII digit from 0-9.

ARG=#ARGLST,FNC=CSH,NAM=#MENU,NUM=#0 ; DISPLAY FORM

ERROR ; BR IF 1/0 ERROR

FNC=ALL ;7 GET ALL FIELDS

ERROR ; BR IF 1/0 ERROR

@F $VALC(RO) ,R1 ; GET 1 BYTE RESPONSE

#70,R1 ; CONVERT DECIMAL TO BINARY VALUE

7-16 Form Driver Programming Techniques and Examples

; Get named data by number (using number entered in menu form)

$FDV FNC=DAT,NAM=#0,NUM=R1 ; GET NAMED DATA

BCC 20¢ 3 IF C-CLR, NAMED DATA FOUND
; ELSE INVALID NUMBER C(INVALID
; INPUT)

;7 Invalid input in menu form

$FDV FNC=LST,VAL=#SELERR,LEN=#ERRLEN ; OUTPUT MESSAGE TO

; LAST LINE

BR 10¢ ; GET FIELD AGAIN
; Valid input - display requested form
20¢$: $FDV FNC=CSH,NAM=F$VALC(RO) ,NUM=#0 ; DISPLAY FORM
BCS ERROR ; BR IF 1/0 ERROR
ERRMSG: .ASCIZ *Fatal 1/0 Error*

.EVEN
ERROR: $FDV FNC=LST, VAL=#ERRMSG, LEN=#-1

$EXIT

Form Driver Programming Techniques and Examples 7-17

7.7.6.3 Example 3: Combining the FGETAL and FRETN Calls — This
example illustrates use of the get all fields and return field calls.

FORM: .ASCII

FLDLST: .ASCII
.WORD

FIELD
.ASCI1I
.WORD
.ASCII
.WORD
.ASCII
.WORD

ENDLST =

$FDV

BCS
$FDV
BCS
MoV
108: $FDV
ADD
CALL
CMP
BLo

ERRMSG: .ASCIZ
.EVEN

/FORMO1/

/FIELD1/
PRSF1

/FIELD2/
PRSF2
/FIELD3/
PRSF3
/FIELD4/
PRSF 4

ARG=#ARGLST,FNC=CSH,NA

ERROR

FNC=ALL

ERROR
#FLDLST,R1
FNC=RTN,NAM=R1
#6,R1

®8(R1)+
R1,#ENDLST

108

Fatal I1/0 Error

H

3

1

K
k]
?

k]

FORM NAME

LIST OF FIELD NAMES
AND ROUTINE TO PROCESS EACH

M=#FORM,NUM=#0 ; DISPLAY
FORM

BR IF 1/0 ERROR

GET ALL FIELDS

BR IF I1/0 ERROR

GET POINTER TO FIELD LIST
GET RESPONSE FOR FIELD
SKIP OVER FIELD NAME

CALL ROUTINE TO PROCESS FIELD
ALL FIELDS DONE?

REPEAT IF NOT

ERROR: $FDV FNC=LST, VAL=#ERRMSG,LEN=#-1

SEXIT

7-18 Form Driver Programming Techniques and Examples

7.7.6.4 Example 4: Using FGET to Synchronize with Terminal Operator —
This example shows use of a “special get” call to synchronize the task with the

terminal operator.

FORM1: .ASCII
FORM2: .ASCII
FIELD: .ASCII

$FDV

BCS
$FDV
BCS

Process data (get pointer

/FORMO 1/ ;
/FORMO2/ 3
/FLDNAM/ :

FORM 1
FORM 2
NAME OF DISPLAY-ONLY FIELD

ARG=#ARGLST,FNC=CSH,NAM=#FORM1,NUM=#0 ; DISPLAY

H
ERROR ;
FNC=ALL ;
ERROR :

length in R2)

$FDV

$FDV

BCS

$FDV
BCS

ERRMSG: .ASCIZ
.EVEN

FIRST FORM

BR IF 1/0 ERROR
GET ALL FIELDS
BR IF 1/0 ERROR

to data to output in R,

FNC=PUT,NAM=#FIELD,VAL=R1,LEN=R2 ; OUTPUT TO DISPLAY

FNC=GET,NAM=#0 3

ERROR 5

FNC=CSH,NAM=#FORM2 ;
ERROR H

Fatal 1/0 Error

; ONLY FIELD

DO GET WITH NO FIELD SPECIFIED

TO WAIT FOR USER ACKNOWLEDGMENT

BR If 1/0 ERROR

DISPLAY NEXT FORM
BR IF 1/0 ERROR

ERROR: $FDV FNC=LST, VAL=#ERRMSG, LEN=#-1

$EXIT

Form Driver Programming Techniques and Examples 7-19

Chapter 8
Preparing Your System for FMS-11 Applications

This chapter describes how to install and prepare your system for the FMS-11
application program. The three main topics are:

1. RSX system generation options
2. FMS installation procedures
3. FMS configuration procedures

8.1 RSX System Generation Options

With RSX-11M and RSX-11M-PLUS systems, the Form Driver depends on
terminal service and mapping features that you can select only when you
perform the system generation procedure.

8.1.1 Terminal Service Option

On RSX-11M systems with V4.2 software, the full-duplex terminal driver is
the driver that is built into your software system by default. You can run all
FMS software with the full-duplex terminal driver, and the Form Editor
requires that driver. The full-duplex terminal driver must include support for
get-multiple characteristics and set-multiple characteristics. However, to
provide support for FMS applications on unmapped RSX-11S and RSX-11M
systems, you can also build the Form Driver to run with the older, half-duplex
terminal driver. If the half-duplex terminal driver is used, it must provide
support for unsolicited input character AST and transparent read and write.

8.1.2 Mapping Options

Most FMS users build and use mapped RSX-11M and RSX-11M-PLUS
systems.

The advantages of mapped systems are:

1. Mapped systems provide a great deal more memory for applications than
unmapped systems.

9. The FMS Form Editor and Form Utility require a mapped system.

3. Using one system for all FMS-related work is more convenient than using
two systems for different parts of the work.

8-1

However, you can also build and use unmapped systems for your FMS
applications. In general, the Form Driver modules and your programs will work
properly. Because the Form Driver requires approximately 7500 bytes
(decimal) of memory, you have to limit the size of your FMS program to the
amount of memory remaining free for applications.

8.2 System Installation Procedures

To install all the FMS components, including the Form Driver modules, you
have to execute the indirect command file FMSINS.CMD to:

1. Copy the distribution files from the distribution volumes to the system
volumes.

2. Task build all FMS utilities.

3. Compile and task build the demonstration programs.

8.2.1 The RSX Procedure

To complete installation successfully, you must be logged in under a privileged
account. If you are installing FMS-11 on an RSX-11M-PLUS system, your
terminal must be set for MCR mode commands. It is assumed that FMS-11 is
being installed on the system device. All FMS-11 files are moved into account
[30,10]. A VT200 is required to run the Form Editor and the demonstration
programs.

Approximately 3600 disk blocks are required to install FMS-11/RSX.

In the installation procedure below, the parameter ’ddn’ is the name and unit
number of the device on which FMS-11 is being installed. The parameter 'dev’
is the name and unit number of the device on which the distribution media is
mounted.

Installation Procedure

MCR>ASN ddn:=SY: Make the installation device

MCR>UFD ddn:(30,10)
MCRYSET /UiC=[30,10])

Create the UFD for FMS-11

1
' the default system device
1
! Set the default UIC

For magnetic tapes on RSX-11M systems:
MCRY>ALL dev: ! Allocate the drive

MCRYFLX SY:=dev:FMSINS.CMD/DO ! Copy installation command
t file

For magnetic tapes on RSX-11M-PLUS systems:

MCR>MOU dev:/FOR ! Mount tape as foreign device
MCRIFLX SY:=dev:FMSINS.CMD/DO ! Copy installation command
t file

8-2 Preparing Your System for FMS-11 Applications

For disks on both systems:

MCR>MOU dev:FMSRSX Mount the disk
MCR>PIP SY:/NV=dev:FMSINS.CMD ! Copy installation command
1 file

For all media:

MCR>@FMSINS t Copy files from distribution
! media and build utilities
! and demo programs

The installation command file prompts for the distribution device. The FMS-
11 files are copied to account [30,10] on the system device. The Form Editor
(FED) and the Form Utility (FUT) are task built. The MACRO versions of the
demonstration program are built automatically. The BASIC-PLUS-2,
COBOL-11, COBOL-81, DIBOL-83, FORTRAN 1V, and FORTRAN-77
versions of the demonstration program are built only if the corresponding
compilers are installed in the system. If the FORTRAN-77 compiler is
installed in the system, it is assumed that the file LB:[1,1,]JF4POTS.OLB exists
as the FORTRAN-77 OTS. The installation command file asks the user if this
is the case. If not, the FORTRAN-77 versions of the programs cannot be built.

8.3 Configuration Procedure for the Form Driver

The Form Driver has several features you might want for some of your
applications, but not for all of them. For example, if you are using forms that
include fixed-decimal fields, you must use a version of the Form Driver that
provides fixed-decimal field support. Otherwise, since fixed-decimal field
support increases the size of the Form Driver by about 200 words, you might
want to use a smaller version of the Form Driver.

e Do you want to build the Form Driver without the SOB instruction?
e Do you want ONLY memory-resident form support?

e Do you want to delete fixed-decimal field support?

e Do you want to delete scrolled area support?

e Do you want debug error messages?

e Do you want support for the VT52 or VT100 terminal instead of the
vT200?

e Size of the directory buffers in blocks?
e Number of directory buffers?
e Number of libraries open at a time?

e Do you want support for other than full-duplex terminal service?
(RSX-11M/M-PLUS systems only)

Preparing Your System for FMS-11 Applications 8-3

To run the configuration procedure dialogue, the FMS software must be
installed on your system. The following commands invoke the procedure.

!or RSX-11M and RSX-11M-PLUS systems:

MCR>@F DVBLD (&)

8.3.1 Question Types and Defaults
The configuration dialogue uses two types of questions:
1. Yes and No questions.

2. Questions that ask you to type a number.

For any question, you can ask for a short explanation of the question by typing
the ESCAPE key in response to the question. After an explanation, the system
displays the current question again.

Yes and No questions are in the following form:

> * Text of the question? [Y/N]

You can respond as follows:

Type the ESCAPE key if you want an explanation.
Type Y and press the RETURN key for YES.

Type N and press the RETURN key for NO.

For the default response, press the RETURN key without typing another
key. The default to all Yes and No questions is NO.

Questions that ask you to type a value are in the following form:

> * Text of the question [D R:x-y D:21:

In the configuration dialogue, all numeric responses are in decimal. In the
model above, the first letter D in the brackets stands for decimal. The second
field within the brackets shows the range of valid answers. In the model above,
R: stands for range, x stands for the smallest valid answer, and y stands for the
largest valid answer. The third field within the brackets shows the default

value. In the model above, D: stands for default, and z stands for the default
value.

You can respond as follows:

1. Type the ESCAPE key if you want an explanation.
2. Type a number within the specified range and press the RETURN key.

3. For the default response, press the RETURN key without typing another
key.

8-4 Preparing Your System for FMS-11 Applications

The following sections explain each of the configuration dialogue questions.
Each section begins by quoting the short explanation the system displays if you
type the Escape key in response to the question.

8.3.2 Do You Want to Build the Form Driver without the
SOB Instruction? [Y/N]:

“"Normally the Form Driver is built to take advantage of the
hardware SOB instruction. However, for those PDP-11 processors
that do not support the SOB instruction, the Form Driver can be
built to use a macro instead (adding about 50 words to its
size)."™

8.3.3 Do You Want ONLY Memory-Resident Form Support? [Y/N]:

“Normally, the Form Driver has support for both memory-resident
and media-resident forms. For an application running under
RSX-11S or which for other reasons must run in minimal memory,

select ONLY memory-resident form support to save space.”

Section 5.4 explains how to include memory-resident forms with your
programs.

8.3.4 Do You Want to Delete Fixed-Decimal Field Support? [Y/N]:

"If memory space is very critical and fixed-decimal fields are
not needed, about 200 words can be saved by deleting support for
fixed-decimal fields."

Chapter 2 explains fixed-decimal fields. If you do not know whether fixed-
decimal fields appear in any of the forms you are using, use the Form Utility to
get a printable description of each form and check each field description.
Chapter 3 describes how to use the Form Utility.

8.3.5 Do You Want to Delete Scrolled Area Support? [Y/N]:

“If memory space is very critical and scrolled areas are not
needed, about 500 words can be saved by deleting support for
scrolled areas.™

Chapter 2 describes how to create a scrolled area within a form, and Chapter 7
illustrates how to use scrolled areas. If you do not know whether any of the
forms you are using contain scrolled areas, use the Form Utility to get a
printable description of each form and check each field description. Chapter 3
describes how to use the Form Utility.

Preparing Your System for FMS-11 Applications 8-5

8.3.6 Do You Want Debug Error Messages? [Y/N]:

"While debugging an application, it is very helpful to have the
Form Driver signal errors in the application code at the
terminal. Once an application is debugged, a Form Driver without
this support should be used to save space and to avoid having
these messages appear to operators.™

Chapter 5 describes the debug error message features. Appendix E includes all
of the messages.

8.3.7 Do You Want Support for the VT52? [Y/N]:

“The Form Driver was designed to take advantage of the features
of the VT200 terminal. However, it is possible to build a Form
Driver to support the VT52 terminal. A single Form Driver
library can support either the VT200 or the VTS2 but not both.
In order to support both types of terminals, you must maintain
two Form Driver libraries.®

8.3.8 Size of the Directory Buffers in Blocks [D R:1.-2.D:1.]:

"One-block buffers provide for form libraries with about 60
forms. Two-block buffers provide for form libraries with about
120 forms."

Form library files and the directory buffers they require are needed only when
you are using media-resident forms. Therefore, if you select only memory-
resident forms in the first configuration dialogue question, the system does not
ask you this question or the questions described in the next two sections.

The size to use for directory buffers depends on several factors. A one-block
directory buffer is large enough for a 60-form (decimal) form library and a two-
block buffer is large enough for a 124-form (decimal) form library file. Each
form library file directory must reside in one directory buffer. When a directory
1s larger than the buffer size you have specified, only the forms for the part of
the directory that fits can be accessed. When the Form Driver attempts to
access a form for which there is no directory entry, the Form Driver signals
that it cannot find the form.

The size of the directory buffer is also the size of the buffer for reading forms.
Larger buffers allow faster access to forms because fewer I/O requests are
required to read the form description. Space can be saved by allocating smaller
buffers. The default directory buffer size is one block.

8-6 Preparing Your System for FMS-11 Applications

8.3.9 Number of Directory Buffers [D R:1.-20. D:1.]:

“"The time required to access form directories can be optimized by
keeping directories for more form libraries in memory at the

expense of memory space. Only one directory buffer is ever
required. Buffers are made available on a least-recently-used
basis."

The number of directory buffers depends on several factors. Space can be
reduced by allocating fewer buffers, but time to access form libraries is
increased. With only one directory buffer, you can use any number of form
library files simultaneously. The directories are read and reread as needed.
Time to access form libraries is decreased by allocating more directory buffers,
but the amount of space used is increased.

When you are using more form library files than the number of directory
buffers you have allocated, the directory buffers are reallocated on a least-
recently-used basis to optimize the directory buffer usage. When RMS support
is selected, sufficient pool space is allocated for simultaneous use of as many
form library files as you have specified. The following section describes how to
specify the number of form library files that you will be using simultaneously.
A one block buffer is also allocated for the open code of RMS to use.

8.3.10 Number of Libraries Open at a Time [D R:1.-20. D:1.]:

wSelect the maximum number of form libraries which must be open
at the same time."

Successive libraries are opened by changing the channel to the required
argument block. This channel corresponds to the logical unit number (LUN)
that is assigned by the task.

8.3.11 Do You Want Support for Other than Full-Duplex
Terminal Service? [Y/N] (RSX-11M/M-PLUS systems only):

“1f the application is to run under RSX-11S or in an unmapped
RSX-11M system or is very space critical, memory can be saved by
not using the full-duplex terminal driver. [If the application is
using another terminal driver, the Form Driver must be
reconfigured to operate. The terminal driver used must have
support for unsolicited input ASTs.’’

The RSX-11M/M-PLUS I/O Drivers Reference Manual describes the full-
duplex and half-duplex terminal drivers in detail.

Preparing Your System for FMS-11 Applications 8-7

For all systems:

After you have answered this question, the system displays the following
notice.

“"There are no more questions, It will take a few minutes to
assemble the Form Driver and build the object libraries."

At the end of the configuration procedure, the system produces the following
file in [30,10].

For RSX-11M/M-PLUS systems:

e FMSMAC.MLB, the FMS macro library.

For VT100 support:

e FDVLIB.OLB, the Form Driver library for applications that use FCS
support.

e FDVLRM.OLB, the Form Driver library for applications that use RMS
support.

For VT52 support:

e F52LIB.OLB, the Form Driver library for applications that use FCS
support.

e F52LRM.OLB, the Form Driver library for applications that use RMS
support.

8.4 Building and Running Your Application Tasks

8.4.1 Building and Running Application Programs

Application programs written in supported languages are built using the Task
Builder in the normal way. In this chapter, the separate sections for each
supported language include examples of task build procedures.

The high-level language interface object modules supplied are:

¢ HLLBP2.0BJ the interface for BASIC-PLUS-2.

¢ HLLCOB.OBJ the interface for COBOL-11 and COBOL-81.

e HLLDBL.OBJ the interface for DIBOL.-83.

* HLLFOR.OBJ the interface for FORTRAN IV and FORTRAN-77.

8-8 Preparing Your System for FMS-11 Applications

8.4.2 Considerations When Using ODL

A few considerations must be followed when you include the Form Driver in an
ODL structure.

The data module must always be in the root. To put it there, use the following
module specification.

For RSX systems:
FDVLIB/LB:FDVDAT

With the full-duplex terminal driver, the Form Driver can be placed on any
branch of the ODL by using a module specification.

For RSX systems:

FDVLIB/LB:FDV-FDVLIB/LB

With the full-duplex terminal driver, which can be used in applications running
under RSX-118, the following Form Driver factor must be included in the root.

For RSX systems:
FDVLIB/LB:FDVTIOD

The language interface modules should be placed with the Form Driver library
by using the following specification.

For RSX systems:
FORM: .FCTR HLLDFN-FDVLIB/LB:FDV-FDVLIB/LB

Preparing Your System for FMS-11 Applications 8-9

Appendix A

FMS System MACRO Library

NLIST
.ENABLE LC
.LIST
LTITLE FMSMAC - FMS Macro Library
'SBTTL Ili*ll{{l*’}I*l’ll}*lil*ll‘l.lil{{**ll
.SBTTL * ®
.SBTTL 3 FMSMAC &
.SBTTL % .IDENT /V02.0A/ L
«<SBTTL & *
.SBTTL l’*l’l{#l’i&lll’*il{*li’*ll{li’il’il!l{
.SBTTL
. IDENT /Vv02.00 /
COPYRIGHT (C)> 1985 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MA
MODULE: FMSMAC .MAC
Version: v02.00

1

MODIFIED BY:

$ARTS

k]

MACRO

Issues a .MCALL for other commonly used MACROS.

$ARTS
.MCALL $5AV20, $SAV30, $SAV50, BSECT
.MCALL ORIGIN, PSECT, FSYM$, NEGCOD

SIS
OB

. ENDM

;#

; $SAV20

.MACRO

. ENDM
i

; $SAV30
3

i

.MACRO

. ENDM
3+

3 $SAVS0

.ENDM

HERS

-MCALL $TTYIN, $TTINR,
.MCALL $TTYOUT, OFFSET,
NDF ,NEWC$P, NEWCS$P = 0
NE,NEWC$P, .MCALL SOB
$ARTS

SAVE REGISTERS 2-0

$SAV20
JSR R2,$5Av20
$SAV20

SAVE REGISTERS 3-0

$SAV30
JSR R3,$S5AV30
$SAV30

SAVE REGISTERS RS-RO

$SAV50
JSR RS, $5AVS0
$SAV50

A software substitute for the SOB instruction for old PDP-11s.

SOB R,A
DEC R
BNE A
SOB

$PRINT,
SETSYM

$TTFLS

; Documentation of use of ORIGIN and PSECT

.
1

A-2

;CAV
;CAV

d ORIGIN Section_name,List_of_Attributes
;s This defines the default .PSECT

5 PSECT Section_name,List_.of_Attributes
; This changes to a .PSECT (perhaps unnecessary)

; PSECT *

: This reverts back to the last .PSECT referenced with
s the ORIGIN macro.

. 4+

3 UNORG

H For internal use only. Normally defined by ORIGIN and
§ invoked by PSECT.

k]

.MACRO UNORG
.ENDM UNORG

;4'

3y ORIGIN
% Defines the PSECT to revert back to with PSECT *

.MACRO ORIGIN SECT,LIST
.MACRO UNORG
LLIST BEX

PSECT SECT,<LIST»
.ENDM UNORG

PSECT <SECT»>,<LIST»>
.NLIST BEX
.ENDM ORIGIN

; PSECT

3 Changes to a specified .PSECT or reverts back to
H the one defined by ORIGIN when PSECT * is used.

.MACRO PSECT SECT,LIST

LLIST BEX

allF IDN SECT,<*>
UNORG

.NLIST BEX
CMEXIT

i =

.IF NB «<LIST»
.PSECT SECT,LIST

.IFF
.PSECT SECT
.ENDC

.ENDC

.NLIST BEX

.ENDM PSECT

+

; $ERROR

D Print error message.

s .MACRO $ERROR LVL, TXT
3 .GLOBL $ARTER
§ PSECT .TEXT.,<D»

Siéraf = .

R <ASCIZ \N'LVL‘-"TXT’\
5 PSECT *

5 JSR R4, $ARTER

H .WORD ..A

3 . ENDM $ERROR

3y BSECT

H Define bit origin for bit definitions.

This MACRO is

; normally used in conjunction with the BS MACRO.

3 Defines the specified symbol as equivalent to the current
0 bit position and increments the bit counter to the next

{ position.

.MACRO BSECT SECTNM, ARG, INIT

.MACRO BS ARG1,GBL
IF NB <ARG1>
JIF B <GBL>
LLIST

ARG1 = SECTNM
.NLIST

=B
+ LIST
ARG1 == SECTNM
.NLIST

.ENDC

.ENDC

A4

SECTNM = SECTNM * 2

.ENDM BS
JIIF NDF ,SECTNM, SECTNM = 0
LLLE NB <INIT>, SECTNM = 1
JIF NB <¢ARG>
IF NE <ARG>
.REPT ARG
BS
.ENDR
.ENDC
.ENDC

.ENDM BSECT

e

; NEGCOD

g Define negative codes for symbols. Normally used
H in conjunction with the NC macro.

H Defines a specified symbol as equivalent to the
3 current value of the section name.

.MACRO NEGCOD SECTNM,ARG,INIT

.MACRO NC ARG1,GBL
.IF NB, <ARG 1>
: ITF B,<GBL>
JLIST
ARG1 = SECTNM
LNLIST
al[FB
= =S
ARG1 == SECTNM
LNLIST
.ENDC
.ENDC
SECTNM = SECTNM - 1
.ENDM NC
LIIF NDF ,SECTNM, SECTNM = 0
LIIF NB,<INIT>», SECTNM = -1
JIIF NB, <ARG>, SECTNM = -<ARG>

.ENDM NEGCOD

o1 G2

; FSYMS

3 This macro defines some form definition symbols.

.MACRD FSYMs

TE$XT = -2
FISELD = -3
NASMED = -4
EF$ORM = -5
.ENDM FSYMS$

Lo

1 STTFLS

] Clear the input ring buffer of characters.

.MACRO $TTFLS
CALL $FMSFL
. ENDM $TTFLS

s+

;3 $PRINT
$ Print a string of text.

.MACRO $PRINT ADDR
.GLOBL $FMSPR

iR NB <ADDR>
o 13 DIF <ADDR>,R0O
MOV ADDR,RO
.ENDC
.ENDC
CALL $FMSPR
.ENDM $PRINT
;3 +
;3 $TTYIN

3 Input & character from the terminal.

.MACRO $TTYIN CHAR

CALL $CHRIN
o liF NB <CHAR>
IF DIF <CHAR>,R0O
MOVB RO, CHAR
.ENDC
.ENDC
.ENDM $TTYIN

; $TTINR

H Input a character from the terminal without waiting

.MACRO $TTINR CHAR

CALL $TTINR
allF NB <CHAR>
IF DIF <CHAR> ,R0O

MOVB RO,CHAR
.ENDC
.ENDC

.ENDM $TTINR

3+

; $TTYOUT

i Output a character to the terminal.

.MACRO $TTYOUT CHAR

IF NB <CHAR>
B DIF <CHAR>,RO
MOVB CHAR,RO
.ENDC
.ENDC
CALL $CHROU

. ENDM $TTYOUT

3 FORM DRIVER CALL MACRO

; $FDV ARGLST,FNC,REQ,NAM,NUM,TRM,VAL,LEN

; ARGLST OPTIONAL POINTER TO ARGUMENT LIST
; FNC REQUIRED COMMAND FUNCTION CODE (LAST 3 LETTERS)
;s REQ - LEN OPTIONAL KEYWORD ARGUMENTS TO SUPPLY ARGUMENTS

.MACRDO $FDV ARG,FNC,REG,NAM,NUM,TRM,VAL,LEN
.MACRO $$FA KWD,THG
.1F NB,THG

MOV THG,KWDC(RO)

.ENDC
. ENDM
.1F NB, ARG
MOV ARG,RO
.ENDC

$$FA F$REQ,<REG>
$$FA FSNAM, <NAM>
$$FA FSNUM, <NUM>
$$FA F$TRM, <TRM>
$$FA F$VAL, <VAL>

A-7

$$FA FSLEN, <LEN>

.IF NB,FNC
MOV #FC$“FNC,F$FNCCRO) -
CALL $FDV

-ENDC

.ENDM

3 DEFINE THE SIZES OF THE ARGUMENT BLOCKS FOR FORM DRIVER
.MACRO $FDVDF

F$ASIZ = 16
F$RSIZ = 10 ; F$STS , FCHN , FIMP , F$TCB
F$TSIZ = 16 ;3 TCB block is 16 bytes long
.ENDM
;4'
;3 $CSPON

§ This macro call CNSPON to put the terminal in
3 special mode and lower case.

.MACRO $CSPON
.ENDM $CSPON

3+

; $CSPOF

5 This macro calls CNSPOF to put the terminal in
B normal mode and upper case. -

.MACRO $CSPOF
.ENDM $CSPOF

3+

g SETSYM and OFFSET are used to describe
g structures without allocating storage.

; Offset is called with the SYMBOL name, size
5 (in bytes) of the storage the symbol represents,
4 and a initial value.

: Contiguous calls to OFFSET result in automatic

$ increment of symbols. If a size is not specified,
) 2 bytes is the default.

.MACRO SETSYM SYMB,NEXT,LCL
.IF B,<LCL>

.LIST

SYMB == ’NEXT

.NLIST

A-8

.IFF

alsI'SiTy

SYMB = ‘NEXT
NLIST

.ENDC

.ENDM SETSYM

.MACRO OFFSET SYMBOL,STEP,INIT,LCL
.IF NB,<INIT>

NXT = INIT

.ENDC

.IF NDF,NXT

NXT = 0

.ENDC

SETSYM SYMBOL, \NXT,LCL

.IF NB,<STEP>

INCR = STEP
2 ERE

INCR = 2
.ENDC

NXT = NXT + INCR
.ENDM OFFSET
.END ;End of FMSMAC.MAC

Appendix B
FMS Sample Forms

This appendix contains seven sample forms used by the demonstration
programs included in this package.

As an example of how the application uses the forms, the following sketch
traces the major processing steps in creating a customer file.

Starting the Process

Initially, each version of the application displays a menu form named ‘FIRST’
to ask what process is to be done. Figure B-1 shows the form named ‘FIRST’
and the named data associated with that form.

Create a customer file
2. Create a part description file
3. Create an employee file
4, Exit
Enter Option Number ... [_]

i Colleect additional data
2 Return to menu

3 Exit

Enter Option Number ... [_]

{Named Data Information i form name: FIRST !
! H Help form name: i
! Name Data i First line: 1 H
i 1 CUSTO ! Last line: 6 H
! 2 PARTS i Date created: 7-AUG-85 1
! 3 EMPLOY H Owner 1D: 0 i
1 4 JEXIT. ! Form attributes: None i
i FILE1 SY:NEWCUS.DAT i Form length: 540 bytes H
§ FILE2 SY:PARTS.DAT H Number of fields: 1 $
§ FILE3 SY:EMPLOY.DAT i impure area size: 399 bytes {

Figure B-1. FIRST Form and Named Data Information for FIRST Form

B-1

B-2

The operator creates a customer file by typing ‘1’ in response to the field
prompt “Enter Option Number” in the menu form.

By checking the named data associated with the menu form, the application
uses the operator’s response to decide what form to display next. The
application finds that the string ‘CUSTOQ’ corresponds to the operator’s
response in this case. The application then creates a new named data reference
(‘FILEY’) from the operator’s response, checks for it in the menu form’s named
data, and finds the corresponding string ‘SY:NEWCUS.DAT.’

The application continues processing by loading and displaying the form
‘CUSTO’ in DEMLIB.FLB. (Figure B-2 shows the ‘CUSTO’ form and the
named data associated with it.) The application also opens a customer data
output file named NEWCUS.DAT on the system volume.

. Create a customer file
. Create a part description file
+ Create an employee file
. Exit
Enter Option Number ... [{1]

New Customer Form

Customer Name ...
Address

1 Collect additional data
2 Return to menu

3 Exit

Enter Option Number ... [_]

Number of fields: 7
H Impure area size: 612 bytes

! Named Data Information : Form name: CUsTO i
: ' Help form name: !
t H First line: 7 i
! NXTFRM CUSTPR H Last line: 18 H
: ! Date created: 7-AUG-85 H
H H Owner ID: 0 i
i i Form attributes: None '
4 H Form length: 924 bytes :
' '

)

Figure B-2. New Customer (CUSTO) Form and Named Data for New Cus-
tomer Form

When the operator has completed the form named ‘CUSTO,’ the application
writes the customer data to the output file. The application then uses the
named data reference ‘NXTFRM'’ to check for another form that is part of the

customer data process. In the named data associated with the form named
‘CUSTO,” the string ‘CUSTPR’ is associated with ‘NXTFRM.’

The application continues processing by loading and displaying the form
named ‘CUSTPR.’ Figure B-3 shows the ‘CUSTPR’ form and the named data
associated with it. The file NEWCUS.DAT remains open.

. Create a customer file
. Create a part description file
. Create an employee file
. Exit
Enter Option Number ... [i]

Annual Income in Thousands .. [$000,000]
Expected purchases [$000,000]
Number of employees [000, 0001

i Number of fields: 3
i Impure area size: 344 bytes

! Named Data Information H Form name: CUSTPR !
H H Help form name: !
{ Name Data l First line: 7 H
! NXTFRM .NONE. ! tast line: 18 H
H ¢ Date created: 7-AUG-85 H
t 4 Owner ID: 0 !
H H Form attributes: None t
H Form length: 726 bytes !
i 1
t !

Figure B-3. Customer Profile Form and Named Data for Customer Profile
Form

When the operator has completed the form named ‘CUSTPR,’ the application
adds the responses to the customer data output file and checks the current
named data for another form name associated with the reference ‘NXTFRM.’
The application gets the string * NONE.

The application program and forms have been prepared so that the program
gets the string - NONE.” after completion of the last form in each data-entry
process. The application then displays another menu form named ‘LAST.

B-3

B-4

Figure B-4 shows that form and the named data associated with it. The file
NEWCUS.DAT remains open until the operator switches to another data-
entry process or stops the application.

In the form ‘LAST, the default response in the field header is ‘1,” indicating
that the operator wants to enter more customer data. The operator can type a
different response and either stop the application or return to the first menu
form (‘FIRST’) and choose another data entry process.

i Collect additional data
2 Return to menu

J Exit

Enter Option Number ...

! H Number of fields: 1
' ! Impure area size: 275 bytes

i Named Data Information ' Form name: LAST !
H H Help form name: {
! Name Data i First line: "9 i
i H Last line: 23 !
2 FIRST H Date created: 7-AUG-8S !
53] LEXIT, } Owner ID: 0 i
H H Form attributes: None H
! i Form length: 352 bytes H

H

!

Figure B-4. LAST Form and Named Data for LAST Form

Figures B-5, B-6, and B-7 show the other forms in the form library file
DEMLIB.FLB and the named data associated with each form. Refer to those
figures as you trace the data-entry processes for creating a part description file
and an employee file.

i. Create a customer file
2. Create a part description file
3. Create an employee file
4. Exit
Enter Option Number ... [3]

Employee Name .. Phone [
Home address ... Date hired ..

Work address:
Plant

LOC vvaesaansnss
Mail stop

1 Collect additional data
2 Return to menu

3 Exit

Enter Option Number ... [_]

Number of fields: 11
Impure area size: 754 bytes

! Named Data Information i Form name: EMPLOY i
! ! Help form name: !
{ Name Data ! First line: 7 1
! NXTFRM .NONE, ! Last line: 18]
H ! Date created: 12-AUG-85 !
H ! Owner ID: 0 !
i { Form attributes: None i
§ i Form length: 1144 bytes H
! ! !
H { !

EMPLOY

Figure B-5. Employee Data Form (EMPLOY) and Named Data Informa-

tion for Employee Data form

Create a customer file
Create a part description file
. Create an employee file
m BXit
Enter Option Number ... [2]
PART DESCRIPTION
Part Number ...]
Description ... 1
Supplier]
Address g

Salesperson [
Salesperson [
Salesperson [
Price [$

Phone (
Phone [
Phone [

)]
J)
]
1

1 Collect additional data
2 Return to menu

3 Exit

Enter Option Number ... [_]

Number of fields: 19
Impure area size: 794 bytes

{ Named Data Information ' Form name: PARTS H
4 H Help form name: H
! Name Data H First line: 7 i
i NXTFRM .NONE. H Last line: 18 l
! H Date created: 12-AUG-85 !
i H Owner ID: 0 H
! ! Form attributes: None i
i H Form length: 1102 bytes H
3 H H
H H ¢

Figure B-6. Part Description Form (PARTS) and Named Data for Part
Description Form

You can also experiment with your own applications by using the Form Editor
to create your own forms and add them to DEMLIB.FLB. Remember to
modify the form named ‘FIRST’ so you can access your new form(s) from it.

Figure B-7. Clear Form

Form name:

Help form name:
First line:

Last line:

Date created:
Owner ID:

form attributes:
Form length:

Number of fields:
Impure area size:

CLEARF

1

23
23-SEP-85
0

None

44 bytes
0

220 bytes

Figure B-7 illustrates the Clear Form, which clears the screen for a new editing

operation.

B-7

Appendix C
FMS Sample Application Programs

This appendix contains source listings of five FMS sample application
programs. The FMS distribution kit contains the sources of these examples.
They are built automatically as part of the FMS-11/RSX installation
procedure. You can experiment with them while you are learning to use the
FMS features.

Section C.1 contains listings of an FMS application that has been written in
BASIC, COBOL, DIBOL, FORTRAN, and MACRO-11. All versions of the
application use the same form library file, DEMLIB.FLB. This file is also in
the FMS distribution kit.

The file names for the extended examples as stored on the FMS distribution
kit are:

DEMLIB.FLB The form library file for BASDEM, DBLDEM,
FORDEM, COBDEM, and MACDEM.

CBLDEM.CBL The COBOL version of the program.

BASDEM.B2S The BASIC-PLUS-2 version of the program.

DBLDEM.DBL The DIBOL-83 version of the program.

FORDEM.FTN The FORTRAN IV and FORTRAN-77 version of
the program.

MACDEM.MAC The MACRO-11 version of the program.

For each version of the program, instructions about building a running
application are included as comments at the beginning of the listing. Chapter
8, Building and Running FMS Application Systems, explains the building
procedures in detail.

C-1

C.1 A Typical Application

This section lists BASIC-PLUS-2, COBOL-11, COBOL-81, DIBOL-83,
FORTRAN IV, FORTRAN-77, and MACRO-11 versions of a simple user
program that supports a multipurpose data-entry application.

The application supports different data-entry processes by using form
descriptions that provide the details for each process. The program itself shows
only the appropriate forms, depending on the process the operator chooses, and
collects the operator’s responses to each form. The application supports the
following data-entry processes:

Create a customer file.
Create a part description file.
Create an employee file.

Exit.

= e B

C.2 Running the Programs
Before running any of the demo programs, you must have the form library
DEMLIB.FLB in your system account. The demo programs are built as part of
the FMS-11/RSX installation procedure.
Each task name assumes all libraries have been linked into the task, except for

DIBOL-83, which has the DIBOL-83 resident library and the RMS resident
library clustered.

C.2.1 Running the BASIC-PLUS-2 Version
RUN BASRMSDEM.TSK

C.2.2 Running the COBOL-11 Version

RUN C11RMSDEM, TSK

C.2.3 Running the COBOL-81 Version
RUN C81RMSDEM. TSK

C-2 FMS Sample Application Programs

C.2.4 Running the DIBOL-83 Version

RUN DBLRMSRES.TSK

C.2.5 Running the FORTRAN IV Version

RUN FORFCSDEM.TSK

C.2.6 Running the FORTRAN-77 Version

RUN F77RMSDEM.TSK

C.2.7 Running the MACRO-11 Version

RUN MACFCSDEM.TSK

FMS Sample Application Programs C-3

C.3 Listing of the BASIC Program

00100

00200

00500

|*}l*l**i{***}ilI‘li*i*iiiiiii}il*‘li{{i**i&}*llil*l**l{il*i

t *
! BASDEM.B2S ¥
1 *
! COPYRIGHT (C) 1985 BY 5
! DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS. *

1 *

I*ll'i*l#'l'l'*il*ﬂ'i'*l**l'il'l**l**{‘}'{i’i**ll*lliill**ll“llﬂl‘lli{

) BASDEM ®
! BASIC DEMO PROGRAM *
f AUTHOR: CARRIE CODER *
] DATE: OCTOBER 24, 1985 ¥

Iiii*i{ii&iii*li{*li*lli{i{ilil’il*l%ll&l6{{!{&}*{!&!}*’*'{
!

! Form record definition line
!i’*ii**lil*l"iiG*ll"llii{i!iiil’ii‘l'ilil*i’i{&l’*{&f‘{l‘ii*i
!

MAP (POOL) STRING POOL = 256
l’l{l’l{l{lli'{{!ii!i’*'!'lI!{iii!{i'iiliiii!iﬂi‘*llii'{lllli
! Display Line for program debugging
Ili*{‘ii'iiil'*I*ll'l{iliiili{lliiilil{il’{!’i’*il’i’ll*il'l{

J
MAP (DISPLN) STRING DISPLAY_LINE

= 80
MAP (DISPLN) STRING FILLER1 = 10, &
STRING MESS_LINE = 30, &
STRING MESS_NBR = 10, &

STRING FILLER?2 = 30

!
I*{'il‘{l*l’l“iliii{ll*i.il'iliiii{lilIiiii*liifll&il{li{ll*
t Codes for use by FMS-11 calls
Ilii!l*li{i}.ii{lilli*‘i’iliillI*{IllIi{iliii}*lllilliilﬂ!i

]
DECLARE INTEGER CONSTANT EVENT_FLAG_TTY = 5

MAP (FLDNM) STRING FIELD_NAME = 6
DECLARE INTEGER FIELD_TERMINATOR

DECLARE STRING CONSTANT FMS_LIBRARY = “DEMLIB.FLB"
DECLARE INTEGER FMS_STAT

DECLARE INTEGER CONSTANT FORM_LIB_CHANNEL = 6
DECLARE INTEGER CONSTANT I_O_FUNCTION = 768
DECLARE INTEGER CONSTANT FIRST_SIZE = 500
DECLARE INTEGER CONSTANT LAST_SIZE = 400
DECLARE INTEGER CONSTANT UPDATE_SIZE = 300
DECLARE BYTE IMPURE_AREA_FIRST(500)

DECLARE BYTE IMPURE_AREA_LAST(400)

DECLARE BYTE IMPURE_AREA_UPDATE(S00)
DECLARE INTEGER RMS_STAT

DECLARE INTEGER CONSTANT TERMINAL_CHANNEL = 5

C-4 FMS Sample Application Programs

03200

03400

03600

IEEEZE R R R EE R R SR R X EEE R R R ER R XX RS ER SRR RS EERE SRS R X R Y 4

! Temporary menu choices and current displayed form names
!C”l'{*illl*&"&ii!ii*i***iQII'I-Ill'l-‘&i***ilﬂlllli*"***’&ill’

MAP (DATFNM) STRING DATA_FILE_NAME = 13
MAP C(FORMNM) STRING FORM.NAME = 6
MAP (MENUNB) STRING MENU_CHOICE_NBR = 1
MAP (MENUTX) STRING MENU_CHOICE_TXT = 6
MAP C(UPDFRM) STRING UPDATE_FORM = 6

4
!""**II'*{QIQ**""l'*ll*il’l’*’*l’l{l*{i***l{'iﬁli*l}‘li*l{*l‘l’l’
! Variables used to create a named data field name
IEEEEEEEEEEEEEEREEEE SR EREEEE R R RS RS E R R SRR R RRR R R R R R R R R E R RN R X]

1
MAP (NDFLNM) STRING ND_FILE_NAME =

5

MAP (NDFLNM) STRING ND_FILE = 4, &
STRING ND_FILE_NBR = 1
MAP (NDFILD) STRING ND_FIELD = 6

!
IEXEXZEZEREEEREREEEEEEER AR A ERREEE SRR R R AR AR ESR R EE R B EEERE R E R RN R & J
! Initialize some of the variables

IEAREAEREEE R R EERERE R AR R R AR R R E R R R AR SRR R AR R R R E R R R R RS R R R R R R ERRERSS,]
!

ND_FILE = WFILE"™

!

IEEEEEEEREEER R R R R REEERREEEERR R R R R R R R R R R RS R AR R R R AR R R EERER SRR R R
! INITIALIZATION calls for FMS, etc.

IEAEEEEEEEEE R R R R R ER R R R REEERERRE R R R R R R R R R R EZ R R R R R R EE R R EEERR R RN X

U * Attach the terminal, Enable Type-ahead =

'

CALL WTQIO C(I_O_FUNCTION, &
TERMINAL_CHANNEL, &

EVENT_FLAG_TTY)
!

! & Initialize FMS Impure Areas FIRST, LAST, UPDATE
!

*

(in reverse order) to hold the forms
1

CALL FINIT (IMPURE_AREA_UPDATEQ), &
UPDATE_SIZE, &
FMS_STAT)

C=FN.26200_CHECK_STAT ! Check value of FMS_STAT

t

CALL FINIT (IMPURE_AREA_LAST(), &
LAST_SIZE, &
FMS_STAT)

C=FN.26200_CHECK_STAT ! Check value of FMS_STAT

FMS Sample Application Programs

C-5

03800

04000

04200

04400

04600

04800

05000

06000

CALL

C=FN.

1
'
1
'
CALL

C=FN.

!
!
!
CALL

C=FN.

FORM._

CALL

C=FN.

'
l
!
!
CALL

C=FN.

FORM_

CALL

C=FN.

[} *
[B 2
[3

[

CALL

C=FN.

C=FN.

FINIT CIMPURE_AREA_FIRST(), &
FIRST_SIZE, &
FMS_STAT)
26200 _CHECK_STAT ! Check value of FMS_STAT
Supply to the Form Driver the I/0 Channel L
to use for reading the form library E
FLCHAN (FORM_LIB_CHANNEL)

26000_CHECK_STATUS_RESULT
Open the specified Form Library =

FLOPEN (FMS_LIBRARY)
26000_CHECK_STATUS_RESULT

Clear the screen and display the ‘FIRST’ form *

NAME = "“FIRST*"
FCLRSH C(FORM_NAME)
26000 _CHECK_STATUS_RESULT

Choose the Impure Area for the ‘LAST’ form
and Display the ‘LAST’ menu on the screen

FCHIMP CIMPURE_AREA_LAST())
26000 _CHECK_STATUS_RESULT

NAME = "LAST"
FSHOW (FORM_NAME)
26000.CHECK_STATUS_RESULT

Choose the Impure Area for the ‘FIRST’ form and
allow the operator to select the data collection
series. Get the name of the first form to modify
from named data.

FCHIMP CIMPURE_AREA_FIRST())
28000_CHECK_STATUS_RESULT

22000_GET_MENU_OPTION

UPDATE_FORM = MENU_CHOICE_TXT

IRSAA AR SRR S A E R XSRS R RS R E XN XN R R EE R R PR R IR g g

WHILE MENU_CHOICE_TXT <> “.EXIT."

[EASS RS AR R R R R R R S Y N R R T T T

'MAIN ROUTINE - Update until choice is ‘EXIT’ from menu

!ill-li'l*liiiill{<l>ll'l'*l}I'l'Ilii'l'llliill.**!*ililll*il*}i*li

[3

Get the output file name from named data and open it

C-6 FMS Sample Application Programs

ND_FILE_NBR = MENU_CHOICE_NBR
10200 CALL FNDATA (ND_FILE_NAME, &
DATA_FILE_NAME)D
C=FN.26000_CHECK_STATUS_RESULT
H
! & Open the data file
'
10400 OPEN DATA_FILE_NAME FOR OUTPUT AS FILE #1%, &
MAP POOL
1
! * Update this file until ‘Collect Additional Data’

L L is not the menu choice
1

MENU_CHOICE_NBR = *"1"

WHILE MENU_CHOICE_NBR = "1"
!l’{i'l'i'l’ll{‘ll'lGl'il’I’llll*'I'I'll*Il'l’*ll&‘illl*lill’**lll**iil
! This is the data collection loop for one menu choice
!IIi*iillli*ll{*l‘li*lllﬂl*i'lil’l"l*l’ﬂi’{**i‘li*l**’ii*ifi
1

FORM_NAME = UPDATE_FORM
|

! % File may have more than one update form
' & associated with it, update until next
) ¥ form or ‘NXTFRM’ = ‘none’

'
WHILE FORM_NAME <> *.NONE.*

Il'lQQlI'l'*i!'l'l'Qii!Qill'*{‘l!*}Ilii{}!'lil.'l&{*l*li!*!l

! Get one form full of data and write one record
!l'QQI’I!'l'i'IIi‘iil"ll!'l’i{ll!’*ll*!Oiil‘"ill&’llli!{

! ¥ Clear the screen and show the form
'
CALL FCHIMP CIMPURE_AREA_UPDATE())
C=FN.26000_CHECK_STATUS_RESULT
12200 CALL FSHOW (FORM_NAME)

C=FN.26000_CHECK_STATUS_RESULT
!

! * Get data for current form and output it
1

POOL = SPACE$(256)

12400 CALL FGETAL (POOL)
C=FN.26000_CHECK_STATUS_RESULT
PRINT #1%
!
! & Get name of next form. If found, loop for
!] more data, If “.NONE.’ exit this loop

ND_FIELD = "NXTFRM"
12600 CALL FNDATA (ND_FIELD, &
FORM_NAME)D

C=FN.26000_CHECK_STATUS_RESULT
!

FMS Sample Application Programs

! < End of the form series. Show ‘LAST’ form menu
! & to determine if operator wants to continue

! & with this data-type, return to main menu, or exit

)
15000 CALL FCHIMP CIMPURE_AREA_LAST())

C=FN.26000_CHECK_STATUS_RESULT
C=FN.22000_GET_MENU_OPTION

NEXT

!

! & Close this output file

]

CLOSE #1%

]
! * Show the menu form for the operator to select the next
! * file to update. If named data from ‘LAST’ menu was
! & . EXIT.’, don’t prompt with ‘FIRST’ menu

15200 IF MENU_CHOICE_TXT <> ‘.EXIT.’
THEN
CALL FCHIMP CIMPURE_AREA_FIRST())
C=FN.26000_CHECK_STATUS_RESULT
C=FN.22000_GET_MENU_OPTION
UPDATE_FORM = MENU_CHOICE_TXT
END IF
NEXT
|5400 !’!ii{i.{lli’li#il&li*liiIi!l{ﬁ'!*ii§Ilill’i.’l’l"l*!il'{il’i
! End this program routine
!i{i&'l*I!l’I'I'lil*illli"ll{{i*!l!il“Q}!il*!*i{*lil{l*l”*l’*.
!
GOTO S_30000_END_IT
!Q}i’i*l‘ﬂl’*i!IIIili'l‘li'*iIiil’iiili*!liii*’i'*iiiill’lli’il{
!ii*l‘l’}li*l‘lilﬂl*lliilQii{il'*IIil'Il'li{li’!l*ll.llil!’illiii'

22000 DEF FN.22000_GET_MENU_OPTION

!{**i’*iiiil‘ll’l}!l!iill‘ii’iIIlli.llill'i’ili!l’iiiiii’ilﬂii
! GET A VALUE FROM THE MENU FORM
!il’**ii*l’l"Qiiﬁi*!ll’!l'*l‘l{lll*il’il’Qlilli*ii*illii!‘ll{ii’li
!
! L Get a value from the form
1

C=FN.22400_GET_CHOICE

WHILE FMS_STAT < 0

C=FN.22200_MENU_OPTION_ERROR
NEXT
22008 FNEND

C-8 FMS Sample Application Programs

22200

22202

22208
22400

22402

22404

22406

22408
22408
26000

26002

26006
26008

26200

26206

26208

DEF FN.22200_MENU_OPTION_ERROR
R R Ry R R R R R e e
1
DISPLAY_LINE = "Option not on list"
CALL FPUTL (DISPLAY_LINE)
C=FN.26000_CHECK_STATUS_RESULT
C=FN.22400_GET_CHOICE
FNEND
DEF FN.22400_GET_CHOICE

!l'}li"**lil’Ii{l"l'*”I'{{ii'l'l"l"lii’il’il**l‘{{*{****lil{‘lii*’***i
!
! i Get a value for menu ‘FIRST’ or ‘LAST’
'
FIELD_NAME = *CHOICE"
CALL FGET (MENU_CHOICE_NBR, &
FIELD_TERMINATOR, &
FIELD_NAME)
C=FN.26000_CHECK_STATUS_RESULT

! * Read named data, if number exists, menu choice was good

CALL FNDATA (MENU_CHOICE_NBR, &
MENU_CHOICE_TXT)
CALL FSTAT (FMS_STAT, &
RMS_STAT)
FNEND

I}il}*iill**lQQ{*’Q{!Q{!{}{}"GIIQ'I»Ilil}{ll'.ill*ﬁ’lhll}{*&Q

DEF FN.26000_CHECK_.STATUS_RESULT

IQ*QQ!IQ*Clll”i‘.ii”‘ll!ll&{llQ{lllll"ili!‘llill’lQ{Oiilll’{{&
H this section is for checking the status of the FMS calls
l’I'l'ill’lil}ilI'l'Q{l’lll!**il‘**ll‘**il{&*#l!iﬁ‘l*!llli{**&lill

! * Check to see if there was an FMS or RMS error o

!

CALL FSTAT (FMS_STAT, &
RMS_STAT)

C=FN.26200_CHECK_STAT
FNEND

DEF FN.26200_CHECK_STAT

Il'*l'il***Il'**ll-I6l'}ll*lI>IIllIl{l'll&{l}il*ill&*il{**lii**ll{*

! * Some calls return status in the call. For those
! o calls the ‘FSTAT’ call is not necessary

IF FMS_STAT < 0 OR RMS_STAT < 0 THEN
C=FN.26220_FMS_ERROR

FMS Sample Application Programs C-9

26220 DEF FN.26220_FMS_ERROR
!
! * Display an FMS error number and stop the program *
!

26222 CALL FLCLOSO

PRINT ™ ®
PRINT " FMS STATUS....", FMS_STAT
PRINT " RMS STATUS...."™, RMS_STAT
STOP
26228 FNEND
26229 R A Y L L

30000 S_30000_END_IT:

!**I*lii**ii**{i*!l&ll*“illl’ii**llliii**il‘l*ll**ill*il*{iiil
! End this program routine
!l{*l’*!ﬁiil**l**il&ll&*‘l***lI*il*.li**ll*{l*ﬁlli!ll**l{**ll{
!

FORM_NAME = "“CLEARF"

CALL FCLRSH (FORM_NAME)

CALL FLCLOSC)

!

32767 END

C-10 FMS Sample Application Programs

C.4 Listing of the COBOL Program

& COBDEM.CBL

& COPYRIGHT (C)> 1985 BY
¥ DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

IDENTIFICATION DIVISION.
Program was written in conventional (ANSI standard) format
To compile this program and create COBOL-11 object code:

¥ > CBL C11DEM,C11DEM=COBDEM/CVF

To compile this program and create COBOL-81 object code:

% > C81 C81DEM,C81DEM=COBDEM/CVF
*

PROGRAM-ID. COBDEM.

AUTHOR. CARRIE CODER.

DATE-WRITTEN. 24-0CT-1985.
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-0UTPUT SECTION.
FILE-CONTROL.

*

SELECT OUTPUT-FILE ASSIGN TO *SY:".
*

DATA DIVISION.

FILE SECTION.

*
* Create a sequential file for output of form data.
*
FD OUTPUT-FILE
LABEL RECORDS ARE STANDARD
VALUE OF ID IS DATA-FILE-NAME.
01 POOL PIC X(256).
*
WORKING-STORAGE SECTION.
*
* Temporary variable for display
*

01 DISPLAY-LINE.

10 FILLER PIC X(2)
VALUE SPACES.
10 MESS-LINE PIC X(30).
10 MESS-NBR PIC -9(5).
*
5 Set up variables to be used in FMS Form Driver Calls.

FMS Sample Application Programs C-11

01 EVENT-FLAG-TTY PIC 9(2) comp

VALUE 1.
01t FIELD-NAME PIC X(B).
01 FIELD-TERMINATOR PIC SS(4) COMP.
01 FMS-LIBRARY PIC XC10)

VALUE "DEMLIB.FLB".
01 FMS-STATUS-BLOCK.

10 FMS-STATUS PIC S9(4) COMP.
10 RMS-STATUS PIC S9(4) COMP.
01 FORM-LIB-CHANNEL PIC 9(2) COMP
VALUE 3=
01 I-0-FUNCTION PIC 9(3) cCOMP
VALUE 768.
01 IMPURE-AREA-FIRST PIC XC1000).
01 IMPURE-AREA-LAST PIC XC1000).
01 IMPURE-AREA-UPDATE PIC XC1000).
01 IMPURE-AREA-SIZE PIC 9¢4> cCOMP
VALUE 1000.
01 TERMINAL-CHANNEL PIC 9(2) caOmp
VALUE i

01 FMS-ERROR-LINE.

10 FILLER PIC X(2)
VALUE SPACES.

10 FILLER PIC X(C15)
VALUE "FMS STATUS..... s

10 FMS-STAT-0UT PIC -9(9).

10 FILLER PIC X(2)
VALUE SPACES.

10 FILLER PIC X(C15)
VALUE "RMS STATUS..... b

10 RMS-STAT-0UT PIC -3(9).

Temporary menu choices and current displayed form names

01 DATA-FILE-NAME PIC X(C13).
01 FORM-NAME PIC X(B).
01 MENU-CHOICE-NBR PIC XC1).
01 MENU-CHOICE-TXT PIC X(&).
01 UPDATE-FORM PIC X(&).

Variables used to create a named data field name.

01 ND-FILE-NAME.

10 FILLER PIC XC4)
VALUE “FILE"™.
10 ND-FILE-NBR PIC XC1).
10 FILLER PIC XC1)
VALUE SPACE.
01 ND-FIELD PIC X(&).

Ill&li*ll!&{ii*li*&ll**’li}{illQ'l'Iil'l'{!lil{llli{liiﬁ{ili’{&{li

C-12 FMS Sample Application Programs

#*
*

PROCEDURE DIVISION.

*

A

PERFORM I1000-INITIALIZE THRU T000-EXIT.
PERFORM MOO0O-MAIN-ROUTINE THRU MOOO-EXIT
UNTIL MENU-CHOICE-TXT = ".EXIT.".
PERFORM Z000-END-IT THRU Z000-EXIT.
AOOO-EXIT.

AR RS AR SRS R E R A R R R R R R E R R X R R Y R I Y
*
*

I000-INITIALIZE.

*

* Attach the terminal, enable type-ahead

*

CALL "WTQIO™ USING BY REFERENCE I-0-FUNCTION,
BY REFERENCE TERMINAL-CHANNEL,
BY REFERENCE EVENT-FLAG-TTY.

*

* Initialize FMS Impure Area (in reverse order) to hold the forms

*

CALL "FINIT® USING BY DESCRIPTOR IMPURE-AREA-UPDATE,
BY REFERENCE IMPURE-AREA-SIZE,
BY REFERENCE FMS-STATUS-BLOCK.

PERFORM SB620-CHECK-STAT THRU SB620-EXIT,

*

CALL ™FINIT" USING BY DESCRIPTOR IMPURE-AREA-LAST,
BY REFERENCE IMPURE-AREA-SIZE,
BY REFERENCE FMS-STATUS-BLOCK.

PERFORM S620-CHECK-STAT THRU S620-EXIT.

*

CALL "FINIT® USING BY DESCRIPTOR IMPURE-AREA-FIRST,
BY REFERENCE IMPURE-AREA-SIZE,
BY REFERENCE FMS-STATUS-BLOCK.

PERFORM S620-CHECK-STAT THRU S620-EXIT.
*

& Supply to the Form Driver the 1/0 Channel

& to use for reading the form library

CALL "FLCHAN" USING BY REFERENCE FORM-LIB-CHANNEL.
PERFORM S600-CHECK-STATUS-RESULT THRU S600-EXIT.

*

& Open the specified form library

FMS Sample Application Programs

C-13

*

CALL "FLOPEN" USING BY DESCRIPTOR FMS-LIBRARY.
PERFORM S600-CHECK-STATUS-RESULT THRU SG600-EXIT.

* Display the ‘FIRST’ menu on the screen

& Since ‘FIRST’ impure area was attached last, should still be current
*

MOVE "FIRST " TO FORM-NAME,

CALL “FCLRSH" USING BY DESCRIPTOR FORM-NAME.

PERFORM S600-CHECK-STATUS-RESULT THRU S600-EXIT.

¥ Choose the Impure Area for the ‘LAST’ form
* and Display the ‘LAST’ menu on the screen

CALL "FCHIMP" USING BY DESCRIPTOR IMPURE-AREA-LAST.
PERFORM S600-CHECK-STATUS-RESULT THRU SB00-EXIT.

*

MOVE "LAST ' TO FORM-NAME.

CALL *FSHOW" USING BY DESCRIPTOR FORM-NAME.

PERFORM S600-CHECK-STATUS-RESULT THRU S600-EXIT.

*

v Choose the Impure Area for the ‘FIRST’ form and

Allow the operator to select the data collection series.
Get the name of the first form to modify from named data.

CALL "FCHIMP™ USING BY DESCRIPTOR IMPURE-AREA-FIRST.
PERFORM S600-CHECK-STATUS-RESULT THRU S600-EXIT.

*

PERFORM S200-GET-MENU-OPTION THRU S200-EXIT.

MOVE MENU-CHOICE-TXT TO UPDATE-FORM.

#*

I000-EXIT.
*lilI***IQl'l-!lil*i'Q{iil'Ili!‘l‘l&ll!l**lili*ll*&li'*!l!’il‘ll‘lill’**}’*lﬂl*
*

*

MOOO-~-MAIN-ROUTINE.

+#
& Get the output file name from named data and open it.
*

MOVE MENU-CHOICE-NBR TO ND-FILE-NBR.

MOVE SPACES TO DATA-FILE-NAME.

CALL "FNDATA™ USING BY DESCRIPTOR ND-FILE-NAME,

BY DESCRIPTOR DATA-FILE-NAME.

PERFORM S600-CHECK-STATUS-RESULT THRU S600-EXIT.

OPEN OUTPUT OUTPUT-FILE.

*

o Update this file until ‘Collect Additional Data’ is not the choice.
*

MOVE *1" TO MENU-CHOICE-NBR.
PERFORM M200-UPDATE-ONE-FILE THRU M200-EXIT
UNTIL MENU-CHOICE-NBR NOT = "1qw,

C-14 FMS Sample Application Programs

& Close this output file.
CLOSE OUTPUT-FILE.

Show the menu form for operator to select the next file

= to update. If named data from ‘LAST’ menu was ".EXIT.",
o don’t prompt with ‘FIRST’ menu
*

IF MENU-CHOICE-TXT NOT = ",EXIT."™

CALL "FCHIMP" USING BY DESCRIPTOR IMPURE-AREA-FIRST
PERFORM S600-CHECK-STATUS-RESULT THRU S600-EXIT
PERFORM S200-GET-MENU-OPTION THRU S200-EXIT
MOVE MENU-CHOICE-TXT TO UPDATE-FORM.
MOOO-EXIT.
2 Y I
*
*

M200-UPDATE-ONE-FILE.

*
i This is the data collection loop.
MOVE UPDATE-FORM TO FORM-NAME.

File may have more than one form, update until next form = ‘none’

PERFORM M220-COLLECT-DATA THRU M220-EXIT
UNTIL FORM-NAME = °* . NONE.".

¥ End of the form series. Show ‘LAST’ form menu to determine
* if operator wants to continue with this data-type, return
* to main menu, or exit.
*
CALL "FCHIMP™ USING BY DESCRIPTOR IMPURE-AREA-LAST.

PERFORM S600-CHECK-STATUS-RESULT THRU SG600-EXIT.
PERFORM S200-GET-MENU-OPTION THRU S200-EXIT.

*
M200-EXIT.
B R R E RN RN R R RN AR R R R R R RN RN
*
*

M220-COLLECT-DATA.

*

* Clear the screen and show the form.
*
CALL ™"FCHIMP* USING BY DESCRIPTOR IMPURE-AREA-UPDATE.
PERFORM S600-CHECK-STATUS-RESULT THRU Se00-EXIT.
CALL "FSHOW" USING BY DESCRIPTOR FORM-NAME.
PERFORM S600-CHECK-STATUS-RESULT THRU S600-EXIT.

FMS Sample Application Programs

C-156

Get data for current form and output it.

MOVE SPACES TO POOL.

CALL "“FGETAL"™ USING BY DESCRIPTOR POOL.
PERFORM S600-CHECK-STATUS-RESULT THRU S600-EXIT.
WRITE POOL.

Get name of next form. |If found, loop for more data.

MOVE "NXTFRM" TO ND-FIELD.
CALL "FNDATA" USING BY DESCRIPTOR ND-FIELD,

BY DESCRIPTOR FORM-NAME.
PERFORM S600-CHECK-STATUS-RESULT THRU S600-EXIT.

M220-EXIT.
illi*’}i*{’ili*‘&&Q!illll”liill}*’l”iiif’il’lll‘Ilii{**i’l’ll*ll’*l’i*l
*

*
S200-GET-MENU-0PTION.
*
* Get a value from the form
*
PERFORM S240-GET-CHOICE THRU S240-EXIT.
IF FMS-STATUS < 0
PERFORM S220-MENU-OPTION-ERROR THRU S220-EXIT
UNTIL FMS-STATUS > 0.
S200-EXIT.
*
S220-MENU-OPTION-ERROR.
MOVE "Option not on list"™ TO DISPLAY-LINE.
CALL *FPUTL" USING BY DESCRIPTOR DISPLAY-LINE.
PERFORM S600-CHECK-STATUS-RESULT THRU SB600-EXIT.
PERFORM S240-GET-CHOICE THRU S240-EXIT.
S220-EXIT.
*
S240-GET-CHOICE.
MOVE "CHOICE™ TO FIELD-NAME.
CALL “FGET™ USING BY DESCRIPTOR MENU-CHOICE-NBR,
BY REFERENCE FIELD-TERMINATOR,
BY DESCRIPTOR FIELD-NAME.
PERFORM S600-CHECK-STATUS-RESULT THRU S600-EXIT.

CALL "FNDATA" USING BY DESCRIPTOR MENU-CHOICE-NBR,
BY DESCRIPTOR MENU-CHOICE-TXT.
CALL ®"FSTAT"™ USING BY REFERENCE FMS-STATUS

BY REFERENCE RMS-STATUS.
S240-EXIT,

l-ll*i!il'I-l{l'il*lI»l*l'li*{iI-Q{*l!&lli{ii*liiilliiill*Iii*}l{i*l’il’i*

C-16 FMS Sample Application Programs

S600-CHECK-STATUS-RESULT.

e check to see if there was an FMS or RMS error

CALL "“FSTAT" USING BY REFERENCE FMS-STATUS
BY REFERENCE RMS-STATUS.
PERFORM S620-CHECK-STAT THRU S620-EXIT.
S600-EXIT.

*

S5620-CHECK-STAT.

L Some calls return status in the call. For those calls,
* the ‘FSTAT’ call is not necessary.
*

IF FMS-STATUS LESS THAN ZERO OR

RMS-STATUS LESS THAN ZERO
PERFORM S622-FMS-ERROR THRU S622-EXIT.
$620-EXIT.

FEXEAREERBRERRARLEERERFERERERRAFRFRRREERERERRERRRERERRREREREEREERSN
*
*

S622~-FMS-ERROR.

*

H Display the FMS error number and stop the program
*
MOVE FMS-STATUS TO FMS-STAT-0UT.
MOVE RMS-STATUS TO RMS-STAT-0UT.
CALL “FPUTL"™ USING BY DESCRIPTOR FMS-ERROR-LINE.
CALL "™FLCLOS".
STOP RUN.
S622-EXIT.

*
*
(22 RS RESS RS R SRR SRR SRR RSl sl E Rl Rl ARttt SRR
*
2 Close form library and exit.
*
ZO00-END-IT.
MOVE "“CLEARF'"™ TO FORM-NAME.
CALL “FCLRSH" USING BY DESCRIPTOR FORM-NAME.
CALL ™"FLCLOS"™.
STOP RUN.
ZOOO-EXIT.

*

FXREFRERRRRRREBERRRRERERRFRRRERERBRRERFRFRRSREERERRR RN

FMS Sample Application Programs

C-17

C.5 Listing of the DIBOL Program

START 3

H

; DBLDEM.DBL

3 COPYRIGHT (C)

3 DIGITAL EQUIPMENT CORPORATION,
; MODULE: DBLDEM

;7 VERSION: va.o

; AUTHOR: Megan

H

; DATE: 01-September-85

FMS Demonstration Program

1985 BY
MAYNARD, MASS.

i This is the DIBOL demonstration program for FMS illustrating

i a simple form-driven, data-entry

application.

i The following requirements are unique to DIBOL programs using FMS:

i The name of the form library opened by FLOPEN must have a

} trailing space following t

RECORD IMPURE ;
’ AB75

RECORD IFIRST ;
, A475S

RECORD ILAST :
, A350 :
RECORD

FCHAN, D1, 1 ;
DCHAN, D1, 2 ;
CTR, D4 ;
NAMED, A7 ;
DATA, A256 ;
CHOICE, A6 ;

C-18 FMS Sample Application Programs

he name.

Form Driver impure area.

Impure area for FIRST form

Impure area for LAST form

RECORD IMPURE

Form Driver impure area.

Form Driver Terminal Control Block.

Channel for form library.

Channel for data file.

General counter

Named_data name

Area where data from form is stored
User choice goes here.

3 Initial form name.

5 Current form name.

TERM, D3 ; Terminator,
FORM, A16
F Tk B Al16 3 ODutput file name.
FORM1, A16
RECORD STATUS
FDVSTS, D4, 0
RMSSTS, D4, 0
RECORD STAMSG
HD, A1S, ‘FSTAT RETURNED “
ER, D3
cL, AB
RECORD FTLMSG
FHD, A21, ‘FATAL ERROR RETURNED “
FER, D3
FCL, A6
PROC

?

?

»
K

L500,

Initialize Form Driver and open form library.

XCALL FINIT CIMPURE,875,FDVSTS) ;
CALL L2001

XCALL FINIT C(ILAST,
CALL L2001

XCALL FINIT CIFIRST,475,FDVSTS)
CALL L2001

350,FDVSTS)

XCALL
CALL
XCALL
CALL
XCALL

FATTCHC)]
L2000

FLCHANCFCHAN) 5
L2000
FLOPENC’DEMLIB ’) H

CALL L2000
Display menu form for operator to select
Get the first form name from named data.

XCALL
CALL
XCALL
CALL
XCALL
CALL
XCALL
CALL

FCLRSHC’FIRST’) 3
L2000 H
FCHIMPCILAST) 3
L2000 3
FSHOWC’LAST*) 5
L2000 3
FCHIMPCIFIRST) H
L2000 5

Define forms impure area.

Define forms impure area.

Define forms impure area.

Attach terminal.

Define I/0 channel for library.
Open form library (trailing
space necessary).

data collection series.

Get the menu form.
Check the status.

Get correct impure area
Check the status.

Get the menu form.
Check the status.

Get correct impure area
Check the status.

FMS Sample Application Programs C-19

L5510,

L570,

.
k]

XCALL FGET(CHOICE,TERM,’CHOICE’); Get the user’s choice.

CALL L2000 ;3 Check the status.
XCALL FNDATA(CCHOICE,FORM 3+ Get named data for valid
H P‘ESPOHSES.
XCALL FSTATC(FDVSTS) ; Get the status.
IF (FDVSTS.GT.0) GOTO LS70 s Br if no error.
XCALL FPUTL(’Illegal Choice’) ; Else output error message
GOTO LS10 ; and get choice again.
IF (FORM .EQ. “.EXIT.’) GOTO L1090 ; If form name is
DO = b 3 (i R

; terminal operation is done.

; Get data file name from named data and open it.

2

LR

.
7

CTR =1 ;s Initialize cell counter.
NAMEDC(CTR,CTR)>=CHOICEC(CTR,CTR) Synchronize.

INCR CTR sy Increment counter.

IF (CHOICECCTR,CTR).NE.’ ‘) GOTO LP s Continue if not end of string.
NAMEDCCTR,CTR)=‘F "~ ; Else add the ‘F’.

XCALL FNDATACNAMED,FILE) ; Get file name from named data.

OPEN (DCHAN,O,FILE) ; Open the output file.

; This is the data collection loop.

i

L.680,

L720,

3

End of

FORM1 =FORM ; Set current form = first in series.
XCALL FCHIMPCIMPURE) ; Impure area for data forms
CALL L2000
XCALL FSHOWCFORM1) ;s Display the form.
CALL L2000 3 Check the status.
XCALL FGETALCDATA) ; Get & output data for current form.
CALL L2000 ;i Check status.
WRITES (DCHAN,DATA) ; Write to output file.
XCALL FNDATAC’NXTFRM’,FORM1) ; Get name of next form.
IF C(FORM1.NE.’.NONE.’) GOTO L720; If found, loop for more
; data.

the form series. Display menu to determine if user is done.

XCALL FCHIMPCILAST)

CALL L2000 ; Get the status.

C-20 FMS Sample Application Programs

L88o0,

; Get named data corresponding to response.

XCALL FGET(CHOICE,TERM,‘CHOICE’)
CALL L2000

IF (CHOICE.EQ.”17) GOTO L6&80

; Get field again if illegal response.

1

i

; Close output file for valid response other

L1000,

;3 If named data is

XCALL FNDATACCHOICE,FORM1)
XCALL FSTAT(FDVSTS)

IF (FDVSTS.GT.0) GOTO L1000
XCALL FPUTL(C‘Illegal Choice’)
GOTO L8880

CLOSE (DCHAN)

fLEXIT.Y,

;s Otherwise, display menu form again.

L1090,

IF (FORM1.NE.’.EXIT.”> GOTO LS00

XCALL FCLRSHC’CLEARF’)
XCALL FLCLOS

XCALL FDETCH

STOP

Get the next choice.
Get the status.

If resronse = reFeat

data collection loop.

than repeat.

Get named data.

Get the status.

Br if no error.

Else output error message.
Get another choice.

Close the output channel.

terminal operator is done.

Clear screen on exit.
Close form library.
Detach terminal.
B

; Output message and exit if 1/0 error returned from Form Driver.

; This is the only error expected in a debugged application.

L2000,
L2001,

EXIT,

XCALL FSTAT(FDVSTS,RMSSTS)
IF (FDVSTS.LT.0) GOTO EXIT
ER=FDVSTS

XCALL FPUTL(STAMSG)

RETURN

FER=FDVSTS
XCALL FPUTLC(FTLMSG)

XCALL FDETCH
XCALL FLCLOS
STOP
END

Get the status.
Return if no error.
COPY STATUS

Else display the error
message.

Detach terminal.

Close library channel
BX s

FMS Sample Application Programs

C-21

C.6 Listing of the FORTRAN Program

OO O0OO0O0O0O000O000000O0O0 O

O 0000

O 0000

O 0000

I***}**i{i**i**iiii*ii*i**i**li**!*i!**li**i*ii**i*li*ii

1 *
L FORDEM.FTN %
' *
! COPYRIGHT (C)> 1985 BY Y
) DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS. E
! *

I**ilil**liﬂ*l*il*ili*llill{&lii!l!ill{**il*il*il**l**{l‘

! FORDEM &
! FORTRAN DEMO PROGRAM &
§ AUTHOR: CARRIE CODER &
! DATE: OCTOBER 24, 1985 z

Iii*‘ll*}l**Il*iilll&lll’llll'l-l'il{iliil{il**il*ili*il*l’*
!

' Form record definition line
|l'l'I**{Q{*i*'i'll'*{l'iIii’i}i'l*lll'l'lilli}lll&{{*il}}illil&l
!

BYTE POOL(C256)

!
liI’!{&lil’i{liil’**{*l’*i!liiii{l!iiiil}iil’lilillillii*&
! Display Line for program debugging
lIii’ii{illi{ii{l’ill*l’lli*l}l*ll’{ii‘iiiiili*!l*il'!.i'
!

BYTE DISPLN(80)

!
lI-Q!!*{il{lll*lli'i}!ll{iIQO{lI*il'Qi!'li*illill!.ll*il'
! Codes for use by FMS-11 calls
Il**#{*!l{l}l}*i}lillilill'lilIii‘li*ii‘l{l’iili*{*ii*l{*il'

INTEGER chan
INTEGER ioflag
INTEGER iofunc

BYTE fid(7)

BYTE finm(C11)
BYTE fname(7)
BYTE impurf(500)
BYTE impurl(400)
BYTE impuru(900)
INTEGER isizef
INTEGER isizel
INTEGER isizeu
INTEGER status
INTEGER stat2
INTEGER term
INTEGER ttchan

]
g
!}ﬁl'l-*lii*'l'lii!'lll!lvlli}lvQl}'lI-!ll*li{i*il!i{il*‘l{ilf!'*l

!Temporary menu choices and current displayed form names
!{II’}&*{%!!#I*IGI-*ll*li}iiiili{ii}i*ilii*l*i!i*l’i!lli}

C-22 FMS Sample Application Programs

OO 000

OO0 00

OO0 000

O OO0

0O o000

BYTE DFNAMEC14)

BYTE MENUNB
BYTE MENUTX(C7)
BYTE UPDFRM(7)

J
!}‘§**l'l"i*I'l’ll**l'*IiliIiiIll-l'ilIlllillliililliilll{liii

! Variables used to create a named data field name
!II‘l'ii'{i*‘li*‘ll{'ll'*{'l'I'I'**‘l#{***I{**ili***l’lil*il**i&**#*

!

BYTE NDNAME(B)

BYTE NDFLD(7)

!
!*i*l’i{l*l‘}i*i*ll'l"l'l'I{'l{'l'i'l'l'l’Il'lQli***{*{iiiillilllllli*
t Initialize some of the variables
!*’*4}l'lll'l"l'}I{*{*}*‘ll’l'I*l}I'l'lG‘l’l{*{ﬁiii*{i{lil’*"*i{}}*

DATA ioflag / 5. /
DATA chan / 6 /
DATA iofunc / 768 /
DATA isizef / 500 /
DATA isizel / 400 /
DATA isizeu /900 /
DATA ttchan / 5 7/
CALL SCOPY (‘DEMLIB.FLB’, flnm, 10)
CALL ScaPy € TFETLE “m NDNAME, 5)

I
|ll’lI*'{’i**lllllii’ﬁli{lii’illl’i”’lliilll’”'*lill’l’*&*

! INITIALIZATION calls for FMS, etc.

!'l'll"l'I-l}*}Qil*l{ll{*i!*}l.i&i}l!{i*#llli*i&#iil!{iii*{lll
! . Attach the terminal, Enable Type-ahead ¥

CALL WTQRIO (iofunc, ttchan, ioflag)

! b Initialize FMS Impure Areas (FIRST, LAST, UPDATE)

! u (in reverse order) to hold the forms

1

CALL FINIT ¢ impuru, isizeu, status)

CALL CHFMST (status, stat2)

1

CALL FINIT C impurl, isizel, status)

CALL CHFMST (status, stat2)

1

CALL FINIT C impurf, isizef, status)

CALL CHFMST (status, stat2)

]

) * Supply to the Form Driver the I1/0 Channel &
! * to use for reading the form library *
|

CALL FLCHAN ¢ chan) -

CALL STATCK (status, stat2)

FMS Sample Application Programs

C-23

o

OO0 o0Oo0

o W oOooOoOoOooo

(@]

O 000

OO0 O0O0O0O00O00OO0O

400

! ¥ Open the specified Form Library %5
!

CALL FLOPEN C flom)

CALL STATCK (status, stat2)

) * Clear the screen and display the ‘FIRST’ form *

CALL scaorpy C FIRST ’, fname, 6)

CALL FCLRSH ¢ fname)
CALL STATCK (status, stat2)

! & Choose the Impure Area for the ‘LAST’ form

4y * and Display the ‘LAST’ menu on the screen
!

CALL FCHIMP ¢ impurl)

CALL STATCK (status, stat2)

]

CALL scary ¢ 'LAST ‘, fname, 6)

CALL FSHOW ¢ fname)

CALL STATCK

~

status, statz2)

! ® Choose the Impure Area for the ‘FIRST’ form and

4 * allow the operator to select the data collection
! * series. Get the name of the first form to modify
4 & from named data.

]

CALL FCHIMP C impurf)

CALL STATCK (status, stat2)

!

! ' Get first menu choice, if ‘.EXIT.* skip to end

1

CALL MENUCH (MENUNB, MENUTX)

IF C(SCOMP (MENUTX, ‘.EXIT.’) .EQ. 0) 60 TQ 900
1

CALL ScCOPY (MENUTX, UPDFRM, 6)

1

! % * End of Initialization Calls L %
)

Iiili}ll{l}l*il&{l#i{l{l*l{ii*llilil*lilillli***l*lil*{*i*il’

!*“’*””I*I"'i"*l’*l'{‘ii*ii*’iQi'I{il"'l"li’}*il‘***i{l’lfl
! MAIN ROUTINE LOOP
!i*i‘*l’i’l*l“llil‘lii'll'li"l"lli{i{l{iiil‘fl‘ii*l’i*‘*l’**f{**"'
!

! i*l"*i*’iiiii.I*lﬂ'lil*l’il'Qiiilii*}*li*i}{i*l‘i*l’*Q* 400
! START - Loop until menu choice is 4 BN

! *lil*i“l*iiil‘li*i*i!'*'li!}ii*i'l‘li‘lii‘l{l“l*iﬁi“i* 400
!

! *

Get the output file name from named data and open it
!

NDNAME(S5) = MENUNB

C-24 FMS Sample Application Programs

oo

0O O 000

o

O o000

500

600

605

615

CALL FNDATA (NDNAME, ~ DENAME)

CALL STATCK (status, stat2)

* Open the data file

OPEN C UNIT=1, NAME=DFNAME, INITIALSIZE=10,

TYPE=’NEW’, RECDRDSIZE=128)

* Initialize menu choice to ‘1’ or ‘Collect Additional

MENUNB = “17

ERERRAEFE R FRRAERREERER AR RERERARARERARRRARERRRRRRRRS

START - Loop until menu choice is not
1’ - ’Additional Data’

ERRRRRRRRERERRRRLRFERREERFEFEASRAERBRFRRRERAERRRERES

CALL SCOPY ¢ UPDFRM, fname, 6)

Y XXX EZET SRS SRR R RSS2 R R R R RS SRR SRR RSRRRS

START - File may have more than one update form
associated with it, Loop until named data
has ‘.NONE.’ as NXTFRM

SRR EEZEEZEEESER R RS R R AR R R R R A RS2SR AR S R A RS ES]

Data’

500

500

600

600

* Clear the screen and show UPDFRM form or NXTFRM form

CALL FCHIMP C impuru)

CALL STATCK (status, stat2)
CALL FSHOW ¢ fname)

CALL STATCK (status, stat2)
'

j = Get data for current form and output it
]

DD 605 I=1,128

POOLCID> = 0

CONTINUE

CALL FGETAL ¢ POOL)

CALL STATCK ¢ status, stat2)

FORMAT (128A1)
WRITE (1,615) (POOLCI), I=1,128)

d . Get name of next form. If found, loop for more data
J 4 If .NONE.’ exit this loop
}

CALL ScCoPY ¢ ’NXTFRM’, NDFLD, 6)

CALL FNDATA ¢ NDFLD, fname)

CALL STATCK ¢ status, stat2)

1
IF (SCOMP (fname, ‘.NONE.‘)> .NE. 0) GO TO 600

{'l'l'*§<l*9l"l'*ll'**l}iil!l'l~l'QII**{l***ll*il’**li*iii’*iil*il&l 600

END - Loop until there are no more forms for this data file

FMS Sample Application Programs

C-25

! ***i*iii}!*!i}{*ilii***'l'l**{*{‘li}iiil!*li*i{*{*i{i{*l&**** 600

End of the form series. Show ‘LAST’ form menu to determine

OO0 0 00
*

! Y if operator wants to continue with this data-type, return
! ¥ to main menu, or exit
1
700 CALL FCHIMP C impurl)
CALL STATCK (status, stat2)
CALL MENUCH C MENUNB, MENUTX)
c '

IF (MENUNB .EQ. ‘17> GO TO 500

C ! lil"i*iiﬁ*i&li*{i“*i‘I{’*I*}II’ll{ii*{l‘*ll{{l**il’l*}l%*l*il‘**** 500
c ! END - Loop until menu choice is not ‘1’ - “Additional Data’
C ! ﬁIl{*{l’l*l’l*&il*Ii&l*l’l*l"l**~l**i<l§l‘l'&{'l&l**i*&ll*i**&lil{*l&*-l 500
c !
v ! o Close this output file
c !
800 CLOSE CUNIT=1)
c !
c ! * Show the menu form for the operator to select the next
c J ¥ file to update. If named data from ‘LAST’ menu was
C ! & *EXIT.’, don‘t prompt with ‘FIRST’ menu
c !
300 IF CSCOMP (MENUTX, ‘.EXIT.’) .NE. 0) GO TO 300
c ! *i!il‘l’ll‘l’!l!*!li*l'i!ii‘lil‘lliil{’!l’ill’iiiiiiili'**l*il{ 300
C ! END - Loop until menu choice is ‘.EXIT.-’
C ! I&ll&lll}‘ll“lIQ*Iil’lQQ!QlQQ*'QQ*!*Ql'{l{*i.‘{*"*if’f‘l‘*f 300
c
C —
C !'Il'*l*}l&ll**l*{i*{i*{*!‘l*{l!i}ii’lil#l{ﬁll&l&*«l‘lii*!{**‘l**i'*l
c 2 End this program routine
C !*{4!*{{&'{*0Iin}i{Ii{ll’l*Ql’l’ll‘*l}*l‘l'Qi{!ll*li*l’l{’}{&l*&ll
c !
o} t & Clear screen, show empty form, close form library
(G !
CALL ScOoPyY C ‘CLEARF’, fname, 6)
CALL FCLRSH ¢ fname)
CALL FLCLOS B
c !
END
C !Qll'ﬂQ{l'Ifil*iiill*ll*l'i{}l’*l!I‘l!ii*{il*li’i‘l*il{il&ll*!*l**i
SUBROUTINE MENUCH (MENUNB, MENUTX)
C ’ GET A VALUE FROM THE MENU FORM
C !i*l}*ii'Ill'IQ*I'li*l‘li*{'l'{l'Iii'li{i*li*iil*iiiliill**l*ll*i'l*l’*

c !

BYTE MENUNB
BYTE MENUTX(7)
BYTE DISPLN(80)
BYTE fid(7)
INTEGER status
INTEGER stat2

C-26 FMS Sample Application Programs

O

O O 00

550

! * Get a value for menu ‘FIRST’ or ‘LAST’

CALL SCOPY ¢ ’‘CHOICE’, fid, 6)

CALL FGET (MENUNB, term, fid)

CALL STATCK (status, stat2)

1

! * Read named data, if number exists, menu choice was good
1

CALL FNDATA (MENUNB, MENUTX)

CALL FSTAT (status, stat2)

IF (status .GT. 0) GO TO 550
]

! & There was an error
1

CALL SCOPY (‘Option not on list’, DISPLN, 18)

CALL FPUTL ¢ DISPLN)
CALL STATCK (status, stat2)
1
GO TO 500
!
RETURN
END

|#iii&!l’&iI!’&il&{lil&'ll’ll’llli{.i‘*il{i{i*{ll*’}{l*}{l’

SUBROUTINE STATCK (status, stat2)
! this subroutine will check the status of the FMS calls

Ili"**l“*ll’!l’&!*l’iiI*’iil’*illillliii.I’l!l"*ill’“*ll"ﬁ}il”

INTEGER status

INTEGER stat2

'

Y = Check to see if there was an FMS or RMS error %
i

CALL FSTAT (status, stat2)

]

CALL CHFMST (status, stat2)

RETURN

END

I*i**l’{*‘l*l{*‘**i’**i’il’l*l‘{l’*il’li*i*l{*li**ll’*l{**il*

SUBROUTINE CHFMST (status, stat2)
! * Some calls return status in the call. For those
! i calls the ‘FSTAT’ call is not necessary

!******{*i{l!l**}{{il{*i{*l*ii{{ii*li*li&ii**i&li**l{*ii{&
!
INTEGER status
INTEGER stat2
.
IF (status .GT. 0) GO TO 650

FMS Sample Application Programs

C-27

645

650

OO 00000

o

10

OO0 O0O0O0OO0000O0

[}

c !

2

!
H t Display an FMS error number and stop the program *
]
CALL FLCLOS
FORMAT (/, 2X, ‘FMS STATUS...‘, 15,
/, 2X, ‘RMS STATUS...’, 1I8)
TYPE 645, status, stat?
sTaP
!
RETURN
END

l"*ii’i*ﬂ'*‘li’!l*l{’l’{*li‘ll’l{{il"iiIi&’i{‘illllﬂ'l**ii*il*

SUBROUTINE ScCOPY ¢ SRC, DST, LEN)
! 4 Copy a string of a specified length

!il’}!ii*{i’*{l’ﬂ'il&ii*lilll’{iiil&il!l{iil’l{‘lliilill*ll!il
!

! * SRC = source byte string

! * DST = destination byte string to be ended by a zero

' * LEN = number of characters to copy
1

BYTE SRCC1), DST(1)
INTEGER LEN

! * Copy source to destination for length

DO 10 I = 1, LEN
DSTCI> = SRCCI) -
CONTINUE

f o End destination string with zero byte

DSTCLEN+1) = 0
RETURN
END

l0!#{!**!’*!‘!}!lill-I'll!'i{!{lili*l{lll*ii!li!Il**l!lil}ll

INTEGER FUNCTION ScompP ¢ SRC1, SRC2)

! * Compare two strings
lII*ll}l‘lll’li’l’l'l'QIi*l'lI'll'il‘I'l{l‘lll’l!l‘l'*llill*illlli

b SRC1 = first comparand byte string ended by a zero
* SRC2 = second comparand byte string ended by a zero

* Value of function is zero for equal, nonzero for not equal
* Compare returns failure if string lengths are not the same

BYTE SRC1¢1), SRC2(1)

* Compare until either string ends in zero byte or does not match

C-28 FMS Sample Application Programs

o

IF & 0
10 IF (SRC1CI) .EQ. 0 .AND. SRC2(I) .EQ.
IF (SRC1(1) .NE, SRC2CI))> GOTO 30
I =1+ 1
GOTO 10

! C Return success

20 SCOMP = 0

RETURN

' * Return failure
30 SCOMP = 1

RETURN

END

0) GOTO 20

FMS Sample Application Programs C-29

C.7 Listing of the MACRO-11 Program

$ TY MACDEM.MAC
.TITLE MACDEM - FMS DEMONSTRATION SUBROUTINE
S .LIST MEB

s MACDEM.MAC

H COPYRIGHT (C)> 1985 BY
; DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

; MODULE: MACDEM

H

s VERSION: v02.00

3 AUTHOR: MEGAN

;s DATE: 17-SEPTEMBER-8S

3
.ENABL LC ; Allow lower case source text
.MCALL $FDV, $FDVDF ; ldentify Form Driver macro calls
.MCALL QIOWS$S,EXITS$S 3 RSX 1/0 related macros
.MCALL FINITS$,FSRSZS$ 3y FCS macros

.MCALL FDBDF$,FDRC$A,FDOP$A,NMBLKS
.MCALL FDATS$A,0OPENSW,PUTS,CLOSES
FSRSZ$ 1 ; Set the file storage region

$FDVDF ; Init the Form Driver definitions
3
; Equated symbols
H

.PSECT MACDAT,D,REL

IS12=1024. i Size of FDV impure area
INSCHN=1 ; Input channel number (Form Library)
OUSCHN=2 ;3 Output channel number (Output File)d

.SBTTL Local data
EXTNAM: .ASCII /.EXIT./
NONNAM: .ASCII /.NONE./
FSTNAM: .ASCII /FIRST /
LSTNAM: .ASCII /LAST / 3y ASCII form name
CLRSCR: .ASCIl /CLEARF/ ; ASCII form name
CHCNAM: .ASCII /CHOICE/ ;s ASCII field name

; Exit name
; No more forms in series
; ASCII form name

C-30 FMS Sample Application Programs

NXTNAM:
LIBNAM:
FILE:
MSG1:
MSG2:

H

.ASCII
.ASCIZ
.ASCII
.ASCIZ
.ASCIZ
.EVEN

/NXTFRM/

/DEMLIB/

/FILE /

/1lllegal choice/
Fatal 1/0 error

i Argument lists and data area

1

ARGLST:
REQLST:
STAT:

VAR :

QUTFIL:
FRMNAM:
SAVNAM:
FILBLK:
BUFADR:
BUFFER:
ENDBUF =.
FILNAM:
IMPUR1:

IMPUR2:

IMPUR3:

3

.BLKB
.BLKB
.BLKW

.BLKB

.BLKW
. BLKW
. BLKW
.BLKW
.BLKW
. BLKW

.BLKB
.WORD
.BLKB
.WORD
.BLKB
.WORD
.BLKB
.EVEN

;7 I1/0 section

.
1

OUTFDB:

NMBLK:

DSDS:

FDBDF ¢
FDATS$A
FDRC$A
FDOP$A

NMBLK$

.WORD

.WORD

.WORD

.EVEN

.SBTTL

F$ASIZ
F$RSIZ
2

6

N - - W wom

R.VAR,FD.CR
,BUFFER
OU$CHN,DSDS,NMBLK

,DAT,,SY,0

[= 3= -
-
o O o

ASCII named data field name
ASCIZ library name

6 BYTE ASCII file name

Message for illegal menu choice
Message with embedded ‘/‘

Form Driver argument list
Form Driver required list
Form Driver status block

Variable 6-byte block for
general use

Output file name

Area for form names

Save area for a form name
Length of file in blocks
Length of data in buffer
Length of output buffer

16 bytes for ASCII file name

First Impure area - for First form
Second Impure area - for Update form
Third Impure area - for Last form

Define the FDB

Variable length records with CR/LF
Allow read, write and modify

File descriptors

Default for file

Default the device name

and file directory

This is the file name length
and file name

MACDEM - FMS Demonstration Subroutine

FMS Sample Application Programs C-31

5 &

; FUNCTIONAL DESCRIPTION:

3 This is the MACRO demonstration program for FMS
g illustrating a simple form-driven, data-entry

H application.

.PSECT MACDEM,I,R0O,REL
DEMO:
FINITS
QIOW$S H#I0.ATT,#TSLUN,#TSEFN
BCC 1$
CALL LEAVE
[3P MoV #ARGLST,RO
MoV #¥REQLST,R1
MoV ¥STAT,F$STS(R1)
mMov #INSCHN,F$CHNC(R1)
MoV # IMPUR1,F$IMP(R1)
$FDV REQ=R1
$FDV FNC=0PN,NAM=# L IBNAM
CALL ERREX
FIRST: $FDV FNC=CSH,NAM=#FSTNAM
CALL ERREX
Mov # IMPUR3,REQLST+F$IMP
$FDV
CALL ERREX
10¢ Mov #ARGLST,RO
$FDV FNC=CIA,VAL=# IMPUR1
118 $FDV FNC=GET,NAM=# CHCNAM
CALL ERREX
MOV #VAR1,R1
CALL BLKNAM
MOVB @F $VAL(RO) ,VAR1
$FDV FNC=DAT,NAM=#VAR1
TST STAT
BGT 20¢

C-32 FMS Sample Application Programs

2

ARG=#ARGLST,FNC=SHO,REQ=#REQLST,NAM=#LSTNAM,NUM=419,

k]

Initialize for FCS
Attach the terminal
If error then just leave

[/0

Done for now
RO = addr of FDV arg list
R1 = addr of FDV required arg list

Set addr of status block
Set 1/0 channel for FDV
Set addr of FDV impure area

Ty
Open
Exit

required arg list pointer
form library
if error

Show
Exit

FIRST menu
if error

Reset to THIRD impure area
sShow LAST

Exit if error

Reset RO = addr of FDV arg list
Reset to FIRST impure area

Get field ‘CHOICE’
Exit if error

R1 = ptr to 6-byte block

Blank out VAR1

VAR

Get named data with the name being
the response to ‘CHQICE”

Was get successful?

Continue if ok

= menu choice

20¢:

30¢:

60¢$:

$FDV
BR

mav
mov
CALL
BNE
JMP

CALL
MOV
MOV
.REPT
mov

.ENDR
CLR
mov
MOVB
mov
$FDV

CALL
OPENS$HW
BCC
CALL

$FDV

$FDV
CALL

$FDV
CALL

CALL

$FDV
CALL
MoV
MoV
CALL
BEG
BR

FNC=LST,VAL=#MSG1,LEN=#-1

1$

F$VALCRO) ,R1
#EXTNAM,R2
CMPNAM

30¢

LIBCLS

MOVNAM

#FRMNAM,R1

#SAVNAM,R2

3
(R1)+,(R2)+

FILBLK
#BUFFER,BUFADR
VAR1,FILE+4
#FILE,R1
FNC=DAT,NAM=R1

DATSET
#0UTFDB
60¢
LEAVE

.
1)

; Else Print message on line 24

Try again

R1 = addr of name from named data
R2 = addr of exit name

Zero set on match

Continue on match

Else close form library and exit

Save named data
R1 = adr of source name
Adr to save form name

Save form name

Init file length
Init buffer adr

File name = "FILE"+contents of VAR1

R1=addr of 6 byte block holds filename

Get named data at VAR1

Go set up a data set descriptor
Open the file

Continue if ok

Leave on [/0 error

ARG=#ARGLST,FNC=CIA,VAL=#IMPUR2 ; Select impure area

;s for UPDATE

FNC=SHO,NAM=#FRMNAM,NUM=#7,

ERREX

FNC=ALL
ERREX

SAVDAT

.
3

1

2

Exit if error

Get all data from form
Exit if error

Put data in file

ARG=#ARGLST,FNC=DAT,NAM=#NXTNAM ; Get name of next form

MOVNAM
#NONNAM,R1
#FRMNAM,R2
CMPNAM

70¢

60¢

?
.
?

k]

Put form name in FRMNAM
R1 adr of ASCII .NONE.
R2 adr of returned name
Zero set on match

Display last form on match
Else get data from next form

FMS Sample Application Programs

C-33

708: $FDV

80¢: $FDV
CALL
MOV
CMPB
BNE
CLOSES
MoV
Mav
JiMP

85¢: CMPB
BNE
Mov
MoV
AIRERT
Mov
.ENDR
BR

90¢: MOVB
MOVB
$FDV
TST
BGT
$FDV
BR

FNC=CIA,VAL=# IMPUR3
FNC=GET,NAM=# CHCNAM
ERREX

F$VAL(RO),R1
(R1),#472

85¢

#0UTFDB

#REQLST,R1
#IMPUR1,F$IMP(R1)
108

(R1),#°1
90
#SAVNAM,R1
#FRMNAM,R2
3
(R1)+,(R2)+

60¢

(R1),VAR1
#40,VAR1+1
FNC=DAT,NAM=#VAR1
STAT

CHKCLS

80¢$

i Close the output file

CHKCLS: CLOSES
Mov
MoV
MoV
CALL
BEQ
JMP

LIBCLS: $FDV
$FDV
BR

#0UTFDB
#EXTNAM,R1
#ARGLST,RO
F$VALCRO),R2
CMPNAM
LIBCLS

FIRST

FNC=CSH,NAM=# CLRSCR
FNC=CLS
EXIT

FNC=LST,VAL=#MSG1,LEN=#-

;Select 3rd impure area for LAST menu

Exit if error

R1 = adr of answer

Was 2 selected?

IF NO, see if 1 was selected
IF YES Close current file
Reset pointer to REQLST

Select 1st impure area

Return to 10$, show FIRST menu

Was 1 selected?
3 was selected
R1 = source name
R2 = dest name

Move name

Move into variable for name
Make 2nd char blank

Get named data

Check status

If ok then close file

s Print message on line 24
Try again

Close output file

Name of exit named data
Get ARGLST

R2 = adr of named data
Zero set if match

Exit on match

Back to start on no match

Show menu form
Close form library
And exit

3 Routine to check for error return from Form Driver.
i Print message and exit on error.

C-34 FMS Sample Application Programs

ERREX:

LEAVE:

EXIT:

3

TST
BLE
RETURN
$FDV

$FDV

EXITS$S

s Subroutine to

k]

SAVDAT:

Mav
Mav
TSI
BLE
PUTS$
RETURN

STAT
LEAVE

;5 Was call ok?

ARG=#ARGLST,FNC=LST,VAL=#MSG2,LEN=#-1

FNC=CLS

; Print message on line 24
; Close form library

store data in output file

F$VALCRO) ,R2
F$LENC(RO),R3
R3
10¢
#0UTFDB,2,R3

;s R2
s R3

;s Was data returned?

adr of data returned

length of data returned

s If not return

; Store away the string of data

5 Subroutine to move name and blank fill to 6 chars

MOVNAM:

; Subroutine to blank 6 bytes
R1 = Addr of name to blank

BLKNAM:

B¢:

F$VALC(RO
F$LENCRO
FRMNAM =

MoV
CALL
Mav
mov
Mav
MOVB
DEC
BNE
RETURN

mMov
MOVB
DEC
BNE
RETURN

#FRMNAM,R2
F$LENCRO),R3
(R1)+,(R2)+

R3

108

#6,R2
#40,(R1)+
R2

5¢

) = Addr of source name
) = Length of source name
Addr of destination of name
FRMNAM,R1 3y R1 = addr to store form name
BLKNAM s Blank out name
F$VALCRO),R1 ; R1 = addr of named data

s R2 = addr to store form name
; Length of named data
; Move named data to form name

s Dec char ctr

;s R2 = b6
s Init name with blanks
; Dec byte ctr

FMS Sample Application Programs

C-35

; Subroutine to compare two 6-byte names

g R1,R2 point to names

g R3 = 0 if match on return

CMPNAM:
mMav #6,R3
10¢: CMPB (R1)+,(R2)+
BNE 208
DEC R3
BNE 10¢
20¢: RETURN

.
1

7

3

6 char compare

Compare 2 bytes

Leave loop if no match
Dec char ctr

; WE ARE GOING 70O BUILD THE DATASET DESCRIPTOR BY HAND

.
kl

DATSET:
MoV F$LEN+ARGLST,R4
MOV #DSDS,R3
.REPT 6
CLR (R3)+
.ENDM
Mov F$VAL+ARGLST,R1
308: Mov R1,R2
MOV #2,R3
40¢: TST R4
BEQ 60¢
CMPB (R1),#7]
BEQ 50¢
DEC R4
CMPB (R1)+,#7:
BNE 40¢
DEC R1
ASR R3
508: ASR R3
INC R1
60$: ASL R3
ASL R3
ADD #DSDS,R3
MoV R1,(R3)
SUB R2,(R3)+
Mov R2,(R3)
TST R4
BEQ 70¢
BR 30¢
70¢: RETURN
.END DEMO

C-36 FMS Sample Application Programs

Set string size in R4
Clear the dataset descriptor

So we don’t imply any defaults

-> filespec

Save -> start of substring
Assume its a filename (offset/4)
End of filespec??

Yes - save filename string
Directory spec?

Yes

Decrement the string count
Device spec?

Nope

Backup to take

Adjust
Adjust for directory

Adjust for trailing character (: 1)
Adjust offset in range (0-10)

Into dataset descriptor

Make address

for device

Make count

As end-start

Save address next

See if done?

Yes

Nope back for next segment
Return to caller

Appendix D
Task-Building FMS Sample Applications

This appendix contains source listings of the command files used to build the
FMS demo programs.

ili‘iiliili!’&i’i!’lil!lli!!!iOi'iiil}Il‘l!"!i.!Ci!'l{!'l'!.{!lll!.lll
3
3

; BASRMSCLS.CMD
; Copyright (C) 1985 Digital Equipment Corporation, Maynard, MA

3 Command file to build BASIC+2 demo with FMS and RMS clustered

5 Underlined items are changes from file built with

3 BASIC+2 BUILD command.
BASRMSCLS/CP,BASRMSCLS/-SP=BASRMSCLS /MP

- b ey Add map file if desired.
CLSTR=FDVRMS,RMSRES: RO

UNITS = 14

ASG = T J43FIS

5 -= Assign LUN 5 as terminal for FDV.

ASG = SY:6:7:8:9:10:11:12

g - Remove LUN S from this line.

1/

3
;lll.'.i'..".“‘l....C'.I!QlIl'.l.l'lI.Qll'..!...QQQQQIQ!QQ.Q'Q'l.!'i..
s BASRMSCLS.ODL

i Copyright (C)> 1985 Digital Equipment Corporation, Maynard, MA
8 TKB Overlay Description File for BASIC+2 demo

7 clustered with RMSRES resident library

b Underlined items are changes from file built by
B BASIC+2 BUILD command.

-ROOT BASIC2-RMSROT-USER

USER: .FCTR BASDEM-LIBR-FORM

L Add FMS factor to root
LIBR: .FCTR LB:[1,1)BP20TS/LB

FORM: -FCTR HLLBP2-HLLDFN-FRM1
i i Add HLL interface
FRM1: .FCTR FDVDRT

HeSebse o o o SD_SE o8 S Add FDV data area

8LB:[1,1]1BP2IC1
6LB: (1, 1]IRMSRLX
.END

Figure D-1. Command File and ODL File to Build BASIC-PLUS-2 Demo
with FMS and RMS Clustered

D-2 Task-Building FMS Sample Applications

R i R R S T R R Y]

; BASRMSRES.CMD

H Copyright (C) 1985 by
g Digital Equipment Corporation, Maynard, MA

H Command file to build BASIC+2 demo with RMSRES resident library

2 Underlined items are changes from file built with

3 BASIC+2 BUILD command.

BASRMSRES/CP ,BASRMSRES/ -SP=BASRMSRES/MP

e Add map file 1f desired.

UNITS = 15
ASG = T1:13:5

9 -- Assign LUN 5 as terminal for FDV.

ASG = SY:6:7:8:9:10:11:12

3 = Remove LUN 5 from
EXTTSK = 952

RESLIB=LB:[1,1IRMSRES/RO

/7

3

this line.

;..lQl'll'!!l!'llI'l!ll.QGQ.‘Q!l..!.QOQ00‘QQQQ.!!..QQ!'..QDQQQQ..IQ!.

i
H

; BASRMSRES.ODL

; Copyright (C)> 1985 Digital Equipment Corporation, Maynard, Ma

H TKB Overlay Description File for BASIC+2 demo
3 with RMSRES resident library

i Underlined items are changes from file built by
g BASIC+2 BUILD command.

.ROOT BASIC2-RMSROT-USER

3 Add RMS symbols

USER: .FCTR BASDEM-LIBR-FORM

s e Add FMS factor to root
LIBR: .FCTR LB:[1,11BP20TS/LB

FORM: .FCTR HLLBP2-HLLDFN-FRM1
jo-=semememmsemmmocso-—coomm—m e Add HLL interface
FRM1: .FCTR FDVLRM/LB

R e L R R DR Add FDV

aLB:(1,11BP2IC1
@LB:[1,1IRMSRLX
.END

Figure D-2. Command File and ODL File to Build BASIC-PLUS-2 Demo
with RMSRES Resident Library

Task-Building FMS Sample Applications D-3

iiciiiiioclilwﬁllcl-iu..ou.luiuci.ol‘uco-aoo-ui-conn-n-nuoo.e-n

H
*
H

BASRMSTKB.CMD

3 Copyright (C)> 1985 by
H Digital Equipment Corporation, Maynard, MA

g Command file to build BASIC+2 demo

7 Underlined items are changes from file built with
3 BASIC+2 BUILD command.
BASRMSDEM/CP, BASRMSDEM/ - SP=BASRMSTKB/MP

i e mmmme oo Add map file 1f desired.

UNITS = 15

ASG = TI:13:5

H oo Assign LUN 5 as terminal for FDV,

ASG = SY:6:7:8:9:10:11:12

H = Remove LUN S from this line.

EXTTSK = 952

/7
;......'.GI..Q.QI.!.'II!Q.'..!IQ!'ll.!.‘!..".IQ.I.!'.Q'..QQ..!Q."Q..".’Q'..

; BASRMSTKB.ODL

5 Copyright (C) 1985 by
3 Digital Equipment Corporation, Maynard, MA

5 TKB Overlay Description File for BASIC+2 demo

B Underlined items are changes from file built by
5 BASIC+2 BUILD command.
.RDOT BASIC2-USER-RMSROT,RMSALL

USER: .FCTR BASDEM-LIBR-FORM

g paeeEs Add FMS factor to root
LIBR: .FCTR LB:[1,11BP20TS/LB

FORM: .FCTR HLLBP2-HLLDFN-FRM1

e i Add HLL interface

FRM1: -FCTR FDVLRM/LB-LB:{1, 1JRMSLI1B/LB:RMSSYM
e i T Add FDV and define

H RMS symbols
@LB:[1,11BP2IC1
OLB:[1,1JRMS11X

.END

Figure D-3. Command File and ODL File to Build BASIC-PLUS-2 Demo

D-4 Task-Building FMS Sample Applications

I R i R R R R S R R R R R R SR R]

s C11RMSCLS.CMD

: Copyright (C) 1985 Digital Equipment CorPoration, MaYnard, MA

g Command file to build COBOL-11 demo

C11RMSCLS,C11RMSCLS/-SP=C11DEM

) COBOL-11 interface and Form Driver library
3

HLLCOB, HLLDFN,FDVDRT

5 COBOL-11 LIBRARY

i

LB:f1,11COBLIB/LB

H

g RMS-11 Resident library modules
LB:[1,1)JRMSLIB/LB:ROAUTL:ROIMPA:RMSSYM:ROEXSY

/

CLSTR=FDVRMS ,RMSRES: RO

UNITS=3

H LUN 1 will be the terminal.

ASG = TI:1

] LUN 3 will be the output file unit.
ASG = SY:3

g Reassign the logical unit in the Form Driver.
GBLDEF = TS$SLUN:1
’/

’

Figure D-4. Command File to Build COBOL-11 Demo

Task-Building FMS Sample Applications D-5

LA R AR R AR R R A A R R RN Ty NNy RN R SN S

1

i

; C11RMSRES.CMD

; Copyright (C) 1985 Digital Equipment Corporation, Maynard, MA

] Command file to build COBOL-11 demo

H with RMSRES resident library
C11RMSRES,C11RMSRES/-SP=C11DEM

5 COBOL-11 interface and Form Driver library
HLLCOB,HLLDFN,FDVLRM/LB

5 Run time libraries for COBOL-11, FDV, RMS
LB:{1,1]1COBLIB/LB

H

H RMS-11 Resident library modules
LB:[1,1)RMSLIB/LB:ROAUTL:ROIMPA:RMSSYM:ROEXSY

/

UNITS=9

H LUN 1 will be the terminal.

ASG = TI:1

5 LUN 3 will be the output file unit.

ASG = SY:3

g Reassign the logical unit in the Form Driver.

GBLDEF = TS$LUN:1
RESLIB=LB:[1, 1IJRMSRES/RO
s

H

Figure D-5. Command File to Build COBOL-11 Demo with RMSRES
Resident Library

D-6 Task-Building FMS Sample Applications

YT Y R A R R R R R 2R R 2 RS RS R A R A AR A AL R AR A A A

s C11RMSTKB.CMD
; Copyright (C) 1985 ngilal Equipment Corporation, Maynard, MA

B Command file to build COBOL-11 demo

C11RMSDEM,C11RMSDEM/-SP=C11DEM

; COBOL-11 interface and Form Driver library
;LLCDB,HLLDFN,FDVLRM/LB

z Run time libraries for COBOL-11, FDV, RMS

LB:[1,11COBLIB/LB,RMSLIB/LB

/

UNITS=9

H LUN 1 will be the terminal.

ASG = TI:1

8 LUN 3 will be the output file unit.
ASG = SY:3

8 Reassign the logical unit in the Form Driver.
GBLDEF = TSLUN:1
/7

3

Figure D-6. Command File to Build COBOL-11 Demo

Task-Building FMS Sample Applications D-7

Qnoinl!ofunnn'u.u.!!nu'(!Q'l&eloolaltoliliiiuclnonilyunounocu..ouou

5 CBIRMSCLS.CMD

i Copyright (C) 1979 Digital Equipment Corporation, Maynard, MA

H

Command file to build COBOL-81 demo

C81RMSCLS,C81RMSCLS/-SP=C81DEM

H
i

H

CDBOL interface and form Driver library

HLLCOB,HLLDFN,FDVDRT

H
3

i)

COBOL-81 LIBRARY

LB:{1,1)C81LIB/LB

3
H

RMS-11 Resident library modules

LB:[1,1JRMSLIB/LB:ROAUTL:ROIMPA:RMSSYM:ROEXSY

/

CLSTR=FDVRMS,RMSRES : RO

GNITS'S

;SG = T el

;SG = SRS
éBLDEF = T$LUN:
’/

Figure D-7.

LUN 1 will be the terminal.
LUN 3 will be the output file untt,

Reassign the logical unit in the Form Driver.

Command File to Build COBOL-81 Demo

D-8 Task-Building FMS Sample Applications

R R BN E RN RS R R R SRS R RS R R F ARG AP R AR SRR AERRERRBHERAII RS

s C81RMSRES.CMD
; Copyright (C) 1985 Digital Equipment Corporation, Maynard, MA

; Command file to build COBOL-81 demo with RMSRES resident library

C81RMSRES,C81RMSRES/-SP=C81DEM

g COBOL interface and Form Driver library
3

HLLCOB, HLLDFN

3

H Run time libraries for COBOL-81, FDV, RMS
LB:{1,11C81LIB/LB,SY:[30,101FDVLRM/LB

3 RMS-11 Resident library modules

H

LB:{1,1IRMSLIB/LB:ROAUTL:ROIMPA:RMSSYM:ROEXSY

/

UNITS=9

g LUN 1 will be the terminal.

ASG = TI:1

d LUN 3 will be the output file unit.

ASG = SY:3

d Reassign the loglcal unit in the Form Driver.
GBLDEF = T$LUN:1

3

RESLIB=LB:[1, 11RMSRES/RO

3

G

i

Figure D-8. Command File to Build COBOL-81 Demo with RMSRES
Resident Library

Task-Building FMS Sample Applications D-9

LR AR R A R Yy s I

3 CB1RMSTKB.CMD

; Copyright (C)> 1985 Digital Equipment Corporation, Maynard, MA

g Command file to build COBOL-81 demo

C81RMSDEM, C81RMSDEM/ -SP=C81DEM

: COBOL interface and Form Driver library
;LLCUB,HLLDFN

: Run time libraries for COBOL-81, FDV, RMS
zB:[1,1]CB1LIB/LB,SY:[30,10]FDVLRM/LB,LB:[1,1]RMSL]B/LB

/

UNITS=9

d LUN 1 will be the terminal.

ASG = TI:1

5 LUN 3 will be the output file unit.

ASG = SY:3

§ Reassign the logical untt in the Form Driver.
GBLDEF = T$LUN:1

g

3

Figure D-9. Command File to Build COBOL-81 Demo

D-10 Task-Building FMS Sample Applications

P N R R R Y

; DBLRMSCLS.CMD

H Copyright (C) 1985 by
H Digital Equipment Corporation, Maynard, MA

; Command file to build the DIBOL version of the FMS demo with RMS
DBLRMSCLS/CP,DBLRMSCLS/CR/-5P=DBLRMSCLS/MP

H

UNITS=18

3ASG=NLO:S s Set to null channel
1ASG=T1:16 3 Foreground terminal
sASG=TI:17 ;s DDT terminal
1ASG=SY0:18 ; Channel for RENAM/DELET

CLSTR=DBLRSX,FDVRMS,RMSRES: R0
3

GBLDEF=CHNLST:1042

//

H
AR R AR SRS RN N R RN R B R R AR A AR B F AR RS SRR BRI IR RRRRA IR

; DBLRMSCLS.ODL
g Copyright (C) 1985 by

% Digital Equipment Corporation, Maynard, MA

.ROOT PROG-DBLLIB-HLL-FDVLIB-RMS

PROG: .FCTR DBLDEM

DBLLIB: .FCTR LB:[1,1]1DBLUESL/LB-LB:[1,1]1DBLOSSL/LB
HLL: .FCTR HLLDBL-DBLDFN

FDVLIB: .FCTR FDVDRT

RMS: .FCTR RMSROT

@LB:[1, 1IRMSRLX.ODL
.END

Figure D-10. Command File to Build the DIBOL Version of the FMS Demo
with RMS

Task-Building FMS Sample Applications D-11

AR AR RS AR S N Y Y YRS R R R eI

3

; DBLRMSRES.CMD

Copyright (C)> 198S by

Digital Equipment Corporation, Maynard, MA

R Command file to build the DIBOL version of the FMS demo

DBLRMSRES/CP,DBLRMSRES/CR/-SP=DBLRMSRES/MP

H

UNITS=18

3ASG=NLO0:5
sASG=TI:16
3ASG=TI:17
;ASG=5SY0:18
CLSTR=DBLRSX,RMSRES:
H

GBLDEF =CHNLST: 1042
/7

s Set

to null channel

; Foreground terminal

;s DDT

terminal

;s Channel for RENAM/DELET

AAAAAR SR AR AR R AR R Y Y N R YN R RTE YRR R R W R G

; DBLRMSRES.ODL

PROG:

DBLLIB:

HLL:

FDVLIB:

RMS:
eLB:[1,1JRMSRLX.0ODL

Figure D-11. Command File to Build the DIBOL Version of the FMS Demo

Copyright (C) 1985 by

Digital Equipment Corporation. Maynard, MA

.ROOT
.FCTR
.FCTR
.FCTR
.FCTR
.FCTR

.END

PROG-DBLLIB-HLL-FDVLIB-RMS

DBLDEM
LB:{1,1IDBLUESL/LB-LB:[1,11DBLOSSL/LB
HLLDBL -DBLDFN

FDVLRM/LB

RMSROT

(Page 1 of 9)

D-12 Task-Building FMS Sample Applications

T ey e R R R R R R R R R A AR A A A AR AL AR

3 F77FCSTKB.CMD

3 Corrriiht (C) 1985 br

H Digital Equipment Corporation, Maynard, MA

3 Build the FORTRAN demo for FORTRAN-77 using FCS

F77FCSDEM/FP,F77FCSDEM/CR/-SP=F77DEM
H FORTRAN interface and Form Driver library (using FCS)
HLLFOR,HLLDFN,FDVLIB/LB
LB:[1,11F77FCSOTS/LB
7/
Vi lda L4
Figure D-11. Command File to Build the BFBOL Version of the FMS Demo

(Page 2 of 9)

Task-Building FMS Sample Applications D-13

LA RS R A A R R R R R R R Y R X RN F RN R R Wi (g G

; F77RMSCLS.CMD

; Copyright (C) 1985 Digital Equipment Corporation, Maynard, MA

; Build the FORTRAN demo for FORTRAN-77 clustered with RMSRES
;77RMSCLS/FP,F77RMSCLS/CR/-SP‘F77DEM

: FORTRAN interface and Form Driver library (using RMS)
;LLFDR,HLLDFN,FDVDRT

CB:[1,1]F77RMSUTS/LB

g RMS-11 Resident library modules
LB:[1,1IRMSLIB/LB:ROAUTL:ROIMPA:RMSSYM:ROEXSY

3
/
i

CLSTR=FDVRMS,RMSRES: RO
/7

| FoL TAB A
Figure D-11. Command File to Build the BEBOL. Version of the FMS Demo
(Page 3 of 9)

D-14 Task-Building FMS Sample Applications

L R Y Yy

; F77RMSRES . CMD
i Copyright (C) 1985 Digital Equipment Corporation, Maynard, MA
: Build the FORTRAN demo for FORTRAN-77

s using RMS resident library
;77RMSRES/FP,F77RMSRES/CR/-SP-F77DEM

H

; FORTRAN interface and Form Driver library (using RMS)
HLLFOR,HLLDFN

FDVLRM/LB,LB:[1,11F77RMSOTS/LB

H RMS-11 Resident library modules
LB:[1,1IRMSLIB/LB:ROAUTL:ROIMPA:RMSSYM:ROEXSY
/
RESLIB=LB:[1,1IRMSRES/RO
/7
FORTRR AN
Figure D-11. Command File to Build the BEB®L Version of the FMS Demo

(Page 4 of 9)

Task-Building FMS Sample Applications D-15

L R A T T T R R T T T T vy

H

3y F77RMSTKB.CMD

H

3 Copyright (C) 1985 Digital Equipment Corporation, Maynard, MA

H Build the FORTRAN demo for FORTRAN-77 using RMS

F77RMSDEM/FP ,F77RMSDEM/CR/ -SP=F77DEM

H FORTRAN interface and Form Driver library (using RMS)

HLLFOR,HLLDFN
FDVLRM/LB,LB:[1,1)F77RMSOTS/LB,LB:[1,11RMSLIB/LB

;CLSTR=FDVRMS,RMSRES : RO

A

, \7 0 TAN}

Figure D-11. Command File to Build the PHBOT; Version of the FMS Demo
(Page 5 of 9)

D-16 Task-Building FMS Sample Applications

Iy R R R R R R R R AR RS AR R R

3 FORFCSTKB.CMD

i Copyright (C) 1985 by

DIDLTL BOUIONONE Conparation, Noymard.

H Build the FORTRAN demo
FORFCSDEM,FORFCSDEM/CR/~SP=FORDEM
g FORTRAN interface and Form Driver library
HLLFOR,HLLDFN,FDVLIB/LB
LB:[1,11FOROTS/LB
/7
P :ﬁ),.;/’
Figure D-11. Command File to Build the'BEBOFE. Version of the FMS Demo
(Page 6 of 9)

Task-Building FMS Sample Applications D-17

LA AR R R N S NS N]

MACFCSTKB. CMD

3 Copyright (C) 198S by
o Digital Equipment Corporation, Maynard, MA

H Task Build the Macro version of the DEMO application

MACFCSDEM,MACFCSDEM/-SP=MACDEM,FDVLIB/LB
/

UNITS=7

MAXBUF =512

7/

Figure D-11. Command File to Build the DIBOL Version of the FMS Demo
(Page 7 of 9)

D-18 Task-Building FMS Sample Applications

"...'..‘..."'l.5.‘..’.'.".‘.'I'i'Q‘.."C'.Q'l’.!.‘lll..'.’l.".
H

3 UTPF77TKB.CMD

3 Copyright (C) Digital Equipment Corporation, Maynard, MA

Task Build the FORTRAN-77 version of the UETP application

3 with the script processor

i
SISF77/FP,SISF77/-SP=S1SF77,SCRIPT,UTPTIO
HLLFOR,HLLDFN,FDVLIB/LB,LB:[1,11F77FCSOTS/LB
/

MAXBUF =512

/7

; FFORT R8IA/
Figure D-11. Command File to Build the HF6A. Version of the FMS Demo
(Page 8 of 9)

Task-Building FMS Sample Applications D-19

LRy R R R Y

s UTPFORTKB.CMD

; Copyright (C) 1985 Digital Equipment Corporation, Maynard, MA

3 Task Build the FORTRAN-IV version of the UETP application
H with the script processor

SISFOR,SISFOR/-SP=SISFOR,SCRIPT,UTPTIO
HLLFOR,HLLDFN,FDVLIB/LB,LB:[1, 1IFOROTS/LB
/

MAXBUF =512
1/

AR AL SRS S A AR AR R R R N R R RN R NRE R Y WU R PG gy

Figure D-11. Command File to Build the DIBOL Version of the FMS Demo
(Page 9 of 9)

D-20 Task-Building FMS Sample Applications

Appendix E
FMS-11 Software Error Messages

This appendix provides general information about FMS-11 software messages
and lists all the diagnostic messages FMS software can produce.

Section C.2 describes the order of messages.

B Section C.3 summarizes the types of messages each FMS software component
can produce.

Section C.4 explains the procedure to follow if FMS software malfunctions.

Section C.5 includes messages for the Form Editor (FED), the Form Utility
(FUT), and the Form Driver (FDV). The messages, arranged alphabetically,
are printed in the same form displayed on your terminal.

— E.1 How to Use This Appendix

When you receive an FMS message, look it up in Section C.5, read the

explanation about the reason for the message, and apply the remedies
described.

Often, the Form Editor and the Form Driver signal you with the bell signal on
your terminal. In some cases, the bell signal is accompanied by a displayed
message, and in some cases there is no explicit message available. Section C.3

i summarizes the ways the Form Editor and Form Driver use bell signals. Refer
to that section when you hear a bell signal and there is no accompanying
message.

E.2 Order of Messages and Special Features

The messages in Section C.5 have been alphabetized according to the following
convention:

If the first character in a message is neither a digit nor a letter, the second
character is used for alphabetizing.

This appendix uses three general references in messages to stand for specific
names or values that are copied directly from the work you are doing. These

are:

AAAAAA A name, such as a form name, that FMS software
copies into messages.

NNNNNN A specific value, such as a number of blocks or
bytes, that FMS software reports.

n A single digit, such as a message code, that FMS

provides to distinguish different causes or contexts
for a message.

If you have trouble finding a message in Section C.5, review the following
procedure:

1. Identify the message’s origin. This appendix documents only the messages
that apply to FMS software.

2. If the first character in a message is a special character, such as a question
mark (?), ignore that character.

3. Ignore any number or name in a message that relates specifically to your
program or files.

4. Look up the message using the characters that remain.

E.3 Types of FMS Messages

Each FMS software component uses a special set of conventions in the
messages it can produce. This section summarizes those conventions.

E.3.1 Types of Form Editor Messages
The Form Editor can produce the following types of messages:

e Messages that follow your response to the Form Editor’s prompt are one
line long and are followed by the prompt.

® Messages that occur as you are editing a form appear on the bottom screen
line. Pressing the RETURN key removes the message from the screen. You
can then continue editing.

® Messages that occur after you finish editing a form appear on the bottom
screen line and are followed by the prompt.

e Messages about invalid field entries appear on the bottom screen line. You
can continue editing when the cursor reappears within the form.

E-2 FMS-11 Software Error Messages

o When you press the HELP key to get information about a field in a
questionnaire, messages one line long appear on the bottom screen line.
Pressing the HELP key again will display information about the entire
questionnaire.

e When you use an invalid cursor control function, the Form Editor signals
you by ringing the bell on your terminal. No message is printed. The bell
message signals are summarized later in this section.

E.3.2 Types of Form Utility Messages

Form Utility messages follow your response to the prompt using the following
form:

7FUT

E.3.3 Types of Form Driver Messages

When you are running the Form Driver without debug mode support, the Form
Driver can produce only the following types of messages:

e Messages about invalid field entries appear on the bottom screen line, and
you can immediately continue editing when the cursor reappears within the
form.

e Messages that are one line long appear on the bottom screen line when you
press the HELP key to ask for help about a field in a form. HELP for the
entire form is displayed if you press the HELP key again.

e The Form Driver signals you by ringing the bell on your terminal when you
use an invalid cursor control function but no message is printed. Bell
message signals are summarized later in this section.

When you are running the Form Driver with debug mode support, each of the
preceding types of messages can also appear, as well as special debug mode
messages in the following forms:

e ?FDV-F-Text (for fatal errors).
e ?7FDV-W-Text (for warnings).

Each of the Form Driver’s debug mode messages has a corresponding status
code that is returned to the calling task. The documentation for each debug
message includes both the MACRO-11 form and high-level language form of
the status code. For example, documentation for the message “IPDV-F-
INVALID FIELD SPECIFICATION” includes the following information:

Return code: FE$FLD Value: -11)

FMS-11 Software Error Messages E-3

When you have debugged a task and are running it without debug mode
support, the task should include code to test for an error on each Form Driver
call by checking the status code. MACRO-11 tasks should test for the return
code, FE$FLD, in the preceding example. BASIC-PLUS-2 and FORTRAN IV
tasks should test for the value returned by the FSTAT call, —11 in the
preceding example.

The Form Driver can also return five additional status codes that have no
corresponding debug mode messages. The codes and their meanings are:

Code Value Meaning

FS$SUC (1) Successful completion.

FS$INC 2) Current form incomplete.

(none) (—20) Wrong number of arguments for a
FORTRAN call.

(none) (—21) Impure area not initialized for a
FORTRAN call.

(one) (—22) Output string length too short for

BASIC-PLUS-2 call.
E.3.4 Bell Message Signals

The Form Editor and the Form Driver use the bell on your terminal in slightly
different ways.

E.3.4.1 Bell Message Signals from the Form Driver — In the debug mode,
the Form Driver displays each debug mode message, rings the bell, and then
waits for you to press the ENTER key or the RETURN key before continuing.
In the run mode, the Form Driver does not display the debug mode messages,

does not wait, and does not use the bell signal; it returns directly to the calling
task.

In the normal run mode (when the debug mode is disabled), the Form Driver
uses the bell to warn the terminal operator about two kinds of input errors:
errors within fields, and errors in moving the cursor or in terminating fields.

For typing errors within fields, the Form Driver also displays a short message
on the bottom line of the screen. For example, when a field description requires
numeric characters and the operator types a letter, the Form Driver rings the

bell and displays the message NUMERIC REQUIRED on the bottom line of
the screen.

E-4 FMS-11 Software Error Messages

For errors in moving the cursor or in terminating fields, the Form Driver warns

the operator only with the bell. The eight conditions that cause the Form
Driver to ring the bell are:

When the Form Driver cannot echo a character at the current position.
When cursor-left is illegal.

When cursor-right is illegal.

When delete character is illegal.

When changing the current input mode is illegal.

S @8 k= S R

When the previous field is illegal as a terminator because the current field
is the first field in the form that can accept input.

7. When the next field is illegal as a terminator because the current field is the
last field in the form that can accept input.

8. When scroll forward, scroll backward, exit scrolled area downward, and exit
scrolled area upward are illegal because the current field is not in a scrolled
area.

E.3.4.2 Bell Message Signals from the Form Editor — When you are
completing any of the questionnaires that the Form Editor uses, the Form
Driver displays the questionnaire forms and handles all terminal 1/0.
Therefore, bell message signals have the same meanings as for the Form Driver
when you are completing a questionnaire. Refer to the preceding section for
Form Driver message signals in the Form Driver’s normal run mode.

The bell is also used when the Form Driver is not in control. The Form Editor,
in edit mode, uses the bell to signal illegal input.

E.4 Suggestions to Follow if FMS Software Malfunctions

If you think the FMS software has malfunctioned, use the following procedure:

1. As accurately as possible, write down the functions, commands, terminal
input, and user program processes you used before the messages indicating
a malfunction appeared.

2. Save any programs and files you were using.

3. Obtain new copies of the FMS components involved, and try to duplicate
the malfunction.

4. If you still think FMS software has malfunctioned, check your hardware or
find someone to check it for you.

5. If the problem persists, consult someone in your area who is very familiar
with FMS software.

6. If you qualify to receive a written reply under DIGITAL’s Software Per-
formance Report (SPR) service, follow the directions on the SPR form.

FMS-11 Software Error Messages E-5

E.5 FMS Software Messages
Alphabetic Required - FDV
Explanation of Message

An alphabetic character is required in the current position. The alphabetic
characters are the letters A-Z and a-z, and space. The cursor is immediately
repositioned in the field and you can continue typing.

Remedies

Application documentation should include instructions for completing the
field.

The cursor is immediately repositioned in the field and you can continue
typing.

Alphanumeric Required - FDV

Explanation of Message

An alphabetic or numeric character is required in the current position.

Remedies

Application documentation should include instructions for completing the
field.

Arrays not allowed in scrolled area - FED
Explanation of Message

This message indicates that the user has assigned the indexed attribute to a
field on a scrolled line. This is not allowed.

Remedies

Press the RETURN key to remove the message from the screen; the Form
Editor then places the cursor in the first field of the questionnaire. Answer N
for the indexed attribute for each field in the scrolled line. If the scrolling
attribute is correct, continue to assign attributes. If any field in the scrolled
line is to be an indexed field, exit from the questionnaire, use the NORMAL
function to remove the scrolling attribute from the line, and use an ASSIGN
command to re-enter and complete the questionnaire. Answer H for the
indexed attribute when a field is part of a horizontal array, and answer V when
the field is part of a vertical array.

E-6 FMS-11 Software Error Messages

Cannot overwrite left margin - FED

Explanation of Message

This message indicates the user has done a delete left of cursor to the beginning

of the line. The user is attempting to undelete-left such that the undelete string
would go beyond the left hand screen boundary.

Remedies

Before trying the UNDELLINE function again, move the cursor to a character
position that has enough blank space to the left for the string you erased.

Cannot overwrite non-blanks at left - FED
Explanation of Message

This message indicates the user has done a delete left of cursor to the beginning
of the line. The user is attempting to undelete-left on top of non-blank
characters.

Remedies

Before trying the UNDELLINE function again, move the cursor to a character
position that has enough blank space to the left for the string you erased.

Cannot overwrite non-blanks at right - FED
Explanation of Message

This message indicates the user has done a delete right of cursor to the end of
the line. The user is attempting to undelete-right on top of non-blank
characters.

Remedies

Before trying the UNDELLINE function again, move the cursor to a character
position that is blank and has enough blank space to the right for the string
you erased.

Cannot overwrite right margin - FED
Explanation of Message

This message indicates the user has done a delete right of cursor to the end of
the line. The user is attempting to undelete right so the undelete string would
go beyond the right hand screen boundary.

Remedies

Before trying the UNDELLINE function again, move the cursor to a character
position that has enough blank space to the right for the string you deleted.

FMS-11 Software Error Messages E-7

Cannot paste over margins or non-blanks or in scrolled area - FED

This message indicates the PASTE operation just attempted by the user has
failed. The user must move the cursor to another position in order to complete

the PASTE.
Remedies

Press the RETURN key to remove the message from the screen and to restore
the area that has a reversed background, if there is one. Then move the cursor
to an area that is entirely blank and is large enough for the selection that you
want to move.

Clear character ‘0’ required - FED
Explanation of Message

This message indicates that the user assigned the Zero Fill attribute to a field
with a non-zero clear character. This is not allowed.

Remedies

If the Zero Fill attribute is correct, change your answer for the Clear Char
attribute to ‘0. If the clear character you assigned is correct, change your
answer for the Zero Fill attribute to N.

COMMAND - FED
Explanation of Message

This message is the Form Editor command prompt that solicits the user for a
command.

Remedies

The Form Editor commands are: EDIT, ASSIGN ALL, ASSIGN NEW,
ASSIGN FIELD fldnam, FORM, NAME, SAVE, QUIT, and HELP. They are
detailed in Chapter 2.

Default too long for field - FED
Explanation of Message

This message indicates the user has assigned a default value to the field that is
longer than the field itself. This is not allowed.

E-8 FMS-11 Software Error Messages

Remedies

Press the RETURN key to remove the message from the screen; the Form
Editor places the cursor in the first field of the questionnaire. Shorten the
default value to match the field length. If the length of the field is correct,
continue assigning attributes. If the field is too short, exit from the
questionnaire, lengthen the field, and use an ASSIGN command to re-enter
and complete the questionnaire.

Embedded spaces illegal in form name - FED
Explanation of Message
The form name specified contained embedded spaces. This is not allowed.
Remedies

The user must enter a valid form name in the Form-Wide Attributes
Questionnaire.

?FED-F-Full Duplex terminal driver required
Explanation of Message

The Form Editor will not work unless the system has the full-duplex terminal
driver.

Remedies

RSX-11M/PLUS supports only the full-duplex terminal driver; RSX-11M
V3.2 offers the option of the full-duplex terminal driver.

7FED-F-FED Requires VT200 terminal
Explanation of Message

The user’s terminal must be a VT200 and have been made known to the system
as a VT200.

Remedies

Use the SET command to tell the system the terminal is a VT'200:
SET /VT200=TI:

or,

SET /TERM=TI:VT200

The MCR Operation Manual for RSX has a full description of the SET
command.

FMS-11 Software Error Messages E-9

?FDV-F-ERROR OPENING FORM LIBRARY
Explanation of Message

Return Code: FE$IOL Value: (—4) An error was encountered opening the form
library. The I/O error code is returned in the second word of the status block.
An error code of zero means that no FDB was available for the library.
Otherwise the code is as follows:

For FCS: The code follows the standard for FCS errors as a result of open
requests. If the high byte of the word is zero the code is an FCS error code. If
the high byte of the word is non-zero, the code is an FCS error code. If the high
byte of the word is non-zero the low byte is a directive status code error. The
word returned is from F.ERR of the FDB.

For RMS: The error code is the RMS error code returned in the STS word of
the FAB after the $OPEN call. ER$LBY is returned if a form library is active
on the channel (LUN).

Remedies

Check that the form library file specification is correct and that the file exists
on the specified volume. Check that the proper volume is installed and that its
device is on-line. If the device directory is corrupt, use a copy of the form
library file that is on a working volume. Check that the specified channel
number is not currently in use.

?FDV-F-ERROR READING FORM LIBRARY

Explanation of Message

Return Code: FE$IOR Value: (—18) An error was encountered reading the form
library. The I/O error code is returned in the second word of the status block.

For FCS: The error code returned is the I/0 status block code from a $READ
or $CLOSE request on the FDB.

For RMS: This is the STS word of the RAB or FAB. The call was a $READ or
$CLOSE to RMS.

Remedies

Check that the volume is installed and that its device is on-line. If the message
continues to appear, try another copy of the form library file. If the new copy
works, the original copy or its form name directory are corrupt and should be

replaced. If the message still continues to appear, refer to the procedures in
Appendix C, Section C.5.

E-10 FMS-11 Software Error Messages

?FDV-F-FILE NOT FORM LIBRARY

Explanation of Message

The file specified to open is not a form library. The first word was not RAD50
FLB.

Remedies
Check that the file specification is correct.

?FDV-F-FORM LIBRARY IS NOT OPEN ON CHANNEL
Explanation of Message

Return Code: FE$FCH Value: (=7) For a call to the Form Driver, a form
library is not open to the specified channel.

Remedies

Check that an FLOPEN call precedes the request to display a form. If the form
library was properly opened, check that the correct channel number was
specified to the Form Driver (in the last FLCHAN call for high-level languages
and in the F$CHN argument of the Required Argument List for MACRO).

7FDV-F-ILLEGAL FOR DISPLAY ONLY FIELD
Explanation of Message

Return Code: FE$DSP Value: (—13) Input is not allowed in a display-only field.
This error is returned for a call to get a field if the specified field is display-
only, for a call to get any or all fields if all fields in the form are display-only,
and for a call to get any field if the current field is display-only.

Remedies

Check that the field attributes are correct and that the latest FSHOW or
FCLRSH call displayed the correct form. If the call that caused the message is
an FGET call, check that the call uses the correct field identifier.

?FDV-F-ILLEGAL CALL TO FORM DRIVER
Explanation of Message

Return Code: FE$IFN Value: (—19) The specified function is illegal in the
current context. The calls to get all fields, put all fields is only illegal for a form
with a scrolled area if data is specified. With no data, it is legal, and to get any
field is illegal if the current form contains a scrolled area. Only the calls to open
a form library, close a form library, display a form, and to display data on the
last line are legal if a form is not currently displayed.

FMS-11 Software Error Messages E-11

Remedies

If the current form contains a scrolled area, correct the program logic so that
illegal Form Driver calls are not executed. If no form has been referenced,
check for proper use of the FLOPEN, FSHOW, FCLOSE, FPUTL, and
FCLRSH calls and for improper flow of control that skips those calls.

?FDV-F-ILLEGAL FILE SPECIFICATION
Explanation of Message

Return Code: FE$FSP Value: (—3) The file name specified for the form library
is not a legal file specification.

For FCS: .PARSE returned an error of some type.

For RMS: $OPEN returned one of the following error codes: ER$DEV,
ERDIR, ERFNM, ER$VER.

Remedies
Correct the file specification.

?FDV-F-IMPURE AREA TOO SMALL
Explanation of Message

Return Code: FE$IMP Value: (—2) The impure area specified is not large
enough to allocate the data structures required by the Form Driver to display
the form.

Remedies

If the message appears for a FORTRAN IV, BASIC-PLUS-2, COBOL, or
FORTRAN IV PLUS task, check that the impure area is at least 64 bytes
larger than the largest form the task uses. If the message appears for a
MACRO-11 task, check that the F$IMP pointer in the Required Argument
List points to an impure area that is at least as large as the largest form the
task uses. For MACRO-11 tasks the first word in the impure area must contain
the size of the impure area.

?FDV-F-INVALID CALL TO GET NAMED DATA

Explanation of Message

Return Code: FE$DMN Value: (—15) A call to get named data is invalid for one
of the following reasons:

¢ No named data exists for the current form.
e The data name specified does not exist.

e The index specified does not exist.

E-12 FMS-11 Software Error Messages

Remedies

Check for a program error that causes the call to be executed when the current
form is the wrong form. Check for the correct name in an FNDATA call and
the correct index value in an FIDATA call.

?FDV-F-INVALID CHANNEL NUMBER SPECIFIED
Explanation of Message

Return code: FE$ICH Value: (—6) The channel number specified in a call to
the Form Driver is not a valid channel number for the task. Second word of
status block contains the I/0 status code from system in the event of an error.

For FCS: The error code is from the F.ERR offset of the FDB.
For RMS: The error code is from the STS word of the FAB.
Remedies

Correct the channel number the task is using or specify a different range of
channels for your application.

?FDV-F-INVALID FIELD SPECIFICATION
Explanation of Message

Return Code: FES$FLD Value: (=11) The field specified does not exist. An
invalid field name or an invalid index for the field was specified.

Remedies

Check the field name or array index. Also check for a program error that causes
the call to be executed at the wrong time or for the wrong form.

?FDV-F-INVALID FIRST LINE TO DISPLAY FORM
Explanation of Message

Return Code: FE$LIN Value: (—10) The entire form will not fit on the screen if
displayed starting at the line number specified in the call to the Form Driver or
the line number is not from 1 to 23 inclusive.

Remedies

Check that the terminal has the features you need and is set properly for the
form you want to use. Check for a program error that causes the wrong starting
screen line number. For forms that are to be offset on the screen, check that
the associated HELP forms are properly designed for the full range of offset
positions.

FMS-11 Software Error Messages E-13

?FDV-F-INVALID FORM DEFINITION
Explanation of Message

Return Code: FE$FRM Value: (—8) The format of the form description is not
valid.

Remedies

Refer to the procedures in Appendix C, Section C.5.
?FDV-F-INVALID FUNCTION CODE

Explanation of Message

Return Code: FE$FCD Value: (—1) The function code specified for a call to the
Form Driver does not exist.

Remedies

If a MACRO-11 task caused the message to appear, check for a typing error in
the function code. If the function code is correct or, if a FORTRAN 1V,
BASIC-PLUS-2, COBOL, or FORTRAN-77 task caused the message to
appear, refer to the procedures in Appendix C, Section C.5.

?FDV-F-NO FIELDS DEFINED FOR FORM
Explanation of Message

Return Code: FE$NOF Value: (—12) Calls pertaining to fields are illegal if no
fields are defined for the current form.

Remedies

Check that the form has been designed properly. Also check for a program
error that causes the field processing call to be executed for the wrong form.
For example, check for consecutive FSHOW calls that display more than one
form on the terminal screen simultaneously but display a form that has only
constant text last.

?FDV-F-SPECIFIED FIELD NOT IN SCROLLED AREA
Explanation of Message

Return Code: FE$NSC Value: (—~14) The name of a field is required to identify
the scrolled area the call pertains to. the specified field is not in a scrolled area.

Remedies

Check the current form. If the form is correct and if it has been designed
properly, check for a typing error in the field name,

E-14 FMS-11 Software Error Messages

?FDV-F-UNDEFINED FIELD TERMINATOR

Explanation of Message

Return Code: FE$UTR Value: (—17) The field terminator code specified in a
call to process a field is less than 0 or greater than 9.

Remedies
Correct the field terminator code.
?FDV-F-UNDEFINED FORM
Explanation of Message
Return Code: FE$FNM Value: (—9) The specified form is not defined.
Remedies

Check that the correct form library file is open and that the channel number
specified to the Form Driver is the one specified when the form library file was
opened and that the call specifies the correct form name.

9FED-F-Error reading input form file
Explanation of Message
An 1/0 error was returned from a call to read the input file.
Remedies

Check that the form library volume is installed and that its device is on-line. If
the message continues to appear, try another copy of the form library file. If
the new copy works, the original copy should be replaced. If the message still
continues to appear, refer to the procedures in Appendix C, Section C.5.

9FED-Form being saved - FED
Explanation of Message

This message indicates to the user that the form has begun the process of being
written to the output device.

Remedies
The message is for information only. (RT only.)

Form is not in proper format - FED
Explanation of Message

The specified form is not in the proper format and therefore cannot be edited.

FMS-11 Software Error Messages E-15

Remedies

Check that your input file specification is correct and check for a bad block in
the file. Also try using a copy of the file that does work with the Form Editor or
Form Driver. If the message continues to appear, refer to the procedures in
Appendix C, Section C.5.

?FED-Form not saved on QUIT - FED
Explanation of Message

This message indicates to the user that when a QUIT operation was executed,
the form that was being edited was not saved.

Remedies
The message is for information only.
Full Field Required - FDV
Explanation of Message
The current field must be completely filled and contain no fill characters.
Remedies

Application documentation should include instructions for completing the
field.

?FED-Illegal command line - FED
Explanation of Message

The syntax of the command line entered in response to the FED> prompt was
invalid.

Remedies

Retype the command line correctly. Use /IO to get the version number; /CR to
create a new form.

?FED-Input file is not form file or form library - FED
Explanation of Message

The specified input file is not a valid form file or form library.
Remedies

Check the input file specification.

E-16 FMS-11 Software Error Messages

?FED-F-Insufficient Memory

Explanation of Message

This message indicates there is not enough memory to create a new form or to
edit the specified form.

Remedies

There must be at least twice the memory required for a form description for
editing to take place.

7FED-F-Invalid form name
Explanation of Message
The form name was longer than six characters or was all spaces.
Remedies

The form name specified in response to the Form name? prompt (after a form
library file was specified as the input file) was not valid as a form name.

9FED-F-Unable to attach terminal
Explanation of Message

The Form Editor is unable to attach the user’s terminal, therefore cannot
proceed.

Remedies

Check to see if there are too many terminals attached, too many programs
running, or if some other task has your terminal attached.

?FED-F-Unable to create output file
Explanation of Message
The specified output file cannot be created.
Remedies

File cannot be created for many possible reasons: not enough disk space, a
protection violation, a hard error.

?FED-Unable to open input file - FED
Explanation of Message

The specified input file does not exist or cannot be opened for editing.

FMS-11 Software Error Messages E-17

7FED-Write error - output file not saved - FED
Explanation of Message

This message indicates that there was an error writing to the output file and
that the form was lost.

Remedies

Check that the output volume is properly installed and that its device is on-line
and write-enabled. If a hardware problem has caused the message to appear,
contact your DIGITAL service representative.

?FDV-W-DATA TOO LONG
Explanation of Message

Return Code: FE$DLN Value: (—~16) The data specified to output is too long.
The Form Driver truncates the data and proceeds.

Remedies

Check for program errors that cause the data string to be too long. Check that
the form has been designed properly.

?FUT - Clear character invalid Field name == AAAAAA
Explanation of Message

The named field has the Zero Fill attribute, but ‘0’ is not the assigned clear
character.

Remedies
See “FUT - Invalid form header format.”

?FUT - Command file depth exceeded
Explanation of Message

A third-level indirect command file specifies another indirect command file.
Indirect command files for the Form Utility can be nested to a depth of three.

Remedies

Combine two of the indirect command files you tried to use, or revise the set of
indirect command files so that no more than three are executing at one time.

?FUT - Command file error unrecognized

Explanation of Message

The indirect command file processor has returned an error code that the Form
Utility cannot understand and handle.

E-18 FMS-11 Software Error Messages

Remedies

Confirm that each line in the indirect command files that you are using is
valid. If the message appears for a file that you are sure is correct, complete the
procedure in Appendix C, Section C.4.

?7FUT - Command file I/O error
Explanation of Message

An I/0 error occurred when reading an indirect command file. Two causes for
this message are:

e A bad I/0 device.
e A bad block on an I/0 volume.

Remedies

Follow the procedures that have been established to cover possible hardware
errors on your system.

?FUT - Command file illegal file specification
Explanation of Message
The specification for an indirect command file is invalid.
Remedies

Examine all indirect command file specifications, including those in nested
indirect command files. Check for typing errors and for specifications that are
correct on another operating system but not legal on the system you are using.

?FUT - Command file line too long
Explanation of Message

A line in an indirect command file is longer than the 132-character maximum
length. A cause for this message is a line that is longer than 132 characters,
although each part can be shorter than that.

Remedies

Break the overlength line by repeating its command in separate lines. Or,
reorganize the indirect command file.

?7FUT - Command file open error
Explanation of Message

The Form Utility could not find a specified indirect command file or found it
but could not open it. If the system has locked the indirect command file, the
Form Utility displays this message.

FMS-11 Software Error Messages E-19

Remedies

Check that all indirect command file specifications are correct and complete,
and check that the default or explicit volumes are installed and on-line. Use
PIP to check for an indirect command file that is locked.

?FUT - Default text too long Field name = AAAAAA
Explanation of Message
The named field has a default value that is longer than the field can display.
See “FUT - Invalid form header format.”
?FUT - Display-only field is full or required Field name = AAAAAA
Explanation of Message

The named field has the Display Only attribute and also the Must Fill attribute
or the Response Required attribute, a combination of attributes that is invalid.

Remedies
See “FUT - Invalid form header format.”

?FUT - Error closing input file
Explanation of Message

The file I/O routines that support the Form Utility detected an error while
closing an input file. Two causes for this message are:

e A bad input file device.
e A bad block on an input volume.

Remedies

For each input file, check the directory entry for information about the file
being locked or not usable. Also try to make a copy of each input file. If all
input files can be copied, retry the Form Utility operation that failed originally.
If the Form Utility operation still fails, check the procedure in Appendix C,
Section C.4.

?FUT - Error closing or spooling output file
Explanation of Message

The file I/O routines that support the Form Utility detected an error while
closing or spooling an output file. Two causes for this message are:

* A bad output or spooling device.

® A bad block on an output volume.

E-20 FMS-11 Software Error Messages

Remedies

Try using a different output device and volume. If the message continues to
appear, follow the procedures that have been established to cover possible
hardware errors on your system.

?FUT - Error reading input file
Explanation of Message

The file I/O routines that support the Form Utility detected an error while
reading an input file.

Remedies

See the causes and suggestions for “FUT - Error closing input file.”
?FUT - Error writing output file block

Explanation of Message

The file I/O routines that support the Form Utility detected an error while
writing an output file block.

Remedies

See the causes and suggestions for “FUT - Error closing or spooling output
file.”

?7FUT - Error writing record to output file
Explanation of Message

The file I/O routines that support the Form Utility detected an error while
writing an output file record.

Remedies

See the causes and suggestions for “FUT - Error closing or spooling output
file.”

?FUT - Field beyond screen Field name = AAAAAA
Explanation of Message

The named field extends beyond Column 80 and the form has the 80-column
attribute.

Remedies

See “FUT - Invalid form header format.”

FMS-11 Software Error Messages E-21

?FUT - Form not in library
Explanation of Message

The input form library file specified in the Form Utility prompt does not
contain the form you requested.

Remedies

Use the /LI option with the input form library file name to list the names of all
forms in the form library file. Then type another form name.

?FUT - Form AAAAAA replaced
Explanation of Message

The description for the named form has been replaced in the named form
library file.

Remedies
The message is for your information only.
?FUT - Illegal command
Explanation of Message
The command line syntax is incorrect. Some causes for this message are:

e More than one output file specified.

e No characters in command line.

e Command line includes both a file specification and the /ID or /HE option.
e Command line with the /FF option includes an output file specification.
* No output file specified for /CR, /DE, /EX, /OB, or /RP options.

Remedies
Correct the command line.

?FUT - Illegal file specification
Explanation of Message

An input or output file specification is incomplete or contains illegal
characters. Wildcard characters in a file specification cause this message.

Remedies
Remove any wildcards that are in the file specifications, and check the file

specifications for the file names and types that are required for the options you
are using.

E-22 FMS-11 Software Error Messages

?FUT - Illegal input file specification or option

Explanation of Message

An input file specification is invalid, or an option is invalid.

Remedies

Check the input file specifications and options for typing errors.
?FUT - Illegal output file or option

Explanation of Message

The output file specification is invalid, or an option is invalid. Some causes for
this message are:

e The /SP option is included with another option that produces no printable
output.

e The /BA option is included with another option that produces no form
library files.

e Options such as /CR and /DE conflict.
Remedies

Check the output file specification for typing errors. Check that the options are
consistent with one another.

?FUT - Illegal replacement of form, use /RP
Explanation of Message

The Form Utility command does not include the /RP option but tries to
replace a form description that is in the form library file specified in the Form
Utility prompt. One cause for this message is combining two form library files
that contain a form description with the same name.

Remedies

Use the /LI option to check the names of all forms in the input files. Use the
/DE option to delete individual form descriptions. Use the /RP option to
combine form library files, and preserve only the last form description
processed for each duplicate.

FMS-11 Software Error Messages E-23

?FUT - In form library = AAAAAA, Form name = AAAAAA
Explanation of Message
This message appears only as the first line of a two-line message.
Remedies
See the description for the other message that the Form Utility has displayed.
?FUT - Insufficient memory
Explanation of Message

Although the Form Utility can run, there is not enough memory to process any
form descriptions. In addition to the Form Utility’s basic requirements, it
requires enough memory for a form library file directory and one form
description.

Remedies

Ask your system manager to check whether the Form Utility has been installed
as a check-pointable task. The Form Utility should always be check-pointable.
Install or run the Form Utility with a larger memory increment.

?FUT - Insufficient space for output buffer

Explanation of Message

See “FUT - Insufficient memory.”

?FUT - Invalid field descriptor
Explanation of Message
See “FUT - Invalid form header format.”
?FUT - Invalid fixed-decimal picture Field name = AAAAAA

Explanation of Message

The named field has the Fixed Decimal attribute, but the field picture is
improper for one of the following reasons:

e There is no decimal point.
® There are two or more decimal points.

e The first and last picture characters are not ‘9.’

Remedies

See “FUT - Invalid form header format.”

E-24 FMS-11 Software Error Messages

?FUT - Invalid form description

Explanation of Message

See “FUT - Invalid form header format.”
?FUT - Invalid form header format
Explanation of Message

The Form Utility has detected an error in the form description format and
stopped processing the form description. The form with the error might have
been corrupted by I/O or device errors and cannot be used with an FMS
application.

Remedies

First, try to recover the form description by using an earlier version of a form
description file or form library file.

If all versions of the form description cause this message or similar ones, use
the following procedure:

1. Retype the form completely with the Form Editor. Do not try to edit a
version that causes the message.

2. If problems persist, refer to Appendix C, Section C.4.
?FUT - Invalid form name
Explanation of Message

The last form name you typed contains characters that are not valid. The
following examples illustrate possible causes of this message:

e Including a non-Radix-50 character.

e Responding with an asterisk (*) after using the /FF option.
Remedies
Type a valid form name.

?FUT - Invalid index value Field name = AAAAAA
Explanation of Message
The two causes for this message are:

e The named field has the vertical (indexed) attribute and the lowest element
of the array is below the last line that is currently assigned for the form.

e The named field is in a line that has the scrolling attribute and the scrolled
area is only one line long.

FMS-11 Software Error Messages E-25

Remedies

Se¢ “TUT - Invalid form header format,”

?FUT - Invalid named data section
Explanation of Message
See “FUT - Invalid form header format.”
?FUT - Invalid number of fields
Explanation of Message
See “FUT - Invalid form header format.”
?FUT - Invalid text section

Explanation of Message
See “FUT - Invalid form header format.”

?FUT - Logic error - Exception stack overflow
Explanation of Message
Follow the procedure in Appendix C, Section C.4.

FUT - Logic error - Exception stack underflow
Explanation of Message
Follow the procedure in Appendix C, Section C.4.

?FUT - Logic error - pass 2 illegal file number
Explanation of Message
Follow the procedure in Appendix C, Section C.4.
?FUT - Logic error - pass 2 too few input files
Explanation of Message
Follow the procedure in Appendix C, Section C.4.
?FUT - Not a valid form file or library

Explanation of Message

An input file does not contain the proper code words that identify form
description files and form library files.

E-26 FMS-11 Software Error Messages

Remedies

Check each input file specification for typing errors, and check for having
typed the wrong file name.

7FUT - No forms in library

Explanation of Message

After specifying the /CR, /DE, /EX, or /RP option to create a form library file,
you extracted no forms for the output form library file or deleted all forms from
the input form library files. The message is a warning that your specified
output form library file has not been created.

Remedies
Type a command.

?FUT - Right Justified field with mixed-picture Field name = AAAAAA
Explanation of Message

The named field has both the right-justified attribute and a mixed-picture. The
combination is invalid.

Remedies
See “FUT - Invalid form header format.”

?FUT - Scrolled and array field Field name = AAAAAA
Explanation of Message

The named field has the horizontal or vertical (indexed) attribute and is also
located in a line that has the scrolling attribute.

Remedies
See “FUT - Invalid form header format.”

?FUT - Unable to delete output file
Explanation of Message

When a Form Utility process fails, the Form Utility usually deletes the
partially complete output file because it is faulty. This message appears when
the delete action cannot be completed.

Remedies

See the causes and suggestions for “FUT - Error closing or spooling output
file.”

FMS-11 Software Error Messages E-27

WU’F - UnaL]e fo open {nput P{le

Explanation of Message
See “FUT - Error reading input file.”

?FUT - Unable to open output file
Explanation of Message
See “FUT - Error closing or spooling output file.”

?FUT - Unable to reopen input file
Explanation of Message
Follow the procedure in Appendix C, Section C.4.

FUT - Zero length field Field name = AAAAAA
Explanation of Message
The named field is zero characters long.
Remedies
See “FUT - Invalid form header format.”
Illegal Command - FED

Explanation of Message

This message indicates that the user has typed an illegal command in response
to a COMMAND: prompt.

Remedies

Press the RETURN key to remove the message from the screen. The Form
Editor then redisplays the COMMAND: prompt. Type in any of the Form
Editor commands.

Type HELP to get a list of the valid commands.
Input Required - FDV
Explanation of Message
At least one non-fill character must be entered in the current field.
Remedies

Application documentation should include instructions for completing the
field. Press the RETURN key to remove the message from the screen; the
Form Editor then displays the cursor in the field you must complete.

E-28 FMS-11 Software Error Messages

Insert line not allowed - FED

Explanation of Message

This message indicates that the user attempted either an Undelete-Line or an

Openline when the last line was non-blank.
Remedies

Press the Return key to remove the message from the screen; the Form Editor
places the cursor where the function failed. The way you should continue
depends on your form. For example, you can erase part of the form below the
current line, or raise the text and fields in the form by erasing part of the form
above the current line.

Insert not allowed - FED
Explanation of Message

This message indicates that the user attempted to insert a character when the
last character on the line was not blank.

Remedies

Press the RETURN key to remove the message from the screen; the Form
Editor places the cursor where the insertion failed. The way you should
continue depends on your form. For example, you can switch to the
OVERSTRIKE mode, or continue in the INSERT mode and erase part of the
current line.

Invalid picture for a fixed-decimal field - FED
Explanation of Message

This message indicates that the user has assigned the Fixed Decimal attribute
to a field whose picture does not meet the requirements for this attribute.

Remedies

Press the RETURN key to remove the message from the screen; the Form
Editor places the cursor at the first field in the questionnaire. Change the
answer to the Fixed Dec question to N. If the field is not a fixed-decimal field,
continue assigning attributes. If the field should be a fixed-decimal field, exit
from the questionnaire, correct the field picture, and use an ASSIGN
command to re-enter and complete the questionnaire.

FMS-11 Software Error Messages E-29

The requirements for a fixed-decimal field are:

* A numeric field,

e Exactly one embedded decimal point - the decimal point cannot be in
either the first or last character position in the field.

Logic error - bad field data character - FED
Explanation of Message

This message indicates that an unknown field character was found in a field. If
this occurs, the screen image was probably altered by some external
disturbance.

Remedies

Run the memory diagnostics and notify your DIGITAL service representative.
New form exceeds available memory - form lost - FED

Explanation of Message

You created a form that was too large for the Form Editor to process with the
memory available. The form is lost.

Remedies
There is no way to recover the form.
NO HELP AVAILABLE - FDV
Explanation of Message
No further HELP is available for the current form.

Remedies

Application documentation should include instructions for the operator.

E-30 FMS-11 Software Error Messages

Non-Displayable Character - FDV

Explanation of Message

NU Yﬂmﬂmn w WWHW I th qurrent POSition. Howeverz the character

entered cannot be displayed and is therefore invalid.
Remedies

Application documentation should include instructions for completing the
field.

Numeric Required - FDV
Explanation of Message
A numeric character (0-9) is required in the current position.
Remedies

Application documentation should include instructions for completing the
field.

Only NNNNNN memory blocks left. Continue (Y,N)? - FED
Explanation of Message

This message indicates that only a small amount of memory (the specified
number of 512 byte blocks) is available to increase the size of the form. The
user is given the option to continue.

Remedies

Type N to cancel the file specification string. The Form Editor then prompts
you for another file specification string. Type Y to proceed with the Form
Editor session. However, if your editing increases the form size by too much,
the Form Editor will not warn you and your editing work will be lost.

Repeat - FED
Explanation of Message

This is the Form Editor REPEAT prompt, which indicates that the user has
typed GOLD/“digit.”

Remedies

All the following digits will be saved and the first command key typed after the
digits will be repeated that number of times.

FMS-11 Software Error Messages E-31

Right Justified is illegal for a Mixed Picture field - FED

HXplanation of Mowwago

This message indicates that the user has assigned the Right Justified attribute
to a mixed-picture field. This is not allowed. The user must type a character to
continue and the field attributes will be redisplayed and the user must enter
“N” to the Right Justified attribute.

Remedies

Press the RETURN key to remove the message from the screen; the Form
Editor places the cursor at the first field in the questionnaire. Answer the
Right Just question N. If the field should have a mixed picture, continue
assigning attributes. If the field should not have a mixed picture, exit from the
questionnaire, change the field picture (perhaps by dividing the field into
separate fields), and use an ASSIGN command to re-enter and complete the
questionnaire.

Signed Numeric Required - FDV
Explanation of Message

A valid signed numeric character (0-9, “.”, “= “47) is required in the current
position.

Remedies

Application documentation should include instructions for completing the
field.

VIDEO - FED
Explanation of Message
This is the Form Editor video attribute prompt.

Remedies

The user must respond with either a video attribute or press the ENTER key
to return to editing.

E-32 FMS-11 Software Error Messages

Index

A picture-validation character, 2-12
Abbreviations

for video attributes, 2-18

Form Editor commands, 2-36
ADVANCE operation and mode, 2-11

to 2-12
ADVANCE/BACKUP, 2-12
Alternate keypad mode

using, 4-14
Alternate keypad mode

terminators for, 6-13
Alternate keypad mode

using, 5-9
Argument list

Form Driver, 5-41

initializing length of, 5-41
ASSIGN commands, 2-6
Assigning

attributes, 2-6

form-wide attributes, 2-6

video attributes, 2-10
Asterisk, with Form Utility, 3-5
Attributes

autotab, 4-7

clear character, 4-6

default field value, 4-7

display only, 4-8

echo off, 4-8

effects on cursor, 4-14

effects on erasing, 4-14

field, assigning, 2-6, 2-25

fixed decimal, 4-8

Form Driver processing of, 4-5

form-wide, assigning, 2-6, 2-23

horizontal indexed, 4-8

left-justified, 4-6

must fill, 4-7

response required, 4-7

right-justified, 4-6

scrolled, 4-9

supervisor only, 4-9

vertical indexed, 4-8

video, 2-10

zero fill, 4-6
Autotab attribute

assigning, 4-7

explanation, 4-7

Form Driver processing of, 4-7

-BA option, 3-8

BA option, 3-8
Background text

creating, 2-36
BACKSPACE function, 4-18
BACKUP operation and mode, 2-11
BASIC-PLUS-2

summary of arguments, 5-13
BASIC-PLUS-2

building applications, 5-23

Form Driver arguments, 5-20

Form Driver call syntax, 5-17, 5-20

summary of Form Driver calls, 5-23
BLINE operation, 2-13
Blinking fields, 2-19
Block-aligned form descriptions,
BOTTOM operation, 2-14
Bottom screen line, use by Form Driver, 6-43
Building FMS applications, 8-9

C picture-validation character, 2-12
Canceling
a Form Editor session, 2-6
canceling video attributes, 2-18

/CC option, 3-13

Channels
form library, 6-23, 6-29
LUN, 5-43
Characters
alphanumeric, 2-20
any printable, 2-20
field-marker, 2-21
letters, 2-20
mixed pictures, 2-21
signed numbers, 2-20
unsigned numbers, 2-20
Clear character attribute, 3-22, 4-6
Form Driver processing of, 4-7
Clear screen and display a form, 6-3
Clearing video attributes, 2-18
Close a form library, 6-25

Index-1

COBOL
building applications, 5-30
descriptions for forms, 3-14
field name requirements, 3-15
Form Driver arguments, 5-25
Form Driver call syntax, 5-17, 5-26
summary of arguments, 5-13
summary of Form Driver calls, 5-26
using memory-resident forms with, 3-13
COBOL, descriptions for forms, 5-25
Combining form library files, 3-9
Commands, Form Editor, 2-5
Concatenation of field values, 4-5
Conditionals set for FMS, 5-52
Conditionals, Form Driver, 5-52
Configuration procedure, 8-4
Control options, 3-6
Controlling operator responses, 4-4
Converting form descriptions, 3-12
CR option, 3-9
Creating
form library files, 3-8
memory-resident forms, 3-12
scrolled areas, 2-8, 2-19
Creating form library files
options, 3-8
CTRL/U, 2-16
operation, 2-16
CTRL/W, 2-16
Form Driver, 4-12
Form Editor, 2-16
function explanation, 4-12
operation
Current Screen field, 2-23
Current screen, as a form-wide attribute, 2-23
Cursor
initial position of, 4-14
moving with Form Driver, 4-15, 4-17 to
4-18
CUT operation, 2-17

Data
overlength, 6-33, 6-41
validating, 6-33, 6-41
Data declarations, COBOL, 3-13, 5-25
Data length, 5-45
Data types for Form Driver arguments, 5-16
Data value pointer, 5-45
DE option, 3-9
Debug mode
choosing, 8-7
error status, 5-3
Form Driver, 4-11

Index-2

using, 5-3
Default attribute, assigning, 4-7
Default field values

Form Driver, 4-7
Default value, 4-7
Defaults

displaying, 6-39, 6-41

Form Editor, 2-4

form library file type, 6-29

Form Utility, 3-3

supervisor-only mode, 6-51
Definitions

field, 2-2

form description, 2-2

form description file, 2-2

Form Editor, 2-2

form library file, 2-2

screen form, 2-2
DELCHAR operation, 2-16
DELEOL operation, 2-16
DELETE CHARACTER, 2-16
DELETE function

erasing a character, 4-14
DELETE key, 4-14
Deleting form descriptions, 3-9
DELLINE operation, 2-16
Demonstration form editing, 2-47
Developing form applications

two major steps, 1-4
Directories of form library

contents, 3-7
Directory size, 3-7
Display a field value, 6-39
Display a form, 6-49
Display a form with clear screen, 6-3
Display all field values, 6-41
Display in a scrolled area, 6-33
Display in the last screen line, 6-43
Display only attribute

assigning, 4-8

Form Driver processing of, 4-8
DOWNARROW key

Form Driver, 4-19

Form Editor, 2-13

Echo off attribute

assigning, 4-8

Form Driver processing of, 4-8
EDIT command (Form Editor), 2-8
Edit status display, 2-9
Editing forms, 2-3
Ending line

assigning, 2-24

field, 2-24
ENTER function, 4-17
EOL operation, 2-14
Erasing

et Dl

field, 4-13
field values, 2-39, 4-15
lines, 2-40
Error messages
complete listing, E-1
display by Form Driver, 6-43
Errors
FCS, 6-53
Form Driver processing of, 4-10
form library files, 6-53
Form Utility, 3-4
RMS, 6-53
signaling operators about, 5-4
with debug mode, 5-3
Event flags
terminal, 5-53
EX option, 3-10
Examples
data entry application, B-1
extended, B-1
Form Editor, 2-30
of forms, B-1
EXIT SCROLLED AREA BACKWARD, 4-20
EXIT SCROLLED AREA FORWARD, 4-21
Extracting form descriptions, 3-10

FCS
error codes, 5-2, 6-53
initializing for Form Driver, 5-50
support for Form Driver
resident library, 5-12
support requirements, 5-12
FD option, 3-15, 3-19 to 3-20, 3-22

$FDVDF macro, 5-41

FF option, 3-12

FGETATF call techniques, 7-6

Field definition, 2-2

Field attributes
assigning, 2-6, 2-25, 2-39
Form Driver processing of, 4-5
left-justified, 4-6
right-justified, 4-6

Field decimal values
editing, 4-21

typing, 4-21
Field descriptions, listing, 3-20
Field Editing

table, 4-13

Flol) g

Form Driver, 4-12

functions, 4-12
principles, 4-12
Field Index, 5-45
Field length, getting, 6-27
Field-marker characters, 2-12
Form Driver processing, 4-5
Field names
assigning, 3-14
beginning with “*”, 6-7
COBOL requirements, 3-14
Form Driver use of, 4-2
returning, 6-5
unspecified, 6-7
FIELD operation and mode, 2-11 to 2-12
Field pictures, 4-6
explanation, 2-20
Form Driver processing of, 4-6
mixed, 2-12
Field terminating functions
BACKSPACE, 4-18
DOWNARROW, 4-19
ENTER and RETURN, 4-17
EXIT SCROLLED AREA BACKWARD,
4-20
EXIT SCROLLED AREA FORWARD,
4-21
explanation, 4-16
UPARROW, 4-19
Tield terminators, 4-14
autotab, 4-14
codes, 5-45
in scrolled areas, 7-1
processing, 6-35
validating, 6-13
summary, 5-7
use of, 5-5
with Form Driver, 4-16
Field values
and lengths, 5-17
default, 4-7, 4-19
inserting, 4-14
validating, 4-7, 4-12
Field-Marker Characters Table, 2-22
Field-marker characters, 4-5
Fields
completing with the Form Driver, 4-14
creating, 2-37
display all values, 6-41

Index-3

displaying default values, 6-39, 6-41
getting impure area values, 6-47

gotting lengths of, 6-27

getting values from, 6-7, §-13
help, 6-43
indexed, creating, 2-28
left-justified, display in, 6-39
length returned, 4-5
moving to with Form Driver, 4-17 to 4-18
“*” names, 6-7
names, 6-5
order of processing, 4-4, 6-7, 6-13
order of responses, 4-4
processing, 4-5
right-justified, display in, 6-39
unspecified names, 6-7
validating with Form Driver, 4-6
Fields, for passwords, 2-28
File specifications for form libraries, 6-29
File types
defaults, 3-3
form library default, 6-29
Fill character
assigned, 4-7
assigning, 2-26
Fixed decimal attribute, 3-21, 4-8
assigning, 4-8
choosing support for, 8-6
Form Driver processing of, 4-8, 4-21
Flashing fields, 2-19
FMS-11
definition, 1-1
messages, E-1
RSX-11M V4.2, 11
RSX-11M-PLUS V3.0, 1-1
software components, 1-1
tools, 1-1
FMSMAC system macro library, C-1
Form
definition, 2-2
displaying, 4-2
for COBOL programs, 3-13
image map, 3-18
listing, 3-15
Form application programs
programming languages, 1-1
Form applications, developing, 1-3
FORM command, 2-8
Form description
block-aligned, 3-8
converting, 3-12
definition, 2-1, 2-2
deleting, 3-9
extracting, 3-10

Index-4

Form Driver processing, 4-1
processing, 3-1

D, |

storing in separate files, 3-12

updating in form library file, 3-11
Form description file, definition, 2-1
Form design operations, 2-3
Form development cycle

seven stages, 1-3

Form Driver

high-level language interface, 5-13

messages, 6-43

summary of Form Driver arguments, 5-14
Form Driver

and Fixed Decimal fields, 4-21

and form descriptions, 4-1

call status, 5-1

calling with MACRO-11, 5-41

control of cursor by, 4-14

debug mode, 4-11, 5-3

debug mode, error status, 5-3

erasure operations, 4-14

explanation, 1-2, 2-1

$FDV macro, 5-41
$3FDVDF macro, 5-41

field editing operations, 4-12

field terminating functions, 4-16

form display procedure, 4-2

function-dependent arguments, 5-44
HELP function, 4-3
impure area requirements, 5-11
limitation on insertion modes, 4-6
necessary arguments in calls, 5-41
omitting the SOB instruction, 8-6
operator interaction with, 4-10
order of fields, 4-5
processing default field values, 4-7
processing of autotab attribute, 4-7
processing of field attributes, 4-5
processing of field-markers, 4-5
processing of form text, 4-5
processing of video attributes, 4-5
processing operator errors, 4-10
repainting the screen, 4-12
Required Argument List summary, 5-43
scrolled area moves, 4-19
status code, 5-42
summary of alternate keypad terminators,

5-9

summary of BASIC-PLUS-2 arguments,
5-20
summary of COBOL arguments, 5-25
summary of FCS and RMS requirements,
5-12
summary of field terminators, 5-7
summary of FORTRAN IV arguments,
5-36
summary of FORTRAN-77 arguments,
5-36
summary of MACRO-11 offsets, 5-41
summary of status codes, 5-2
switching insertion modes, 4-16
syntax of BASIC-PLUS-2 calls, 5-20
syntax of COBOL calls, 5-26
syntax of FORTRAN IV calls, 5-36
syntax of FORTRAN-77 calls, 5-36
use of form and field names, 4-2
use of impure area, 4-3
using as a resident library, 5-12
validating field values, 4-6
with memory-resident forms, 4-1
Form Driver and form description interaction,
4-1
Form Driver and terminal operator interaction,
4-10
Form Driver concatenation of fields
order, 4-5
Form Driver configuration options
debug mode, 5-3
Form Editor
assigning field attributes with, 2-25
assigning form-wide attributes, 2-23
command summary, 2-6
creating forms with, 2-1
creating scrolled areas with, 2-19
cursor direction with, 2-12
cursor movement with, 2-12
deleting with, 2-16
edit status line, 2-9
editing with, 2-1
erasing with, 2-16
example for, 2-30
explanation, 1-2
field pictures, 2-20
field-marker characters, 2-22
form size report, 2-24
how to use, 2-30
impure area report, 2-24
inserting with, 2-15
keypad functions, 1-2, 2-6
mode-changing operations, 2-11
operations, 2-15
overview, 2-1

prompts, 2-3
size with RSX systems, 2-4
starting with RSX systems, 2-2
summary, 2-1
terminology, 2-2
text modification operations, 2-15
using the RETURN key, 2-14
video attributes with, 2-18
Form Editor, starting, 2-34
Form Editor commands, 2-7
issuing, 2-5
Form Editor operations
reference, 2-10
Form library directories, size, 8-7
Form library directory buffers, number, 8-7
Form library file
closing, 6-25
creating, 3-8
directory of forms in, 3-7
errors with, 6-53
Form library file
channels for, 6-29
definition, 2-2
errors with, 5-2
examining, 3-1
file specifications for, 6-29
LUN, 5-43
number in use, 8-8
opening, 6-29
setting channels for, 6-23
sharing, 6-23
using, 6-23
Form library file processes
prompts, 3-4
Form name
assigning, 2-23, 2-34
Form Driver use of, 4-2
Form size
field, 2-24
report, 2-24
Form Utility
date processed, 3-7
spooling files, 3-7
Form Utility
errors, 3-4
explanation, 1-2
prompts, 3-2, 3-4
starting and stopping, 3-1
stopping, 3-2
Form Utility command options, 3-5
Form-wide attributes
assigning, 2-6, 2-23
assignment, 2-23
Forms

Index-5

date processed, 3-7
displaying, 6-49
listing of, 3-7
re-initializing, 6-41
size, 3-7
Forms
adding to form library files, 3-10
creating object modules for, 3-12
design, 1-1
displaying, 6-1
editing, 2-3
examples, B-1
for COBOL programs, 3-13
media-resident, 4-1
memory-resident, 3-12, 4-1
modification, 1-1
simultaneous display, 7-4
storing, 2-9
Forms and fields, defining, 4-2
FORTRAN IV
building applications, 5-40
Form Driver arguments, 5-36
Form Driver call syntax, 5-17, 5-36
impure area structure, 6-18
summary of arguments, 5-13
summary of Form Driver calls, 5-36
FORTRAN-77
building applications, 5-40
Form Driver arguments, 5-36
Form Driver call syntax, 5-17, 5-36
summary of arguments, 5-13
summary of Form Driver calls, 5-36
Function-dependent arguments, 5-44

Get a scrolled area line, 6-20

Get all field values, 6-13

Get all field values from impure area, 6-45
Get any field value, 6-10

Get current field name, 6-5

Get field value, 6-7

Get field value from impure area, 6-47
Get named data by index, 6-16

Get named data by name, 6-31

Get status of the last call, 6-53

Get the length of a field, 6-27

Global offsets, Form Driver, 5-41

HE option, 3-6
HELP
at the field level, 4-3
display, 6-43
for the application operator, 4-3

Index-6

form library files, 6-23
Form Utility, 3-6
form-wide, 4-3
messages, 4-11
Help for a field, assigning, 2-27
Help form name
assigning, 2-23
field, 2-23
HELP forms
requirements, 7-5
HELP function, 4-3
Form Driver, 4-3
HELP key
description, 4-11
HELP messages
description, 4-11
HELP options, 3-6
High-level language calls
FCHIMP, 6-1
FCLRSH, 6-3
FGCF, 6-5
FGET, 6-7
FGETAPF, 6-10
FGETAL, 6-13
FIDATA, 6-16
FINIT, 6-18
FINLN, 6-20
FLCHAN, 6-23
FLCLOS, 6-25
FLEN, 6-27
FLOPEN, 6-29
FNDATA, 6-31
FOUTLN, 6-33
FPFT, 6-35
FPUT, 6-39
FPUTAL, 6-41
FPUTL, 6-43
FRETAL, 6-45
FRETN, 6-47
FSHOW, 6-49
FSPOFF, 6-51
FSPON, 6-52
FSTAT, 6-53
High-level language interface, 5-13

Horizontal indexed attribute assigning, 2-28

Form Driver processing of, 4-8

ID option, 3-6

Image map, 3-18
Impure area

getting values from, 6-45
initializing, 6-18
pointer, 5-47

size, 3-7

structure, 6-18
Impure area

definition, 5-11

field, 2-24

for simultaneous forms, 7-4

size, 2-24, 3-17, 4-3

use by application, 4-3

use by Form Driver, 4-3
Indexed attributes, processing of, 4-8
Indexed fields

creating, 2-28

order of, 4-4

techniques, 7-7
Initialize the impure area, 6-18
Initializing FCS and RMS, 5-50
Input all field values, 6-13
Input any field value, 6-10
INSERT mode

Form Driver, 4-6

Form Editor, 2-12
INSERT operation and mode, 2-12
INSERT/OVERSTRIKE, 2-12
INSERT/OVERSTRIKE function, 4-16
INSERT/OVERSTRIKE function, Form

Driver, 4-16

Inserting blank lines, 2-16
Inserting characters

INSERT mode

explanation, 2-15
OVERSTRIKE mode
explanation, 2-15
Inserting characters with the Form Editor,
2-15

Inserting field values, 4-14
Insertion modes, switching, 4-16
Installation procedures, 8-2

Justification attributes
processing of, 4-6

Keypad operations
Form Driver, 4-14
Form Editor, 2-6
using, 2-6
Keywords MACRO-11 Form Driver calls, 5-46

Left-justified attribute
processing of, 4-6

LEFTARROW function, 4-15

LEFTARROW key

Form Editor, 2-13

use with Form Driver, 4-15
Length of fields returned, 4-5
Line number, specifying, 5-45
Linefeed key, Form Driver, 4-15
LI option, 3-7
Listing field descriptions, 3-20
Listing form descriptions, 3-15
Listing named data, 3-22
LUN (channels), 6-29
LUN for form library, 5-43

MACRO-11
building applications, 5-53
calling the Form Driver, 5-41
Form Driver call arguments, 5-46
Form Driver calls
FC$ALL, 6-13
FC$ANY, 6-10
FC$CLS, 6-25
FC$CSH, 6-3
FC$DAT, 6-186, 6-31
FC$GET, 6-7
FC$GSC, 6-20
FCS$LST, 6-43
FC$OPN, 6-29
FC$PAL, 6-41
FC$PSC, 6-33
FC$PUT, 6-39
FC$RAL, 6-45
FC$RTN, 6-47
FC$SHO, 6-49
FC$SPF, 6-51
FC$SPN, 6-52
FC$TRM, 6-36
Macros, keyword encoded, 5-46
Mapping options, 8-1
Maps
image, 3-18
named data, 3-22
video attributes, 3-19
Media-resident forms
display procedures, 4-2
Form Driver processing, 4-1
Memory-resident forms
choosing support: for, 8-6
creating, 3-12
display procedures, 4-2
Form Driver processing, 4-1
in COBOL programs, 3-13
PSECTS used, 5-51
requirements, 5-51
task-building for, 5-11

Index-7

Messages
Form Driver, 4-10 to 4-11, 6-43
full listing, E-1
with debug mode, 5-3
Mixed pictures, 2-22
Mode-changing operations, 2-11
Modes
supervisor-only, 6-52
Moving the cursor
with Form Driver, 4-15
Must fill attribute, 4-7
assigning, 2-43 to 2-44
Form Driver processing of, 4-7
limitations, 4-7
Must Fill fields, 6-35

N picture-validation character, 2-12
NAME command, 2-6
Name pointer, 5-44
Named data
assigning, 2-46
getting by index, 6-16
getting by name, 6-31
map, 3-22
specifying, 2-6
Named data attributes
assigning, 2-28
New form
layout and video features, 2-32
overview, 2-31
storing in library file, 2-49
Nine as picture-validation character, 2-12
NORMAL operation, 2-19

OB option, 3-12
Object modules, creating, 3-12
ODL, using, 8-10
Open a form library, 6-29
OPENLINE operation, 2-16
Operator errors, processing, 4-10
Operator responses
in Must Fill fields, 6-35
in Response Required fields, 6-35
to the FGETAL call, 6-13
to the FGET call, 6-7
Operator responses
guiding, 4-4
Operator responses, in Must Fill fields
synchronizing, 4-4
Operator responses, synchronizing, 6-7
Options, Form Utility, 3-5
Order of fields returned, 4-4

Index-8

Order of operator responses, 4-4
Order of processing fields, 6-13
Overlaying FMS applications, 5-51
OVERSTRIKE mode

Form Driver, 4-6

Form Editor, 2-15

operation, 2-13

Passwords, fields for, 2-28
PASTE operation, 2-18
Picture-validation character, 1-2, 2-12

9 picture-validation character, 2-28

Pictures

mixed, 2-22

processed by Form Driver, 4-6
Pointers

data value, 5-45

impure area, 5-44

names, 5-44

Required Argument List, 5-43

status block, 5-43
Print form descriptions, 3-15
Printed form designing, 2-31
Printing field descriptions, 3-16
Printing named data, 3-22
Processing and converting form descriptions

options, 3-12
Processing field terminators, 6-35
Processing scrolled areas, 7-1
Program controlled messages, 4-11
Program sections used by FMS, 5-51
Program examples, B-1
Prompts

Form Editor, 2-3

Form Utility, 3-2, 3-4
PSECTS used by FMS, 5-51

Questionnaires
field attributes, 2-25
form-wide attributes, 2-23
named data, 2-29

QUIT command, 2-6

Re-initializing a form, 6-41
Re-initializing scrolled areas, 6-33
Repainting the screen

Form Driver, 4-12

Form Editor, 2-16
REPEAT operation, 2-17
Replacing forms in libraries, 3-11
Required Argument List
offsets, 5-43
pointer, 5-43
Requiring operator responses, 2-27
Response required attribute, 4-7
assigning, 2-27
Form Driver processing of, 4-7
limitations, 4-7
Response Required fields, 6-35
Restoring erased lines, 2-17
RETURN function, 4-17

RETURN key, using with the Form Editor,
2-14

Return valug for the specified field, 6-47
Beturn Values for all fields, 6-45
Heverse screen
as a form-wide attribute, 2-23
field, 2-23
Reversed Video fields, 2-18
Right-justified attribute
assigning, 2-26
processing of, 4-6
RIGHTARROW function, 4-15
RIGHTARROW key
Form Editor, 2-13
use with Form Driver, 4-15
RMS
error codes, 5-2
initializing for Form Driver, 5-50
support requirements, 5-12
RP option, 3-11
RSX-11M/M-PLUS MCR RUN command use,
3-2

SAVE command, 2-6
Screen form, creating, 2-33
Screen image, creating, 2-10
Screen, repainting, 2-17
Scroll operation, 2-19
Scrolled area
canceling, 2-19
choosing support for, 8-6
creating, 2-19
cursor motion in, 4-19
defaults, 6-33
Form Driver processing of, 4-9
getting values from, 6-20
processing, 6-5, 6-35
re-initializing, 6-33
requirements for, 4-9

techniques for, 7-2

valid Form Driver calls for, 7-2
SELECT operation, 2-17
Setting a form library channel, 6-23
Sharing form library files, 6-23
Signaling and recovering from errors, 4-10
Size

field, 6-27

form library directories, 8-7

impure area, 3-7, 3-15 to 3-16, 4-3, 5-11
SOB instruction, omitting from Form Driver,

8-4

-SP option, 3-7

SP option, 3-7
Spooling, with form Utility, 3-7
Starting line, assigning, 2-24
Starting the Form Editor, 2-2
Status block pointer, 5-43
Storage for tertiinal control
internal, 4-4
Storage of field values
internal, 4-3
Storing form descriptions, 2-9
Summaries
alternate keypad terminators, 5-9
BASIC-PLUS-2 calls, 5-21
BASIC-PLUS-2 Form Driver arguments,
5-20
COBOL calls, 5-26
COBOL Form Driver arguments, 5-25
FCS and RMS requirements, 5-12
field terminators, 5-7
field-marker characters, 2-22
form display procedures, 4-2 to 4-3
Form Driver arguments, 5-15
Form Driver call status codes, 5-2
Form Driver field editing operations, 4-12
Form Editor commands, 2-6
Form Utility defaults, 3-3
Form Utility options, 3-5
FORTRAN 1V calls, 5-37
FORTRAN IV Form Driver arguments,
5-36
FORTRAN-77 calls, 5-37
FORTRAN-77 Form Driver arguments,
5-36
high-level language arguments, 5-46
MACRO-11 Form Driver arguments, 5-46
MACRO-11 Form Driver function codes,
5-42

Index-9

MACRO-11 offsets for Form Driver, 5-41
picture-validation characters, 2-20
Required Argument List, 5-43
video attributes, 2-19, 3-19
Summary of command default values for FUT
table, 3-3
Supervisor Only attribute, 4-9
assigning, 2-28
Form Driver processing of, 4-9
Supervisor-only mode
turning off, 6-51
turning on, 6-52
Switching form library channels, 6-23
Synchronizing task and operator, 6-7
System generation options, 8-1

TAB function, 4-17
Terminal service
choosing support for, 8-8
conditionals for, 5-52
optiims. 8-1
Terminating
a form, 4-16
scrolled areas, 4-20
Form Driver, 4-21
Terminators
field, 4-16, 5-5, 6-35
MACRO-11 codes, 5-45
Text, 4-5
Form Driver processing, 4-5
Text Editor
operations, 2-10
Text modification
operations, 2-15
TEXT operation and mode, 2-11
TEXT/FIELD, 2-11
The ASSIGN ALL Command, 2-8
The EDIT command, 2-8
The QUIT command, 2-9
The SAVE command, 2-9
TOP operation, 2-14
Turn off supervisor-only mode, 6-51
Turn on supervisor-only mode, 6-52
Typeahead, preserving, 5-50

UIC in form library specifications, 6-29
UNDELLINE, 2-17
Underline operation, 2-18
UPARROW key
Form Driver, 4-19
Form Editor, 2-13
Updating forms in libraries, 3-9

Index-10

Validating completeness of operator response,
4-7
Validation

field values, 4-11

of output data, 6-33, 6-41
VENDOR form sketch, 2-32
Vertical indexed attribute

assigning, 2-28

Form Driver processing of, 4-8
VIDEO, 2-18
VIDEO attributes

assigning, 2-18, 2-44

clearing, 2-19

codes, 3-19

Form Driver processing of, 4-5

map, 3-19

use by the Form Driver, 6-43
VIDEO operation, 2-18
VT200 alternate keypad mode, 4-14, 5-9
VT52 terminals, using, 8-7

Wide screen
field, 2-24
as a form-wide attribute, 2-24

X picture-validation character, 2-12
Xerolled area
display in, 6-33

Zero fill attribute, 4-6
assigning, 2-27
Form Driver processing of, 4-6

