ORACLE

Users’ Guide

Relational Software Incorporated
|
RSI-100

ORACLE

USERS-GUIDE

Oracle Users Guide - Version 2.3

Copyright (c) April 1981
By Relational Software Incorporated
All rights reserved. Printed in U.S.A.

ORACLE
SQL LANGUAGE

USER'S GUIDE

Oracle User's Guide - Version 2.3

Copyright (c) April 1981
By Relational Software Incorporated
All rights reserved. Printed in U.S.A.

SQL

LANGUAGE USER'S GUIDE

TABLE OF CONTENTS

INTRODUCTION 1-1
DATA BASE CONCEPTS 1-3
QUERY FACILITIES 1-6
DATA MANIPULATION FACILITIES 1-38
DATA DEFINITION FACILITIES 1-45
DATA STRUCTURES 1-55
DATA INDEPENDENCE 1-59
TREE-STRUCTURED TABLES 1-61
SECURITY FACILITIES 1-71
DATA DICTIONARY STRUCTURE 1-82

CONCURRENCY CONTROL FACILITIES 1-94

SQL LANGUAGE - USER'S GUIDE
SQL LANGUAGE - EXAMPLES

INTRODUCTION

introduces the SQL
data definition and
The examples are

This section of the "User's Guide"
facilities for query, data manipulation,
data control through a series of examples.
based on the following database:

o e e e = +
EMP ! EMPNO | ENAME | JOB | SAL ! COMM | DEPTNO |
o m e m e m e mm———— e e +
e m e ————————————————— +
DEPT | DEPTNO | DNAME | LOC | EMPCNT g
o ——m—— e ————— e ————— = +
o ——— e ————— - ——————— +
BONUS ! ENAME | JOB | SAL | COMM |
fmmm—— e —m—m————————————— +

The EMP table contains information on employees, giving the
employee's number, name, Jjob title, salary, commission, and
department number. The department table gives the
department's number, name, location, and a count of the
employees in the department. The BONUS table contains an
extract of the information in the EMP table. Through the
course of the examples, the EMP table is expanded to contain
a project number column and a supervisor column, and two new
tables are added. The PROJ table contains columns for the
project number, name, and budget. The PE table relates
projects to employees where one project can have many
employees, and one employee can be working on many projects.
The expanded EMP table and the two added tables are as

follows:

————--._..—-.__-_..-....-.-_...-—--—--———_—————_-———-—-.——————_——————-

+
EMP ! EMPNO | ENAME | JOB | SAL | COMM ! DEPTNO | PROJNO | SUPR
+ ———
e m e ——————— +
PROJ ! PROJNO | PNAME | BUDGET |
fmm—— e — e ———— - +
fmmmm——— +
PE ! PROJNO | EMP |

1-2

The examples in this section of the documentation were
produced by executing the ORACLE User Friendly Interface
(UFI) and capturing the output in hard-copy form. The actual
output has been post-processed to add page numbers and to
remove the SQL prompts at the beginning of each line. The
command file which produces this output is provided with each
ORACLE installation. It contains the comments interspersed
with the SQL statements. This section of the documentation
serves as a self-tutorial in the facilities of SQL as
implemented in ORACLE.

ORACLE accepts SQL statements in free format. The
arrangement of each SQL clause on a separate line and
indentation in the following examples is used for clarity
only.

1. DATA BASE CONTENTS

This section of the manual describes the structure and
content of the example PERSONNEL data base.

1.1 Dictionary Contents

ORACLE's integrated data dictionary can be queried wusing
standard SQL query facilities.

Example 1-1: List the names of the user tables in the data
base.

SQL>SELECT TABLE

SQL>FROM TAB;
SQL>/

Example 1-2: List the names of the columns of the
department and employee tables.

SQL>SELECT *
SQL>FROM CcoL

SQL>WHERE TABLE = 'DEPT';
SQL>/

TABLE COLUMN

DEPT DEPTNO

DEPT DNAME

DEPT LocC

DEPT EMPCNT

SQL>SELECT *
SQL>FROM COL
SQL>WHERE TABLE = 'EMP';

sQL>/

TABLE COLUMN
EMP EMPNO
EMP ENAME
EMP JOB
EMP SAL
EMP COMM
EMP DEPTNO

6 records selected.

1.2 Data Base Contents

Example 1-3:

SQL>SELECT * FROM DEPT;

SQL>/

DEPTNO DNAME

20 RESEARCH

30 SALES

40 OPERATIONS

Example 1-4:

SQL>SELECT *
SQL>/

7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 OATES
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD

rows

the DEPT

rows of the EMP

COMM DEPTNO

List all the columns and
table.
EMPCNT
10 ADMINISTRATION NEW YORK
SAN FRANCISCO
CHICAGO
BOSTON
List all the columns and
table.
FROM EMP;
JOB SAL
CLERK $800.00
SALESMAN $1,600.00 $300.00
SALESMAN $1,250.00 $500.00
MANAGER $2,975.00
SALESMAN $1,250.00 $1,400.00
MANAGER $2,850.00
MANAGER $2,450.00
ANALYST $3,000.00
PRESIDENT $5,000.00
SALESMAN $1,500.00 $0.00
CLERK $1,100.00
CLERK $950.00
ANALYST $3,000.00
CLERK $1,300.00

7934 MILLER

14 records selected.

2. QUERY PFACILITIES

This section of the manual contains a description of the
query facilities of ORACLE.

2.1 Query Block

The SELECT clause lists the columns to be returned. The
FROM clause lists the tables involved in the query. The
WHERE clause specifies the selection criteria.

Example 2-1: Find the name of department 10.

SQL>SELECT DNAME
SQL>FROM DEPT
SQL>WHERE DEPTNO=10;
sQL>/

ADMINISTRATION

The SELECT clause can contain several columns. Character
string constants are enclosed by single quotation marks.

Example 2-2: List the names, numbers, and departments of
all clerks.

SOL>SELECT ENAME,EMPNO,DEPTNO
SQL>FROM EMP

SOL>WHERE JOB = 'CLERK';
SQL>/

ENAME EMPNO DEPTNO

SMITH 7369 20
ADAMS 7876 20
MILLER 7934 10

JAMES 7900 30

If all columns of the row are to be returned, SELECT * is
specified.

Example 2-3: List all the columns in the employee table
for employees in department 30.

SQL>SELECT *

SQL>FROM EMP

SQL>WHERE DEPTNO = 30;

SQL>/

EMPNO ENAME JOB SAL COMM DEPTNO
7499 ALLEN SALESMAN $1,600.00 $300.00 30
7521 WARD SALESMAN $1,250.00 $500.00 30
7698 BLAKE MANAGER $2,850.00 30
7654 MARTIN SALESMAN $1,250.00 $1,400.00 30
7844 TURNER SALESMAN $1,500.00 $0.00 30
7900 JAMES CLERK $950.00 30

6 records selected.

The WHERE clause can compare two fields of a row with each
other.

Example 2-4: List the name, salary, and commission of each
employee whose commission is greater than his
salary.

SQL>SELECT ENAME,SAL,COMM

SQL>FROM EMP

SQL>WHERE COMM > SAL;
SQL>/

ENAME SAL COMM

MARTIN $1,250.00 $1,400.00

The absence of a WHERE clause causes all rows to be
returned.

Example 2-5: List all columns and all rows in the DEPT
table.

SQL>SELECT *
SQL>FROM DEPT;

SQL>/
DEPTNO DNAME LocC EMPCNT
10 ADMINISTRATION NEW YORK
20 RESEARCH SAN FRANCISCO
30 SALES CHICAGO
40 OPERATIONS BOSTON

2.2 Logical ExpresSions

Predicates within the WHERE clause may be connected by the
boolean operators, AND and OR.

Example 2-6: List the name, job title, and salary of all
employees in department 20 that make more

than $2,000.

SQL>SELECT ENAME ,JOB,SAL
SQL>FROM EMP

SQL>WHERE DEPTNO = 20
SQL> AND SAL > 2000;

SQL>/

ENAME JOB SAL
JONES MANAGER $2,975.00
SCOTT ANALYST $3,000.00

FORD ANALYST $3,000.00

The BETWEEN operator simplifies the syntax for specifying a
range. The predicates SAL >= 1200 AND SAL <= 1400 are

simplified to SAL BETWEEN 1200 AND 1400.

Example 2-7: List the name, job title, and salary of all
employees who earn between $1,200 AND $1,400.

SQL>SELECT ENAME ,JOB, SAL

SQL>FROM EMP

SQL>WHERE SAL BETWEEN 1200 AND 1400;

SQL>/

ENAME JOB SAL

WARD SALESMAN $1,250.00

MARTIN SALESMAN $1,250.00

MILLER CLERK $1,300.00

Example 2-8: List the name, job, salary, and commission of

each employee whose job title begins with MAN
or whose salary is greater than 3000 a month.

SQL>SELECT ENAME,JOB,SAL,COMM

SQL>FROM EMP

SQL>WHERE JOB = 'MAN...'

SQL> OR SAL > 3000;

SQL>/

ENAME JOB SAL COMM
JONES MANAGER $2,975.00

BLAKE MANAGER $2,850.00

CLARK MANAGER $2,450.00

OATES PRESIDENT $5,000.00

Example 2-9: List the department number, name, job title,
salary and commission of each employee in
department 30 whose salary is greater than
his commission.

SQL>SELECT DEPTNO,ENAME,JOB,SAL,COMM
SQL>FROM EMP

SQL>WHERE SAL > COMM

SQL> AND DEPTNO = 30;

SQL>/
DEPTNO ENAME JOB SAL COMM

30 ALLEN SALESMAN $1,600.00 $300.00
30 WARD SALESMAN $1,250.00 $500.00
30 TURNER SALESMAN $1,500.00 $0.00

Predicates within a WHERE clause form logical expressions
with square brackets [] used to establish precedence.

Example 2-10: List the department number, name, job title,
salary, and commission of all analysts, or
all people in department 10 who earn more

than $2,500.

SQL>SELECT DEPTNO,ENAME,JOB,SAL,COMM
SQL>FROM EMP

SQL>WHERE JOB = 'ANALYST'
SQL> OR [SAL > 2500 AND DEPTNO = 10};

SQL>/

DEPTNO ENAME JOB SAL COMM
20 SCOTT ANALYST $3,000.00
20 FORD ANALYST $3,000.00

10 OATES PRESIDENT $5,000.00

Example 2-11: List the department number, name, Jjob title,
salary, and commission of employees in
department 10 who are either analysts or earn

more than $2,500.

SQL>SELECT DEPTNO, ENAME,JOB,SAL, COMM
SQL>FROM EMP

SQL>WHERE [JOB = 'ANALYST'

SQL> OR SAL > 2500] AND DEPTNO = 10;
SQL>/

DEPTNO ENAME JOB SAL COMM

10 OATES PRESIDENT $5,000.00

2.3 Not Conditions
Predicates within a WHERE clause may be negated.
Example 2-12: List the name, salary, commission, job title,

and department number of employees in
department 30 who are not a salesman.

SQL>SELECT ENAME,SAL,COMM,JOB,DEPTNO

SQL>FROM EMP

SQL>WHERE JOB "= 'SALESMAN'

SQL> AND DEPTNO = 30;

SQL>/

ENAME SAL COMM JOB DEPTNO
BLAKE $2,850.00 MANAGER 30
JAMES $950.00 CLERK 30

Entire logical expressions may be negated.

Example 2-13: List the name, salary, commission, job title,
and department number of employees in
department 30 who are not a salesman or do
not earn more than $1,500.

SQL>SELECT ENAME,SAL,COMM,JOB,DEPTNO

SQL>FROM EMP

SQL>WHERE NOT [JOB = 'SALESMAN' OR.SAL > 1500]
SQL> AND DEPTNO = 30;

SQL>/

ENAME SAL COMM JOB DEPTNO

JAMES $950.00 CLERK 30

2.4 Set Inclusion Operator

A predicate in a WHERE clause may test a field for inclusion
in a set of constant literal values. A set of constant
literal values is enclosed within angle brackets < >.

Example 2-14: List the name and department number of
employees in departments 10 and 30.

SQL>SELECT ENAME,DEPTNO

SQL>FROM EMP
SQL>WHERE DEPTNO IN <10,30>;
sQL>/

ENAME DEPTNO

CLARK 10
MILLER 10
OATES 10
ALLEN 30
WARD 30
BLAKE 30
MARTIN 30
TURNER 30
JAMES 30

9 records selected.

Example 2-15: List all fields from the department table for
departments that are located in either
Chicago or New York.

SQL>SELECT *
SQL>FROM DEPT
SQL>WHERE LOC IN <'CHICAGO','NEW YORK'>;

SQL>/
DEPTNO DNAME LOC EMPCNT
30 SALES CHICAGO

10 ADMINISTRATION NEW YORK

2.5 Nested Query

The result of one query may be used in the WHERE clause of
another query. The inner query returns one or a sSet of
values. The outer query uses this result as if it were
given a set of constant literal values. Query blocks may be
nested to any number of levels.

Example 2-16: List the name and job of employees who have
the same job as Jones.

SQL>SELECT ENAME,JOB

SQL>FROM EMP

SQL>WHERE JOB IN

SQL> SELECT JOB

SQL> FROM EMP

SQL> WHERE ENAME = 'JONES';
SQL>/

ENAME JOB

JONES MANAGER
BLAKE MANAGER
CLARK MANAGER

Example 2-17: List the name, job title, and salary of
employees who have the same job and salary as

Ford.
SQL>SELECT ENAME,JOB,SAL
SQL>FROM EMP
SQL>WHERE <JOB,SAL> =
SQL> SELECT JOB,SAL
SQL> FROM EMP
SQL> WHERE ENAME = 'FORD';
SQL>/
ENAME JOB SAL
SCOTT ANALYST $3,000.00

FORD ANALYST $3,000.00

Inner query blocks may be connected by the boolean operators
AND and OR to form compound nested queries.

Example 2-18: List the name, job, and department of
employees who have the same job as Jones, or
a salary greater than or equal to Ford.

SQL>SELECT ENAME ,JOB ,DEPTNO,SAL

SQL>FROM EMP

SQL>WHERE JOB 1IN

SQL> SELECT JOB

sSQL> FROM EMP

SQL> WHERE ENAME = 'JONES';
SQL>OR SAL >=

SQL> SELECT SAL

SQL> FROM EMP

SQL> WHERE ENAME = 'FORD';
sQL>/

ENAME JOB DEPTNO SAL
JONES MANAGER 20 $2,975.00
BLAKE MANAGER 30 $2,850.00
CLARK MANAGER 10 $2,450.00
SCOTT ANALYST 20 $3,000.00
OATES PRESIDENT 10 $5,000.00
FORD ANALYST 20 $3,000.00

6 records selected.

1-15

2.6 ORDER BY

The ORDER BY clause specifies major and minor sort fields in
ascending or descending order. Ascending order is default.

Example 2-19: List the name, job, department, and employee
number of employees in a department whose
number is greater than or equal to 20, in
order of employee name.

SQL>SELECT ENAME,JOB,DEPTNO,EMPNO
SQL>FROM EMP

SQL>WHERE DEPTNO >= 20

SQL>ORDER BY ENAME;

SQL>/

ENAME JOB DEPTNO EMPNO
ADAMS CLERK 20 7876
ALLEN SALESMAN 30 7499
BLAKE MANAGER 30 7698
FORD ANALYST 20 7902
JAMES CLERK 30 7900
JONES MANAGER 20 7566
MARTIN SALESMAN " 30 7654
SCOTT ANALYST 20 7788
SMITH CLERK 20 7369
TURNER SALESMAN 30 7844
WARD SALESMAN 30 7521

11 records selected.

e

List the department, salary, name, and job of
all employees, in descending order by salary,

ascending order by Jjob within salary, and
ascending order by name within job.

Example 2-20:

SQL>SELECT DEPTNO, SAL,JOB,ENAME

SQL>FROM EMP

SQL>ORDER BY SAL DESC,JOB,ENAME;

SQL>/

DEPTNO SAL JOB ENAME
10 $5,000.00 PRESIDENT OATES
20 $3,000.00 ANALYST FORD
20 $3,000.00 ANALYST SCOTT
20 $2,975.00 MANAGER JONES
30 $2,850.00 MANAGER BLAKE
10 $2,450.00 MANAGER CLARK
30 $1,600.00 SALESMAN ALLEN
30 $1,500.00 SALESMAN TURNER
10 $1,300.00 CLERK MILLER
30 $1,250.00 SALESMAN MARTIN
30 $1,250.00 SALESMAN WARD
20 $1,100.00 CLERK ADAMS
30 $950.00 CLERK JAMES
20 $800.00 CLERK SMITH

14 records selected.

Expressions can be specified within the ORDER BY clause.

List all salesman in ascending order of the
ratio of their salary divided by their
commission.

Example 2-21:

SQL>SELECT ENAME, SAL/COMM, SAL, COMM

SQL>FROM EMP

SQL>WHERE JOB = 'SALESMAN'
SQL>ORDER BY SAL/COMM

SQL>/

ENAME SAL/COMM SAL COMM
MARTIN .893 $1,250.00 $1,400.00
WARD 2.500 $1,250.00 $500.00
ALLEN 5.333 $1,600.00 $300.00
TURNER ~.000 $1,500.00 $0.00

2.7 UNIQUE

A query returns a set of rows that satisfy the WHERE clause.
Duplicate rows are not eliminated unless SELECT UNIQUE is
specified.

Example 2-22: List all the different jobs in the job table.

SQL>SELECT UNIQUE JOB
SQL>FROM EMP;
SQL>/

CLERK
SALESMAN
MANAGER
ANALYST
PRESIDENT

If a WHERE clause has multiple predicates connected by an
OR, there exists the possibility that a single row may
satisfy both predicates and be returned twice in the query
result. UNIQUE specified within the SELECT <clause
eliminates this duplication.

Example 2-23: List the name and job of employees who are in
department 30, or employees who are managers.
Sort by employee name.

SQL>SELECT ENAME,JOB,DEPTNO

SQL>FROM EMP
SQL>WHERE DEPTNO = 30
SQL> OR JOB = 'MANAGER'
SQL>ORDER BY ENAME;
sSQL>/

ENAME JOB DEPTNO
ALLEN SALESMAN 30
BLAKE MANAGER 30
BLAKE MANAGER 30
CLARK MANAGER 10
JAMES CLERK 30
JONES MANAGER 20
MARTIN SALESMAN 30
TURNER SALESMAN 30
WARD SALESMAN 30

9 records selected.

Example 2-24: List the name and job of employees who are in
department 30 or, employees who are managers.
Eliminate duplicate rows and sort the result

by employee name.

SQL>SELECT UNIQUE ENAME,JOB,DEPTNO

SQL>FROM EMP
SQL>WHERE DEPTNO = 30
SQL> OR JOB = 'MANAGER!'
SOL>ORDER BY ENAME;

SQL>/

ENAME JOB DEPTNO
ALLEN SALESMAN 30
BLAKE MANAGER 30
CLARK MANAGER 10
JAMES CLERK 30
JONES MANAGER 20
MARTIN SALESMAN 30
TURNER SALESMAN 30
WARD SALESMAN 30

8 records selected.

Example 2-25: List the salary, job title, name, and
department number for all employees in
departments that have salesmen. Sort the
results by salary in descending order.

SQL>SELECT SAL,JOB,ENAME,DEPTNO
SQL>FROM EMP
SQL>WHERE DEPTNO IN

SQL> SELECT UNIQUE DEPTNO
SQL> FROM EMP

SQL> WHERE JOB = 'SALESMAN';
SOL>ORDER BY SAL DESC;

SQL>/

SAL JOB ENAME DEPTNO
$2,850.00 MANAGER BLAKE 30
$1,600.00 SALESMAN ALLEN 30
$1,500.00 SALESMAN TURNER 30
$1,250.00 SALESMAN WARD 30
$1,250.00 SALESMAN MARTIN 30

$950.00 CLERK JAMES 30

6 records selected.

2.8 Arithmetic Expressions

The SELECT, WHERE, and HAVING clauses may all contain
arithmetic expressions containing fields and constants.

Example 2-26: List the name, salary, commission, and sum of

salary plus commission of employees in
department 30.

SQL>SELECT ENAME,SAL,COMM,SAL + COMM

SQL>FROM EMP

SQL>WHERE DEPTNO = 30;

SQL>/

ENAME SAL COMM SAL+COMM
ALLEN $1,600.00 $300.00 $1,900.00

WARD $1,250.00 $500.00 $1,750.00
BLAKE $2,850.00
MARTIN $1,250.00 $1,400.00 $2,650.00
TURNER $1,500.00 $0.00 $1,500.00
JAMES $950.00

6 records selected.

Example 2-27: List the name, salary, and commission of
employees whose commission is greater than or
equal to 25% of their salary.

SQL>SELECT ENAME,SAL,COMM

SQL>FROM EMP
SQL>WHERE COMM >= 0.25 * SAL;
SQL>/

ENAME SAL COMM
WARD $1,250.00 $500.00

MARTIN $1,250.00 $1,400.00

parentheses are used to establish precedence within
arithmetic expressions.

Example 2-28: List the name, salary, commission, and 1.25
times salary plus two-thirds of the

commission of all salesmen.

SQL>SELECT ENAME, SAL,COMM, ((SAL * 1,25) + (COMM * (2/3)))

SQL>FROM EMP

SOL>WHERE JOB = 'SALES...';

sQL>/

ENAME SAL COMM ((SAL*1.25)+(COMM*(2/3)))
ALLEN $1,600.00 $300.00 $2,200.00
WARD $1,250.00 $500.00 $1,895.83
MARTIN $1,250.00 $1,400.00 $2,495.83

2.9 Built-In PFunctions

ORACLE provides several built-in functions that may be used
in either SELECT or HAVING clauses.

Example 2-29: Find the average salary of all employees who
are clerks.

SQL>SELECT AVG(SAL)
SQL>FROM EMP

SQL>WHERE JOB = 'CLERK';
SQL>/

AVG (SAL)

$1,037.50

Example 2-30: Find the maximum, average, and minimum salary
of employees in department 10.

SQL>SELECT MAX(SAL) ,AVG(SAL) ,MIN(SAL)

SQL>FROM EMP
SQL>WHERE DEPTNO = 10;
SQL>/

MAX (SAL) AVG (SAL) MIN(SAL)

$5,000.00 $2,916.67 $1,300.00

Example 2-31: Find the sum of all salesmen's commissions.

SQL>SELECT SUM(COMM)

SQL>FROM EMP
SQL>WHERE JOB = 'SALESMAN';
SQL>/

SUM (COMM)

$2,200.00

1-22

Example 2-32: Find the number of employees in department

30.
SQL>SELECT COUNT(¥*)
SQL>FROM EMP
SQL>WHERE DEPTNO = 30;
SQL>/
COUNT(*)
6

Built-in functions can be used in arithmetic expressions.

Example 2-33: Compute the average annual salary plus
commission for all salesmen.

SQL>SELECT AVG(SAL + COMM) * 12

SQL>FROM EMP
SQL>WHERE JOB = 'SALESMAN'
SQL>/

AVG (SAL+COMM) *12

$23,400.00
ORACLE allows functions "to be applied to the results of
other built-in functions.

Example 2-34: List the name, job, and salary of the
employee who has the largest salary.

SQL>SELECT ENAME,JOB,SAL

SQL>FROM EMP

SQL>WHERE SAL =

SQL> SELECT MAX(SAL)
SQL> FROM EMP;
SQL>/

ENAME JOB SAL

OATES PRESIDENT $5,000.00

2.10 GROUP-BY

A table may be partitioned into groups according to the
values in a column or set of columns. A built-in function

may then be applied to each group. When a built-in function
is used, each item in the SELECT clause must be a unique

property of the group.

Example 2-35: List the department number and average salary
of each department.

SQL>SELECT DEPTNO,AVG(SAL)

SQL>FROM EMP
SQL>GROUP BY DEPTNO;
SQL>/

DEPTNO AVG(SAL)

10 $2,916.67
20 $2,175.00
30 $1,566.67

Example 2-36: List the department number and average annual
salary of each depar tments employees,
excluding managers salaries.

SQL>SELECT DEPTNO,AVG(SAL) * 12

SQL>FROM EMP

SQL>WHERE NOT JOB = 'MAN...'
SQL>GROUP BY DEPTNO;

SQL>/

DEPTNO AVG(SAL) *12
10 $37,800.00
20 $23,700.00
30 $15,720.00

1-24

A table can be partitioned into groups based on the values
in more than one column.

Example 2-37: Divide all employees into groups by
department, and by job within department.
Count the employees in each group and compute

each group's average salary.

SQL>SELECT DEPTNO,JOB,COUNT(*) ,AVG(SAL) * 12

SQL>FROM EMP

SQL>GROUP BY DEPTNO,JOB;

sQL>/

DEPTNO JOB COUNT(*) AVG(SAL)*12
10 CLERK 1 $15,600.00
10 MANAGER 1 $29,400.00
10 PRESIDENT 1 $60,000.00
20 ANALYST 2 $36,000.00
20 CLERK 2 $11,400.00
20 MANAGER 1 $35,700.00
30 CLERK 1 $11,400.00
30 MANAGER 1 $34,200.00
30 SALESMAN 4 $16,800.00

9 records selected.

Built-in functions can be applied to the results of other
group functions to form functions of functions.

Example 2-38: Total the salaries of all the departments and
list the department with the maximum total.

SQL>SELECT DEPTNO, MAX(SUM(SAL))
SQL>FROM EMP

SQL>GROUP BY DEPTNO;

SQL>/

DEPTNO MAX(SUM(SAL))

30 $10,875.00

2.11 HAVING

After a table has been partitioned into groups, a predicate
or set of predicates in a HAVING clause can be applied to
the groups.

Example 2-39: List the average annual salary for all job
groups having more than 2 employees in the

group.

SQL>SELECT JOB,AVG(SAL) * 12
SQL>FROM EMP

SQL>GROUP BY JOB

SQL>HAVING COUNT(*) > 2;

SQL>/

JOB AVG(SAL) *12
CLERK $12,450.00
MANAGER $33,100.00
SALESMAN $16,800.00

A query block may contain both a WHERE and HAVING clause.
First, the WHERE clause is applied to qualify rows; second,
the groups are formed and the built-in functions are
computed; third, the HAVING clause is applied to qualify
groups.

Example 2-40: List all the departments that have more than
two clerks.

SQL>SELECT DEPTNO
SQL>FROM EMP
SQL>WHERE JOB = 'CLERK'
SQL>GROUP BY DEPTNO
SQL>HAVING COUNT(*) >= 2;
SQL>/

DEPTNO

1-25

1-26

HAVING clauses may contain query blocks.

Example 2-41: List the departments and their average salary
that have a greater average salary than
department 20.

SQL>SELECT DEPTNO,AVG (SAL)
SQL>FROM EMP

SQL>GROUP BY DEPTNO
SQL>HAVING AVG(SAL) >

SQL> SELECT AVG(SAL)
SQL> FROM EMP

SQL> WHERE DEPTNO = 20;
SQL>/

DEPTNO AVG (SAL)

10 $2,916.67

2.12 NULL Conditions

Predicates within a WHERE clause can explicitly test for
null conditions within a column.

Example 2-42: List the name, salary, commission and Jjob
title of all employees who do not receive
commissions.

SQL>SELECT ENAME, SAL,COMM,JOB

SQL>FROM EMP

SQL>WHERE COMM = NULL;

SQL>/

ENAME SAL COMM JOB
SMITH $800.00 CLERK
JONES $2,975.00 MANAGER
BLAKE $2,850.00 MANAGER
CLARK $2,450.00 MANAGER
SCOTT $3,000.00 ANALYST
OATES $5,000.00 PRESIDENT
ADAMS $1,100.00 CLERK
JAMES $950.00 CLERK
FORD $3,000.00 ANALYST
MILLER $1,300.00 CLERK

10 records selected.

Example 2-43: List the name, salary, commission, and job
title of those employees who receive a

commission.

SQL>SELECT ENAME, SAL,COMM,JOB

SQL>FROM EMP

SQL>WHERE NOT COMM = NULL;

SQL>/

ENAME SAL COMM JOB
ALLEN $1,600.00 $300.00 SALESMAN
WARD $1,250.00 $500.00 SALESMAN
MARTIN $1,250.00 $1,400.00 SALESMAN
TURNER $1,500.00 $0.00 SALESMAN

Example 2-44: If a predicate within a WHERE or HAVING
clause can be expressed without using NOT or
NULL, it is usually more efficient.

SQL>SELECT ENAME,SAL,COMM,JOB

SQL>FROM EMP

SQL>WHERE COMM >= 0;

SQL>/

ENAME SAL COMM JOB
ALLEN $1,600.00 $300.00 SALESMAN
WARD $1,250.00 $500.00 SALESMAN

MARTIN $1,250.00 $1,400.00 SALESMAN
TURNER $1,500.00 $0.00 SALESMAN

Null values in the data base are treated as unknowns in the
evaluation of logical expressions. Only those rows that are
known to satisfy the WHERE clause are returned as the result

of a query.

Example 2-45: List all columns of the employee table for
employees in department 30 or employees whose
commission is less than or equal to $1,000.

SQL>SELECT *

SQL>FROM EMP
SQL>WHERE DEPTNO = 30
SQL> AND COMM <= 1000;

SQL>/

EMPNO ENAME JOB SAL COMM DEPTNO
7499 ALLEN SALESMAN $1,600.00 $300.00 30
7521 WARD SALESMAN $1,250.00 $500.00 30
7844 TURNER SALESMAN $1,500.00 $0.00 30

Example 2-46: List all the columns of the employee table
for employees in department 30 or employees
whose commission is 1less than or equal to
$1,000.

SQL>SELECT *

SQL>FROM EMP
SQL>WHERE DEPTNO = 30
SQL> OR COMM <= 1000;

SQL>/

EMPNO ENAME JOB SAL COMM DEPTNO
7499 ALLEN SALESMAN $1,600.00 $300.00 30
7521 WARD SALESMAN $1,250.00 $500.00 30
7698 BLAKE MANAGER $2,850.00 30
7654 MARTIN SALESMAN $1,250.00 $1,400.00 30
7844 TURNER SALESMAN $1,500.00 $0.00 30
7900 JAMES CLERK $950.00 30
7499 ALLEN SALESMAN $1,600.00 $300.00 30
7521 WARD SALESMAN $1,250.00 $500.00 30
7844 TURNER SALESMAN $1,500.00 $0.00 30

9 records selected.

2.13 NULL-Function

When an expression or built-in function references a column
of a table that contains one or more null values, the result
of the expression or built-in function is null.

Example 2-47: 1In the following example the expression SAL +

COMM returns a null value for all employees
that have a null commmission.

SQL>SELECT ENAME,JOB,SAL,COMM,SAL + COMM

SQL>FROM EMP
SQL>WHERE DEPTNO = 30

SQL>/

ENAME JOB SAL COMM SAL+COMM
ALLEN SALESMAN $1,600.00 $300.00 $1,900.00
WARD SALESMAN $1,250.00 $500.00 $1,750.00
BLAKE MANAGER $2,850.00

MARTIN SALESMAN $1,250.00 $1,400.00 $2,650.00
TURNER SALESMAN $1,500.00 $0.00 $1,500.00
JAMES CLERK $950.00

6 records selected.

The ORACLE Null-Value Function NVL can be used to assign a
temporary value to nulls encountered within an expression.

Example 2-48: Assign null commissions a temporary value of
zero within the expression SAL + COMM.

SQL>SELECT ENAME,JOB,SAL,COMM,SAL + NVL(COMM,0)

SQL>FROM EMP
SQL>WHERE DEPTNO = 30

SQL>/

ENAME JOB SAL COMM SAL+NVL(COMM,0)
ALLEN SALESMAN $1,600.00 $300.00 $1,900.00
WARD SALESMAN $1,250.00 $500.00 $1,750.00
BLAKE MANAGER $2,850.00 $2,850.00
MARTIN SALESMAN $1,250.00 $1,400.00 $2,650.00
TURNER SALESMAN $1,500.00 $0.00 $1,500.00
JAMES CLERK $950.00 $950.00

6 records selected.

The expression SAL + NVL(COMM,0) will return a value equal
to SAL when COMM is null.

Example 2-49: Null values do not participate in the
computation of built-in functions.

SQL>SELECT SUM(SAL),COUNT(SAL),SUM(COMM),COUNT(COMM)

SQL>FROM EMP
SQL>WHERE DEPTNO = 30
sQL>/

SUM(SAL) COUNT(SAL) SUM (COMM) COUNT (COMM)

$9,400.00 6 $2,200.00 4

In the above example the count of people who receive a
salary, (4), is greater than the number of people that
receive a commission, (6), because null commissions were not

counted.

Example 2-50: List the average commission of employees who
receive a commission, and the average

commission of all employees (treating
employees who do not receive a commission as
. receiving a zero commission).

SQL>SELECT AVG(COMM),AVG(NVL(COMM,O))

SQL>FROM EMP
SQL>WHERE DEPTNO = 30
SQL>/

AVG (COMM) AVG(NVL (COMM,0))

$550.00 $366.67

Example 2-51:

List the average commission of employees who
receive a commission, and the average
commission of all employees (treating
employees who do not receive a commission as
receiving a $1000 commission).

SQL>SELECT AVG(COMM) ,AVG(NVL(COMM,1000))
SQL>FROM EMP
SQL>WHERE DEPTNO = 30

SQL>/

AVG(COMM) AVG(NVL(COMM,1000))

Example 2-52:

For department 30, list the average salary of
employees that receive a salary, the average
commission of employees that receive a
commission, the average salary plus
commission of only those employees that
receive a commission, and average salary plus
commission of all employees including those
who do not receive a commission.

1-31

SQL>SELECT AVG(SAL),AVG(COMM),AVG(SAL+COMM),AVG(SAL+NVL(COMM,0))

SQL>FROM EMP
SQL>WHERE DEPTNO = 30

sQL>/

AVG(SAL) AVG(COMM) AVG(SAL+COMM) AVG (SAL+NVL(COMM,0))

$1,566.67

$550.00 $1,950.00 $1,933.33

2.14 Join Query

A query may return values from more than one table. The
FROM clause may list several tables. The WHERE clause
specifies the relationship on which the tables are to be

joined.

Example 2-53: List the names of all employees and the
locations of their departments.

SQL>SELECT ENAME,LOC

SQL>FROM EMP,DEPT

SQL>WHERE EMP.DEPTNO = DEPT.DEPTNO;
sQL>/

ENAME LOC

CLARK NEW YORK
MILLER NEW YORK
OATES NEW YORK
SMITH SAN FRANCISCO
JONES SAN FRANCISCO
ADAMS SAN FRANCISCO
SCOTT SAN FRANCISCO
FORD SAN FRANCISCO
ALLEN CHICAGO
WARD CHICAGO
BLAKE CHICAGO
MARTIN CHICAGO
TURNER CHICAGO
JAMES CHICAGO

14 records selected.

Example 2-54: List names of employees and all the fields of
the department table for employees in
departments located in Chicago.

SQL>SELECT ENAME ,DEPT.*

SQL>FROM EMP,DEPT

SQL>WHERE EMP.DEPTNO = DEPT.DEPTNO
SQL> AND LOC = 'CHICAGO';

SQL>/

ENAME DEPTNO DNAME LocC EMPCNT
ALLEN 30 SALES CHICAGO
WARD 30 SALES CHICAGO
BLAKE 30 SALES CHICAGO
MARTIN 30 SALES CHICAGO
TURNER 30 SALES CHICAGO
JAMES 30 SALES CHICAGO

6 records selected.

Predicates in a WHERE clause may compare data values in
columns from any number of tables in a join query. ’

Example 2-55: List the names and jobs of employees who are
not salesmen and work for departments that
are located in Chicago.

SQL>SELECT ENAME,JOB,LOC

SQL>FROM DEPT,EMP

SQL>WHERE EMP.DEPTNO=DEPT.DEPTNO
SQL> AND LOC = 'CHICAGO'

SQL> AND JOB "= 'SALESMAN';
SQL>/

ENAME JOB LOC

BLAKE MANAGER CHICAGO

JAMES CLERK CHICAGO

Example 2-56: List the name, location, salary, Jjob of
employees located in Chicago who have the
same job as Allen. Sort the results by
employee name.

SQL>SELECT ENAME,LOC,SAL,JOB
SQL>FROM EMP,DEPT

SQL>WHERE LOC = 'CHICAGO'

SQL> AND EMP.DEPTNO = DEPT.DEPTNO
SQL> AND JOB =

SQL> SELECT JOB

SQL> FROM EMP

SQL> WHERE ENAME = 'ALLEN';
SQL>ORDER BY ENAME;

SQL>/

ENAME LOC SAL JOB
ALLEN CHICAGO $1,600.00 SALESMAN
MARTIN CHICAGO $1,250.00 SALESMAN
TURNER CHICAGO $1,500.00 SALESMAN

WARD CHICAGO $1,250.00 SALESMAN

33

1-34

2.15 Self-Join

d with itself by listing the same table
more than once in the FROM clause and associating a
temporary label with each table. This label is used in
place of the table name in qualifying references to columns
within the SELECT and FROM clauses in the query block.

Example 2-57: For each employee whose salary exceeds his
department's managers's salary, 1list the
employee's name and salary and the manager's
name and salary. Within the context of this
query, the EMP table is treated logically as
if it were two separate tables named WORKER
and MGR. However, the EMP table is "not"

physically duplicated.

A table may be joine

SQL>SELECT WORKER.ENAME,WORKER.SAL,MGR.ENAME,MGR.SAL

SQL>FROM EMP WORKER,EMP MGR

SQL>WHERE WORKER .DEPTNO = MGR.DEPTNO
SQL> AND [MGR.JOB = *MANAGER' AND WORKER.SAL > MGR.SAL] ;

SQL>/
ENAME SAL ENAME SAL

SCOTT $3,000.00 JONES $2,975.00
FORD $3,000.00 JONES $2,975.00
OATES $5,000.00 CLARK $2,450.00

2.16 Outer-Join

When the DEPT table is joined to the EMP table using the
join predicate DEPT.DEPTNO = EMP.DEPTNO, a department
without any employees would not satisfy the join and would
not be returned as a result of the query.

Example 2-58: List all the departments in the DEPT table.

SQL>SELECT *

SQL>FROM DEPT
SQL>/
DEPTNO DNAME LOoC EMPCNT
10 ADMINISTRATION NEW YORK
20 RESEARCH SAN FRANCISCO
30 SALES CHICAGO
40 OPERATIONS BOSTON

Example 2-59: List all the employees in the EMP table.

SQL>SELECT DEPTNO,ENAME,JOB

SQL>FROM EMP
SQL>ORDER BY DEPTNO
SQL>/

DEPTNO ENAME JOB

10 CLARK MANAGER
10 OATES PRESIDENT
10 MILLER CLERK

20 SMITH CLERK

20 JONES MANAGER
20 SCOTT ANALYST
20 ADAMS CLERK

20 FORD ANALYST
30 ALLEN SALESMAN
30 WARD SALESMAN
30 MARTIN SALESMAN
30 BLAKE MANAGER
30 TURNER SALESMAN
30 JAMES CLERK

14 records selected.

Example 2-60: Join the DEPT table to the EMP table.

SQL>SELECT DEPT.DEPTNO,DNAME,LOC,ENAME,JOB

SQL>FROM DEPT, EMP

SQL>WHERE DEPT.DEPTNO = EMP.DEPTNO

sQL>/

DEPTNO DNAME LoC ENAME JOB
10 ADMINISTRATION NEW YORK CLARK MANAGER
10 ADMINISTRATION NEW YORK MILLER CLERK
10 ADMINISTRATION NEW YORK ~ OATES PRESIDENT
20 RESEARCH SAN FRANCISCO SMITH CLERK
20 RESEARCH SAN FRANCISCO JONES MANAGER
20 RESEARCH SAN FRANCISCO ADAMS CLERK
20 RESEARCH SAN FRANCISCO SCOTT ANALYST
20 RESEARCH SAN FRANCISCO FORD ANALYST
30 SALES CHICAGO ALLEN SALESMAN
30 SALES CHICAGO WARD SALESMAN
30 SALES CHICAGO BLAKE MANAGER
30 SALES CHICAGO MARTIN SALESMAN
30 SALES CHICAGO TURNER SALESMAN
30 SALES CHICAGO JAMES CLERK

14 records selected.

The result of this Jjoin does not include department 40
pecause department 40 does not have any employees. An
"outer-join", will return those department rows that have no

matching employees.

Example 2-61: List all departments that have employees,
plus those departments that do not have
employees.

SQL>SELECT DEPT.DEPTNO,DNAME,LOC,ENAME,JOB

SQL>FROM DEPT,EMP*

SQL>WHERE DEPT.DEPTNO = EMP.DEPTNO

SQL>/

DEPTNO DNAME LOC ENAME JOB
10 ADMINISTRATION NEW YORK CLARK MANAGER
10 ADMINISTRATION NEW YORK MILLER CLERK
10 ADMINISTRATION NEW YORK OATES PRESIDENT
20 RESEARCH SAN FRANCISCO SMITH CLERK
20 RESEARCH SAN FRANCISCO JONES MANAGER
20 RESEARCH SAN FRANCISCO ADAMS CLERK
20 RESEARCH SAN FRANCISCO SCOTT ANALYST
20 RESEARCH SAN FRANCISCO FORD ANALYST
30 SALES CHICAGO ALLEN SALESMAN
30 SALES CHICAGO WARD SALESMAN
30 SALES CHICAGO BLAKE MANAGER
30 SALES CHICAGO MARTIN SALESMAN
30 SALES CHICAGO TURNER SALESMAN
30 SALES CHICAGO JAMES CLERK
40 OPERATIONS BOSTON

15 records selected.

The asterisk (*) after the EMP table in the FROM clause
indicates that an extra row containing a null value in every

column is to be appended to the EMP table when processing
this query block. This null row of the EMP table is joined

to those DEPT rows that do not have any matching rows in the
EMP table.

Example 2-62: List all departments that do not have any
employees.

SQL>SELECT UNIQUE DEPT.DEPTNO,DNAME,LOC
SQL>FROM DEPT,EMP¥*

SQL>WHERE DEPT.DEPTNO = EMP.DEPTNO
SQL> AND EMPNO = NULL

SQL>/

DEPTNO DNAME LoC

40 OPERATIONS BOSTON

The outer-join can be used to join more than two tables,
however, at least one table in the Jjoin must not be
outer-joined. The table that is not outer-joined must be
listed first in the FROM clause.

1-38

3. DATA MANIPULATION FACILITIES

3.1 INSERT

The INSERT statement specifies the adding of a new row or
set of rows into a table.

Example 3-1: Insert a new employee named Carter with an
employee number of 7989, a job title of
salesman, salary of 1500, and commission of

0, into department 30.

SQL>INSERT 1INTO EMP(EMPNO,ENAME,JOB,SAL,COMM,DEPTNO):
SQL> <7989,'CARTER','SALESMAN',1500,0,30>;
sQL>/

1 record created.

All fields do not have to be included in the INSERT
statement.

Example 3-2: Insert a new employee named Wilson, employee
number 7955, in department 20, having all

other fields null.

SQL>INSERT INTO EMP(EMPNO,ENAME,DEPTNO):
SQL> <7955, "WILSON',20>;

sQL>/

1 record created.

1-39

If all fields are present in the right order, the list of
column names may be omitted.

Example 3-3: Insert a new employee into named Jakes into
the EMP table.

SQL>INSERT INTO EMP:
SQL> <7956, 'JAKES' ,'CLERK"',1000,NULL,20>;

SQL>/
1 record created.

SQL>SELECT *

SQL>FROM EMP

SQL>WHERE DEPTNO = 20;

SQL>/

EMPNO ENAME JOB SAL COMM DEPTNO
7369 SMITH CLERK $800.00 20
7566 JONES MANAGER $2,975.00 20
7876 ADAMS CLERK $1,100.00 20
7788 SCOTT ANALYST $3,000.00 20
7902 FORD ANALYST $3,000.00 20
7955 WILSON 20
7956 JAKES CLERK $1,000.00 20

7 records selected.

An INSERT statement may store the result of a query into an
existing table.

Example 3-4: Add to the BONUS table all those employees
whose commission is greater than 25% of their
salary, or those employees who have the job
title of president or manager.

SQL>INSERT INTO BONUS :

SQL> SELECT ENAME,JOB,SAL,COMM

SQL> FROM EMP

SQL> WHERE COMM > 0.25 * SAL

SQL> OR JOB IN <'PRESIDENT', 'MANAGER'>;
SQL>/

6 records created.

Example 3-5: List the BONUS table.
SQL>SELECT *

SQL>FROM BONUS;

SQL>/

ENAME JOB SAL COMM
BLAKE MANAGER $2,850.00

CLARK MANAGER $2,450.00

JONES MANAGER $2,975.00

MARTIN SALESMAN $1,250.00 $1,400.00
OATES PRESIDENT $5,000.00
WARD SALESMAN $1,250.00 $500.00

6 records selected.

3.2 UPDATE

Update is a process of changing the values of fields within
the data base. The rows to be updated are specified by
means of a WHERE clause. The updates to be made are
specified in a SET clause.

Example 3-6: Set employee number 7782's salary to $2,750.
SQL>UPDATE EMP

SQL>SET SAL = 2750

SQL>WHERE EMPNO = 7782;

SQL>/

1 record updated.

SQL>SELECT * FROM EMP WHERE EMPNO=7782;

SQL>/
EMPNO ENAME JOB SAL COMM DEPTNO
7782 CLARK MANAGER $2,750.00 10

A SET clause may update multiple fields within a table.

Example 3-7: Update department 30's location to Paris and
increase its employee count by two.

SQL>UPDATE DEPT

SQL>SET LOC = 'PARIS',EMPCNT=NVL(EMPCNT,0) + 2
SQL>WHERE DEPTNO = 30;
sQL>/

1 record updated.

SQL>SELECT *

SQL>FROM DEPT;

SQL>/

DEPTNO DNAME LoC EMPCNT
10 ADMINISTRATION NEW YORK
20 RESEARCH SAN FRANCISCO
30 SALES PARIS 2

40 OPERATIONS BOSTON

Update the employee table by giving a 15%
raise to all employees whose names appear in

the BONUS table.

Example 3-8:

SQL>UPDATE EMP

SQL>SET SAL = SAL * 1.15
SQL>WHERE ENAME IN

SQL> SELECT ENAME
SQL> FROM BONUS;
SQL>/

6 records updated.

SQL>SELECT * FROM EMP;

SQL>/

MARTIN
BLAKE
CLARK
SCOTT
OATES
TURNER
ADAMS
JAMES
FORD
MILLER
WILSON
JAKES
CARTER

CLERK
SALESMAN
SALESMAN
MANAGER
SALESMAN
MANAGER
MANAGER
ANALYST
PRESIDENT
SALESMAN
CLERK
CLERK
ANALYST
CLERK

CLERK
SALESMAN

17 records selected.

$800.00
$1,600.00
$1,437.50
$3,421.25
$1,437.50
$3,277.50
$3,162.50
$3,000.00
$5,750.00
$1,500.00
$1,100.00

$950.00
$3,000.00
$1,300.00

$1,000.00
$1,500.00

COMM DEPTNO

$300.00
$500.00

$1,400.00

$0.00

$0.00

3.3 DELETE
DELETE removes rows from tables in the data base.

Example 3-9: Delete the employee named Oates from the
BONUS table.

SQL>DELETE BONUS

SQL>WHERE ENAME = 'OATES';
SQL>/

1 record deleted.

SQL>SELECT * FROM BONUS;

SQL>/

ENAME JOB SAL COMM
BLAKE MANAGER $2,850.00

CLARK MANAGER $2,450.00

JONES MANAGER $2,975.00

MARTIN SALESMAN $1,250.00 $1,400.00

WARD SALESMAN $1,250.00 $500.00

The WHERE clause in a DELETE statement may contain a query
block. .

Example 3-10: Delete from the BONUS table all the employees
with the same job as Jones.

SQL>DELETE BONUS
SQL>WHERE JOB IN

SQL> SELECT JOB

SQL> FROM EMP

SQL> WHERE ENAME = 'JONES';
SQL>/

3 records deleted.

SQL>SELECT * FROM BONUS;

SQL>/
ENAME JOB SAL COMM
MARTIN SALESMAN $1,250.00 $1,400.00

WARD SALESMAN $1,250.00 $500.00

43

A DELETE statement without a WHERE clause specifies
removal of all rows in the table.

Example 3-11: Delete all rows from the BONUS table.

SQL>DELETE BONUS;
SQL>/
2 records deleted.

SQL>SELECT * FROM BONUS;
SQL>/

ENAME JOB SAL COMM

no records selected

the

4. DATA DEFINITION FACILITIES

This section of the manual describes the CREATE TABLE,
EXPAND TABLE DEFINE VIEW, and DROP facilities of the system.

4.1 CREATE TABLE

Example 4-1: Display projects table.

SQL>SELECT *

SQL>FROM PROJ;

SQL>/

FROM PROJ;

invalid table name [*** ERROR **¥*]
Example 4-2: Create a new table to contain project number,

name, and budget information.

SQL>CREATE TABLE PROJ

SQL> PROJNO(NUMBER NONULL IMAGE UNIQUE),
SQL> PNAME (CHAR(10) IMAGE),

SQL> BUDGET (NUMBER) ,

SQL> EMPCNT (NUMBER) ;

SQL>/

Table created.

SQL>SELECT *
SQL>FROM PROJ ;
SQL>/

PROJNO PNAME BUDGET EMPCNT

no records selected

46

Example 4-3: Insert three projects into the project table.
SQL>INSERT INTO PROJ(PROJNO,PNAME,BUDGET):

SQL> <101, 'ALPHA',250000>;

sSQL>/

1 record created.

SQL>INSERT INTO PROJ(PROJNO,PNAME,BUDGET):
SQL> <102,'BETA',175000>;

sSQL>/

1 record created.

SQL>INSERT INTO PROJ (PROJNO, PNAME, BUDGET) :
SQL> <103, 'GAMMA' ,95000>;

SQL>/
1 record created.

SQL>SELECT *
SQL>FROM PROJ ;

SQL>/

PROJNO PNAME BUDGET EMPCNT
101 ALPHA $250,000.00
102 BETA $175,000.00
103 GAMMA $95,000.00

4.2 DROP TABLE
Tables and views may be dropped dynamically.

Example 4-4: Drop the BONUS table from the data base.

SQL>DROP TABLE BONUS;
sQL>/
Table dropped.

4.3 EXPAND TABLE

Example 4-5: An existing table may be expanded by adding a
new column to it.

SQL>SELECT EMPNO,DEPTNO,PROJNO,ENAME

SQL>FROM EMP
SQL>WHERE DEPTNO = 10;
SQL>/

SELECT EMPNO,DEPTNO,PROJNO,ENAME

invalid column name [*** ERROR ***]

Example 4-6: Add a new project number column to the
employee table.

SQL>EXPAND TABLE EMP
SQL> ADD COLUMN PROJNO(NUMBER IMAGE);

SQL>/
Table expanded.

SQL>SELECT EMPNO,ENAME,PROJNO,DEPTNO

SQL>FROM EMP
SQL>WHERE DEPTNO = 10;
SQL>/

EMPNO ENAME PROJNO DEPTNO
7782 CLARK 10
7934 MILLER 10
7839 OATES 10

Example 4-7: Update the employee table by assigning
employees to projects.

SQL>UPDATE EMP

SQL>SET PROJNO = 101

SQL>WHERE DEPTNO = 20

SQL> OR JOB = 'MANAGER';

SQL>/

10 records updated.

SQL>SELECT *

SQL>FROM EMP

SQL>WHERE PROJNO = 101;

SQL>/

EMPNO ENAME JOB SAL COMM DEPTNO PROJNO
7369 SMITH CLERK $800.00 20 101
7566 JONES MANAGER $3,421.25 20 101
7698 BLAKE MANAGER $3,277.50 30 101
7782 CLARK MANAGER $3,162.50 10 101
7876 ADAMS CLERK $1,100.00 20 101
7788 SCOTT ANALYST $3,000.00 20 101
7902 FORD ANALYST $3,000.00 20 101
7955 WILSON 20 101
7956 JAKES CLERK $1,000.00 20 101

9 records selected.

SQL>UPDATE EMP

SQL>SET PROIJNO = 102
SQL>WHERE EMPNO > 7700

SQL> AND NOT PROJNO = 101;
SQL>/

S records updated.

Example 4-8: The PROJ table may now be joined to the EMP

table.
SQL>SELECT ENAME,PNAME
SQL>FROM EMP, PROJ
SQL>WHERE EMP.PROJNO = PROJ.PROJNO;
SQL>/

FORD ALPHA
WILSON ALPHA
JAKES ALPHA
TURNER BETA
MILLER BETA
OATES BETA
JAMES BETA
CARTER BETA
ALLEN GAMMA
WAPD GAMMA
MARTIN GAMMA

17 records selected.

50

4.4 DEFINE VIEW

Alternative views of stored data may be defined. Any vaild

query may be used in the definition of a view.

Example 4-9: Define a view called EMP10 containing
employee number, name, job and project number
information for employees in department 10.

SQL>DEFINE VIEW EMP10 AS

sQL> SELECT EMPNO,ENAME,JOB,PROJNO
SQL> FROM EMP

SQL> WHERE DEPTNO = 10;

SQL>/

View defined.

SQL>SELECT *
SQL>FROM EMP10;

SQL>/

EMPNO ENAME JOB PROJNO
7782 CLARK MANAGER 101
7934 MILLER CLERK 102

7839 OATES PRESIDENT 102

Example 4-10: A view can contain more than one

SQL>DEFINE VIEW PROJSTAFF(EMPLOYEE,PROJECT) AS

SQL> SELECT ENAME,PNAME

SQL> FROM EMP, PROJ

SQL> WHERE EMP.PROJNO = PROJ.PROJNO;
SQL>/

View defined.

SQL>SELECT *
SQL>FROM PROJSTAFF;
SQL>/

EMPLOYEE PROJECT

SMITH ALPHA
JONES ALPHA
BLAKE ALPHA
CLARK ALPHA
ADAMS ALPHA
SCOTT ALPHA
FORD ALPHA
WILSON ALPHA
JAKES ALPHA

TURNER BETA
MILLER BETA

OATES BETA
JAMES BETA
CARTER BETA
ALLEN GAMMA
WARD GAMMA

MARTIN GAMMA

17 records selected.

table.

51

When defining a view, ORACLE may draw the column names from
the underlying tables or the user may rename the columns as

in the example below.

Example 4-11: Define a view containing information from the
project, employee, and department table.

SQL>DEFINE VIEW PROJECTS (PROJECT,EMPLOYEE,EMP#,LOCATION) AS

SQL> SELECT PNAME,ENAME,EMPNO,LOC
SQL> FROM PROJ, EMP,DEPT

SQL> WHERE EMP.DEPTNO = DEPT.DEPTNO
SQL> AND EMP.PROJNO = PROJ.PROJNO;
SQL>/

View defined.

Example 4-12: Views may be selectively queried in the same
way as a table.

SQL>SELECT PROJECT, EMPLOYEE,LOCATION

SQL>FROM PROJECTS
SQL>WHERE LOCATION = 'NEW YORK';
SQL>/

PROJECT EMPLOYEE LOC

Example 4-13: Views may be joined to tables or other views.

SQL>SELECT ENAME ,JOB,PNAME

SQL>FROM PROJ, EMP10
SQL>WHERE PROJ .PROJNO=EMP10.PROJNO

SQL> AND JOB "= 'CLERK'

sQL>/
ENAME JOB PNAME
CLARK MANAGER ALPHA

OATES PRESIDENT BETA

Views may be defined in terms of other views.

Example 4-14: Define a view containing the name of projects
and employees located in Paris.

SQL>DEFINE VIEW PARIS (NAME,PROJ) AS

SQL> SELECT EMPLOYEE,PROJECT
SQL> FROM PROJECTS

SQL> WHERE LOCATION = 'PARIS';
SQL>/

View defined.

SQL>SELECT *
SQL>FROM PARIS;
SQL>/

ALLEN GAMMA
WARD GAMMA
BLAKE ALPHA
MARTIN GAMMA
TURNER BETA
JAMES BETA
CARTER BETA

7 records selected.

4.5 Virtual-Fields

A view may contain arithmetic expressions or built in
functions. These expressions or functions appear to the
user of the view as "virtual fields." When expressions or
functions are used within a view, column names must be
specified for the view.

Example 4-15: Define a view containing employee name,
salary, annual salary, and department number.

SQL>DEFINE VIEW PAY (NAME,SAL,COMM,ASAL,DEPTNO) AS

SQL> SELECT ENAME,SAL,COMM,SAL * 12,DEPTNO
SQL> FROM EMP;
SQL>/

View defined.

Example 4-16: List salary information for employees in
department 30.

SQL>SELECT *

SQL>FROM PAY

SQL>WHERE DEPTNO = 30

SQL>/

NAME SAL COMM ASAL DEPTNO

ALLEN $1,600.00 $300.00 $19,200.00 30

WARD $1,437.50 $500.00 $17,250.00 30

BLAKE $3,277.50 $39,330.00 30

MARTIN $1,437.50 $1,400.00 $17,250.00 30

TURNER $1,500.00 $0.00 $18,000.00 30

JAMES $950.00 $11,400.00 30

CARTER $1,500.00 $0.00 $18,000.00 30

7 records selected.

Example 4-17: Define a view containing a departments
minimum, average, max imum, and total

compensation.

VIEW DEPT SAL (DEPTNO,LOSAL,MEDSAL,HISAL,TOTSAL) AS

SQL>DEFINE

SQL> SELECT DEPTNO,MIN(SAL),AVG(SAL),MAX(SAL),SUM(SAL)
SQL> FROM EMP

SQL> GROUP BY DEPTNO;

sSQL>/

View defined.

List minimum, average, and total salary for

Example 4-18:
each department.

SQL>SELECT DEPTNO,LOSAL,HISAL, TOTSAL

SQL>FROM DEPT_SAL

SQL>/

DEPTNO LOSAL HISAL TOTSAL
10 $1,300.00 $5,750.00 $10,212.50
20 $800.00 $3,421.25 $12,321.25
30 $950.00 $3,277.50 $11,702.50

S. DATA STRUCTURES

Create a data structure that allows one employee to work on
many projects, and one project to have many employees.

Example 5-1: Create a two column table relating employees
to projects.

SQL>CREATE TABLE PE

SQL> EMPNO(NUMBER NONULI. IMAGE),
“SQL> PROJNO (NUMBER NONULL IMAGE) ;
SQL>/

Table created.

Example 5-2: Move the relationship between employees and
projects from the EMP table to the PE table.

SQL>INSERT INTO PE(EMPNO,PROJNO) :

SQL> SELECT EMPNO,PROJNO
SQL> FROM EMP;
SQL>/

17 records created.

SQL>SELECT *
SQL>FROM PE;
SQL>/

EMPNO PROJNO

7369 101
7499 103
7521 103
7568 101
7654 103
7698 101
7782 101
7788 101

7876 101
7900 102
7902 101
7934 102
7955 101
7956 101
7989 102

17 records selected.

55

Delete the data from the PROJNO column of the
EMP table.

Example 5-3:

SQL>UPDATE EMP

SQL>SET PROJNO = NULL;
SQL>/

17 records updated.

SQL>SELECT *

SQL>FROM EMP;

SQL>/

EMPNO ENAME JOB SAL COMM DEPTNO PROJNO
7369 SMITH CLERK $800.00 20
7499 ALLEN SALESMAN $1,600.00 $300.00 30
7521 WARD SALESMAN $1,437.50 $500.00 30
7566 JONES MANAGER $3,421.25 20
7654 MARTIN SALESMAN $1,437.50 $1,400.00 30
7698 BLAKE MANAGER $3,277.50 30
7782 CLARK MANAGER $3,162.50 10
7788 SCOTT ANALYST $3,000.00 20
7839 OATES PRESIDENT $5,750.00 10
7844 TURNER SALESMAN $1,500.00 $0.00 30
7876 ADAMS CLERK $1,100.00 20
7900 JAMES CLERK $950.00 30
7902 FORD ANALYST $3,000.00 20
7934 MILLER CLERK $1,300.00 10
7955 WILSON 20
7956 JAKES CLERK $1,000.00 20
7989 CARTER SALESMAN $1,500.00 $0.00 30

17 records selected.

Example 5-4: The new structure requires that the EMP table
be joined to the PROJ table via the PE table.

SQL>SELECT ENAME,PNAME

SQL>FROM EMP,PROJ, PE

SQL>WHERE EMP.EMPNO = PE.EMPNO
SQL> AND PROJ.PROJNO = PE.PROJNO;
SQL>/

MARTIN GAMMA
BLAKE ALPHA
CLARK ALPHA
SCOTT ALPHA
OATES BETA
TURNER BETA
ADAMS ALPHA
JAMES BETA
FORD ALPHA
MILLER BETA
WILSON ALPHA
JAKES ALPHA
CARTER BETA

17 records selected.

The new data structure with the PE table allows employees to
be assigned to more than one project.

Example 5-5: Assign employee 7989 to projects 101 and 103,
and employee 7956 to project 102.

SQL>INSERT INTO PE:
SQL> <7989,101>;
sQL>/

1 record created.

SQL>INSERT INTO PE:
SQL> <7989,103>;

sSQL>/
1 record created.

SQL>INSERT INTO PE:
SQL> <7956,103>;
sQL>/

1 record created.

Example 5-6: List the projects for employees 7956 and
7989.

SQL>SELECT ENAME, EMP.EMPNO,PNAME,PROJ.PROJNO
SQL>FROM EMP,PROJ,PE
SQL>WHERE [EMP.EMPNO
SQL> AND EMP.EMPNO
SQL>/

<7956,7989>;

ENAME EMPNO PNAME PROJNO

—-—— - ——— i - —— e - ———— o — e —— —

JAKES 7956 ALPHA 101
.JAKES 7956 GAMMA 103
CARTER 7989 BETA 102
CARTER 7989 ALPHA 101

CARTER 7989 GAMMA 103

PE.EMPNO AND PROJ.PROJNO = PE.PROJNO]

6. DATA INDEPENDENCE

The view facility within ORACLE in combination with the
non-procedural nature of the SQL data language allows the
user's programs to be independent to changes in data

structure.

A new PROJSTAFF view can be defined on the new data
structure. The new view will contain the same information
as the old PROJSTAFF view only the definition of the view
will be different. Users of the old PROJSTAFF view will be

insulated from the change.

Example 6-1: Drop the old PROJSTAFF view.

SQL>DROP VIEW PROJSTAFF;
SQL>/
View dropped.

Example 6-2: Define a new PROJSTAFF view that Jjoins the
EMP table to the PROJ table via the PE table.

SQL>DEFINE VIEW PROJSTAFF(EMPLOYEE,PROJECT) AS
SQL>SELECT ENAME,PNAME

SQL>FROM EMP, PROJ, PE

SQL>WHERE EMP.EMPNO = PE.EMPNO

SQL> AND PROJ.PROJNO = PE.PROJNO;

SQL>/

View defined.

1-60

Example 6

SQL>SELEC
SQL>FROM
SQL>WHERE
SQL>/

EMPLOYEE

-3:

T *

Queries that used the old PROJSTAFF view
continue to run without modification once the
new PROJSTAFF view has been defined even
though the structure of the data base has

been altered.

PROJSTAFF
PROJECT = 'GAMMA';

PNAME

WARD
MARTIN
CARTER
JAKES

GAMMA
GAMMA
GAMMA

7. OPERATIONS ON TREE-STRUCTURED TABLES

The EMP table does not contain all the information necessary
to define the "reporting structure" between the employees in
the EMP table. This is because the EMP table does not
identify each employee's direct supervisor. In order to
store this reporting structure information, the EMP table

has to be expanded.

Example 7-1: Add a new column called SUPR to the EMP
table.

SQL>EXPAND TABLE EMP

SQL> ADD COLUMN SUPR(NUMBER IMAGE) ;

SQL>/

Table expanded.

Example 7-2: Assign a supervisor to each employee except
‘ OATES.

SQL>UPDATE EMP

SQL>SET SUPR=7839

SQL>WHERE EMPNO=7782

SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7839
SQL>WHERE EMPNO=7566
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7839
SQL>WHERE EMPNO=7698
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7782
SQL>WHERE EMPNO=7934
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7566
SQL>WHERE EMPNO=7788
SQL>/

1l record updated.

61

Continue assigning supervisors to

SQL>UPDATE EMP

SQL>SET SUPR=7566
SQL>WHERE EMPNO=7902
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7566
SQL>WHERE EMPNO=7955
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7788
SQL>WHERE EMPNO=7876
sQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7902
SQL>WHERE EMPNO=7369
sQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7955
SQL>WHERE EMPNO=7956
sQL>/

1 record updated.

employees.

Continue assigning supervisors to

SQL>UPDATE EMP

SQL>SET SUPR=7698
SQL>WHERE EMPNO=7499
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7698
SQL>WHERE EMPNO=7521
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7698
SQL>WHERE EMPNO=7654
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7698
SQL>WHERE EMPNO=7844
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7698
SQL>WHERE EMPNO=7900
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7698
SQL>WHERE EMPNO=7989
SQL>/

1 record updated.

employees.

64

Example 7-3: List the reporting structure information from
the EMP table including each employees name,
number, department, and his supervisor's
number.

SQL>SELECT ENAME, EMPNO, SUPR,DEPTNO
SQL>FROM EMP
sQL>/

ENAME EMPNO SUPR DEPTNO

SMITH 7369 7902 20
ALLEN 7499 7698 30
WARD 7521 7698 30
JONES 7566 7839 20
MARTIN 7654 7698 30
BLAKE 7698 7839 30
CLARK 7782 7839 10
SCOTT 7788 7566 20
OATES 7839 10
TURNER 7844 7698 30
ADAMS 7876 7788 20
JAMES 7900 7698 30
FORD 7902 7566 20
MILLER 7934 7782 10
WILSON 7955 7566 20
JAKES 7956 7955 20
CARTER 7989 7698 30

17 records selected.

When considering the reporting structure information
contained in the EMP table, it may be useful to think of the
EMP table as tree-structured or hierarchical as in the
diagram below.

OATES
I
- o — +
I I I
CLARK I BLAKE
I I |
| | - $—m———— tommm——— et —————— +
I I I I I | | I
MILLER | ALLEN WARD MARTIN TURNER JAMES CARTER
JONES
I
+—————- - +

SCOTT FORD WILSON
| I I
ADAMS SMITH JAKES

7.1 CONNECT BY

ORACLE provides a unique set of operators that allows the
user to query these "Tree-Structured" tables. Operations on
tree-structured tables include three clauses: START WITH,
CONNECT BY, and INCLUDING. CONNECT BY and START WITH are
required clauses; INCLUDING is an optional clause.

The CONNECT BY clause indicates the two columns within the
table that contain the information necessary to logically
specify the structure of the tree. The START WITH clause
indicates the leaf within the tree (row within the table)
that the query is to start.

Example 7-4: Find all the people who work directly or
indirectly for JONES.

SQL>SELECT UNIQUE ENAME,EMPNO,JOB,DEPTNO,SUPR
SQL>FROM EMP

SQL>START WITH ENAME = 'JONES'
SQL>CONNECT BY PRIOR EMPNO = SUPR
SQL>/

ENAME EMPNO JOB DEPTNO SUPR
JONES 7566 MANAGER 20 7839
SCOTT 7788 ANALYST 20 7566
FORD 7902 ANALYST 20 7566
WILSON 7955 20 7566
ADAMS 7876 CLERK 20 7788
SMITH 7369 CLERK 20 7902
JAKES 7956 CLERK 20 7955

7 records selected.

65

A query may "walk" the tree in either the UP or DOWN
direction. The user specifies the direction the tree 1is to
be walked by means of the PRIOR keyword within the CONNECT
BY clause. In this example, if the PRIOR is placed before
EMPNO, the tree is walked in the down direction. If the
PRIOR is placed before SUPR, the tree is walked in the UP

direction.

Example 7-5: List all the people in the reporting
structure above SMITH.

SQL>SELECT UNIQUE ENAME , EMPNO,JOB,DEPTNO, SUPR
SQL>FROM EMP

SQL>START WITH ENAME = '*SMITH'

SQL>CONNECT BY EMPNO = PRIOR SUPR

SQL>/

ENAME EMPNO JOB DEPTNO SUPR

SMITH 7369 CLERK 20 7902

FORD 7902 ANALYST 20 7566

JONES 7566 MANAGER 20 7839

OATES 7839 PRESIDENT 10

Example 7-6: SELECT UNIQUE must be specified when walking

the tree in the UP direction.

7.2 START WITH

The START WITH clause can reference more than one starting
point within the tree.

Example 7-7: List all the people who work for CLARK or
BLAKE.

SQL>SELECT UNIQUE ENAME, EMPNO,JOB,DEPTNO, SUPR

SQL>FROM EMP
SQL>START WITH ENAME = 'CLARK!'
SQL> OR ENAME = 'BLAKE'

SQL>CONNECT BY PRIOR EMPNO = SUPR
SQL>ORDER BY DEPTNO

SQL>/

ENAME EMPNO JOB DEPTNO SUPR
CLARK 7782 MANAGER 10 7839
MILLER 7934 CLERK 10 7782
BLAKE 7698 MANAGER 30 7839
ALLEN 7499 SALESMAN 30 7698
WARD 7521 SALESMAN 30 7698
MARTIN 7654 SALESMAN 30 7698
TURNER 7844 SALESMAN 30 7698
JAMES 7900 CLERK 30 7698
CARTER 7989 SALESMAN 30 7698

9 records selected.

Example 7-8: List all the people who work for people who
have the same job as SCOTT.

SQL>SELECT UNIQUE ENAME, EMPNO,JOB,DEPTNO, SUPR

SQL>FROM EMP

SQL>START WITH JOB IN

SQL> SELECT JOB

SQL> FROM EMP

SQL> WHERE ENAME = 'SCOTT';
SQL>CONNECT BY PRIOR EMPNO = SUPR
SQL>/

ENAME EMPNO JOB DEPTNO SUPR
SCOTT 7788 ANALYST 20 7566
FORD 7902 ANALYST 20 7566
ADAMS 7876 CLERK 20 7788

SMITH 7369 CLERK 20 7902

|

7.3 INCLUDING

As a tree is being walked, a predicate or set of predicates
can be applied to individual leafs of the tree or entire
branches of the tree. The INCLUDING clause is used to
qualify or disqualify leafs of the tree. The WHERE clause
is used to "prune" entire branches of the tree.

Example 7-9: List all the people who work for JONES except

SCOTT.
SQL>SELECT UNIQUE ENAME, EMPNO,JOB,DEPTNO, SUPR
SQL>FROM EMP
SQL>START WITH ENAME = 'JONES'

SQL>CONNECT BY PRIOR EMPNO = SUPR
SQL>INCLUDING ENAME “= 'SCOTT'

SQL>/

ENAME EMPNO JOB DEPTNO SUPR
JONES 7566 MANAGER 20 7839
FORD 7902 ANALYST 20 7566
WILSON 7955 20 7566
ADAMS 7876 CLERK 20 7788
SMITH 7369 CLERK 20 7902
JAKES 7956 CLERK 20 7955

6 records selected.

Example 7-10: List all the employees that work for JONES
except SCOTT and the people who work for
SCOTT.

SQL>SELECT UNIQUE ENAME,EMPNO,JOB,DEPTNO,SUPR

SQL>FROM EMP
SQL>WHERE ENAME "= 'SCOTT'

SQL>START WITH ENAME = 'JONES'
SQL>CONNECT BY PRIOR EMPNO = SUPR
SQL>/

ENAME EMPNO JOB DEPTNO SUPR
JONES 7566 MANAGER 20 7839
FORD 7902 ANALYST 20 7566
WILSON 7955 20 7566
SMITH 7369 CLERK 20 7902
JAKES 7956 CLERK 20 7955

Note that ADAMS, who works for SCOTT was eliminated when
SCOTT was pruned using the WHERE clause. ADAMS was not
eliminated when SCOTT was excluded using the INCLUDING

clause.

A query on a tree-structured table can contain both a WHERE
clause and an INCLUDING clause. First, the tree |is
logically formed using the CONNECT BY clause; Second, the
tree is walked in the direction specified by the PRIOR
keyword in the CONNECT BY clause starting with the leaf
specified in the START WITH clause; Third, the WHERE clause
is applied to each leaf of the tree (row of the table) to
prune branches from the tree; Fourth, the INCLUDING clause
is applied to each leaf of the tree to qualify or disqualify

individual rows.

Example 7-11: List all the employees that work for JONES
except SCOTT and the people who work for
SCOTT, and FORD.

SQL>SELECT UNIQUE ENAME ,EMPNO,JOB ,DEPTNO,SUPR
SQL>FROM EMP

SQL>WHERE ENAME "= 'SCOTT'

SOQL>START WITH ENAME = 'JONES'

SQL>CONNECT BY PRIOR EMPNO = SUPR
SQL>INCLUDING ENAME "= 'FORD'

SQL>/

ENAME EMPNO JOB DEPTNO SUPR
JONES 7566 MANAGER 20 7839
WILSON 7955 20 7566
SMITH 7369 CLERK 20 7902
JAKES 7956 CLERK 20 7955

Queries on tree-structured tables can include joins.

Example 7-12: List all the employees and the location of
their departments that work for JONES except
SCOTT and the people who work for SCOTT, and

FORD.

SQL>SELECT UNIQUE ENAME,LOC,EMPNO,JOB,DEPT.DEPTNO, SUPR
SQL>FROM EMP,DEPT

SQL>WHERE EMP.DEPTNO = DEPT.DEPTNO

SQL>AND ENAME "= 'SCOTT'

SQL>START WITH ENAME = 'JONES'
SOL>CONNECT BY PRIOR EMPNO = SUPR

SQL>INCLUDING ENAME "= 'FORD'

SQL>/

ENAME LOC EMPNO JOB DEPTNO SUPR
JONES SAN FRANCISCO 7566 MANAGER 20 7839
WILSON SAN FRANCISCO 7955 20 7566
SMITH SAN FRANCISCO 7369 CLERK 20 7902

JAKES SAN FRANCISCO 7956 CLERK 20 7955

8. SECURITY FACILITIES

ORACLE supports both secure and nonsecure data bases. If a
data base is defined as secure, that data base's dictionary
contains information about the users of the data base 1in
addition to a description of data stored within the data
base. This allows ORACLE to control access to the data base

on a user by access privilege basis.

An ORACLE data base is created by means of the DBF utility
program. At the time a data base is created, the creating
user specifies whether the data base is to be secure or
nonsecure. If the data base is to be secure, the creating
user specifies a USER-NAME and PASSWORD to DBF. The data
base used in this manual is a secure data base created with
the following DBF command:

DBF C PERSONNEL PERSONNEL.DBS 2048 SCOTT/TIGER

Initially, only the creating user, SCOTT with a PASSWORD of
TIGER is authorized to operate on the PERSONNEL data base.
All the SQL example operations prior to this section of the
manual have been issued by the fully authorized creating
user, SCOTT.

8.1 DEFINE USER

The creator of a secure data base can authorize additional
users of the data base by means of the DEFINE USER command.
A defined user of the data base is authorized to log on to
the data base, create his own tables, define views on his

tables, and define new users of the data base.

ORACLE security facilities prevent unauthorized users from
logging on the secure PERSONNEL data base.

Have user SCOTT log off of the PERSONNEL data base and
attempt to log on as user ADAMS with a password of WOOD.

Example 8-1: Log on to the PERSONNEL data base as user
SCOTT.

SQL>#DBS PERSONNEL SCOTT/TIGER
Database 'PERSONNEL' opened.

The creator of the PERSONNEL data base, in this case SCOTT,
can authorize additional users to log on to the data base by
means of the DEFINE USER command.

1-71

72

Example 8-2: Define a new user of the PERSONNEL data base
with a USER-NAME of ADAMS and a PASSWORD of
WOOD.

SQL)DEFINE USER ADAMS/WOOD
soL>/
User defined.

After a user has been defined, that user may log on to the
data base.

Example 8-3: Log on as user ADAMS.

SQL> #DBS PERSONNEL ADAMS/WOOD
Database 'PERSONNEL' opened.

A new user can create his own tables, define views on his
tables, and define new users of the data base.

Example 8-4: Have user ADAMS create a new table and insert
a record into it.

SQL>CREATE TABLE PARTS

SQL> PARTNO(NUMBER IMAGE UNIQUE),
SQL> PART_NAME(CHAR(IO));
SQL>/

Table created.

SQL>INSERT INTO PARTS:
SQL> <1,'WIDGET'>;
SQL>/

1 record created.

8.2 GRANT PRIVILEGE

The ORACLE security facilities enable users to control
access to their data by other users. It is the
responsibility of the user who creates a table or view to
control access to that table or view. A user may extend
access to his table or view by means of the GRANT command.

Even though user ADAMS can create his own tables he can not
access data via tables and views created by other users
unless specifically authorized.

Example 8-5: Have user ADAMS attempt to 1list the DEPT
table.

SQL>SELECT *
SQL>FROM DEPT
SQL>/

FROM DEPT

invalid table name [*** ERROR
At this point ADAMS is not authorized to access the DEPT
table and is told that the table does not exist.

Example 8-6: Log back on as user SCOTT, the creator of the
EMP and DEPT tables.

SQL>#DBS PERSONNEL SCOTT/TIGER
Database 'PERSONNEL' opened.

Example 8-7: Authorize user ADAMS to READ the DEPT table.
SQL>GRANT READ

SQL>ON DEPT

SQL>TO ADAMS

SQL>/

Privileges granted.

Example 8-8: Log on as user ADAMS.

SQL>#DBS PERSONNEL ADAMS/WOOD
Database 'PERSONNEL' opened.

***]

Example 8-9: Have ADAMS list the DEPT table.
SQL>SELECT *
SQL>FROM DEPT
SQL>/
DEPTNO DNAME LocC EMPCNT
10 ADMINISTRATION NEW YORK
20 RESEARCH SAN FRANCISCO
30 SALES PARIS 2
40 OPERATIONS BOSTON

Example 8-10: Have ADAMS list the PARTS table he created.

SQL>SELECT *
SQL>FROM PARTS
SQL>/

PARTNO PART_N

1 WIDGET

Example 8-11: Log on as user SCOTT.

SQL> #$DBS PERSONNEL SCOTT/TIGER
Database 'PERSONNEL' opened.

Example 8-12: Have user SCOTT attempt to list the PARTS

table.
SQL>SELECT *
SQL>FROM PARTS
SQL>/
FROM PARTS

invalid table name [#** ERROR **%*]

Even though user SCOTT defined user ADAMS to the PERSONNEL
data base, SCOTT is not allowed to see data stored in tables
created by ADAMS unless specifically authorized to do so by
means of a GRANT privilege command.

1-75

8.3 PRIVILEGES

The following privileges may be granted: READ, INSERT,
DELETE, UPDATE (by column), and EXPAND. In addition, the
grantor may allow the grantee to GRANT the listed privileges
to other users.

Example 8-13: Log back on as user SCOTT. #COMMENT #DBS
PERSONNEL SCOTT/TIGER #COMMENT *** Give the
following privileges on the EMP table to user
ADAMS: the right to READ, INSERT, and UPDATE
only the JOB, and DEPTNO columns.

SQL>GRANT READ, INSERT,UPDATE (JOB,DEPTNO)

SQL>ON EMP
SQL>TO ADAMS
SQL>/

Privileges granted.

Example 8-14: Log on as ADAMS.

SQOL>#DBS PERSONNEL ADAMS/WOOD
Database 'PERSONNEL' opened.

Example 8-15: Have ADAMS update the EMP table.

SQL>UPDATE EMP

SQL>SET JOB="'ANALYST'
SQL>WHERE ENAME="'WILSON'
SQL>/

1 record updated.

Example 8-16: Have ADAMS attempt to UPDATE both the JOB and
SAL column of the EMP table.

SQL>UPDATE EMP
SQL>SET JOB='ANALYST',SAL=100000
SQL>WHERE ENAME='WILSON'

SQL>/

SET JOB='ANALYST',SAL=100000

security violation [*** ERROR ***]

ORACLE security facilities detect a security violation and
indicate the column of the EMP table that ADAMS was not
authorized to UPDATE.

1-76

The phrase ALL RIGHTS may be substituted for the privilege
list in the GRANT statement.

Example 8-17: Have ADAMS grant SCOTT all privileges on the
PARTS table.

SQL>GRANT ALL RIGHTS

SQL>ON PARTS
SQL>TO SCOTT
sSQL>/

Privileges granted.

The phrase ALL BUT can be specified preceding a privilege
list.

Example 8-18: Log on as user SCOTT.

SQL>#DBS PERSONNEL SCOTT/TIGER
Database 'PERSONNEL' opened.

Example 8-19: Give ADAMS all the privileges on the DEPT

table except EXPAND, along with the right to
GRANT these privileges to other users.

SQL>GRANT ALL BUT EXPAND

SQL>ON DEPT
SQL>TO ADAMS
SQL>WITH GRANT OPTION
SQL>/

Privileges granted.
Privileges can be granted to all users by specifying PUBLIC
in place of the user list.

Example 8-20: Give all users READ privileges on the
PROJSTAFF view.

SQL>GRANT READ

SQL>ON PROJSTAFF
SQL>TO PUBLIC
SQL>/

Privileges granted.

Note that the only privilege that may be granted on a view
is the READ privilege.

8.4 USER Keyword

ORACLE requires users to enter their name and password in
order to log on to a secure data base. ORACLE maintains the
name of the current user as a keyword constant called USER.
The keyword USER may be specified in a SQL statement
anywhere a constant is allowed. USER will always return the

name of the currently logged on user.

The USER keyword can be specified in the WHERE clause of a
SQL statement to control access to the data base. This is
especially useful when defining views on the data base.
#WORKSIZE 8

Example 8-21: Define a view of the EMP table allowing any
employee to see his own department number,
name, salary, commission, and job but not any
information about any other employee.

SQL>DEFINE VIEW MYSELF AS

SQL> SELECT *

SQL> FROM EMP

SQL> WHERE ENAME = USER;
SQL>/

View defined.

Example 8-22: Give all users access to the MYSELF view.

SQL>GRANT READ

SQL>ON MYSELF
SQL>TO PUBLIC
SQL>/

Privileges granted.

1-77

The USER keyword will always return the USER-NAME of the
user currently logged on to the data base.

Example 8-23: Have user SCOTT query the MYSELF view.

SQL>SELECT *

SQL>FROM MYSELF

SQL>/

EMPNO ENAME JOB SAL COMM DEPTNO PROJNO SUPR
7788 SCOTT ANALYST $3,000.00 20 7566

Example 8-24: Log on as user ADAMS and query the MYSELF
view.

SQL>#DBS PERSONNEL ADAMS/WOOD
Database 'PERSONNEL' opened.
SQL>SELECT *

SQL>FROM MYSELF
SQL>/
EMPNO ENAME JOB SAL COMM DEPTNO PROJNO SUPR

o e et e = e ——————— ——— —am w— e | SRS esmmm——— ——— - —— ——— o "

7876 ADAMS CLERK $1,100.00 20 7788

Example 8-25: Define a view giving managers access to
employees in their department only if the
manager earns the same amount or more that

the employee.

SQL>DEFINE VIEW MY EMPS (NAME,JOB,SAL,COMM,DEPTNO) AS
SQL>SELECT WORKER.ENAME, WORKER.JOB,WORKER.SAL,WORKER.COMM,
SQL>SELECT WORKER.DEPTNO

SQL>FROM EMP WORKER,EMP MGR

SQL>WHERE WORKER.DEPTNO = MGR.DEPTNO

SQL> AND [MGR.JOB = 'MANAGER' AND MGR.SAL >= WORKER.SAL]
SQL> AND MGR.ENAME=USER;

SQL>/

SELECT WORKER.DEPTNO

missing ‘'from' keyword [*** ERROR ***]

Example 8-26: Define JONES and CLARK as users of the
PERSONNEL data base.

SQL>DEFINE USER JONES/WOOD
SQL>/
User defined.

SQL>DEFINE USER CLARK/CLOTH
SQL>/
User defined.

Example 8-27: Grant all users access to the MY_ EMPS view.
Note that the view will only return data if
the user's JOB = MANAGER.

SQL>GRANT READ

SQL>ON MY EMPS
SQL>TO PUBLIC
sSQL>/

TO PUBLIC

security violation [*** ERROR ***]

Example 8-28: Have user ADAMS,who is not
to query the MY EMPS view.

SQL>SELECT *

SQL>FROM MY_EMPS
SQL>/
FROM MY_EMPS

invalid table name

Example 8-29: Have users JONES and CLARK,
gquery the MY EMPS view.

SQL> #DBS PERSONNEL JONES/WOO0D
Database 'PERSONNEL' opened.
SQL>SELECT *

SQL>FROM MY EMPS

SQL>/ -

FROM MY EMPS

invalid table name

a manager attempt

who

[*** ERROR ***]

are managers,

[*** ERROR **%*]

Example 8-30: The view only allows the manager to see
people in their own department.

SQL>#DBS PERSONNEL CLARK/CLOTH
Database 'PERSONNEL' opened.
SQL>SELECT *

SQL>FROM MY EMPS
SQL>/
FROM MY EMPS

invalid table name

[*#** ERROR ***]

Note that CLARK was not able to see employee OATES because
anyone 1in their

the view prevents managers from seeing
department who earns more than they do.

8.5 REVOKE Privilege

Once a privilege has been granted it may be withdrawn by
means of the REVOKE command. Privileges are revoked from
the named grantee and from all users to whom he has granted

them.

Example 8-31: Log on the PERSONNEL data base as user ADAMS.

SQL> #DBS PERSONNEL ADAMS/WOOD
Database 'PERSONNEL' opened.

Example 8-32: Have ADAMS INSERT a new department into the
DEPT table.

SQL>INSERT INTO DEPT:
SQL> <50, 'SERVICE','DETROIT',NULL>

sSQL>/
1 record created.

Example 8-33: Log on the PERSONNEL data base as user SCOTT.

SQL> #DBS PERSONNEL SCOTT/TIGER
Database 'PERSONNEL' opened.

Example 8-34: Revoke from ADAMS the right to INSERT into
the DEPT table.

SQL>REVOKE INSERT

SQL>ON DEPT
SQL>FROM ADAMS
SQL>/

Privileges revoked.

Example 8-35: Log on the PERSONNEL data base as user ADAMS.

SQL>#DBS PERSONNEL ADAMS/WOOD
Database 'PERSONNEL' opened.

Example 8-36: Have ADAMS attempt to INSERT a new department
into the DEPT table.

SQL>INSERT INTO DEPT:
SQL> <60, 'DEVELOPMENT' ,'PORTLAND' ,NULL>

SQL>/
INSERT INTO DEPT:

invalid table name

[*** ERROR ***]

9. DATA DICTIONARY STRUCTURE

This section of the manual contains a description of
ORACLE's integrated data dictionary.

The ORACLE data dictionary is made up of several system
defined tables and views. These dictionary tables are
dynamically updated by ORACLE to contain a current
description of all user tables, views, and access
privileges. In addition, the ORACLE dictionary is self
describing. Therefore, a user may query the dictionary to
determine the names of the tables that make up the

dictionary.

DTAB contains the names and a description of the dictionary
tables. DCOL contains the names of the columns of the

dictionary tables.

Example 9-1: List the names and a description of the
tables in the dictionary.

SQL>SELECT *

SQL>FROM DTAB

SQL>/

TABLE COMMENT

COoL COLUMN NAMES OF USERS TABLES AND VIEWS
COLDEF DEFINITION OF COLUMNS IN USERS TABLES
DCOL COLUMN NAMES OF DICTIONARY TABLES
DTAB COMMENTS ON DICTIONARY TABLES

DTABLES DESCRIPTION OF DICTIONARY TABLES
EXPDEF COLUMN DEFINITIONS USED BY EXPORT
GRANTS ACCESS PRIVILEGES GRANTED BY USER
PRIVS ACCESS PRIVILEGES HELD BY USER

TAB NAMES OF USERS TABLES AND VIEWS

USERS NAME OF USERS YOU DEFINED

VIEWS DEFINITIONS OF VIEWS

VXREF CROSS-REFERENCE OF VIEWS OF TABLES

12 records selected.

Example 9-2:

SQL>SELECT
SQL>FROM

SQL>/

COL
COLDEF
COLDEF
COLDEF
COLDEF
COLDEF
COLDEF
EXPDEF
EXPDEF
EXPDEF
EXPDEF
EXPDEF
EXPDEF
EXPDEF
VIEWS
VIEWS
VXREF
VXREF
USERS
USERS
DTAB
DTAB
DTABLES
DTABLES
DTABLES
DTABLES
DCOL
DCOL
GRANTS
GRANTS
GRANTS
GRANTS
PRIVS
PRIVS
PRIVS
PRIVS

LList the names of the
dictionary tables.

*
DCOL

COLUMN

CREATOR
GRANTEE
TABLE
COLUMN
TABLE
COLUMN
DATATYPE
LENGTH
IMAGE
NONULL
TABLE
COLID
COLUMN
DATATYPE
LENGTH
IMAGE
NONULL
VIEW
TEXT
VIEW
TABLE
USER
OWNER
TABLE
COMMENT
TABLE
TYPE
CREATOR
GRANTEE
TABLE
COLUMN
TABLE
COLUMN
GRANTEE
ACCESS
TABLE
COLUMN
GRANTOR
ACCESS

41 records selected.

columns

of

the

1-83

The dictionary table TAB allows a user to list the names of
all the tables and views that that user has access
privileges on. TAB also indicates if the table is a view,
the name of the user who created the table (or view), and

the grantee of the privileges.

Example 9-3: List user ADAM's tables.
SQL>SELECT *

SQL>FROM TAB

sSQL>/

TABLE TYPE CREATOR GRANTEE
PARTS TABLE ADAMS ADAMS

DEPT TABLE SCOTT ADAMS

EMP TABLE SCOTT ADAMS
PROJSTAFF VIEW SCOTT PUBLIC
MYSELF VIEW SCOTT PUBLIC
Example 9-4: Log on as user SCOTT.

SQL>#DBS PERSONNEL SCOTT/TIGER
Database 'PERSONNEL' opened.

Example 9-5: List user SCOTT's table.

SQL>SELECT *

SQL>FROM TAB

SQL>/

TABLE TYPE CREATOR GRANTEE
EMP TABLE SCOTT SCOTT
DEPT TABLE SCOTT SCOTT
PROJ TABLE SCOTT SCOTT
EMP10 VIEW SCOTT SCOTT
PROJECTS VIEW SCOTT SCOTT
PARIS VIEW SCOTT SCOTT
PAY VIEW SCOTT SCOTT
DEPT SAL VIEW SCOTT SCOTT
PE TABLE SCOTT SCOTT
PROJSTAFF VIEW SCOTT SCOTT
PARTS TABLE ADAMS SCOTT
MYSELF VIEW SCOTT SCOTT
PROJSTAFF VIEW SCOTT PUBLIC
MYSELF VIEW SCOTT PUBLIC
14 records selected.

Example 9-6: The dictionary table COL contains the names

of the columns of user defined tables.

SQL>#DBS PERSONNEL ADAMS/WOOD
Database 'PERSONNEL' opened.

Example 9-7: List the names of the columns of user ADAMS'

tables.
SQL>SELECT *
SQL>FROM coL
sSQL>/
TABLE COLUMN
PARTS PARTNO
PARTS PART NAME
DEPT DEPTNO
DEPT DNAME
DEPT LoC
DEPT EMPCNT
EMP EMPNO
EMP ENAME
EMP JOB
EMP SAL
EMP COMM
EMP DEPTNO
EMP PROJNO
EMP SUPR

PROJSTAFF EMPLOYEE
PROJSTAFF PROJECT

MYSELF EMPNO
MYSELF ENAME
MYSELF JOB
MYSELF SAL
MYSELF COMM
MYSELF DEPTNO
MYSELF PROJNO
MYSELF SUPR

24 records selected.

Example 9-8: Log on as user SCOTT.

SQL>#DBS PERSONNEL SCOTT/TIGER
Database 'PERSONNEL' opened.

The dictionary table COLDEF contains the definition of
columns in user tables.

Example 9-9: List the definition of the columns in the EMP
table.

SQL>SELECT COLUMN,DATATYPE, LENGTH, IMAGE,NONULL

SQL>FROM COLDEF

SQL>WHERE TABLE = 'EMP'

SQL>/

COLUMN DATATYPE LENGTH IMAGE NON
EMPNO NUMBER 22 UNIQUE YES
ENAME CHAR 10 NON-UNIQUE NO
JOB CHAR 9 NON-UNIQUE NO
SAL NUMBER 22 NO
COMM NUMBER 22 NO
DEPTNO NUMBER 22 NON-UNIQUE NO
PROJNO NUMBER 22 NON-UNIQUE NO
SUPR NUMBER 22 NON-UNIQUE NO

8 records selected.

VIEWS is the dictionary table that contains the SQL text of
the DEFINE VIEW statement. Comments that were entered as a
part of the SQL view definition are also stored in VIEWS.

Example 9-10: List the definition of the PROJECTS view.

SQL>SELECT *

SQL>FROM VIEWS

SQL>WHERE VIEW = 'PROJECTS';
SQL>/

VIEW TEXT

PROJECTS DEFINE VIEW PROJECTS (PROJECT,EMPLOYEE ,EMP#,LOC
PROJECTS ATION) AS

PROJECTS SELECT PNAME,ENAME,EMPNO,LOC
PROJECTS FROM PROJ,EMP,DEPT

PROJECTS WHERE EMP.DEPTNO = DEPT.DEPTNO
PROJECTS AND EMP.PROJNO = PROJ.PROJNO;

6 records selected.

1-87

The VXREF dictionary table defines the relationship of user
views to underlying tables and views. The first column
contains the name of the view. The second column contains
the name of the underlying table or view.

Example 9-11: List a cross reference of views and their
base tables.

SQL>SELECT *

SQL>FROM VXREF
SQL>/

VIEW TABLE
EMP10 EMP
PROJECTS EMP

PAY EMP

DEPT SAL EMP
PROJSTAFF EMP
MYSELF EMP
PROJECTS DEPT
PROJECTS PROJ
PROJSTAFF PROJ
PARIS PROJECTS
PROJSTAFF PE

11 records selected.

The ORACLE dictionary allows users to obtain information
about only those tables that the user has access privilges
on. The user may also determine: the names of users he has
directly or indirectly defined, the access privileges he
holds, and the access privileges he has directly or

indirectly granted.

The USERS table contains the names of all those users that
were defined by the user who is currently logged on to the
system. The first column in the USERS table contains the
name of the defined user. The second column of the USERS

table contains the name of the creating user.

Example 9-12: List the names of the users that originated
with SCOTT.

SQL>SELECT *
SQL>FROM USERS

SQL>/

USER OWNER
ADAMS SCOTT
JONES ADAMS
CLARK ADAMS

User ADAMS was defined directly by user SCOTT, but users
JONES and CLARK were defined by ADAMS and thereby indirectly

by SCOTT.

Example 9-13: Log on as user ADAMS.

SQL>#DBS PERSONNEL ADAMS/WOOD
Database 'PERSONNEL' opened.

Example 9-14: List the users that originated with ADAMS.

SQL>SELECT *
SQL>FROM USERS
SQL>/

USER OWNER
JONES ADAMS
CLARK ADAMS

The PRIVS table contains access privileges held by users of
the data base. Each user can only see the privileges he
holds. The PRIVS table contains: the name of the table the
privileges are on, the name of the column the privileges
apply to, the name user who granted the privileges, and the
privilege mask described below. A PRIVS table entry will
only contain a column name if update privileges have been
granted on a column column rather than a table basis.

Example 9-15: List all the privileges held by ADAMS.

SQL>SELECT *
SQL>FROM PRIVS
SQL>/

TABLE COLUMN

GRANTOR

ACCESS

EMP JOB
EMP DEPTNO

COL
COLDEF
EXPDEF
VIEWS
VXREF
USERS
DTAB
DTABLES
DCOL
GRANTS
PRIVS
PROJSTAFF
MYSELF

19 records selected.

ORACLE
ORACLE
ORACLE
ORACLE
ORACLE
ORACLE
ORACLE
ORACLE
ORACLE
ORACLE
ORACLE
ORACLE
SCOTT

SCOTT

RGIGDGUGEGMGLGCG
RGXXDGUGXXMGLGCG
RXIXXXXXXXXXXXXX
XXXXXXUXXXXXXXXX
XXXXXXUXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX

Note that ADAMS has all privileges on MY EMPS and PARTS, the
table and view he created. He has all but INSERT and EXPAND
on the DEPT table. He has READ and INSERT without the GRANT
option, and UPDATE on the JOB and DEPTNO columns of the EMP
table. The diagram below describes the entries 1in the
ACCESS column of both the PRIVS and GRANTS dictionary
tables.

PRIVILEGE MASK

R ¢6 I G D G U G E G M G L G C G

| I I I I I | | not used
I | I | I I [$omm e
| I I I | | | not used

I I I | | I o
| | | | | | not used

I I | I | e
| | I | | EXPAND

I I | | o m
| I | | UPDATE

I I I o e
I | | DELETE

I | e
| | INSERT

| P
| READ

o e ———_————

The G following each privilege flag indicates that the GRANT
OPTION is present for that privilege. If an X is present
for any privilege or grant flag, that privilege was not
granted.

The GRANTS table indicates the privileges granted either
directly or indirectly by the current user. The GRANTS
table contains: the name of the table the privileges are on,
the name of the column the privileges apply to, the name of
the user who is the grantee of the privileges, and the
privilege mask. A GRANTS table entry will only contain a
column name if update privileges have been granted on a
column rather than a table basis.

1

92

Example 9-16: List all the privileges granted by ADAMS.

SQL>SELECT *

SQL>FROM GRANTS

SQL>/

TABLE COLUMN GRANTEE ACCESS

PARTS ADAMS RGIGDGUGEGMGLGCG

PARTS SCOTT RXIXDXUXEXMXLXCX

9.1 Dictionary Extensions

The user is free to expand the ORACLE data dictionary by
creating additional tables, and defining views of the user
tables joined to the system defined dictionary tables and
views.

Example 9-17: Create a dictionary extension to contain
comments on user defined tables.

SQL>CREATE TABLE TAB COM

SQL> TABLE (CHAR(20) IMAGE UNIQUE),
SQL> COMMENT (CHAR (35))
SQL>/

Table created.

Example 9-18: Enter a comment on the EMP table into the
TAB_COM table.

SQL>INSERT INTO TAB_COM:
SQL> <'EMP','Information about company employees'>

SQL>/
1 record created.

Example 9-19: Define a view joining TAB from the dictionary
to the TAB_COM table.

SQL>DEFINE VIEW TABC AS

SQL> SELECT TAB.TABLE,TYPE,CREATOR,COMMENT
SQL> FROM TAB,TAB_COM

SQL> WHERE TAB.TABLE=TAB COM.TABLE;

SQL>/ -

View defined.
SQL>#WORKSIZE 12

Example 9-20: List the characteristics of the EMP table.

SQL>SELECT *

SQL>FROM TABC
SQL>WHERE TABLE = 'EMP'
SQL>/

93

EMP
TABLE SCOTT Information about company employees

94

10. Concurrency Control Facilities

ORACLE allows multiple user to concurrently UPDATE the same
table in a data base. Yet, ORACLE does not require a user
to issue 1locking statements or statements of intent to
update. The setting and clearing of locks are the
responsibility of ORACLE.

No explicit 1lock requests are required to insure that
concurrent UPDATE operations do not read the same row of a
table and attempt to write back that row. ORACLE
automatically places locks on individual records to
synchronize UPDATE operations preventing the updates from
overwriting each other.

A user may not wish to operate on data that has been
modified by an operation that is still 1in progress. To
accomplish this serialization the user can place his SQL
request between BEGIN TRANSACTION and END TRANSACTION

statements.

In addition, placing several SQL statements inside a
transaction causes ORACLE to execute these SQL statements as
an "atomic act" without permitting interference (UPDATES to
the same tables) by other users during the transaction.

ORACLE's automatic update synchronization locks a record
(row of a table) at a time. USER requested transactions

lock a table at a time.

Example 10-1: Log on as user SCOTT

SQL>#DBS PERSONNEL SCOTT/TIGER
Database 'PERSONNEL' opened.

Example 10-2: Begin a transaction to calculate the average
salaries of each job group within the EMP
table.

SOL>BEGIN TRANSACTION
SQL>ON TABLE EMP READ
SQL>/

Transaction begun.

SQL>SELECT JOB,AVG(SAL)

SQL>FROM EMP
SQL>GROUP BY JOB
SQL>/

JOB AVG(SAL)
ANALYST $3,000.00
CLERK $1,030.00
MANAGER $3,287.08
PRESIDENT $5,750.00
SALESMAN $1,495.00

SQL>END TRANSACTION
SQL>/
Transaction ended.

In the above READ TRANSACTION, all UPDATE activity on the
EMP table was suspended for the life of the transaction.
All READ activity on the EMP table was allowed to continue

concurrently.

1-96

Execute an UPDATE TRANSACTION that gives all
employees with the Jjob of ANALYST a 10%

raise.

Example 10-3:

SQL>BEGIN TRANSACTION
SQL>ON TABLE EMP UPDATE

sSQL>/
Transaction begun.

SQL>UPDATE EMP

SQL>SET SAL = SAL * 1.10
SQL>WHERE JOB = '"ANALYST'
SQL>/

3 records updated.

SQL>END TRANSACTION

SQL>/
Transaction ended.

In the above UPDATE TRANSACTION, all UPDATE activity on the
EMP table was suspended for the life of the transaction. In
addition, all READ transactions on the EMP table also waited
for the UPDATE transaction to complete. READ activity on
the EMP table that was not a part of a TRANSACTION was

allowed to continue concurrently.

Placing several SQL statements inside a transaction causes

ORACLE to execute these SQL statements as a "atomic act"
without permitting interference (UPDATES to the same tables)

by other users during the transaction.

Example 10-4: SELECT the count of employees in department
20 from the EMP table, and UPDATE the DEPT

table with the result.

SQL>BEGIN TRANSACTION

SQL>ON TABLE EMP READ, DEPT UPDATE
sSQL>/

Transaction begun.

SQL>SELECT COUNT(¥*)

SQL>FROM EMP
SQL>WHERE DEPTNO = 20
SQL>/
COUNT(¥*)

7
SQL>UPDATE DEPT
SQL>SET EMPCNT = 7
SQL>WHERE DEPTNO = 20
SQL>/

1 record updated.

SQL>END TRANSACTION
sQL>/
Transaction ended.

If the above transaction had been done from within a program
it could have used from one to three cursors: one for the
BEGIN TRANSACTION, one for the query on the EMP table, and
one for the UPDATE of the DEPT table.

TRANSACTIONS may be nested. 1f they are nested, they must
be numbered.

Example 10-5: SELECT the count of employees in department
20 from the EMP table and UPDATE the DEPT
table with the result as a nested transaction
rather than a single transaction.

SQL>BEGIN TRANSACTION 1
SQL>ON TABLE EMP READ
SQL>/

Transaction begun.

SQL>SELECT COUNT(*)

SQL>FROM EMP
SQL>WHERE DEPTNO = 20
SQL>/
COUNT(*)

7

SQL>BEGIN TRANSACTION 2
SQL>ON TABLE DEPT UPDATE

sSQL>/
Transaction begun.

SQL>UPDATE DEPT

SQL>SET EMPCNT = 7
SQL>WHERE DEPTNO = 20
SQL>/

1 record updated.

SQL>END TRANSACTION 2
SQL>/
Transaction ended.

SQL>END TRANSACTION 1
SQL>/
Transaction ended.

In doing the above operation as a nested transaction rather
than a single transaction, the DEPT table was not locked
during the query on the EMP table. This allowed update
activity to continue on the DEPT table while the EMP table
was being queried. This could be significant depending on
the length of time it takes the query to execute. However,
the nesting of transactions creates the possibility that
TRANSACTION 2 will have to wait for access to the DEPT table
which may be locked by another ongoing transaction. The
nesting of transactions creates the possibility of deadlock.
Doing the entire operation as one transaction has no
potential for deadlock because once a transaction has begun,
it has acquired all the data resources required for

completion.

It is important to remember that the above query/update
operation could have been done three different ways: 1)
without placing them within a transaction; 2) as a single
transaction; 3) as a nested transaction. It is up to the
user to decide what level of serialization of operations he
requires for a particular application.

The following chart indicates what operations on a table
wait, and what operations continue when a READ, READ
TRANSACTION, UPDATE OR UPDATE TRANSACTION is active on that

table.

CONCURRENCY CONTROL TABLE

o Fomm e fomm—————— +

| READ | READ | UPDATE | UPDATE |

| | TRANS | | TRANS |
Fomm Fommm—————— fomm Fomm Fommm——————— |
| READ | ALLOWED | ALLOWED | ALLOWED | ALLOWED |
I I I I I |
[===m=——= $om dmmmm pmmmm e $ommm I
| READ | ALLOWED | ALLOWED | SUSPENDED | SUSPENDED]|
| TRANS | I l I |
|- fmm Fomm e fmmm $m—m |
| UPDATE | ALLOWED | SUSPENDED | ALLOWED | SUSPENDED]|
I I | I I |
| ———=——== pmmm $omm o - ————— |
| UPDATE | ALLOWED | SUSPENDED | SUSPENDED | SUSPENDED|
| TRANS | I I I |
o ———— tm————————— |

99

ORACLE
SQL LANGUAGE

REFERENCE GUIDE

Oracle Users Guide - Version 2.3

Copyright (c) April 1981
By Relational Software Incorporated
All rights reserved. Printed in U.S.A.

S QL

LANGUAGE REFERENCE MANUAL

TABLE OF CONTENTS

INTRODUCTION
FORMAT NOTATION
SQL STATEMENTS
QUERY STATEMENTS
BUILT-IN FUNCTIONS
NULL FUNCTION
DATA MANIPULATION STATEMENTS
DATA DEFINITION STATEMENTS
DATA CONTROL STATEMENTS
SECURITY CONTROL STATEMENTS
CONCURRENCY CONTROL STATEMENTS
SQL PUNCTUATION & CODING RULES
LOGICAL EXPRESSIONS

SQL BNF SYNTAX

SQL LANGUAGE - REFERENCE GUIDE

INTRODUCTION

SQL is a relational data language that provides a unified set
of facilities for query, data manipulation, data definition,
and data control. SQL is both a terminal interface for
nonspecialists in data processing, and a data sublanguage
embedded in host programming language for use by application

programmers.

SQL was developed by IBM as the main external interface to be
supported by System R, IBM's experimental relational database
management system. In 1976, a complete BNF syntax for SQL
was published in the "IBM Journal of Research and
Development." In 1977, RSI began the development of ORACLE

incorporating the SQL language.

ORACLE is based on the relational model of data. SQL is a
non-procedural language that operates on normalized data.
The advantages of the relational model with a non-procedural
language are ease of use, maximum data independence, and
flexibility. SQL is an easy to learn English-like language
that enhances user productivity. It is a high-level
non-procedural language offering greater data independence
than conventional procedural database languages. SQL allows
complete flexibility in the formulation of statements
relating data in the database.

This

manual uses

the

SQL

FORMAT NOTATION

following notation to describe the

syntax of SQL statements.

CAPITALIZED WORDS

lower-case words

[1 Square Brackets

Vertical Bars

Ellipsis

4.

identify words that have specific
meanings in SQL.

identify words that are names or
labels to be specified by the user.

are used to indicate that the
enclosed word is optional and may be
omitted.

enclosing vertically stacked items
indicate that one of the enclosed

items may be chosen.

indicates that the immediately
preceding unit may occur once, OrI
any number of times in succession.

SQL Query Statements consist of one or more Query Blocks.

QUERY STATEMENTS

A

Query Block starts with and must include a SELECT clause and

a FROM clause.

returned as a result of the query block.

The SELECT clause specifies what

is to be
The FROM clause

specifies what tables and/or views are involved in the query.

A Query Block
follows:
WHERE
GROUP BY
HAVING

CONNECT BY
START WITH

INCLUDING

may

optionally contain other clauses as

to specify selection criteria for the
rows.

for use with built-in functions.

for specifying election criteria on

groups.

for tree-structured access.
for tree-structured access.

for specifying selection criteria for
leafs for tree-structured access.

The values resulting from processing a Query Block can be

referred to in the WHERE clause of another Query Block. This
is accomplished by nesting Query Blocks within a Query
Statement.
SELECT ENAME,JOB
FROM EMP
WHERE JOB =
SELECT JOB
FROM EMP
WHERE ENAME = 'JONES';
Query Blocks can be nested to any level within a Query

Statement,

and may be
using boolean AND, OR, and NOT.
of the SQL statements,
nested Query Block.

combined with other SQL predicates
In the syntax specifications

"SELECT . . ." is used to denote a

The SELECT Clause

SELECT [UNIQUE] | * |,lcolumn s o o o
jcolumn | |table.column|
table.column		table.*
table.*		expression
lexpression		function
function	JUSER	

The SELECT clause specifies the columns to be returned as the
result of a query. The SELECT clause may request: all
columns; a list of specific columns; the results of
arithmetic expressions or built-in functions; or any
combination of columns, expressions, and functions. ORACLE
will return all rows that satisfy the WHERE clause of the
query block. Duplicate rows are not eliminated unless SELECT
UNIQUE 1is specified. UNIQUE is an option rather than a
default because the process of elimination of duplicate

values requires extra processing.

UNIQUE indicates that duplicate rows which
satisfy the WHERE clause are to be
eliminated from the query result.

* returns all columns from all of the
table(s) and view(s) specified in
the FROM clause of the query block.

column specifies the name of a. ycelumn
contained in a table” or view
specified in the FROM clause of the
query block.

table.column specifies the name of a column
qualified by the name of the table
that contains the column. Qualified
column names are used to eliminate
ambiguity when the FROM clause lists
multiple tables or views that
contain duplicate column names.

table.* returns all the columns in the table
or view specified. The * can be
qualified with a table name when
there are multiple tables and/or
views listed in the FROM clause.

expression specifies an arithmetic expression

function

USER

2-5

made up of columns and constants

that are connected by the operators
+, -, *, /. Parenthesis () are
used to establish precedence. Note
that expressions involving a column
value of NULL, will result in a null
value unless the NULL Function

parameter is used.

indicates any of the SQL built-in
group functions COUNT, SUM, AVG,
MAX, MIN. The presence of a
built-in function within a SELECT
clause implies a GROUP BY. If the
GROUP BY is not explicitly stated,
the entire query result is treated
as one group and each field in the
SELECT clause must be a unique
property of the group. See the
GROUP BY clause and
Built-in-Functions sections for a
more detailed description.

returns the name of the user (as
specified in the DEFINE USER
command) who is executing this SQL
statement.

FROM

|table

|

| table label]|

table*

The FROM Clause

The FROM clause lists the tables and views that are referred
to by the other clauses in the query block. A query block
must contain a SELECT and FROM clause, and may optionally
contain a WHERE, GROUP BY, and HAVING clause.

table

table label

table*

specifies the name of a table or
view that contains columns
referenced by SELECT, WHERE, GROUP
BY, HAVING, or ORDER BY clauses.

specifies that the table or view 1is
to be renamed within the context of
a query block. The renaming of a
table with a label is necessary when
the same table or view is listed
more than once in the same FROM
clause. This mechanism is used to
join a table to itself. The
temporary label is used in place of
the table name to qualify columns
referenced by the other clauses
within the query block.

specifies that the rows of the table
listed in the from clause are to
participate in the Jjoin 1if the
join-column contains a null value.
This is referred to as a
"Outer-Join". An outer Jjoin table
can not be the first table listed in
the FROM clause.

WHERE

The WHERE Clause

[NOT] | column] |= | lcolumn | | AND| .
|table.column| | °= | |table.column | |OR |
| constant | 1> | |constant |
INULL | | >= | |generic-constant|
lexpression | [X | INULL |
|<column,...>| | <= | |expression |
| USER | | BETWEEN]| | <column,...>
| IN | |<expression,...>|
| SELECT. .. I
|USER I

The WHERE clause qualifies the rows that are to be returned
as the result of a query. The WHERE clause may contain any
combination of predicates that compare fields of rows to
constant values, compare two fields of a row with each other,
compare fields to expressions, etc. Multiple predicates
within the same WHERE clause can be combined to form logical
expressions connected by AND and OR with square brackets []
used to establish precedence. NOT may be specified prior to
any predicate to negate a predicate or a boolean expression.
The absence of a WHERE clause indicates that all rows in the
table or view specified in the FROM clause, are to be

returned.

NOT specifies that the following
predicate or boolean expression is
to be negated.

column specifies the name of a column
defined in a table or view specified
in the FROM clause of the query
block. Note that columns specified
here, need not be specified in the

SELECT clause.

table.column specifies the name of a column
qualified by the name of the table
that contains the column. Qualified
column names are used to eliminate
ambiguity when the FROM clause lists
multiple tables or views that
contain duplicate column names.

2-8

constant

generic-constant

NULL

expression

specifies any numeric or
character-string constant literal
value. Single quotation marks are
required around all character-string
constants to distinguish them from
column names.

specifies the leading
character-string of a literal value.
The leading string must be followed
by the ellipsis notation "..." and
the result must be enclosed in
single quotation marks.
Specification of a generic constant
allows for a search on a leading
character-string of a value.

indicates the absence of a value in
the database. Null wvalues are
ignored in the evaluation of all
arithmetic expressions, and the
computation of all built-in
functions except COUNT. NULL values
are treated as unknowns in the
evaluation of logical expressions.
The evaluation of logical
expressions is described in a
separate section of this manual
which contains the truth tables for
three valued logic.

specifies an arithmetic expression
made up of columns and constants
that are connected by the operators
+, =, *, /. parenthesis () are
used to establish precedence. Note
that expressions involving a column
value of NULL, will result in a null
value unless the NULL Function

parameter is used.

<column,...>

<expression,...>

SELECT...

USER

2-9

specifies a set of numeric or
character-string literal values.
The set is enclosed in
angle-brackets < > and items within
the set are separated by commas.

specifies a set of constant values
or expressions. The predicate 1in
the WHERE clause tests the field for
inclusion in the set. example: WHERE
DNO IN <5+4+2,17,11%*3>

specifies the use of the result of
one query in the WHERE clause of

another query. The inner query
returns a set of values to the WHERE
clause of the outer query. The

outer query proceeds as though it
were given a set of constants in
place of the inner query. Query
blocks may be nested to any number

of levels.

returns the name of the user (as
specified in the DEFINE USER
command) who is executing this SQL
statement.

indicates the equal comparison
operator.

indicates the not equal comparison
operator.

indicates the greater than
comparison operator.

indicates the greater than or equal
comparison operator.

indicates the less than comparison
operator.

indicates the 1less than or equal
comparison operator.

BETWEEN

IN

AND

OR

indicates the range comparison
operator. The range is specified as
a pair of constants, expressions, or
columns connected by an AND.

indicates the set inclusion
operator. IN tests a field for
inclusion in a set of values. The
comparison operator = may be used in
place of 1IN without changing the
meaning of the WHERE clause.

indicates the boolean operator AND.
The boolian operators are used to
connect predicates to form compound
logical expressions within the WHERE
clause.

indicates the boolean operator OR.

Built-In Functions

COUNT		*
SUM	}column	
AVG		table.column
MAX		
MIN		

ORACLE provides five built-in functions as a standard part of
the system. These functions may be used in the SELECT clause
and the HAVING clause. When a built-in function is used in a
SELECT clause, and there is no GROUP BY clause in the query
block, the entire table is treated as one group. Only unique
attributes of the group may be selected. No Built-in
function other than COUNT may be applied to columns defined
as CHAR in the CREATE TABLE. With the exception of the COUNT
function, null values will not be included in a built-in
function unless the NULL Function parameter is used.

COUNT specifies the count of the set of
all fields or rows qualified by the
WHERE clause. COUNT includes null
fields in its total.

SUM specifies the arithmetic sum of the
values of qualifying fields.

AVG specifies the arithmetic average of
the values contained in the set of

qualifying fields.

MAX specifies the maximum numeric value
contained in the set of qualifying
fields.

MIN specifies the minimum numeric value
contained in the set of qualifying
fields.

* specifies the count of all rows that

satisfy the WHERE clause. The * may
only by used with the COUNT function
in the form: COUNT(*).

column

table.column

specifies the name of a column
defined in a table or view specified
in the FROM clause of the query
block.

specifies the name of a column
qualified by the name of the table
that contains the column. Qualified
column names are used to eliminate
ambiguity when the FROM clause lists
multiple tables or views that
contain duplicate column names.

NVL

Null value Function

(column,value)

Tpe ORACLE Null Value Function is used to assign a temporary
value to null value encountered within an expression. The
Null vValue Function may be used in a SELECT, SET or WHERE
clause anywhere a column name may be used including within
arithmetic expressions and built-in-functions.

column specifies the name of a column
within a SELECT, SET or WHERE
clause. The column must have been
defined as NUMBER within the CREATE

TABLE.

value specifies a temporary numeric value
to be assigned to null wvalues
encountered during processing.

The GROUP BY Clause

GROUP BY |column |, « « &

| table.column|

The GROUP BY clause is used to partition tables or views into
groups according to the values in a column or a list of
columns. A built-in set function is then applied to each
group. A GROUP BY clause is always used together with a
built-in function. When a GROUP BY clause 1is used, or
implied by the presence of a built-in function in the SELECT
clause, each field in the SELECT clause must be a unique

property of the group.

column specifies the name of a column
defined in a table or view specified
in the FROM clause of the query
block. Note that columns specified
here, need not be specified in the
SELECT clause.

table.column specifies the name of a column
qualified by the name of the table

that contains the column. Qualified
column names are used to eliminate
ambiguity when the FROM clause lists
multiple tables or views that
contain duplicate column names.

HAVING

2-15
The HAVING Clause
| column | | = | | column | |AND| . .
ltable.column| | ~= | |table.column | |OR |
[constant | [> { |constant
INULL | | >= | lgeneric-constant|
|expression | [< I INULL |
| <column, ...>| [<= | lexpression |
| USER I | BETWEEN| |<column,...>
| IN | | <expression,...>|
| SELECT. .. |
|USER |

The HAVING clause qualifies groups that are to be returned as
the result of a query. Each field listed in the HAVING
clause must be a unique property of the group. The HAVING
clause may contain any combination of predicates to accept
certain groups and disqualify others. The predicates can use
a built-in function to compare the aggregate property of the
group to a constant value or to another aggregate property of
the same group. When a query block has both a WHERE clause
and a HAVING clause: first the WHERE clause is applied to
qualify rows; then the groups are formed; then the HAVING
clause is applied to qualify groups. Multiple predicates
within the same HAVING clause form logical expressions
connected by AND and OR with square brackets [] used to
establish precedence. The absence of a HAVING clause

indicates that all groups formed are to be returned.

column specifies the name of a column
defined in a table or view specified
in the FROM clause of the query
block. Note that columns specified
here, need not be specified in the
SELECT clause.

table.column specifies the name of a column
qualified by the name of the table
that contains the column. Qualified
column names are used to eliminate
ambiguity when the FROM clause lists
multiple tables or views that
contain duplicate column names.

constant

generic-constant

NULL

expression

<column,...>

<expression,...>

specifies any numeric or
character-string constant 1literal
value. Single quotation marks are
required around all character-string
constants to distinguish them from
column names.

specifies the leading
character-string of a literal value.
The leading string must be followed
by the ellipsis notation "..." and
the result must be enclosed in
single quotation marks.
Specification of a generic constant
allows for a search on a leading
character-string of a value.

indicates the absence of a value in
the database. Null values are
ignored in the evaluation of all
arithmetic expressions, and the
computation of all built-in
functions except COUNT. NULL values
are treated as unknowns in the
evaluation of 1logical expressions
(see Three Values Logic) .

specifies an arithmetic expression
made up of columns and constants
that are connected by the operators
+, =, *, /. Parenthesis () are
used to establish precedence. Note
that expressions involving a column
value of NULL, will result in a null
value unless the NULL Function
parameter is used.

specifies a set of numeric or
character-string literal values.
The set is enclosed in
angle-brackets < > and items within
the set are separated by commas.

specifies a set of constant values
or expressions. The predicate in
the HAVING clause tests the field
for inclusion in the set.

SELECT...

USER

BETWEEN

IN

AND

OR

specifies the use of the result of
one query in the HAVING clause of
another query. The 1inner query
returns a set of wvalues to the
HAVING clause of the outer query.
The outer query proceeds as though
it were given a set of constants in
place of the inner query. Query
blocks may be nested to any number
of levels.

returns the name of the user (as
specified in the DEFINE USER
command) who is executing this SQL
statement.

indicates the equal comparison
operator.

indicates the not equal comparison
operator.

indicates the greater than
comparison operator.

indicates the greater than or equal
comparison operator.

indicates the less than comparison
operator.

indicates the less than or equal
comparison operator.

indicates the range comparison
operator. The range is specified as
a pair of constants, expressions, or
columns connected by an AND.

indicates the set inclusion
operator. IN tests a field for
inclusion in a set of values. The
comparison operator = may be used in
place of IN without changing the
meaning of the WHERE clause.

indicates the boolean operator AND.

indicates the boolean operator OR.

The CONNECT BY Clause

CONNECT BY [PRIOR] major-column = [PRIOR] minor-column

In ORACLE, a table may be used to represent tree-structured
data. Consider a parts table consisting of assemblies
(major) and components (minor). There is one row in the
table for each combination of a component and assembly. One
assembly can be a component of another assembly, etc. The
table contains one column identifying component-number and
another column identifying assembly-number. This table then
represents a complete bill of materials.

The CONNECT BY clause specifies the selection of rows
according to their tree-structure relationship. The clause
requires specification of the major and minor columns. The
PRIOR keyword is positioned before the major column to
indicate that the rows are to be selected going up the tree,
or before the minor column to indicate the rows are to be
selected going down the tree.

PRIOR specifies the direction 1in which
rows are to be selected. If the
PRIOR keyword is placed before the
minor (component) column, the query
proceeds down the tree (explosion).
If the PRIOR is placed before the
major (assembly) column, the query
proceeds up the tree (implosion).

major-column specifies the name of the assembly
column.
minor-column specifies the name of the component

column.

START WITH [NOT]} |column

The START WITH Clause

| I= | Jcolumn | |AND]| .
|table.column| | ~= | |table.column | |OR |
|constant 1> | |constant
NULL !	>=		lgeneric-constant	
expression		<		NULL
<column,...>		<=		expression
USER		BETWEEN		<column,...>

[IN | |<expression,...>|
| SELECT... |
|USER I

The START WITH clause specifies the rows that are to be used
as starting points in queries on tree-structured tables. The
START WITH clause may contain any predicate or 1logical
expressions that may be contained within a WHERE clause. The
START WITH clause is always used in conjunction with the

CONNECT BY clause,

NOT specifies that the following
predicate or boolean expression is
to be negated.

column specifies the name of a column
defined in a table or view specified
in the FROM clause of the dquery

block.

table.column specifies the name of a column
qualified by the name of the table
that contains the column. Qualified
column names are used to eliminate
ambiguity when the FROM clause lists
multiple tables or views that
contain duplicate column names.

constant specifies any numeric or
character-string <constant 1literal
value, Single quotation marks are
required around all character-string
constants to distinguish them from
column names.

generic-constant

NULL

expression

<column,...>

<expression,...>

SELECT...

USER

specifies the leading
character-string of a literal value.
The leading string must be followed
by the ellipsis notation "..." and
the result must be enclosed in
single quotation marks.
Specification of a generic constant
allows for a search on a leading
character-string of a value.

indicates the absence of a value 1in
the database.

specifies an arithmetic expression
made up of columns and constants
that are connected by the operators
+, -, *, /. Parenthesis () are
used to establish precedence. Note
that expressions involving a column
value of NULL, will result in a null
value unless the NULL Function
parameter is used.

specifies a set of numeric or
character-string literal values.
The set is enclosed in
angle-brackets < > and items within
the set are separated by commas.

specifies a set of constant values
or expressions.

specifies that the result of a query
block is to be used in the START
WITH clause.

returns the name of the user (as
specified in the DEFINE USER
command) who 1is executing this SQL
statement.

indicates the equal comparison
operator.

indicates the not equal comparison
operator.

BETWEEN

IN

AND

OR

indicates the greater than
comparison operator.

indicates the greater than or equal
comparison operator.

indicates the less than comparison
operator.

indicates the less than or equal
comparison operator.

indicates the range comparison
operator. The range is specified as
a pair of constants, expressions, or

columns connected by an AND.

indicates the set inclusion
operator. IN tests a field for
inclusion in a set of values. The
comparison operator = may be used in
place of IN.

indicates the boolean operator AND.
The boolian operators are used to
connect predicates to form compound
logical expressions.

indicates the boolean operator OR.

The INCLUDING Clause

|expression
|]<column, ...>
|USER

jexpression

| <column,...>

| <expression,...>
| SELECT...

| USER

INCLUDING [NOT] lcolumn | = [column |AND| .
|table.column| “= ltable.column |OR |
|constant | |constant
INULL | = |generic-constant

|
|
I

TWEEN

HDUAAYVYV

Zmo

[
|
I
|
INULL |
I
I
|
I
|

The INCLUDING clause is used with queries on tree-structured
tables. The INCLUDING clause is used in conjunction with the
WHERE clause to determine which rows are to be returned as a
result of the query. Any rows which are excluded by virtue
of not satisfying the WHERE clause, result in exclusion of
entire "branches" of the tree structure. Any rows which are
excluded by virtue of not satisfying the INCLUDING clause,
result only in that row being excluded. 1In other words, the
WHERE clause causes exclusion before the CONNECT BY is
applied; the INCLUDING clause causes exclusion after the
CONNECT BY is applied.

The INCLUDING clause may contain any predicates or logical
expressions that may be contained within the WHERE clause.

INCLUDING is an optional clause used in conjunction with the
CONNECT BY clause.

NOT specifies that the following
predicate or boolean expression is
to be negated.

column specifies the name of a column
defined in a table or view specified
in the FROM clause of the query
block.

table.column specifies the name of a column
qualified by the name of the table
that contains the column. Qualified
column names are used to eliminate
ambiguity when the FROM clause lists
multiple tables or views that
contain duplicate column names.

constant specifies any numeric or

generic-constant

NULL

expression

<column, ...>

<expression,...>

SELECT...

character-string constant literal
value. Single quotation marks are
required around all character-string
constants to distinguish them from
column names.

specifies the leading
character-string of a literal value.
The leading string must be followed
by the ellipsis notation "..." and
the result must be enclosed in
single quotation marks.
Specification of a generic constant
allows for a search on a leading
character-string of a value.

indicates the absence of a value in
the database.

specifies an arithmetic expression
made up of columns and constants
that are connected by the operators
+, -, *, /. Parenthesis () are
used to establish precedence. Note
that expressions involving a column
value of NULL, will result in a null
value unless the NULL Function

parameter is used.

specifies a set of numeric or
character-string literal values.
The set is enclosed in
angle-brackets < > and items within
the set are separated by commas.

specifies a set of constant values
or expressions.

specifies that the result of a query
block is to be used in the INCLUDING
clause.

USER

BETWEEN

IN

AND

OR

returns the name of the user (as
specified in the DEFINE USER
command) who is executing this SQL
statement.

indicates the equal comparison
operator.

indicates the not equal comparison
operator.

indicates the greater than
comparison operator.

indicates the greater than or equal
comparison operator.

indicates the less than comparison
operator.

indicates the 1less than or equal
comparison operator.

indicates the range comparison
operator. The range is specified as
a pair of constants, expressions, or
columns connected by an AND.

indicates the set inclusion
operator. IN tests a field for
inclusion in a set of values. The
comparison operator = may be used in
place of IN.

indicates the boolean operator AND.
The boolian operators are used to
connect predicates to form compound
logical expressions.

indicates the boolean operator OR.

The ORDER BY Clause

ORDER BY |column | |ASC |, « + .

| table.column]| | DESC|
|lexpression |

The ORDER BY clause indicates the sequence that the query
result is to be returned. The ORDER BY clause may contain a
major and up to 254 minor sorting fields, with a maximum
concatenated sort field of 255 characters. Each sort field
may specify ascending or descending order. An ORDER BY
clause is not part of a query block, and may only be
associated with the first query block of a SQL query
statement.

column specifies the name of a column
defined in a table or view specified
in the FROM clause of the query
block. Note that columns specified
here, need not be specified in the

SELECT clause.

)

table.column specifies the name of a column
qualified by the name of the table
that contains the column. Qualified
column names are used to eliminate
ambiguity when the FROM clause lists
multiple tables or views that
contain duplicate column names.

expression specifies an arithmetic expression
made up of columns and constants
that are connected by the operators
+, -, *, /. Parenthesis () are
used to establish precedence. Note
that expressions involving a column
value of NULL, will result in a null
value unless the NULL Function

parameter is used.

ASC indicates ascending sort order. If
no sort direction is specified for a
field, ascending is assumed.

DESC indicates descending sort order.

DATA MANIPULATION STATEMENTS

The INSERT INTO and DELETE clauses provide for addition and
deletion of rows of a table. The combination of the UPDATE
and SET clauses allows modification of column values within a

row or set of rows within a table.

Nested Query Blocks may be used with the INSERT INTO clause
to copy data from another table. A WHERE clause is used with
the DELETE and UPDATE clauses to specify sets of records to
be processed.

Refer to the section on Concurrency Control Statements for
information about locking during the execution of data

manipulation statements.

The following SQL clauses are provided for Data Manipulation:

INSERT INTO for adding rows to a table.
DELETE for deleting rows from a table.
UPDATE for specifying a table whose rows are

to be updated.

SET for specifying the updates to be made
to columns of a row.

The

INSERT INTO table(column,...):

INSERT INTO Clause

| <constant,...>
INULL

|USER

|SELECT . . .

27

The INSERT statement specifies the adding of a new row or set

of rows into a table.
insertion statement are

table

(column,...)

constant

NULL

USER

Fields that are not present in th

e

given null values. If the row to be
inserted has all its fields present in the correct order, the
list of column names may be omitted.

specifies the name of the table into
which the rows are to be inserted.

specifies the names of the columns
of the table in the order the values
will appear in the INSERT statement.
If values are being provided for all
columns of a row (with any missing
values being indicated by the
keyword NULL), and the columns are
in the order that they are defined
in the CREATE TABLE, then the column
list may be omitted.

specifies any numeric or
character-string constant literal
value that is to be inserted into
the database in the specified
column. Single quotation marks are
required around all character-string
constants to distinguish them from
column names.

indicates that the column associated
with the NULL is to be null in the
database.

returns the name of the user (as
specified in the DEFINE USER
command) who is executing this SQL
statement.

SELECT...

specifies that the result of a query
is to be inserted into a table in

the database. Query blocks
specified within an INSERT statement

can be nested to any number of
levels.

DELETE

The DELETE Clause

table

The DELETE clause specifies the name of the table containing
a row or set of rows that are to be removed from the

database. The specific rows that are to be deleted are
qualified by a WHERE clause. The WHERE clause in a DELETE
statement is identical to the WHERE clause in a query and may

contain nested query blocks.

specifies the name of the table that
contains the rows to be removed from

the database.

table

UPDATE

The UPDATE Clause

table

The UPDATE clause specifies the name of the table containing
a row or set of rows that are to be modified. A SET clause
is used to specify the updates which are to be performed on
the one or more columns within a row. The specific row or
rows to be modified are qualified by means of a WHERE clause.
The WHERE clause in a UPDATE statement is identical to the
WHERE clause in a query and may contain nested query blocks.
Primary keys may not be modified by an UPDATE statement (see

CREATE TABLE).

table specifies the name of a table that
is to be modified.

X

SET

The SET Clause

column = |constant |, . . .
|expression]

The SET clause specifies a column or list of columns to be
modified within the table referenced by the UPDATE clause. A
SET clause is always used in conjunction with an UPDATE
clause. New values for fields that are to be updated may be

stated as constants or expressions.

constant specifies any numeric or
character-string constant literal
value as the new value for the
field. Single quotation marks are
required around all character-string
constants to distinguish them from
column names.

expression specifies the use of the result of
an arithmetic expression as the new
value for the field. An arithmetic
expression can be made up of columns
and constants that are connected by
the operators +, -, *, /.
Parenthesis () are used to
establish precedence.

32

DATA DEFINITION STATEMENTS

The SQL Data Definition Statements provide for establishing
and modifying data definitions within the ORACLE Data
Dictionary. The execution of these statements does not

require any reorganization activity.

The following statements are provided:

CREATE TABLE for defining a new TABLE 1in the
database.

EXPAND TABLE for defining a new COLUMN for an
existing TABLE.

DEFINE VIEW for defining a new VIEW.

DROP for removing a TABLE or VIEW

definition.

The CREATE TABLE Statement

CREATE TABLE table

column(|CHAR(len) [VAR]| [NONULL] [UNIQUE} [UC] [IMAGE]), . . .
[NUMBER I

The CREATE TABLE statement defines a new table that is to be
physically stored in the database. A table may contain from
1] to 255 columns. The CREATE TABLE specifies the name of the
table, the names of the columns, and the column data types.
The presence of null or duplicate values within a column may
be restricted. High-performance access paths may be
specified on any columns.

ORACLE automatically maintains an index (IMAGE) for the first
column defined in the table. To optimize sequential
processing the rows of the table are stored in physical
sequence based on this index. This column is automatically

treated as a required (NONULL) item.

table specifies the name of the table that
is being defined. The name must be
unique within the database. The

maximum length of the table name is
30 characters. The first character

must be alphabetic.

column specifies the name of a column
defined within the table. Column
names must be unique within a table.
The column name can have a maximum
length of 30 characters. The first
character must be alphabetic.

CHAR indicates the column is to contain
alpha-numeric character string
values.

len specifies the maximum length of a

value to be stored in a character
string field. The length must be a
number from 1 to 255.

VAR

NUMBER

NONULL

UNIQUE

ucC

IMAGE

indicates that the value stored in a
character string field 1is to be
stored in variable 1length format.
Currently, ORACLE stores all
character string values in variable
length format whether or not VAR is
specified.

indicates the column is to contain
numeric values. Numeric values are
stored internally in base 256 format
to maintain maximum precision.

indicates that null values are not
permitted in the column.

indicates that no two fields within
this column can have the same value.
UNIQUE can only be specified Iif
IMAGE is also specified.

indicates that the index to Dbe
maintained on this column is to have
forward compression only. If UC is
not specified, the index will have
both forward and backward
compression.

indicates that an index is to be
maintained for the values in the
column. Join operations can Dbe
performed only if Dboth columns
referenced in the joining predicate
are defined as IMAGE.

35

N
|

The EXPAND TABLE Statement

EXPAND TABLE table

ADD COLUMN column(|CHAR(len) [VAR]|[NONULL]|[UNIQUE] [UC] [IMAGE]|)
|NUMBER I

The EXPAND TABLE statement adds a new column to an existing
table stored in the database. The new column is added to the
right side of the table. Existing rows are considered to
have null values in the new column until they are updated.
Queries and views that were written in terms of the existing
table are not affected by the expansion. EXPAND TABLE
specifies the name of the table to be enlarged and defines
the new column with a syntax identical to that used in the
CREATE TABLE statement. The presence of null or duplicate
values within the column may be restricted. A
high-performance access path (IMAGE) may be specified.
EXPAND TABLE 1is a instantaneous operation. No physical
reorganization of any part of the database takes place.

table specifies the name of the table that
is being expanded.

specifies the name of a column being

column
added to the table. Column names
must be unique within a table. The
column name can have a maximum
length of 30 characters. The first
character must be alphabetic.

CHAR indicates the column is to contain
alpha-numeric character string
values.

len specifies the maximum length of a

value to be stored in a character
string field. The length must be a
number from 1 to 255.

VAR

NUMBER

NONULL

UNIQUE

uc

IMAGE

indicates that the value stored in a
character string field is to be
stored in wvariable 1length format.
Currently, ORACLE stores all
character string values in variable
length format whether or not VAR is

specified.

indicates the column is to contain
numeric values. Numeric wvalues are
stored internally in base 256 format
to maintain maximum precision.

indicates that null values are not
permitted in the column.

indicates that no two fields within
this column can have the same value.
UNIQUE can only be specified if
IMAGE is also specified.

indicates that the 1index to Dbe
maintained on this column is to have
forward compression only. If UC is
not specified, the index will have
both forward and backward
compression.

indicates that an index is to be
maintained for the values in the
column. Join operations <can be
performed only if both columns
referenced in the joining predicate
are defined as IMAGE.

The DEFINE VIEW Statement

DEFINE VIEW view [(column, . . .)] AS SELECT . . .

The DEFINE VIEW statement creates an alternative view of data
stored in tables in the database. The definition of a view
is similar to the process of stating a query, because the
result of any query on one or more tables is itself a table.
Therefore, any query formulation can be used in the
definition of a view. The DEFINE VIEW statement names the
view and optionally names its columns. A view may be defined
in terms of other views. Views may be queried in the same
way as stored tables; however, DELETE, UPDATE, and INSERT
clauses may "not" reference views.

view specifies the name of the view that
is being defined. Table and view
names must be unique within the
database. The maximum length of the
view name 1is 30 characters. The
first character must be alphabetic.

column specifies the name of a column
defined within the view. Column
names must be unique within a view.
The column name can have a maximum
length of 30 characters. The first
character must be alphabetic. A
view's column names may be drawn
from the SELECT clause of the query
defining the view if the column
names in the SELECT clause are
unique.

SELECT... specifies the use of the result of a
query as a view on the database.
Any valid query block can be used as
a database view. The query blocks
may be nested to any number of
levels.

DROP

The DROP Statement

| TABLE| name
|VIEW |

The DROP statement removes tables or views from the system.
Once a system entity has been dropped, its name may be
reused. A table cannot be dropped if the table contains
data. A table or view cannot be dropped if another view 1is

defined upon it.

TABLE indicates the system entity to be
dropped is a table. A table may not
be dropped until all rows in that
table have been deleted.

VIEW indicates the system entity to be
dropped is a view.

name specifies the name of the table or
view to be dropped.

DATA CONTROL STATEMENTS

The SQL Data Control Statements provide for Security and
Concurrency Control.

The following SQL statements are provided for Security
Control:

DEFINE USER to define a user of a database and
his password.

GRANT to give privileges on a TABLE or VIEW
to a user.

REVOKE to remove privileges on a TABLE or
VIEW from a user.

PASSWORD to allow a wuser to change his
password.

The following SQL statements are provided for Concurrency
Control:
BEGIN Lock a resource.

TRANSACTION

END TRANSACTION Unlock a resource.

The DEFINE USER Statement

DEFINE USER user-name/password

The DEFINE USER statement adds an authorized user to a secure
ORACLE database. Only defined users are permitted to log on

to a secure database.

Initially, the user who creates the database is the only
authorized user of that database. Thereafter, the creating
user can define additional users via the DEFINE USER command.
These new users may themselves define additional users, etc.

Users defined by means of the DEFINE USER command are
authorized to log on to a secure database and create tables.
These users are not allowed any access to any data stored
within the data base without data access privileges. Data
access privileges are given to a user via the GRANT command.

user-name specifies the name or identifier of
the user being defined. The user
must enter this name when logging on
to an ORACLE database. The
user-name can have a maximum length
of 20 characters.

password specifies the name of the password
for the user being defined. The
user must enter this password when
logging on to an ORACLE database.
The password can have a maximum
length of 20 characters.

The GRANT Statement

GRANT|privilege[,...] |ON table TO|user-name([,...]|

|ALL RIGHTS | }PUBLIC |
|ALL BUT privilege[,...]|

[WITH GRANT OPTION]

It is the responsibility of the user who creates a table or
view to control access to it. When a user creates a table,
only that creating user is privileged to access that table.
The creating user may allow other users access privileges on
his table via the GRANT command.

The following privileges may be granted:

READ

INSERT

DELETE

UPDATE (by column)
EXPAND

Only the READ privilege may be specified for a view.

Users that have been granted the right to exercise a
privilege may or may not have the right to grant the same
privilege to other users. The grantor of privileges may
permit the grantee to grant the listed privileges to other
users by including the clause WITH GRANT OPTION.

privilege specifies the type of operations
that are to be authorized for the
table.

ALL RIGHTS indicates that all privileges are to

be granted.

ALL BUT indicates that all privileges except
those listed in the GRANT command

are to be granted.

table specifies the name of the table or
view for which the privileges apply.
If a view is specified, only the

READ privilege may be granted.

user-name specifies the name of the user or
users that are to receive the
privileges. User-name is the

user-name field specified 1in the
DEFINE USER command.

PUBLIC indicates that all wusers of the
database are to receive the

privileges listed.

WITH GRANT OPTION specifies that the grantee may grant
the privileges 1listed to other

users.

REVOKE |privilege[,...]
|ALL RIGHTS
|ALL BUT privilegel[,...]

The REVOKE Statement

| ON table FROM |user-name[,...]|
| | PUBLIC |
|

Privileges that have been granted by means of the GRANT
command may be withdrawn through the use of the REVOKE

command.

The named privileges are removed from the grantee

and from all users to whom he has granted them.

The following privileges may be revoked:

READ
INSERT
DELETE

UPDATE (by column)

EXPAND

only the READ privilege may be specified for a view.

privilege

ALL RIGHTS

ALL BUT

table

specifies the type of operation that
is no 1longer authorized for the
table.

indicates that all privileges are to
be revoked.

indicates that all privileges except
those listed in the REVOKE command
are to be withdrawn.

specifies the name of the table or
view for which the privileges are to
be revoked. If a view is specified,
only the READ privilege may be
revoked.

user-name

PUBLIC

specifies the name of the user or
users whose privileges are to be
revoked. User name is the user-name
field specified in the DEFINE USER
command.

indicates that all users of the
database are to have the listed
privileges revoked.

The PASSWORD Statement

PASSWORD password

The PASSWORD statement is used to redefine a user's password.
It can only be used by a user to redefine his own password.

specifies the name of the new
password for the currently logged on
user. A password can have a maximum
length of 20 characters.

password

CONCURRENCY CONTROL STATEMENTS

ORACLE allows multiple users to concurrently UPDATE the same
table in a database. Yet, ORACLE does not require a user to
issue locking statements or statements of intent to update.
The setting and clearing of locks are the responsibility of
ORACLE. No explicit lock requests are required to insure
that concurrent UPDATE operations do not read the same row of
a table and attempt to write back that row. ORACLE
automatically places locks on individual records (rows) in
order to synchronize UPDATE operations, thus preventing the
updates from overwriting each other.

A user may not wish to operate on data that has been modified
by an operation that is still in progress. To accomplish
this serialization the user can place his SQL request between
BEGIN TRANSACTION and END TRANSACTION statements. In
addition, placing several SQL statements inside a transaction
causes ORACLE to execute these SQL statements as a "atomic
act" without permitting interference (UPDATES to the same
tables) by other users during the transaction.

ORACLE's automatic update synchronization locks a record (row
of a table) at a time. USER requested transactions lock a
table at a time.

Whereas transaction level control will often be desired in
UPDATE operations, it is also useful in READ-only situations
when it is required that data being retrieved not be subject
to modification during the period of retrieval.

The BEGIN TRANSACTION Statement

BEGIN TRANSACTION ([tran-id] ON TABLE table | UPDATE |, . . .

| READ !

The BEGIN TRANSACTION statement is used to identify the start
of a logical transaction consisting of one or more SQL
statements. The BEGIN TRANSACTION must specify those tables
(if any) being locked for UPDATE purposes, and those tables
(if any) being locked for READ purposes.

Transactions may be nested. When transactions are nested,
the BEGIN TRANSACTION statements must be numbered beginning
with 1.

tran-id specifies an integer value. Tran-id
must be specified when transactions

are nested.

table specifies the name of a table which
will be updated or read.

UPDATE specifies that the table should be
locked for all other update and read
transactions.

READ specifies that the table should be
locked to update transactions. Read
transactions may concurrently access
the table.

The END TRANSACTION Statement

END TRANSACTION ([tran-id]

The END TRANSACTION statement is wused to terminate a
transaction that was started with a BEGIN TRANSACTION

statement.

specifies an integer value. Tran-id
must be specified when transactions
are numbered in the BEGIN
TRANSACTION statement.

tran-id

SQL

PUNCTUATION AND CODING RULES

The following general rules of punctuation apply in writing
SQL statements:

Blank Spaces are used as general purpose
delimiters. The number of blank
spaces used is optional and will not
change the meaning of a SQL
statement.

, Comma is used to separate items in a list.

Period is used to separate qualifiers in a
qualified name.

.

; Semicolon is used to indicate the end of a
query block. The semicolon may be
omitted in query statements

containing only one query block.

: Colon is used as a general purpose
terminator within a SQL statement.

[] Square Brackets are used to establish precedence
within logical expressions in WHERE

and HAVING clauses.

< > Angle Brackets are used to enclose sets of literal
values.

() Parentheses are used to establish precedence
within arithmetic expressions.

Parentheses are also used for
general purpose enclosure within

SQL.

LOGICAL EXPRESSIONS

SQL WHERE and HAVING clauses contain logical expressions.
Logical expressions are made up of predicates connected by
the boolean operators AND and OR. ORACLE tests fields in a
given row in the database to determine if the row satisfies
the predicates in the logical expression.

ORACLE allows unknown or null values in the database.
Therefore, the evaluation of logical expressions requires the
use of three valued logic.

Rows that contain null fields tested by the WHERE clause are
assigned an unknown truth value (?). The truth value of a
row against the entire logical expression is then evaluated
using the three valued logic truth tables depicted below.

AND | T F ? OR| T F 2?2 NOT |

T | T F ? T| T T T T | F
F | F F F F| T F ? F | T
2 | 2 F 2?2 21T ? 2 2 1 2

Oonly those rows whose overall truth value is true are
considered to have satisfied the WHERE clause. If the row's
overall truth value 1is false or unknown the row is

disqualified by the WHERE clause.

Null values are ignored in the evaluation of arithmetic
expressions.

SQL

BNF Syntax

sgl-statement = query
| dml-statement

| ddl-statement

| control-statement
l

dml-statement insertion

deletion
| update

query :: = query-block [ORDER BY ord-spec-list]
insertion :: = INSERT INTO receiver : insert-spec
receiver :: = table-name [(field-name-list)]
field-name-list :: = field-name

| field-name-list , field name
insert-spec :: = query-block

| lit-tuple
deletion :: = DELETE table-name [where-clause]
update :: = UPDATE table-name [where-clause]
SET set-clause-list [where-clause]

where-clause :: = WHERE boolean
set-clause-list :: = set-clause

| set-clause-list , set-clause
set-clause :: = field-name = expr
query-block :: = select-clause

FROM from-list
WHERE boolean]
GROUP BY field-spec-list]
HAVING boolean]
CONNECT BY [PRIOR] field-spec = field-spec]
START WITH boolean]
INCLUDING boolean]
SELECT [UNIQUE] set-expr-list
SELECT [UNIQUE] *
sel-expr-list :: sel-expr

| sel-expr-list , sel-expr
= expr
| var-name . *
| table-name . *

Lo W N W W Wy |

select-clause

I —

sel-expr

= table-name [var-name]
| from-list , table-name [var-name]
field-spec-list :: = field-spec
| field-spec-list , field-spec
ord-spec-list :: = field-spec [direction]
| expr
| ord-spec-list , field-spec [direction]
direction :: = ASC
| DESC

from-list

= boolean-term
| boolean OR boolean-term

boolean-term :: = boolean-factor

| boolean-term AND boolean factor
boolean-factor :: = [NOT] boolean primary
boolean-primary :: = predicate

| [boolean]

= exXpr comparison expr
| expr BETWEEN expr AND expr
| expr comparison table-spec
I
|

boolean

predicate

< field-spec-list> = table spec
< field-spec-list > [IS] 1IN table-spec
table-spec :: = query-block
| literal
expr = arith-term
| expr add-op arith-term
arith-term :: = arith-factor
| arith-term mult-op arith-factor
arith-factor :: = [add-op] primary
primary = field-spec
| set-fn (expr)
] COUNT (*)
| NVL (field-spec , constant)
| constant
| (expr)
field-spec :: = field-name
| table-name . field-name
| var-name . field-name
comparison :: = comp-op
| [IS] IN
comp-op :: = =
| -
P>
| >=
| <
| <=
add-op :: = +
| -
mult-op :: = *
I
set-fn :: = AVG
| MAX
| MIN
| SUM
|

COUNT

literal :: = < lit-tuple-list >
| lit-tuple
| constant
lit-tuple-list :: = lit-tuple
| lit-tuple-list , lit-tuple
lit-tuple :: = < entry-list >

entry-list :: = entry
| entry-list , entry

entry :: = [constant]
constant = quoted-string

| number

| NULL
table-name :: = name
image-name :: = name
name :: = identifier
field-name :: = identifier
var-name :: = identifier
integer :: = number

ddl-statement :: = create-table
| expand-table

| define-view
| drop
create-table :: = CREATE TABLE table-name (field-defn-list)
field-defn-list :: = field-defn

| field-defn-list , field-defn
field-defn :: = field-name (type [, type-mod])

type :: = CHAR (integer) [VAR]
| NUMBER
type-mod :: = NONULL

| IMAGE [image-mod]
image-mod :: = UNIQUE
| ucC
expand-table :: = EXPAND TABLE table-name ADD COLUMN field-defn
define-view :: = DEFINE VIEW table-name
[(field-name-1list)] AS query

drop :: = system-entity name
system-entity :: = TABLE
| VIEW
control-statement :: = define-user
| password-spec
| revoke

| begin-trans

| end-trans
define-user :: = DEFINE USER user-defn
user-defn :: = user-name/password
password-spec :: = PASSWORD password

grant :: = GRANT [auth] table-name TO user-list
[WITH GRANT OPTION]

= ALL RIGHTS ON

| operation-list ON

| ALL BUT operation-list ON
user-list :: = user-name

| user-list , user-name
| PUBLIC
operation-list :: = operation
| operation-list , operation
= READ
| INSERT
| DELETE
| UPDATE [(field-name-list)]
| EXPAND
EVOKE [auth] table-name FROM user-list
. = BEGIN TRANSACTION [tran-number]
ON TABLE table-name trans-type
tran-number :: = {(integer)
trans-type :: = UPDATE
| READ

end trans :: = END TRANSACTION [tran-number]

auth ::

operation ::

revoke :: = R
begin trans :

ORACLE

TERMINAL INTERFACE

USER FRIENDLY INTERFACE (UFI)

Oracle Users Guide - Version 2.3

Copyright (c) April 1981
By Relational Software Incorporated
All rights reserved. Printed in U.S.A.

USER FRIENDLY INTERFACE

TABLE OF CONTENTS

Introduction

Operation

SQL Statements

UFI Commands
Edit Commands
UFI Display Format Commands
UFI File Commands

UFI Control Commands

UFI

USER FRIENDLY INTERFACE

I. INTRODUCTION

The User Friendly Interface (UFI) provides the capability for
ORACLE users to utilize SQL to access and manipulate a
database directly via display terminals.

UFI can be utilized by programmers to try out various SQL
commands and table designs interactively. This capability is
particularly useful in testing during program development.
The reporting facilities can often meet one-time programming
requirements without having to write a program.

UFI can be utilized by data administrators in evaluating and
implementing design decisions concerning what tables should
be created in the database. UFI also provides a way to
quickly and easily implement decisions about controlling user
access to stored data.

UFI enables users to:

o enter SQL statements and observe the results on the
display screen.

o control the format of the display with UFI commands.
o edit the current SQL statement with UFI commands.

o route an output report to a system file and optionally
schedule it to be printed.

o <create and run stored routines (command files)
containing SQL statements and UFI commands.

o specify the SQL Work Area.
o cancel the SQL statement in progress.
UFI is the primary facility provided with ORACLE for

interactive processing of SQL statements from a user
terminal.

II. OPERATION

The two modes of operation for UFI are processing SQL
statements and processing UFI commands. The mode |is
indicated by the prompt (SQL> for SQL statements and UFI>
for UFI commands). The mode can be changed by simply
entering a "CR" (return) following the prompt. This is used
to switch from SQL mode to UFI mode or vice versa. UFI
commands are used to edit SQL statements, control UFI files,
control display formats, and specify UFI control commands.

A convention exists whereby a wuser can issue UFI commands
while in SQL mode. If the UFI command is preceded by a pound
sign "4", the command will be interpreted as a UFI command.

A user initiates a UFI session and logs into ORACLE by
entering "SQL" and responding to the prompt for database

name.

> SQL

RSI

Welcomes you to ORACLE

Release 2.3

Enter database—-name [user-name/password]: demo
SQL>

If the database is secure (created with a user-name), then
the optional user-name/password parameter must be specified.
In this case the user-name must have been specified with a
DEFINE USER statement and all access will be controlled by

the GRANT privileges.

When the "SQL" commands is typed the database name, and if
appropriate the user-name and password may optionally be
included on the same command line.

> SQL pers scott/tig

RSI

Welcomes you to ORACLE

Release 2.3

Enter database-name [user-name/password]: pers scott/tig

SQL>

when signing on to a secure database, it might be desirable
to do so without having the password displayed (or echoed) on
the screen. This can be accomplished by specifying only the
user-name (and no slash), in which case the user receives a
prompt for the password. When responding to this prompt, the
password being entered is not displayed on the screen.

> SQL pers scott

RSI

Welcomes you to ORACLE

Release 2.3

Enter database-name [user-name/password]: pers scott
Enter password:

SQL>

Following log on, UFI 1is in SQL mode and the user can
directly enter SQL statements, or he can switch modes and
enter UFI commands. If a user wishes to switch to another
database, a UFI command allows him to do so without
terminating the UFI session. When the session is finished,
the user must switch to the UFI mode and log off with the

EXIT command.

III. SQL STATEMENTS

SQL statements are entered in free form utilizing as many
lines as desired (to a maximum of 60 lines or a maximum of
2048 characters). Multiple SQL clauses may be combined on a
single line, or an individual clause may be spread over
several lines. Indentation is optional and is generally used
to clarify the meaning. UFI will process SQL statements
containing up to a total of 50 columns in the SELECT clauses.
The punctuation and coding rules for SQL statements are
described in the ORACLE SQL Language Reference Manual.

A SQL statement is made up of one or more lines, followed by
a line containing only a slash (/). Note that a SQL Comment
(initiated by a "/*" in any position) will not be interpreted
as a statement termination. The line containing only a slash
causes UFI to combine all lines preceding it into a single
SQL statement and send it to ORACLE. If another 1line
containing only a slash is entered immediately following the
execution of the SQL statement, that statement will Dbe

executed again.

A SQL statement in process may be canceled by depressing the

Control Key and entering "C" (i.e., 7C). Under the IAS
operating system, it is necessary to abort the task following
the ~“C. Under the UNIX operating system, the SQL statement

may be canceled with the "Delete" key.

The following sequence of lines would be interpreted as a
single SQL statement.

SQL>/*

SQL> Find the name and department of employees
SQL> who have the same job as Jones or a salary
SQL> greater than Ford's salary.

SQL>*/

SQL>SELECT ENAME, DEPTNO
SQL>FROM EMP

SQL>WHERE JOB 1IN

SQL> SELECT JOB

SQL> FROM EMP

SQL> WHERE ENAME = 'JONES'
SQL>OR SAL >

SQL> SELECT SAL

SQL> FROM EMP

SQL> WHERE ENAME = 'FORD'

SQL>/

IV. UFI COMMANDS

UFI commands are used to edit SQL statements, specify display
formats, route UFI output, specify the database, and specify
the SQL work area. The format of all UFI commands is:

[#)command [argument-string]

The space between the command and the argument string is
optional. The optional # sign appended to the beginning of
the command is used to enter UFI commands when in SQL mode

(in response to a SQL prompt).

1. EDIT COMMANDS

For purposes of the Editor, all lines of a SQL statement are
considered to be numbered sequentially and must be referenced
as such ("1" referring to the first line, "3" referring to

the third line, etc.)
Line

This command is used to position to a specified line thus
changing which line is the current line. The new current
line will be displayed at the terminal.

L line-number

Add

This command adds a string of characters to the end of the
current line. The string is considered to start with the
first non-blank character (following the "A") and end with
the last non-blank character on the line.

A string

Delete

This command is used to delete the current line. After the
current line is deleted the new current line 1is the 1line
after the deleted line. If the deleted line was the last
line the new current line is the new last line.

D

Change

This command is used to change the contents of the current
line. The changed line is displayed at the terminal.

C /stringl/string2([/]

/ is a single character which
delimits stringl and string2. Any
character not contained in stringl
or string2 may be used. The
closing delimiter is optional.

stringl is the string to be searched for
in the current line. If stringl
is not found an error message 1is
printed.

string2 is the string which replaces
stringl if stringl is found in the
current line.

Stringl may contain an ellipsis (aoo) An ellipsis
represents any number of intervening characters. There are
are four possible ways to use an ellipsis:

stringl...string2 is any string that starts with
stringl, continues with any number
of intervening characters, and
ends with the first occurrence of

string2.

...5tring is any string that starts at the
beginning of the current line and
ends with the first occurrence of
string.

string... is The first string that starts
with string and ends at the end of
the current line.

is the entire current line.

Insert

This command is used to insert a line after the current line.
The inserted line becomes the new current line. The lines
following the inserted line are specified with a number one
greater than before the insertion (see the L command).

I new-line

new-line is any string of characters to be
inserted after the current line.

List

This command is used to list all lines of the current SQL
statement.

LIST

Run

This command is used to cause the previously executed SQL
statement, together with any editing performed on that SQL
statement, to be executed.

R

2. UFI DISPLAY FORMAT COMMANDS

UFI Display Format commands are utilized to control the
format of the display of the results of processing a SQL
statement. These commands provide the following functions:

o Control the option of column headers being displayed.
o Control the line size.

o Specify display formats for data.

o Control default size of nimeric data columns.

o Control the truncation/wrap-around option for display
lines longer than the line size.

Column Headers

This command allows the user to alternately turn on and off
the option of having column headers with the displayed data.
When being used, column headers will appear once for each
command. The column headers will be the ORACLE column names
as specified in the table or view definition. When displayed
data is the result of an expression or SQL function, the
expression or function will be used as the header. The
default condition is to display headers.

HEADING

This command will be followed by a message indicating that
the heading option has been turned on or off.

Linesize

This command allows the user to override the default line
size for UFI output (display of data returned by ORACLE in

response to a SQL statement).

LINESIZE number

number is the line size in bytes. The
default size is 80 and the maximum
size is 132.

3-9

Display Format

This command allows the user to specify display formats for
particular columns of data being displayed as a result of a
SQOL query statement. If no display formats are specified,

o character values will be displayed as character values
with the 1length determined by the maximun size

specified in the ORACLE data dictionary (as provided
when the column was defined).

o numeric values will be displayed as 10-digit numbers
(unless overriden with the NUMWIDTH command) .
Fractional numbers will be displayed with as many
fractional digits as possible within the field size.

o fields which were entered with IAF as "date-type"
fields will be displayed as a number representing a

julian date.

The Display Format command is specified as follows:

FORMAT col name format
expression

where:

col-name is the column name within a database table.

expression is the expression used in a SQL query
(including arithmetic operators, constants,
and SQL functions).

format is the format definition as described in TABLE
3-1.

If the format command is used without specifying a format, it
will have the effect of removing a previously specified
format for the column or expression, and replacing it with

the default. For example:

FORMAT salary

has the effect of removing a previously defined format for
the salary column.

If the format command consists of only the term "FORMAT", UFI
will display all formats which are currently specified as

other than default.

10

MI

PR

TABLE 3-1 DISPLAY FORMAT SPECIFICATIONS

MEANING

defines a character field n bytes in length.

defines a date format (only for IAF entered data)
of the form mm/dd/yy.

defines a date format (only for IAF entered data)
of the form dd/mm/yy.

defines each digit of a numeric variable. Leading
zeros are not displayed.

defines the decimal point within a numeric
variable. The position is used for arithmetic
alignment and the period is displayed.

causes a comma to be inserted in the display.
Omitted if there are no digits to the left of this

position.
causes a dollar sign to precede the number.

causes a minus sign to be displayed to the right of
a negative number. The default is to the left.

causes the variable to be displayed within R
brackets when negative.

may be used instead of a "9" to designate a digit.
Normally leading =zeros are suppressed, however a
zero in the format will cause every digit position
to be filled.

defines the position of a decimal point within a
numeric variable. The position is used for
alignment in arithmetic statements, but the decimal
point is not displayed.

causes the variable to be displayed as blanks if
the value is zero.

The following are examples of various formats:

Format value Displayed
999.99 56.478 56.48
999v99 56.478 5648
9,999 8410 8,410
9,999 639 639
99999 607 607
09999 607 00607
9999 -5609 -5609
9999M1I -5609 5609-
9999PR -5609 <5609>
B999 ’ 564 564
B999 0
99.99 124.98 #4.44
$99.99 45.23 $45.23
DATE 2441453 12/23/80
az2o Customer Customer
A5 Customer Custo
mer

1. If a numeric value is larger than the format allows,
it is displayed as "#" signs.

2. If a character value is larger than the format allows,
it is either truncated or wrapped around, depending on
whether truncation or wrap-around is spec1f1ed at the
time (the default is truncation).

Number Width

This command allows the user to override the default size
(10) for numeric fields. If specified, it will apply from
that point forward for all columns containing numeric data.

NUMWIDTH number

number is the column width in bytes. The
default width is 10.

Wrap-around

This command specifies that if a line of UFI output is longer
than the LINESIZE specification, the excess data will be
wrapped around and displayed on successive lines. The
wrapping of data will always occur on a field boundary (i.e.,
values will never be split at the end of a line). The
maximum amount of data per row which can be returned by UFI
in a SQL statement is 1000 bytes. Wrap-around is the default
condition.

WRAP

Truncation

This command specifies that if a line of UFI output is longer
than the LINESIZE specification, the excess data is
truncated. The data will be wrapped unless this command is
issued. I1f this command is issued, data will be truncated
for the remainder of the UFI session, or until a WRAP command
is issued.

TRUNC

3. UFI FILE COMMANDS

UFI file commands are used to create command files (files
containing SQL statements which can subsequently be input to
UFI as an alternative to terminal input). A command file can
be executed from within UFI by simply entering a special
character followed by the file name. The special character
is the "@" sign, except in UNIX where the "!" is used. UFI
file commands also are provided for creating output files for
subsequent printing.

Save

This command is used to create and open an operating system
file to be used as a command file, to write the current SQL
statement to that file, and to close that file. Subsequent
SQOL statements can be added to the file with the APPEND

command.

SAVE file-name

Append

This command is used to add the current SQL statement to an
existing operating system file which was originally created
with a SAVE command. The APPEND command opens the file,
positioning it at the end; writes the current SQL statement
to the file; and closes the file.

APPEND file-name

Spool

This command is used to open an operating system file to
which all output generated by UFI will be written, or to
cause a previously opened file to be closed and optionally

scheduled for printing.

SPOOL option

option determines which of the three functions will
be performed as mentioned above. The options
are:
file-name Oopen the specified file for
spooling. If a file for

spooling is already opened, it
will be closed.

ouT Close the file currently opened
for printing, and schedule that
file for printing. This option
assumes that the operating
system supports spooling and
that it has been generated to
do so. Note that once the file
has been printed, the file may,
depending on the operating
system, be deleted.

OFF Close the file currently epened
for spooling.

Page

This command causes a form feed to be placed in the open
spool file.

PAGE

3-15

3. UFI CONTROL COMMANDS

Change Database

This command allows the user to close the current database
and open another database without terminating UFI. If the
database being opened is a secure database, the user-name and
password parameter must be specified. If there is an error
in opening the new database, an error message will appear and
the previous database will still be open.

DBS database-name [user-name/password]

Terminate UFI
This command terminates a UFI session.

EXIT

Worksize

This command sets the size of the SQL Work Area for this user
(terminal) in the ORACLE communication region. This command
would be wused in response to an ORACLE error message
indicating insufficient space in the SWA.

WORKSIZE number

number is the size of the SWA in K bytes.
The number specified must be from
1 to 16. The default value of 3
has been determined to be adequate
for the majority of SQL
statements.

ORACLE
INTERACTIVE APPLICATION FACILITY

USER'S GUIDE

Oracle Users Guide - Version 2.3

Copyright (c) April 1981
By Relational Software Incorporated
All rights reserved. Printed in U.S.A.

INTERACTIVE APPLICATION

FACILITY

TERMINAL OPERATOR USER'S GUIDE

TABLE OF CONTENTS

Chapter 1 - Introduction
Chapter 2 - Executing an IAF Application

Chapter 3 - Executing the Sample Application

**tbs - means "to be supplied"

INTRODUCTION

1.0 Manual Objectives and Use

This manual describes the operation of an IAF application.
It is intended mainly for persons who will be writing IAF
applications. Persons reading this should be familiar with
SQL. It instructs the terminal operator on the procedures
for executing and controlling the application processing.

After reading this manual the user should be able to execute
the desired application, cause data to be added, retrieved,
updated, and deleted from the database, and control the order
or flow of the processing.

EXECUTING A N IAF APPLICATTION

2.1 IAP Execution

An IAF application 1is executed interactively from the
nperator's terminal. A CRT or video type terminal |is
required. IAF is distributed with support for the DEC VT52,
VT100, and Perkin Elmer OWL. Terminals compatible with this
list may also be used. Other terminal types can be used, but
their characteristics must be defined to IAF using the
procedure outlined in Appendix A.

IAF applications are specified to, and generated by, the
Interactive Application Generator (IAG) utility described in
the IAF Application Design Guide. Following the generation
process, an application is immediately available for

execution.

To execute an application the user must 1invoke the
Interactive Application Processor (IAP) by entering the
following command from the terminal:

IAP <applname)> [<terminal type>]

<applname> is the name of the application
specified to the IAG at

generation time.

<terminal type> Specify the terminal type
identifier. For the IAF
supplied types the identifiers
are: "vyT1l00", "yTs52", "OWL".
This parameter is optional, and
if omitted the installation
defined default type will be
used. See Appendix A for more
information on terminal types.

If the application database is secured the following message
will prompt the operator to supply a valid userid and

password:
SECURE DATABASE: ENTER NAME AND PASSWORD

NAME: scott
PASSWORD : XXXXX

The entered password will be displayed as x's on the screen.
If valid, application processing will continue.

In addition to database access, the operator must have been
granted privileges to read and modify the database tables
referenced within the application. Access privileges to
specific tables and columns are verified during application
execution, and violations reported at that time.

2.2 Definition of Terms

This section will define some terms which will be used in
describing the operations of an IAF application. It is
assumed that the reader understands basic computer concepts
and the operation of the terminal device. An understanding
of the ORACLE Data Base Management System, and the SQL data
language is essential.

»

APPLICATION IAF applications allow an operator to maintain
his database interactively from a video terminal. In
addition to storing and retrieving data, the application
helps the operator by checking the input, and indicating when
an error has been made. Requiring the operator to enter
correct input prevents invalid data from being stored.

BLOCK A block in IAF corresponds closely to a view or a table
in SQL. One block corresponds to one SQL table. Blocks are
made up of one to twenty records and can hold a corresponding
number of rows from its associated table. Operators enter
data into records of a block and may request IAF to insert,
update, delete or query records associated with that block.

S S PR Sl bbbttt +

|

EMPLOYESE INFORMATTION |

|

APPLICATTION [

|

___ +

|

EMPNO: 5798 DEPTNO: 40 ENAME: JONES [

|

JOB: SALESMAN SAL: 2750 COMM: 355.25_ |

|

|

|

|

___ +
Block 'EMPl' - Single Record Area

|

EMPLOYESE INFORMATTION |

|

APPLICATTION |

I

___ +

|

EMPNO ENAME JOB SAL COMM DEPTNO |

__ |

|

5798 JONES SALESMAN 2750 355.25_ 40 |

5840 SMITH ANALYST 1250 10 |

5932 JACKSON CLERK ~— 950 20 |

_— |

- . |

_____ ___ |

o __ |

. _ |

_____ _ |

|

|

+

Block 'EMP2' - Multiple Record Areas

Figure 2.1

The top diagram in Figure 2.1 shows a block for entering
employee information. The information displayed is from
Jones' row in the employee table. A block provides the
operator with a window to view one or more rows in a single
database table.

RECORD - A record corresponds closely to a row of a table or
view. A record is composed of fields. Rows are identified
on the status line of the display as being stored records or
not. A stored record is one that exists in the database.
Records that are stored may be updated or deleted. Records
that have data entered into them but not yet stored may be
subsequently inserted or have queries executed against them.
A query executed against a record will attempt to retrieve
records with columns that match the data entered in that

record.

CURRENT RECORD - Although the operator may view multiple
records, only one record may be processed at a time. When
adding new records, the data items for one record are entered
stored prior to beginning the next one. The current record
area is indicated by the location of the cursor on the

screen.

FIELD - A field is a data item on the screen. They are
identified by labels which are displayed either above or to
the left of the data entry area. Reverse video or
underlining characters identify a field's data entry and
display area. A field may correspond to a column in the
table or contain data to aid the operator. In Figure 2.1 the
field "EMPNO" corresponds with the column EMPNO in the EMP
table.

Fields which are not columns of the block's table are
generally used to provide entry aids for the operator. For
instance, when entering a part number, it is helpful to
display the associated part name for verification. SQL
SELECT statements may be associated with any field in a block
that are executed when a value is entered into it. These
SELECTs may then load values into other fields of the block

which are then displayed.

There are other attributes associated with each field that
control how a field may be used, what kinds of values it may
accept, etc. More information on SELECTs and attributes may
be found in the Application Design Guide.

2.2.1 IAF Screen Format

Figure 2.2 is a layout of an IAF screen. All screen pages
have the same format. Lines 1 through 22 contain application
fields and descriptive text. Lines 23 and 24 are reserved
for use by the IAP. Line 23 is the "System Message Area"
where status, help, and error messages are displayed. Line
24 contains status indicators and is alsn used as an operator

entry area for the "QUERY" and "PRINT" functions.

The following is a description of each of the indicators
appearing on the status line:

"page x" is the number of the currently displayed application
page. "Char Mode:" indicates whether an entered character
will either 'Replace' the character in the cursor location,
or be inserted('Insert') to its left. "Mode :" indicates that
the operator may either query and update existing records
(QUERY/UPDATE) , or insert new records (INSERT). "Stored "
tells the operator whether the data displayed within the
'current' record area is stored in the database. Following a
"QUERY" request, the number of records which the operator has
already viewed is accumulated in the "Count:" indicator. The
status areas are discussed in more detail in the section on
"Keyboard Functions".

2.3 Keyboard Functions

As data is entered and retrieved, the operator controls the
application processing through a set of predefined keyboard
functions. A summary of these functions is provided in
Figure 2.3. Each function is invoked by depressing one or
more keys from the keyboard of the CRT. Since terminals vary
greatly in number of function keys and layout, each terminal
will have a unique sequence for invoking a particular
function. However, each terminal can display what function
keys do what by depressing the "escape" key, followed by the
'k' (lowercase) key. This key layout can subsequently be
printed out by the operator with the PRINT function described
later. Additionally, the function keys may be customized by
the user by modifying the crt definition IAF uses. This is
described in Appendix A.

WO U WK

o e —————————— e — +
I /\ I
| / \ |
| I |
| I I
| Il I
| |1 I
[APPLICATION [

I I |
| I |
| I !
I I |
| = e T >
[{=mmmmmm e e >
| I I
| I |
I [I
I (N I
| I DISPLAY AREA |
I I |
I I I
! \ / |
I \/ I
I " System Message Area" |
| Char Mode: Replace Page: 1 Mode : Insert Stored : NO Count :*0 |

Il "page" || I I |

"Character Mode" || "Number™" | "Stored" || I
Indicator "Processing”| | "Record" || I
"Mode" | "Indicator” |

"Indicator" ||

"Retrieved"| |

"Record Count"

IAF Screen Layout

Figure 2.2.

—— - g

—— — o — e e o

EEESEEERIESEES

P T Y T T T T3
1 3 3t - 222 2 g

Clear Block

- —— o ——— —— —— o —— - =
3t]

F

block.

Clear the contents of the current field|

from cursor to end of field

After Query: Move cursor to next
record. If at last record, retrieve
next record and display.

After Insert: Move cursor to next area
and initialize for data entry.

e e —— e S AT N E N ESEESEEESRERRE

-—
S ESRSSEEE

Move cursor up one record area on page

After Query Only: Display next set
selected records, one in each record

area.

T T T T T T T T T
e R R EES S e ——

Terminate processing
and begin processing

current block
next block

P T T T T T T T T T 1t T
3 1T 1 1 1 1+ 1 3 3 1ttt -t b kol

Terminate
and begin

Clear .all
of block.
Insert Mode: Initialize default values
and move cursor to first record area.
Query Mode: Release selected records
and move cursor to first record area.

current block

processing
previous block

processing

the data in all record areas

Clear data in all application blocks.
Processing resumes 'in first block

— e e o i S s T T M T M Em s ME EE M ST AR ST AR ST A IR EEEI IS IS RITERISES
- 1 1 - -1 3 1

Store current record into database.
Must be in "Insert" processing mode

————— — — —— T i e it T M T e MR m M SE TR IR IS NI IS S ENETNEESS
- T 1 1 13- 1t 3 1+ 1 11t R ot i

Request selection of specified records.

- — — e d w— on — — =
T 3111 2 1t b

=E=E==E=E= oS EEREESEREER

.—......——_—__—__—___.__.___.__._._‘_____——_._._—_.—‘-

Must be in Query/Update processing mode|

IAP Keyboard Functions "

igure 2.3 - Part 1 of 2

+

4-9

Update || Request that the changed data fields I
	in the current record be permanently
	recorded in the database.
	Must be in Query/Update processing mode

Delete || Request that the current record be |

deleted from the database. |
|| Must be in Query/Update processing mode|

Change Processing || Change from one processing mode (Insert|

Mode Il or Query/Update) to the other. |

Change Character || Change from one character mode (Replace]

Mode |] or Insert) to the other.

Move Cursor Left || Move cursor left one position within |
|| current field. I

Move Cursor Right || Move cursor right one position within |
|| current field. |

Help | | Display help message for current field |

Display Attributes|| Display the attributes for the current |
|| field. I

Redisplay || Redisplay current screen page after |
|| communications or terminal failure. |

e TP Irer P PP T PP L P R P P TP P P R 1 5 4 4

Exit || Terminate IAP application processing |

s ossomo—msso======4 S sSSC===S=sS=SSSESSSs=SosES====SS======+4

Print Form | | Request printing of 1) Current page I
|| 2) Entire Form 3) Function key layout |

===================++=:=======================================+

®" IAP Keyboard Functions *

Figure 2.3 - Part 2 of 2

R temm————— + e Fmm
| MOVE | MOVE | | |
| CURSOR | CURSOR | | QUERY | INSERT
| LEFT | RIGHT | | (PFl) | (PF2)
I (<=) | (=>) | I |
fmm—————— tm——————— + Fmm——————— fmem——————
| I
| NEXT | PREVIOUS
| FIELD | FIELD
$mm—mm———— + | (7) | (8)
| PREVIOUS | fomm e fmmm——
| FIELD I | |
| (BACK | | NEXT | PREVIOUS
I SPACE) | | RECORD | RECORD
tomm -t | (4) | (5)
tmmm—————— + e Fmmm—m————
| CHARACTER| | |
| DELETE | | NEXT | PREVIOUS
| | | BLOCK | BLOCK
| (DELETE) | | (1) I (2)
tmm—————— + - tmmm——————
|
fmmm + | HELP
I I
I I (0)
trm—m————— + | Hemmm——mmm—m
} NEXT FIELD :
| (RETURN)]
frmmm +
FUNCTIONS KEYSTROKES
EXIT CTRL - Z
DELETE CTRL - D
CLEAR FORM ESC - C
DISPLAY FUNCTION
KEYS ESC - K
NEXT SET ESC - S
PRINT FORM ESC - P

IAF Function Key Layout - VT-100

Figure 2.4

CLEAR
FIELD

+
|
I
I
I
+
I
I
I
(9) I
+
I
I
|
|
+
|
|
I
I

CHANGE |
CHAR MODE‘

DISPLAY
ATTR

(s)

2.3.1 Processing Modes and Actions

An IAF application may be processed in either of two modes:
"INSERT" or "QUERY/UPDATE". By selecting a processing mode
the operator states their intention to either insert new
records or retrieve existing records with the possibility of
making changes. Therefore, each mode places restrictions on
the functions which the operator may perform. When initially
executed, the application is in "INSERT" mode.

CHANGE MODE Function:

An application may be switched from one mode to the
other by depressing the 'CHANGE MODE' key. The
status indicator "Mode:" on the bottom line will
alternate between "INSERT" and "QUERY/UPDATE" as the

CHANGE MODE key is depressed.

In an empty block, changing from QUERY mode to
INSERT/UPDATE mode will cause the first record to be
initialized with default INSERT values. Changing
back to QUERY mode will clear the default values.

The following functions are available only in the
mode indicated.

Insert Mode

INSERT Function:

This action will cause the contents of the current
record area to be inserted into the database table.
The application must be in 'INSERT' mode. If the
current record is already stored, the request will
be rejected. When a record has been sucessfully
inserted the "Stored: " indicator will change form
'NO' to 'YES'.

Query/Update Mode

QUERY Function:

This action will retrieve those records in the
database table who satisfy the defined criteria.
There are two ways to state these conditions. Prior
to selecting the QUERY function the operator may
enter data into any field. wWhen the query 1is
executed only those records that have a
corresponding column value equal to the entered
field values will be returned.

For instance, after entering data into this sample
screen

DEPTNO: 30 JOB: SALESMAN

the following 'where' clause would be generated in
the query:

WHERE deptno=30 AND job="'SALESMAN'

and only those rows where the 'deptno' column is
equal to 30 and 'job' column is equal 'SALESMAN'
would be returned.

The second way a user may conditionally retrieve
rows is by entering a specific consdition to be met.
After the QUERY key has been entered the operator
will be prompted on line 24 of the screen for the
additional text. Expanding on the above example,
the operator may only want to see those salesman in
department 30 with a salary greater than $2000. The
following response:

QUERY WHERE?: sal > 2000

will cause the 'Where' clause:

WHERE deptno=30 AND job='SALESMAN' AND sal>2000

to be generated. Only those records which satisfies
all these conditions will be returned. Essentially,
any condition that could be specified in SQL
directly could be specified in IAF providing it may
be stated on one line. The user however must be
aware of what table is being queried and know the
names of the columns in that table. Refer to the
SQL language User's Guide for additional details on
constructing a 'Where' clause.

Following the entry of all conditions, IAF will
display rows returned by the query in each of the
blocks records. The 'Count :' indicator will
reflect the number of records displayed, and a YES
in the stored record indicator (Stored :) indicates
the current record is in the database. If the query
results in more rows than <can be initially
displayed, the 'NEXT RECORD' and 'NEXT SET'
functions are used to view the remaining records.

Each time a new query is executed the results of the
previous query are lost.

UPDATE Function:

Following a QUERY request, the retrieved records may
be updated. One record is updated at a time. The
operator moves the cursor within the '‘current'
record to the fields to be changed. Only fields
which were designated as 'updatable' may be
modified. When all the desired fields have been
entered, the UPDATE function is invoked to have the
modified data written to the database.

DELETE Function:

The DELETE function deletes the ‘'current' record
from the database. The deleted record is scrolled
of the screen, and each remaining record is scrolled
up on position. The last record will contain the
next record returned by the query or will be blank.

2.3.2

Processing in Either Mode: Field Control

NEXT FIELD:
This function will advance the cursor to the next
field in the current record area. If data has been

entered into the present field it will trigger the
field's edit checking. If an error is detected, an
error message is displayed, and the cursor position
remains unchanged. The error must be corrected
before the cursor can be advanced.

1f the cursor is positioned to the last field of the
record, NEXT FIELD will advance the cursor back to
the first field of the current record area. If the
next field of a record is defined on a different
screen page, the new page is displayed and the
cursor positioned to the appropriate field.

A field may have been defined to use the auto skip
feature. In this case if data is entered into every
character position, the cursor will automatically
skip to the next field. This implied NEXT FIELD
will also trigger field editing.

Fields which can not be entered by the user will be
skipped over.

PREVIOUS FIELD:

This function is similar to NEXT FIELD except the
cursor advances in a backward direction to the
previous field. If the cursor is positioned to the
first field in the record area, PREVIOUS FIELD will
move the cursor to the last field in the current
record area. No edit chacking takes place when this
function is executed.

If the previous field is on another screen page, the
new page is displayed, and the cursor positioned to

the appropriate field.

CLEAR FIELD: This function will erase the contents
of the current field from the current cursor
position to the end of the field.

2.3.2.1

Character Control

CHANGE CHAR MODE:
Two modes of character entry are supported. In
'Replace' mode, each entered character replaces the

character previously displayed at the cursor
location, and the cursor is moved one space to the
right. In 'Insert' mode, entered characters are
inserted at the cursor location, with all the
characters from the cursor position to the end of
the field shifted to the right one position.

The CHANGE CHAR MODE function will change from one
character mode to the other. The current character
mode is displayed in the 'Char Mode:' indicator on
line 24.

MOVE CURSOR LEFT:
This function moves the cursor to the 1left one

position.

MOVE CURSOR RIGHT:
This function moves the cursor to the right one

position.

DELETE CHARACTER:
This function will delete the character pointed to
by the cursor. Remaining characters in the field
are shifted one space to the left, overlaying the
deleted character.

15

4-16

2.3.3

Record Control

NEXT RECORD:
Insert Mode:
For a single record block, NEXT RECORD will
erase the data area and reinitialize the
area with the default values.

A multi-record block will advance the
cursor into the next record area, and
initialize the fields with their default
values. If positioned to the last record
area, all the areas will scronll upward one
record area, with the top area disappearing
from view. The cursor will remain in the
bottom area which will be cleared and
initialized with the default field values.

Query/Update Mode:
For a single record area block, NEXT RECORD
will display the next record retrieved.

For multi-record blocks, the cursor will
advance to the next record area. If
positioned to the last record area, all
areas will scroll upward, and the next
retrieved record is displayed at the
bottom. The top record will disappear from

view.

As each new record 1is displayed the
'Count:' indicator will be incremented by
1’

NEXT SET OF RECORDS

This function allows the operator to display the
next 'n' records, where 'n' is the number of records
within the Dblock. The 'Count:' indicator is
incremented by the number of new records displayed.
This function is used in QUERY/UPDATE mode only.

Referring to the sample blocks in Figure 2.2, this
function will display the next record in block
'"EMP1', whereas the next nine are displayed in
'EMP2'.

For multi-record blocks, PREVIOUS RECORD will move
the cursor up one record area. If positioned to the
top area, 'At Top of Block' message is returned and

the cursor is unchanged.

Once an inserted or retrieved record has scrolled
off the top of the viewing area it can not be viewed
again without issuing a new query.

Clear Record:

Clear the content of all fields 1in the current
record area. For INSERT mode, the fields are
initialized with their default wvalues. If the
current recnrd area contains a database record
(indicated by Stored : YES) it can not be cleared.
CLEAR BLOCK or CLEAR FORM must be used to clear the

record area.

2.3.4 Block Control

IAF applications can contain one or more blocks. When the
application is executed, processing begins with the first
defined block.

NEXT BLOCK:

This function will terminate the processing of the
current block, causing the first screen page of the
next block 1is displayed. The data within the
current block is retained, and available if the
block is reprocessed. The cursor is positioned to
the first field within the first record area.
Blocks are accessed in the order in which they were
defined to the IAG. The NEXT BLOCK function in the
last block will take the user back to the first

block.

PREVIOUS BLOCK:

This function will terminate the processing of the
current block and cause the first screen page of the
previous block to be displayed The cursor is
positioned to the first field within the first
record area. Blocks are accessed in the reverse
order of definition. 1f positioned to the first
block, PREVIOUS BLOCK will take the user to the last
block.

CLEAR BLOCK:

This function will clear the field contents in the
current block. All record areas will be cleared.
If processing a QUERY, the records which have not

been viewed are lost.

CLEAR FORM:

This function clears an entire form or application.
All the data within each block is cleared, and
processing continues in the first block. The
application is in the same state as when initially
executed.

2.3.5 Help Functions

HELP Message:

This function will display a help message for the
current field. The message is displayed on line 23
in the System Message Area. The content of the
message is entered at application generation time.

DISPLAY ATTRIBUTES:
This function will display the attributes of the
current field in the message area at the bottom of

the screen.

SHOW FUNCTION KEYS
This function will display the function key

assignment for the current terminal type.
2.3.5 Control Functions:

REDISPLAY:
In the case of a communication 1line error, or
terminal failure, this function will cause the last

screen to be redisplayed.

QUIT:
This function causes normal termination of the IAP.

PRINT:

This function allows the operator to print the
current screen page, all the pages of the
application, or the function key layout. When PRINT
is requested the operator must specify the name of
the file where the printed output will be stored.
Any valid operating system file name is permitted.
Following the file specification the following
message will appear on line 24:

Select: 0)Abort 1)Current Page 2)Form 3)Funct Key ?

After choosing 1, 2, or 3, the following message
will appear:

Send File to System Printer ? _

A 'Y' response will cause the IAP to issue a system
command to have the contents of the created print
file printed on the system defined printer.

This page intentionally left blank.

COMMENTS PLEASE

Please assist us in improving this manual and in correcting
any documentation errors. Forward your comments to:

Documentation Coordinator
Relational Software, Inc.

3000 Sand Hill Road, Bldg. 3-180
Menlo Park, CA 94025

MANUAL: INTERACTIVE APPLICATION FACILITY -
Terminal Operator's Guide

SUBJECT

PAGE INCORRECT UNCLEAR INCOMPLETE

COMMENTS

Name:

Organization:

Address:

Telephone:

INTERACTIVE-APPLICATION

FACILTITY

APPLICATION DESIGN GUIDE

Chapter 1 -
Chapter 2 -
Chapter 3 -

Chapter 4 -

Chapter 5 -

TABLE OF CONTENTS

Introduction
IAF Overview
Application Structure and Design

Application Definition - Interactive
Application Generator

Advanced Application Techniques

Appendix A - CRT Interface Utility

4-29

INTRODUCTTION

1.0 Manual Objectives and Use

This manual presents the Interactive Application Facility.
It explains the purpose and features of IAF, and describes

the procedures for generating an IAF application. The
intended audience includes those persons responsible for
application design and generation. The level of presentation
assumes a working knowledge of the ORACLE Data Base
Management System and the SQL Language.

2.0 Structure of the Document

This manual is divided into four sections:

Section 2 - "IAF Overview" - Describes the purpose
of IAF and explains the component utilities;
Interactive Application Generator (IAG) and

Interactive Application Processor (IAP).

Section 3 - "Application Structure and Design" -
Presents the features and structure of an IAF
application.

Section 4 - "Application Definition - Interactive
Application Generator" - Describes the process of
defining and generating an application. The
generation of the sample "employee" application is
discussed.

Section 5 -~ "Advanced Application Techniques" -

Presents some additional techniques for using the
features of IAF.

Appendix A - "CRT Interface Utility" - Describes the
IAF utility allowing a user to specify a
non-standard CRT for use with IAF.

IAF-OVERVIEW

2.1 Introduction

IAF is an application facility which provides full screen
communication with a CRT terminal device, interpretation of
operator requests, data wvalidation, and the necessary
database operations to store, retrieve and update the
requested data. Basic editing functions are supported which
verify data types, check ranges, and test for existence
within a predefined table of values.

Most CRT terminal types may be used providing they have basic
cursor control features and have been previously defined to
IAF. As distributed, IAF supports the VT100, vT52, OWL, or a
compatible device. Appendix A describes generating new crt

definitions.

An application consists of one or more screen pages. Figure
2.1 is an example of a single screen page. Each page may
contain one or more data input and display areas. A display
field may correspond to a column in a database table. In
figure 2.1 each display field corresponds to a column in the
"EMP" table in the ORACLE sample "PERSONNEL" database. The
page may be enhanced with prompts, help text, and format
characters to improve readability.

Operators interact with IAF applications via a predefined set
of keyboard functions. These functions allow the operator to
move from field to field, screen to screen, initiate insert,
retrieval and update operations, control the application
processing modes, and request help information.

Data is entered a field at a time. After a field is entered,
the cursor is automatically moved to the next field area.
Edit criteria may be associated with any input field. A
field may be tested for data type (character or number) ,
format (ie. date), value range, Or existence in a table of
acceptable values. If the input field is incorrect, the user
is immediately notified, and required to correct the error
before the process can continue. 1In this manner the user is
guided through a display until the input process is
completed.

EMPLOYEE PERSONNEL RECORD FORM

EMPLOYEE NUMBER : 7956_
NAME : MARTIN
JOB : ANALYST
SALARY : 4380__
COMMISSION : _

DEPARTMENT NUMBER

Figure 2.1 - ‘Sample Application Screen Layout'®

30 NAME : SALES

When requisite displays fields have been filled, the data may
be inserted into the database via keyboard function. Data 1s
stored a row at a time. Once stored, that row is immediately

available to other users.

An IAF application may be used to retrieve previously stored
data. Upon retrieval, the data is formatted and displayed on
the user's terminal. Data is retrieved one row at a time.
Once displayed, the user is free to modify any field which
has been designated for update. When all modifications are
completed, a keyboard function will initiate the updating of
the database. Data which is no longer needed may be deleted.

2.2 Component Description

The Interactive Application Facility consists of two utility
programs. The Interactive Application Generator (IAG)
interactively communicates with the designer to define the
user's application. The Interactive Application Processor

(IAP) executes the defined application under the operator's
control. Figure 2.2 illustrates the relationship between

these utilities.
2.2.1 Interactive Application Generator

The IAG utility is executed from the application designer's

terminal. The designer must specify the name of the
application being defined. For new applications IAG will
begin the question and answer session. For existing

applications a previously created reponse file may be used.
The questions address the following areas:

— Database to be referenced within the application.

- Specification of associated database tables and
columns.

- For each field (column) within a table:
_ Edit criteria to be applied to input data.
- Initial value assigned to this field.

- SQL statement to be executed when the field is
entered or retrieved.

- Placement of field on a screen page

- Placement of prompts, explanatory text, and line
drawing characters on each screen page.

———————— et
/ \ | INTERACTIVE I
| Questions [K————==—= > | o +
I & | <=wmmommm > APPLICATION | {mmmmm ==~ >| <applname>.inp |
\ Answers / | R > |
———————— i GENERATOR (IAG) | fommm e e m e ———
—————————— B e o
/ \ I "Response File"
—————————————— I
P
"Application Designer” Pl
\ /
\/
o — +
| <applname>.frm | "“Application Image File"
| |
fomr e — +
I
P
[l
I
\ /
\/
———————— e et
/ NAME: \ I INTERACTIVE | N +
| ADDR: | <====—=- > | APPLICATION [{mm—mm——m > USER'S |
| . K > PROCESSOR | {mmmmm——— > DATABASE |
\ . / | (IAP)] o — +
________ s =

"Terminal Operator”

Application Development Process

Figure 2.2

These questions will be asked repetitively wuntil the
application is defined. When the definition is complete, IAG
compiles the responses into an internal format and stores the
result on disk. The generation process 1s now complete and
the application can be executed.

As the designer responds to each question, the question text
and associated response is saved in an input work file. This
file may be used as an alternate input source in subsequent
sessions with IAG. Hence, by altering a saved answer file
and re-executing IAG, existing applications can be easily
modified. A standard text editor may be used to modify the
reponse file.

2.2.2 Interactive Application Processor

An IAF application is executed by invoking the IAP utility.
The operator specifies the name of the ‘image file'
previously created by IAG. If the referenced database is
secure, the user will be prompted for a valid user id and
password. In addition, a user must be granted privileges to

the desired data.

Figure 2.3 1illustrates the relationship of IAP to the
terminal operator and ORACLE database. On the front end IAP
provides the screen handling functions which communicate with
a CRT terminal, interpret the operator's request, control the
processing flow, and validate, convert, and format the data.
The back-end uses the standard facilities of the Host
Language Interface to execute SQL statements which
communicate with the user's database.

The 'image' file contains a set of tables which describes the
application. The information provides the screen formats,
individual field descriptions, and overall structure. IAP
uses these tables to guide the application processing.

The IAP utility is viewed by ORACLE as any other application
program using the SQL interface. As the operator enters
data, the appropriate edits are performed and SQL (SELECT,
INSERT, UPDATE, or DELETE) statements are executed against
the database. '

/ NAME: \
| ADDR |
| . |

\ . /

TERMINAL " ———-——--
OPERATOR ~=—=——=- -
/ \
/\
/ N\
[
I
N/

\/
++=========::==:=============================++
I I
| SCREEN HANDLER -~ TERMINAL INTERFACE ||
I I
R Fom e +1
|1 DATA | APPLICATION I
|| EDIT / VALIDATION | FLOW OF CONTROL I
[+ —~—r e o e +1
["solL" ||
! ||
I HOST I
|1 LANGUAGE INTERTFACE Pl
I I
++============:===:::::::::::::z::=====::====++
| |
| | " 9 R A C L E " |1
I I
++============::============================++

/\

/ N\
I
I

N /

\/

o e e +

Interactive Application Processor - IAP

Figure 2.3

The operator uses the IAP function keypad to control the
application flow. The operator is free to choose which
screens to process and the order of processing. Repetitive
processing of a screen allows the operator to enter or
retrieve multiple rows of data. When the operator's tasks
are completed, the 'Quit' function will terminate IAP. For
additional information on executing IAP refer to the "IAF
Terminal Operator's Guide".

APPLICATION-DESTIGN

3.1 Introduction

This section will present the basic structure of an IAF
application. The objective is to provide the reader with a
general understanding of an application's components,
providing sufficient information to understand the design and
definition of a simple application. The details on defining
an application will by deferred to Section 4 : The
Interactive Application Generator (IAG)

3.2 Sample Application

Throughout this chapter references will be made to two sample
applications. These applications were designed to utilize
most of the features of IAF, and will illustrate the concepts

being presented.

The first application uses the "EMP", "DEPT", and "PROJ"
tables within the ORACLE "PERSONNEL" database. They were
chosen because the reader is already familiar with the data
in these tables from the SQL Language Examples. A few simple
screens will be defined which allow entry and retrieval of
data from these tables. Figure 3.1 provides the
application's screen layouts which will be referenced in this
manual and the "IAF Terminal Operator's Guide". Figure 3.2
shows the columns defined for these database tables.

The second application is an on-line order entry system. It
is designed to allow operators to enter orders by storing the
information directly into an ORACLE database. Figure 3.3
shows the three screen forms available to the order operator.

EMPLOYEE PERSONNETL RECORD
NUMBER : SALARY
NAME : COMMISSION
JOB
DEPTNO: DEPT NAME
+===.==============================
EMPLOYEE PROJECT ASSIGNMENTS
PROJNO PROJECT NAME

*Employe” Application Screen Layout

Figure 3.1

Database: 'per
+ozmm=m======+4
| Table Name |
$o===========+4
| emp |
l I
I |
I |
| I
I I
4===x=========4
| dept |
| |
I I
I |
+============+
| pe I
! I
t+============+
| proj |
| |
| I
| |
$+o============4

"Employee®” Application - Database Tables

sonnel'
======!=======+===========
Column Name | Data Type
======Z=======+===========
empno | number
ename | char
job | char
sal | number
comm | number
deptno | number
======:=======+===========
deptno | number
dname | char
loc | char
empcnt | number
o===== =======+===========
empno | number
projno | number
======:=======+===========
projno | number
pname | char
budget | number
empcnt | number
======I=======+===========

Figure 3.2

F———— e — e b — ———— — — }

unique|
non-un |
non-un|

unique|
non-un|
non-un|

!
======4
non-un|
non-un|

o m e mm s m—— e —m— e — oSS s oS —o—Ss oo o ST EETT
I |
| ORDER ENTRY APPLICATION l
|

| " ORDER FORM" i
I |
VNI St +
| |
| ORDER NUMBER: DATE |
| . |
e —————— e — o — +
I CUSTOMER INFORMATION | SHIP TO INFORMATION |
o —— e ————— o —— e — e +
| CUSTNO: | |
| NAME | NAME |
| ADDR I ADDR |
| CITY: | CITY: |
| STATE: _ ZiP: | STATE: Z1P: |
S PRSP S E e o mmm e —mmmm—— e — e — o s oo +
| PURCHASER: |
| oo e mmmmmmmmmmm—m— ST mmm—m—mmmmm— s S e oo o s o oo oo e T +
|Next Form is : Order Item Form Previous Form is : Qrder Browse Form |
e oSS o S— eSS oooo oSS EmmEE T +
PR PR R R PR Rttt +
| ORDER ENTRY APPLICATION {
|

I " ORDER ITEM FORM" |
| |
SRR S et +
| I
| LINENO PARTNO DESCRIPTION PRICE OTY/UNIT UNITS %
| - -

| SPECTAL INSTRUCTIONS: |
| |
I SPECTAL INSTRUCTIONS: |
| |
| SPECIAL INSTRUCTIONS: |
| I
| SPECIAL INSTRUCTIONS: |
| |
| SPECTAL INSTRUCTIONS: I
| |
e P B E SRS +
|[Next Form is : Order Browse Form Previous Form is Order Form]
et +

Figure 3.3 - 'Sample Application - Form Layouts'

4-33

ORDERNO CUSTNO CUSTNAME ORDER DATE PURCHASER

| Retrieve Order Summary : Enter field values for desired ORDERS.
f Select Inquiry function key.

| Review entire Order and/or Update Order Information:
| Move cursor to desired ORDER; Select Previous Block Function

Figure 3.3 - 'Sample Application Form Layouts' (Continued)

To enter an order the operator executes IAP to bring up the
"ORDER FORM". This form allows the operator to enter general
order information. After this data has been entered and
stored, the "Order Item Form" 1is processed to enter each
ordered item. Another form is provided to aid the operator
in reponding to customer inquiries. The "Order Browse Form"
allows the operator to search the database using one or more
search fields to retrieve a list of customer orders. Once

located, the operator may use the previous two forms to
review and modify the order information.

Figure 3.4 lists the database tables and columns used in this
application. The ‘'order' and ‘'orderitem' tables are of
primary interest, and are used to store the information
associated with each order. The other tables are used for
reference purposes only. The 'part' table provides a list of
valid parts. Later in this section a technique will be
presented for restricting part numbers to those in the list.
The table also supplies information about the ordered part.
In the same manner, the ‘'state' and 'customer' tables provide
a list of valid entries and related information. The state
code for the entered city is supplied by the '‘citystate'

table.

3.3 Application Structure

The next section describes the components of display
generation. Section 3.3.1 describes a display block, which
is a functional unit of a display. Section 3.3.2 describes
field specification; a field is a component of a block.
Section 3.3.3 describes screen format capabilities; and
Section 3.3.4 discusses terminal support details.

3.3.1 Block Specification

An IAF application consists of one or more application
blocks. Each block consists of a collection of fields which
map to a single database table. All tables referenced in an
application must reside in the same ORACLE database. An
operator may process in only one block at a time.

Within each block, the collection of fields may be displayed
multiple times. This allows multiple records (or rows) from
the defined table to be displayed simultaneously. However,
only one record may be processed at a time.

Database:

Table Name

SAMPLE

'order'

Column Name

'ORDER ENTRY'

Data Type

APPLICATION

DATABASE-TABLE-DEFINITIONS

orderno
date
custno
purchaser
shipname
shipaddr
shipcity
shipstate
shipzip

char

orderitem

orderno
lineno
partno
partprice
ordergty
instruct

number
number
number
number
number

number
char

number
number

customer

custno
custname
custaddr
custcity
custstate
custzip

number
char
char
char
char
number

Length Image
unique
non-unigqg

15

15

20

15

2
non-unigqg

20
unique

15

15 non-unigqg

2

2 unique
unique

15

20

15

2

Figure

When thinking about an interactive CRT application, it is
common to associate a screen page with the logical unit of
work. An operator thinks in terms of processing a display a
page at a time. Although IAF allows an application to occupy
multiple pages, the unit of work is a block, or more
precisely a current record within the current block. The
distinction is important in understanding the flow of IAF
applications. A loose association exists between a block and
the application's screen pages. A block may span multiple
pages, or multiple blocks could occupy the same page. The
application designer has complete freedom to position a field
within a block. The display location of a field will be

discussed later in this section.

In the sample order entry application three blocks have been
defined. Figure 3.5A defines the relationship between each
screen page and the associated block and database tables.
The 'Order' block was defined with one record display area,
therefore only one record occurrence of the order information
may be displayed. In contrast, the 'Orderitem’ block
contains five record display areas permitting up to five
orderitem records to be simultaneously displayed.

Figure 3.5B describes the blocks associated with the
"employee" application.

3.3.1.1 Block Control

IAF provides the capability for an operator, within a
multi-block application, to terminate the processing of one
block and begin another. When an application is executed the
operator is positioned to the first block which was defined
in IAG. The terminal operator can move from block to block
using the 'Next Block' and 'Previous Block' function keys.
The order of block processing is determined by the order of
definition. Requesting the 'Next Block' function while
processing the last defined block will jump forward to the
first block. Conversely, a 'Previous Block' request in the
first block will cause the last block to be processed.

orderitem

browse

Order Form

Order Item Form orderitem

Order Browse Form| order

4-37
______________ +
Record Areas |
______________ +
1 |

I

5 |

!

8 |

|

______________ +

order Entry Application - Block Specifications

Figure 3.5A

o —— e — o - o ———— +
| Block Name | Form Name | Table Name | Record Areas |
e o — e o ————— +
: emp | Personnel Record | emp : 1 I
| : I
| projects | Projects | pe I 3 !
| | Assignments | | [
| | | | |
e —— e s R B +

Employe Application - Block Specifications

Figure 3.5B

The blocks of an application are logically chained in the
order in which they were defined. The chain for the order
entry application is illustrated in figure 3.6. The 'Order'’
block is the first to be processed. Normally, the operator
would depress the 'Next Block' function key to execute the
‘Orderitems' block. When the order is completed, 'Previous
Block' brings the operator back to the 'Order’ block 1in
preparation to enter another order.

Processing a customer 1inquiry requires the use of the
'Browse' block. The block is obtained by advancing forward
using the 'Next Block' or backwards using the 'Previous
Block®' keys. From this block the operator can query existing
orders. when the desired order has been located, the
operator can view the expanded order information by advancing
to the 'Order' block.

When an operator leaves a block the current data is preserved
and will be redisplayed when that block is re-entered.

Advancing blocks in this manner may become tedious,
especially if they are processed in a random order.
Sequential block processing poses less of a problem. Trial
and error will determine an optimal size for an application.
Breaking a large application into multiple applications, with
fewer blocks, may simplify the operator interface.

3.3.1.2 Block Processing Modes

An application block can be processed in either 'Insert' or
'Update' mode. The processing mode states the operator's
intentions. In 'Insert' mode, records may only be inserted.
In update mode, records may be retrieved; retrieved records
can be updated or deleted. Although IAF will permit any user
an attempt to retrieve or modify data in a table, ORACLE will
reject the request if the appropriate database access has not
been granted.

When an application is initially executed it is automatically
placed in 'Update' mode. The 'Change Mode' function switches
the mode of operation. A mode is retained until explicitly
changed by the operator. Advancing from one block to another
does not effect the processing mode.

"Next Block™" o +
o > | |
| | "browse"]
I [I
"Next Block" $————- | == + | |
et > 1 I I I
I | "orderitem" I | BLOCK |
| I | | |
o R + | | | I
| | ! I I
| | BLOCK | o= |mm o +
"order" I | | |
| I I |
I I I I
BLOCK I o + |
I |
|- e +
| "Next Block"
_________________ +

*"order Entry”® Application - Block Processing Order

Figure 3.6

3.3.1.2.1 Insert Mode

To insert a record the application must be in 'Insert Mode'.
'Clear Block' will clear the block and initialize any default
values. The operator can then enter data into any field
which was defined as enterable. Fields are entered one at a
time until all the fields within a record area are complete.
Movement from one field to another is accomplished using the
'Next Field' and 'Previous Field' functions. The 'Insert'
function signals the completion of data entry and triggers
the insertion of a new row into the table.

3.3.1.2.2 Update Mode

Within 'Update' mode, an operator may construct an inquiry to
retrieve one or more stored records. To retrieve a record,
the operator may supply field values for the associated
columns in the target record. The 'Inguiry' function
initiates the retrieval of data. IAP will dynamically
construct a SQL query with a SELECT clause listing all the
database fields in the block, and a WHERE clause specifying
an '=' condition for each entered value. The operator may
explicitly supply additional retrieval conditions which are
added to the generated WHERE clause.

If no field values were entered and no additional conditions
are supplied, a WHERE clause will not be generated, and every

row in the table will be returned.

For example, using the 'Order' block the operator could
request all the orders for customer '18945"' . The entered
data would be

CUSTNO: 18945

Since no additional WHERE clause conditions were specified,
the following SQL statement will be created and executed by

IAP:

SELECT *
FROM ORDER
WHERE CUSTNO=18945

-

After depressing the '*Inquiry' key, the operatbr will be
prompted to supply additional WHERE clause text. Up to one
line of input is permitted. The entered text is appended to
the IAP generated WHERE clause. The 'AND' logical operator
is used to connect the generated predicates with those

supplied by the operator.

This supplemental text offers the operator greater
flexibility in selecting the records to be retrieved. If no
fields are entered within the block, only the supplemental
text will comprise the WHERE clause. An ORDER BY clause
could be specified as part of this text, allowing the
resultant rows to be returned in a sorted order.

Following the retrieval request the records satisfying the
query will be displayed. The maximum number of records
displayed is equal to the number of record areas defined for
the block. If more records are retrieved than can be
displayed, the 'NEXT SET' function will cause the next page
of records to be displayed. The record areas may be scrolled
by entering the 'Next Record' function when the cursor is
positioned on the bottom line. In this case records are
scrolled up , with the next record displayed in the bottom
area. The top record will disappear from view. There is no
facility to page backward; the retrieval operation must be
re-executed to review a passed record.

3.3.1.2.3 Updating a Retrieved Record

Retrieved records may be updated one at a time. Only the
record in the 'current' record display area can be updated.
The 'current' record area is the area in which the cursor is

positioned.

only fields for which update has been allowed may be
modified. When all the desired fields have been modified,
the 'Update' function is used to write the updated record to

the database.

The operator may move the cursor to another record display
area using the 'Next Record’ and 'Previous Record' function

keys.

3.3.1.2.4 Deleting a Retrieved Record

The 'Delete' function deletes the ‘'current' record from the
database.

3.3.2 Field Specification

A block can contain one or more fields. Each field within a
block is identified by a unique name. Field names do not
have to be unique across blocks.

'Database' fields map directly to a column in the block
defined table. Fields which are not mapped are called
'Control' fields. Control fields can be entered by the
operator, or initialized with database information. They are
useful for carrying data forward from block to block, or as
reference aids for the operator.

The application designer can specify whether a control or
database field can be entered by the operator. Updating a
database field may be permitted only if the field is not part
of the primary key (see Section 3.3.2.3 for a discussion of

primary keys).

In the ‘'Order' block, order number is an example of a
database field. 1Its value is mapped to the 'orderno' column

in the ‘'order' table. An operator can input a value into
this field, but since the field is part of the primary key

updating is not permitted.

The customer name is a control field and is used to verify
that the correct customer number has been entered. Entering
this field is not permitted.

3.3.2.1 Field Data Types

Each field has an assigned data type. The type will
establish a set of validation rules which will be applied
when the field is either entered or modified.

43

3.3.2.1.1 Character Data Types

Two character data types are supported. The column
associated with this field type must be specified as 'CHAR'
on CREATE TABLE statement.

Alpha - Only alphabetic characters A thru Z and
space are permitted

Char - Any printable character is acceptable

3.3.2.1.2 Numeric Data Types

There are three explicit forms of the numeric data type.

Number - May contain the digits ‘o' thru '9', ‘'E',

'y, '-', and '.'. Numbers may be entered or
displayed in scientific notation (ie. 3,287 |is
3.287E3) .

Int - Only integer numbers are accepted. Only
digits '0' thru 'g', '+' and '-' are accepted.

Money - A special number format for field which

contain money values. Excludes scientific notation,
and is limited to two digits to the right of the
decimal point.

3.3.2.1.3 Date Data Types

There are three 'date' data types. Each has a specific
entry/display and storage format.

Date - The entry/display format is mm/dd/yy; a
length of 8 is required. The values for mm, dd, and
yy are validated. mm must be in the range 1 to 12,
dd must be in range implied by the month including
leap years. The value is converted and stored in a
Julian Day number format (Discussed below).

Edate - Similar to 'date' type except entry/display
format is in European date format (dd/mm/yy). The
same validation is used and the value is stored in
Julian Day number format.

YYMMDD - The entry/display format is mm/dd/yy and
has the same validation as ‘'date' type fields. The
value is stored as a 6 digit integer in the format
YYMMDD.

IAF converts and stores 'date' and 'edate' type fields from a
calendar date into its corresponding Julian Day Number. On
output, fields of this type are assumed to be in Julian Day
format, and are converted back to calendar date. Simple
mathematical manipulation (such as addition or subtraction of
days) may be performed on date data in this format. There
are limitations with 'date' and 'edate' type fields. No
format conversion is performed on 'date' and ‘'edate' type
fields when referenced in Host Language program calls.
Therefore, when these fields are referenced in a host
program, they will appear as a julian date in numeric form.
If calendar date format is required in such a program, logic
would have to be included to perform the conversion from
julian number format to calendar date format. The algorithym
for converting to and from julian day is included with the

documentation.

3.3.2.1.4 Time Data Type

Time - Defines a field type of 'time' with an
entry/display format of HH:MM:SS. The field must
have a length of 8. Entered values will be verified
for a valid time. The stored format is the number
of seconds from midnight.

The 'time' format is only recognized by IAF; an operator
usipg UFI or a Host Language program would have to perform
their own conversion.

3.3.2.3 Default values

A default value may be assigned for any data or control
field. The default values are used only when a block is
processed in 'Insert' mode. When the block is 'Cleared' the
default values will be displayed. The default value may be a
literal, system default, or the value of another field.
Literal values must conform to the valid formats for the
field's data type. The system defaults are the current date
for date type fields, and the current time for 'time' fields.

If a field's default value is to be copied from another

45

field, both fields must have the same data type. The copied
field should be from a different block. .np Assigning a
default value and designating a field as, "non-enterable”
restricts the value to the default. For example, in the
"employee" application, a version of the application could be
generated which would restrict user's to entering employees
only into a specific department.

If a default is not specified and no data is entered, the
field is assigned the "NULL" value.

3.3.2.3 Pield Initialization

3.3.2.3.1 Copying the Primary Key

The term primary key is used in ORACLE to refer to the first
column defined in a table. However, in IAF, the term is used
in its strictest sense to mean that collection of columns
which uniquely identifies a row in a table. Some tables may
not have a primary key in this sense if there are rows in the
table which are duplicated. Currently in IAF, only tables
which have a primary key can be updated. This is because IAF
qualifies its wupdates and deletes by the primary Kkey.
Updating a row then, will have the effect of updating or
deleting all rows where the set of columns comprising the
primary key has the same value as the row being updated.

IAF allows the user to specify those fields in a block which
comprise the primary key. Any field which is part of the
primary key may have its value copied from a field in a
different block. The value will be copied in both '*Insert'
and 'Update' modes. In a relational system, the relationship
between two tables is established by a common domain. For
example, employees and departments by department number, and
orders and line items by a common order number. This
facility allows these records, which are entered in separate
blocks, to be related by automatically copying the common

data from one block to another.

In the 'Orderitem' block the order number is not displayed.
However, order number is necessary to associate a set of line
items with a particular order. In the 'Order' block
definition, 'orderno' is defined as a non-display field whose
value is copied from the ‘orderno' field in the 'Order’
block. Thereby the common order number is automatically
carried forward into each 'Orderitem' record.

3.3.2.3.2 Selecting Into a Field

A SQL SELECT statement may be defined with any field. This
query is executed each time a field is entered or modified,
and also after a query. This SELECT should not be confused
with the SELECTs which are implicitly created by IAP to
retrieve records into a block. The SELECT may serve three

purposes:

- Test for the existence of a field's value in a
table of acceptable values.

- Select information to be displayed which will aid
the operator in verifying the correctness of the
input.

- Select information to initialize the value of one
or more fields.

The last two purposes will be discussed in this section.
Refer to section 3.3.2.5 for a discussion on "Existence

Checking".

Any field can be assigned a value which is returned by a SQL
query. The 'INTO' clause identifies the block fields where
the data is to be returned. Each field named is postionally
associated with a corresponding column name in the 'SELECT'
clause. The 'FROM' clause identifies the queried tables.

Only the first row returned from the query is processed. All
subsequent rows are ignored. The fields identified in the
'INTO' statement are assigned the corresponding values
returned in the first row.

The 'WHERE' clause should normally contain a single predicate
of the form:

WHERE <column name> = &<field name>

where <column name> is the database column associated with
the specified <field name>. The '&' designates the <field
name> as a substitution variable whose value will be
substituted into the 'WHERE' prior to execution. The <field
name> is commonly the field in which the SQL statement is
being defined.

47

For example, ‘'partno' 1in the ‘orderitem' block has the

following query defined:
SELECT desc, price, unitqgty

INTO orderitem.partdesc, orderitem.partprice,
orderitem.unitqgty
FROM part

WHERE partno = &orderitem.partno

Field names may be qualified by the block name they reside in
and this is generally considered a good idea, especially if
the field name appears in more than one block. When a part
number is entered the query is executed, and the fields
'partdesc', 'partprice', and 'unitqty' will be assigned the
values returned. These values will be immediately displayed
and overwrite any previous values. For each new value of
'partno', the SQL query is re-executed, and the fields in the
"INTO' clause re-initialized.

In the above example, 'partdesc' is the description of the
entered ‘'partno'. This information aids the operator in
determining whether the correct part number was entered.
'partprice' and ‘'unitqty' initialize the part and quantity
fields and which will be stored with the related line item.

NOTE: When SELECTS are executed, not all fields appearing in
the INTO list may be set. In INSERT mode, all items will be
set. However in QUERY/UPDATE mode, only those fields which
are not columns in the table associated with the block will
be set. The reason for this being that when records are
retrieved, the stored value should not be overwritten by a
field SELECT which executes after a row is returned.

3.3.2.4 Record Uniqueness

IAF has an opton that allows a user to verify that a record
is unique prior to inserting a record. Unique in this case
means that no two records will have the same primary key (as
defined above). This is because ORACLE can prevent
duplicates only in the case where one column defines the
primary key. The uniqueness check is performed when all the
fields in the primary key have been entered. If the record
is found to exist already, the entire record as it is stored
in the database will be retrieved and the message "Record
already exists" will be displayed, otherwise the message "End
of Query" will be displayed. This option only occurs if in
INSERT mode.

IAF will not allow fields within the primary key to be
updated. If these fields need to be modified, the record
must be deleted and re-inserted with the new values.

3.3.2.5 Field Editing

The IAP utility will perform edit checks on fields as they
are being entered for either update or insertion. If a field
fails an edit check the operator is immediately notified and
requested to enter correct information.

The following is a list of the supported edit checks:

Data Type Check
The field will be verified based on the defined data

type (Alpha, Char, Number, Date, etc.).

Length Check
The defined length of the field determines the maximum

number of characters allowed. Less than the maximum
is allowed unless the field is defined as fixed
length, requiring each position to be entered (ie. zip
code, telephone number, etc.).

Range Check
A value range may be specified for a field of any data

type. A high wvalue, low value or both may be
specified.

Required Field Check
A value can be required for a field. The value can be
entered by the operator or assigned as a result of a
copy, SELECT or default value.

Note that if a value is not required for a field, but
the associated database column is defined as NO-NULL,
the update or insert will be rejected by ORACLE.

Existence Check

As discussed in section 3.3.2.3.2 "Selecting Into a
Field", a SQL statement may be defined which checks
the existence of the entered value in a database
table. The single predicate in the 'WHERE' clause
compares the column with the entered field value. If
no rows are returned , the field value does not exist
in the table, and the entry is rejected.

For example, in the 'Order' block, the entered value
for state code is compared with a list of valid state
codes. The following SQL statement was defined within
the 'shipstate' field:

SELECT state
FROM state
WHERE state = &shipstate

Note that no INTO clause was specified; therefore, no
fields were initialized as a result of this query.

3.3.2.6 Operator Aids

A help message can be defined to aid the operator in entering
correct information. This message is displayed at the bottom
of the screen page when the 'Help' function is requested.

A ‘'Display Attributes' function allows the operator to
request the information about the current field. The message
is displayed in the system message area at the bottom of the
screen. The attributes include the field's data type,
whether is is updatable, and whether it is mandatory.

In addition to this requested information, the current screen
page, block processing mode, character insert or replace
mode, and number of records retrieved are continuously

displayed at the bottom of the screen.

Error and status messages are also displayed when necessary
in the system message area.

3.3.2.7 PField Display

A field can be defined as either display or non-display. For
display fields, the page, line, and column location on the
screen must be specified. Each displayed field can have a
prompt message which is displayed above or immediately to the
left of the field's display location.

More than one record area can be defined for a block. The
application designer can define the number of lines in each
record display area, the number of display areas, and the
base or starting line of the first record area.

For example, the 'Browse' block can contain 8 order records,
with each record displayed on a single line. If a query
results in more than eight rows, the record display area will
scroll up, with new records appearing at the bottom, and
earlier records disappearing at the top. The scrolling
operation is controlled with the 'Next Record' or 'Next Page'
functions. once a record has scrolled off the screen, the
query must be reissued to be viewed again.

Field prompts will always be displayed within the first
record area. If multiple areas are defined, the prompts can
optionally be repeated in every area.

The 'Orderitem' block allows input and display of multiple
order items. The 'SPECIAL INSTRUCTIONS:' prompt is repeated
in each record as an operator aid. As records are inserted,
the 'Next Record' key will advance the cursor to the next
record area down the screen. When the screen is full, the
‘*Next Record' key will scroll the records up, allowing a new
record to be entered in the bottom area.

3.3.3 Screen Formatting

Each application block can occupy one or more screen pages;
more than one block can reside on the same page. Page
numbers are assigned by the designer. The numbers define
specific pages but do not imply a processing order.

A screen overlay of descriptive text may be defined for any
page. The text is specified separately from the block and
field definitions. IAP will merge the prompts and field
values with the screen image format, forming the composite

page.

Figure 3.7 shows the line drawing and explanatory text used
to create the screen display for the ‘'Order' block.

3.4 Terminal Support

An IAF application can be executed from any CRT terminal
device which has basic cursor control, character by character
transmission, and has been defined using the procedure
outlined in the "IAF Terminal Operator's Guide". The user
has complete flexibility in function key and control sequence
definition. A terminal identifier is associated with each
definition. This identifier 1is specified when IAP |is

executed.

o oo oSS os ST o T T T T +
| I
| ORDER ENTRY APPLICATION ‘
|

| "“"ORDER FORM™" |
| |
SRS S 4
I I
| l
I |
e —— e e — +
[CUSTOMER INFORMATION] SHIP TO INFORMATION |
o — o ——————— 4
| | |
I | I
| | |
| | I
| | |
o ————— o ————_———— e —— e — — — 4
| I
SRR S ittt 4
| Next Form is : Order Item Form Previous Form is : Order Browse Form |
o e oo — o m s e e 4
gpage

'Screen Formatting Text'

Figure 3.7

Pages 4-54 through 4-55 have been omitted.

Pages 4-54 through 4-55 have been omitted.

4-55

4-56

APPLICATION-DEFINITION

INTERACTIVE-APPLICATTION
GENERATOR

4.1 Introduction

The Interactive Application Generator (IAG) is used to define
an IAF application. Interactively executed from the user's
terminal, IAG will enter into a dialogue whereby questions
will be asked about the application. These questions fall

into the following categories:
+ General questions about application execution
+ Block specification questions
+ Field specification questions

Screen layout - Descriptive text specification

+

As each response is entered, IAG will save the question text
and associated response in a user file. IAG can later be
directed to use the response file as an alternate input
source to regenerate an application.

For simple application changes the response file may be
edited using a standard text editor. For more extensive
changes the response file can be combined with additional
terminal entered input. Commands are provided which direct
IAG to alternate between these input sources.

When an application has been completely and correctly
defined, IAG will compile the responses into an IAP
executable module. To execute the application, the user must
invoke the IAP Utility as described in the IAF Terminal
Operators Guide.

This section will present the application definition process.
Figure 4.1 describes the components of the application
development process. A conceptual overview of IAF, and a
description of its features was provided in sections 2 and 3.
That material should be referenced to provide the overall
structure and design of an application, and explain the
implications of the IAG questions and responses.

4-57

———————— Fom e}
/ \ | INTERACTIVE I
| Questions |[{-=-—--- > | R
| & [{mmmmmmm > | APPLICATION | {======m= >] <applname>.inp |
\ Answers / | | {—=—===—= > |
———————— | GENERATOR (IAG) | e ks 2
—————————— et s
/ \ Il "Response File™
-------------- I
|1
"Application Designer" ||
\ /
\/
o= + '
| <applname>.frm | “"Application Image File"
| |
T +
|
I
bl
I
\ /
\/
———————— ettt
/ NAME: \ | INTERACTIVE | tomm e +
| ADDR: |<——=----- > APPLICATION | ¢==——=——- > USER'S |
| A RS et > PROCESSOR | <======== >| DATABASE |
\ . / | (IAP) | +om—mm o +
———————— Fomm e}

"Terminal Operator”

Application Development Process

Figure 4.1

4.2 Executing the IAG Utility

IAG is invoked from the user's terminal by entering the
following command:

IAG <applname> [-<options>]

Where:

<applname> Name of the application being defined.
Any character string which is acceptable
as an operating system file name is
allowed.

When IAG is invoked, it will automatically search for an
existing response file with the name '<applname>.inp’'. If
present, this file will be used as the 1input source.
Additionally, for each execution a new version of the
response file will be created. When the host operating
system is RSX11M, VMS or IAS, the new file will be assigned
the next highest version number.

The <options> parameter permits the user to control the
creation and use of the response file. This parameter is
optional.

T - Direct IAG to use the response file for
input; suppress terminal output of the
question and answer text. Only error
messages will be displayed.

S - Suppress question text when creating the
new response file. Only a list of. the

responses will be saved.

o - Suppress creation of a new version of the
response file.

4.3 Defining the Application

An application is defined by responding to a series of
questions. These questions fall within the general category
identified by the question number:

G-x ' -General Questions about the application

B-x -Block Questions

F-x -Field Questions - field specification
information

D-x -Field Display Questions - field display
information

E-x -Field Edit OQuestions - field editing

information

Figure 4.2 provides a list of these questions with their
associated numbers. The question numbers are used to aid in
the discussion, but will not be displayed during IAG

execution.

In addition free-format descriptive text can be specified for
each screen within an application.

Figure 4.3 provides an outline of the order in which the
categories of questions are asked. First, the general
questions about the application are presented. Then the
first block is specified. Within that block, each field is
defined. When all the fields in one block have been defined,
that block specification is complete. The block gquestions
will be reasked for each successive block in the application.
Lastly, the user can define additional descriptive text for

any screen page.

Certain questions are conditionally asked depending on
previous responses. The column labeled 'A/C' in Figure 4.2
indicates whether the question is 'A'-Always or
'C'-Conditionally asked. For conditional questions, the last
two columns identify the responses to other questions which
will cause the indicated question to be asked. If more than
one condition is listed, each condition must be met, unless
an 'or' is specified.

Mmoo oo 0o
LI A T O T R T N A Y I B

U OO MM MEMmMEMEEMEEMEMTEOE O QQ

4-60

INTERACTIVE—APPLICATI()N—GENERATOR

Question List

o e — e —— = $ommpmm Fomm————— +
0.l Question Text |A/C|Response To =?no.|
o ————— e — == | == | -
1 |Database : la | |
2 |Sequel Workspace size ? la | I
1 |Block name: la | I
2 |Table name: la | |
3 |Check for uniqueness before inserting Y/N la | |
4 |Buffer how many records ? la | |
5 |Base CRT line ? IC 1> 1 |B-4
6 |How many physical lines per record ? Ic > 1 |B-4
1 |Field name : la | |
2 |Type of field A | |
3 |Length of Field : A | |
4 |Is this field in the base table Y/N: 1A | |
5 |Is this field part of the primary key ¥/N : |C |Y |F-4
6 |Field to copy primary key from : IC Y | F-5
7 |Default value : ia | |
8 |Allow field to be entered Y/N : IC |non-blank ID-1
9 |Allow field to be updated Y/N : IC IN |F-5
I I Y |F-8
10 |SQL > la | |
11 |Message if value not found : |C Inon-blank |F-10
1 |Page : (A | |
2 JLine : |C |non-blank |D-1
3 |Column |C |non-blank ID-1
4 |Prompt |C |non-blank iD-1
5 |Display prompt above field Y/N |C |non-blank |D-4
6 |Display prompt once for block Y/N |C |non-blank |ID-4
| | > 1 | B-4
e o m e — e m e — oo e femmtm e — +

Figure 4.2

————— o e — e mmf e e m— b —— - — = —
?-no.| Questinn Text |A/C|Response To |?no.|
————— e ——— e ————— e — - ———— ¢
E-1 |Is field mandatory Y/N : [C |Innon-blank ID-1 |
| | lYy |F-8 |

E-2 |Is field fixed length Y/N |C Inon-blank [D-1 |
l l Y |F-8 |

E-3 |Auto jump to next field Y/N IC |non-blank |D-1 |
l | Y |F-8 |

E-4 |Convert Field to upper case Y/N IC |non-blank |D-1 |
| | Y |F-8 |

E-5 |Help Message IC |non-blank [D-1 |
| | 'Y |F-8 |

E~-6 |Lowest value : C |Inon-blank |D-1 |
l l Y |F-8 |

E~7 |Highest value |]C |nnn-blank |D-1 |
| I 4 |F-8 |

E-8 |Must value exist Y/N |C |non-blank |F-101|
pom—Fmmm————— - +

A: Question is 'ALWAYS' asked
C: Questinn is 'CONDITIONALLY' asked
Response to: For conditionally asked questions, question is triggered

by the indicated response to the question in the '?-no.’
column.

Figure 4.2 (Continued)

62

e Rt +
| GENERAL QUESTIONS |
| G-xX ?'s |
| |
et +
o= +
| BLOCK QUESTIONSI
| B-x ?'s |
e +
e~ +
|FIELD QUESTIONS|
| F-x,D-%x,E-x ?s|
sttt +
0
o
n
i +
|FIELD QUESTIONSI
| F-x,D-x,E-x ?s]|
i +
tprmr = +
| BLOCK QUESTIONS|
} B-x ?'s |
- +
o et +
| FIELD QUESTIONS|
o | F-x,D-%X,E-x ?s|
o ——— +
0 0
0
o)
e +

Application Definition Outline

FPigure 4.3

4-63

|

| EMPLOYTESE PERSONNETL RECORD

l

o e e e i s e =
I

| NUMBER : SALARY

| NAME : ~ COMMISSION :

! JoB :

| DEPTNO: __ DEPT NAME :

|
+=========================='===
|

| EMPLOYESTE PROJECT ASSIGNMENTS

|

o e e e e e e e o
| PROJNO PROJECT NAME

! -

l -

I -

I
e - ———— e — —— - ———

Sample “"Employee®™ Screen Layout

Figure 4.4

Each question requires either a 'YES/NO' or literal value
response. A "Y/N" in the question text indicates that a
'YES' or 'NO' is required. All other questions require a
character or numeric value. Character values can contain any
printable character. If an incorrect response is entered,
IAG will display an error message and reask the question. A
correct response to each question is required Dbefore
proceeding to the next question. Each correct response will
be added to the <applname>.inp response file.

Questions will continue until the entire application 1is
defined. An application is considered complete when IAG
encounters a 'send' response to a descriptive text prompt.
The user may prematurely terminate the session by entering a
~“Z (Control 2). This will cause a normal exit from IAG with
the <applname>.inp response file containing all the valid
responses entered prior to termination. No IAP module will
be created for incomplete applications.

Wwhen an application is executed by IAP, blocks are processed
in the order in which they were defined. This order |is
followed regardless of the order of the actual display pages.
For example, if the first block defined is on page 1, the
second on page 3, and the third on page 2, the order of page
display is 1,3,2.

For fields within a block, the cursor will advance from field
to field in the order of definition. To simplify the
operator interface, fields should be defined in their order
of display (left to right, top to bottom, etc.)

The fields within a block may be displayed on one or more
pages. Advancing to a field on another page will cause the

new page to be displayed. Unnecessary page switches may be
distracting to the operator, and will cause additional delays

in transmitting the screen images.

Many of the questions relate to ORACLE database, table and

column names and definitions. During definition and
compilation, IAG does not access the ORACLE dictionary to
verify their existence or validate their data

characteristics. Any errors of this type will be detected by
IAP during application execution.

4-65

4.3.1 General Questions

The questions in the General (G-x) Category are asked only
once for an application. Only one application can be defined
within a single execution of IAG.

G-1: Database :
Specify the ORACLE database name to be accessed by this
application. only one database can be accessed per

application.

G-2: Sequel Workspace size :

Specify the size of the SQL workarea in 1K increments,
which is required for this application. If no value 1is
specified, the ORACLE default value will be used.

4.3.2 Block Questions

The block related questions are asked once for each block
definition. An application can contain one or more blocks.
Following each block definition, the fields within that block
must be defined.

B-1: Block Name :

Specify the name of the block being defined. A blank or
null response indicates that no more blocks are to be
defined, and IAG will skip to the 'Screen Layout
Questions' described in section 4.3.4.

B-2: Table Name :

The database table name referenced by this block. Only
one table may be referenced within a block. If no value
is specified, the table name will default to the block

name.

B-3: Check for uniqueness before inserting Y/N :

Specify whether you want IAP to verify, prior to
insertion, that a row does not exist in the table with
the same primary key value. Refer to section 3.3.2.3 for
a discussion on 'Primary Key Specification'.

4-66

B-4: Buffer how many records ?
Specify the maximum number of database records which can

be displayed within this block. An integer value between
1 and 22 is required. All the records must be contained

within one screen page. If only one record occurrence is
to be displayed, enter a value of 1.

B-5: Base CRT line ?
Specify the screen line number where the first line of

data for the first record of a multi-record block 1is to
be displayed. An integer between 1 and 22 is required.

B-6: How many physical lines per record ?

Specify the number of display lines for a single
occurrence of a record. An integer value between 1 and 7

is required.

Note: The following rules apply to the layout of a
multi-record block:

- Line 1 through 22 is available to the user.
Lines 23 and 24 are reserved for system
information.

- (Base line + (Number of Records * Lines per
Record)) <= 22

- If the prompts are displayed above the field
display area base line value of 1 is invalid.

For a detailed discussion of Multi-Record Block Layout
refer to sections 3.3.1 and 3.3.2.4.

4.3.3 Field Questions

For each application block, one or more fields may be
defined. Field questions fall into three categories:
specification, display and edit. 1In the following sections
the questions will be grouped by category. The order in
which they are discussed may vary from the order in which
they are actually asked. Additionally, questions from the
different categories may be mixed.

4.3.3.1 Pield Specification Questions

F-1: Field Name:

Specify the name of the field being defined. Any
charcter string will be accepted. Field names must be
unique within a block, but may be repeated in different
blocks. For database fields, it must be a column name
from the block's associated table. A blank or null
response indicates the end of field specification for the
current block.

F-2: Type of Field:
Specify the data type for this field. Valid data types
are:

Alpha - Only alphabetic characters A-Z are
permitted. Upper and lower case |is
supported.

Char - Any printable character is permitted
Number - A number which can contain the digits
0-9, L Numbers may be
specified in scientific notation (2.3E2 =
230) .
Int - Only integer numbers are accepted.
Money - A special number format which excludes

scientific notation (ie. 3.7E2), and is
limited to two digits to the right of the
decimal point.

Date - Only a valid date of the format mm/dd/yy
is permitted. mm must be within the range
1 through 12. dd must be within the range
implied by the specified month (including
leap years). Dates entered in this format
will be stored within the database in the
internal Julian Day Number format.

1 Edate - gSimilar to 'Date' type except the date
is entered and displayed |using the
European format of dd/mm/yy. The same
validation is used and the value is stored
in Julian Day Number format.

YYMMDD - A date field which 1is entered and
displayed in the format mm/dd/yy, but
stored as a numeric value in the format
YYMMDD. This date is not converted to
Julian Day Number format.

Time - Allows the entry and display of a time
value in the format HH:MM:SS. The value
is converted to the number of seconds
since midnight.

FP-3: Length of Field:

Specify the length of the field. An integer value between 1
and 79 is required. For database fields, this value should
be consistent with the table column length. The column value
will be truncated if its length exceeds the field length.

'Time', 'dae''edate', and 'YYMMDD' type fields must be
defined with a length of 8.

F-4: Is this field in the base table Y/N :

Specify whether this field is to be mapped to a column in the
table defined for this block. If Y, the field name must be
the same as a table column name.

F-5: Is this field part of the primary key Y/N:

Specify whether this field is part of the primary key. Refer
to section 3.3.2.3 for a discussion of primary keys. At
least one primary key field must be defined in each block.

4-69

FP-6: Field to copy from :

Specify the name of a field in this or another block, whose
value will be copied into this field when the block is
initialized. Only fields which are part of the primary key
may have their value copied from another field. The format
of this response is [<blockname>.]<fieldname>. <blockname> is
required if <fieldname> is from another block and 1is not
unique within the application. See Section 3.3.2.3.1. for a
discussion on copying fields.

F-7: Default value :

Specify the value to be assigned to this field when the block
is cleared or initially entered when in 'INSERT' mode. Three
forms of default values may be specified:

- A default value may be either a character or
numeric literal. Character literals must Dbe
enclosed in single quotes (ie. 'CA'). The value must
conform to the field's data type. The correct data
format must be specified for date and time type

fields (03/31/81 , 12:13:46)

- A default value may be copied from any other field
in this of another block. The field name is
specified as [<blockname>.]<fieldname>; <blockname>
is required only if <fieldname> is not unique within
the application.

- Date and time fields may be assigned the value of
the current date or time. "$$date$$" is used for
field types of ‘'date', 'edate', and 'YYMMDD';
"$Stime$s$ is used for ‘time' field types.

Primary key fields whose value is copied from another field
may not have a default value.

F-8: Allow field to be entered Y/N :

Specify, for the insertion of a new row in the database,
whether the operator may enter a value. At least one field
in each block must be enterable.

F-9: Allow field to be updated Y/N :

Specify, for the updating of an existing database record,
whether the operator may modify the current value of this
field. 1If the field is a part of the primary key, the
reponse defaults to 'N' and the question is not asked.

F-10: SQL >

Specify the text of a SQL query to be executed when this
field is entered. The use of this query is explained in
section 3.3.2.3.2. The SQL statement is free format and must
conform to the same rules required by UFI or a Host Language
Program. The statement is not validated upon entry. The
INTO statement, if provided, will be validated when the
application is compiled. The remainder of the statement will
not be verified until application execution. A blank or null
response indicates the end of statement input. If no SQL
statement is to be provided, enter a null response (<cr>) to

the first prompt.

P-11: Message if value not found :

Specify the message to be displayed to the operator if no
rows are returned from the above SQL statement. If the SQL
query is used to test for existence of the entered value,
this message informs the operator that the value was not
found in the order entry example, if a part number 1is not
found in the 'parts' table the message "Tnvalid Part Number"
is displayed.

4.3.3.2 Field Display Questions

D-1: Page:

Specify the page number where this field will be
displayed. An integer between 0 and 31 is required. A
null, blank, or 0 response indicates that the field
should not be displayed. All the fields within a block
do not have to be displayed on the same page.

D-2: Line:

Specify the 1line number where this field will be
displayed. For blocks with a single record display area
an integer between 1 and 22 is required. For
multi-record blocks this is the relative line number
within the record display area. It must be an integer
which is less than or equal to the response to question
B-6: "How many physical lines per record?”.

4-71

D-3: Column:

Specify the column number where the left-most character
of this field will be displayed. An integer between 1
and 78 is required. This wvalue must take into
consideration the prompt message extending to the left or
the field extending to the right. If either the prompt
or field extends beyond the 80 character screen size an
error will be reported. Overlaid fields will not be
detected.

D-4: Prompt:

Specify a label or prompt message to be visually
associated with this field. Enter any valid character
string.

D-5: Display prompt above field Y/N :

Specify whether the prompt identified in question D-4
should be displayed above the field display location. If
Y, the prompt is displayed on the line above the field,
starting in the same column position as the field. If N,
the prompt is displayed on the same line immediately to
the left of the field.

D-6: Display prompt once for block Y/N :

For a multi-record block, specify whether the prompt
should be repeated in every record area. If N, the field
prompt will only be displayed in the first record area.

4.3.3.3 Field Edit Questions

E-1: Is field mandatory Y/N :

For 'Insert' mode, specify whether a value must be
provided for this field. 1If Y, a value can be entered by
the operator, assigned as a result of a SQL select,
copied from another field, or assigned a default value.
For database fields, if the associated column has been
defined as 'NONULL' in the 'CREATE TABLE' statement, Y

should be specified.

E-2: Is the field fixed length Y/N:

Specify whether the number of characters entered for this
field must equal the field length. (ie. Zip Code requires
all 5 digits)

4-72

E-3: Auto jump to next field Y/N:

Specify whether cursor should automatically skip to the
next field after the maximum number of characters have
been entered.

If Y, entry of the last character triggers an automatic
'Next Field', which causes the field to be edited and the
cursor advanced to the next field.

If N, after the last character has been entered the
cursor will remain in the last postion of the field.
Oonce in the last position, an attempt to enter additional
characters will be rejected, and the talarm' will sound.
The 'Next Field' key must be depressed to initiate field
editing and advancing of the cursor.

E-4: Convert Field to upper case Y/N :

Specify whether alphabetic characters should be
automatically converted to upper case. Characters will
be converted as they are keyed and displayed in upper
case. This is equivalent to placing the keyboard into
shift lock mode.

E-5: Help Message :

specify a free format help message to aid operator in
entering field data. Message will be displayed on the
bottom of the screen when the operator requests the
'"Help' function. A maximum of 80 characters is

permitted.

E-6: Lowest value :

specify that the field is to be range checked by
providing the minimum value in the range. To pass the
range check the field value must be greater than or equal
to the specified value. Character literals ('Alpha' or
‘Char' type) must be enclosed within single quotes (ie.
'CA'). All data types may be ranged checked. The value
for 'date', 'edate', 'YYMMDD', and ‘'time' field types
must be specified in the correct format (3/31/81,

12:12:46, etc.).

4-73

E-7: Highest value :

Specify the high value in the range check. The field
value must be less than or equal to the high value to be
accepted. All data types may be ranged checked. The
value for 'date', ‘'edate', 'YYMMDD', and 'time' field
types must be specified in the correct format (3/31/81,

12:12:46, etc.)

E-8: Must value exist Y/N :
Following a SQL select, a Y indicates that at least one
row must be returned as a result of the query. Using the
SQL query facility in this manner permits the
verification that the entered value is contained in a
table of all allowable values. For example, to verify
that an entered part number is valid, a query of the
parts table with the WHERE clause:

partno = <entered part number>
must return a row for that part. If Y was specified, and
a row was not returned, the entered value will be
rejected.

4.3.4 Screen Layout Questions

Each page of an application can be enhanced with additional
descriptive text. Following the prompt message:

Enter text for form:

A ':'" will be displayed in the first column of the next line.
Following the ':', up to 79 columns of descriptive text may
be entered representing screen positions 1 through 79. The
first line of text corresponds with page 1, line 1. As each

line is entered the ':' prompt is redisplayed.

A maximum of 22 lines may be entered for each page. After
each 22 lines the page counter is automatically incremented
and the line counter reset to 1l.

The line counter can be advanced to a specific line by
entering the command:

gline

Oon the next line following this command the new line counter
value is entered.

The
gpage

will advance the page counter by 1 , and reset the 1line
counter to 1.

The
tend

command will terminate the entry of descriptive text and
signal IAG to compile the application. If descriptive text
is not included this command can be entered immediately
following the "Enter text for form:" message.

4.4 Using the Response File

Each time IAG is executed a new version of the <applname>.inp
response file will be created. The format is one line
listing the text of the question followed by a line listing
the entered reponse. All question text lines are preceded by
a ';'. Any line beginning with a ';' in column 1 is treated
as a comment and will be ignored. Additional comments lines
may be inserted to aid in documentation. Lines without a ';'
are treated as responses and are processed by IAG as if they
were entered from a terminal. For this reason the order and
number of responses must be exactly as originally entered.
Figure 4.5 is a listing of the response file associated with

the 'employee' application.

An application can be changed and regenerated using the
response file, eliminating the need to manually re-enter the
original responses. Simple changes, which do not alter the
order or number of responses, can be made directly within the
response file using a standard text editor.

If an error is detected while processing this modified
response file, the error message will be displayed on the
user's terminal. The terminal then becomes the source of the
input. The failing question will be asked again, and the
user will be able to enter a new response. When a valid
response is entered, questioning will continue from the
terminal. A '$sw' reply will instruct IAG to resume the
reading of responses from the response file. In this manner
the source of responses can be alternated between the

response file and user's terminal.

For example, assume that the field type for 'empno' was to be
changed from 'int' to 'number'. However, when the response
file was edited the word 'number' was misspelled. While
processing this field IAG detected this error and displayed
on the designer's terminal the “Invalid data type" error
message. The question "Type of field : " is displayed on the
terminal and IAG pauses pending a response. The designer now
correctly enters the word ‘'number', and the next question
("Length of field :") |is issued to the terminal. The
designer enters a reply of '$sw' to resume the use of the

response file.

4-76

; Database

personnel

;Sequel workspace size ?
3

;Block name

emp

; Table name :

emp

;Check for uniqueness before inserting Y/N :

;Buffer how many records ?

1

;Field name :
empno

;Type of field :
int

;Length of field :
4

;Is this field in the base table Y/N

¥Is this field part of the primary key Y/N :
gField to copy primary key from :

;:Default value :

; Page :

1

;Line :

7

;Column :

17

; Prompt :

NUMBER :

;Display prompt above field Y/N :
n

;Allow field to be entered Y/N

Yy
; SQL>

;Is field fixed length Y/N

b4

;Auto jump to next field Y/N :

n

;Convert field to upper case Y/N :
n

;Help message :

Enter 4 digit employee number -

; Lowest value :

1000

;Highest value :

8000

"Employee®” Application Response File

Figure 4.5 - Part 1 of 9

;Field name :

ename
;Type of field
alpha

;Length of field :
10

;Is this field in the base table Y/N

o

Yy
;Is this field part of the primary key ¥Y/N :

n
;Default value

; Page

1

;:Line

8

;Column :

17

; Prompt

NAME :

;Display prompt above field Y/N

n
;Allow field to be entered Y/N :
Y

;Allow field to be updated Y/N :
Y

;SQL>

;Is field mandatory Y/N :

Yy
;Is field fixed length Y/N
n

;Auto jump to next field Y/N :

n

;Convert field to upper case Y/N :
y

;Help message :

Enter employee name -
;Lowest value
;Highest value :

;Field name :

job

;Type of field :
alpha

;Length of field :
9

;Is this field in the base table Y/N :
Yy

"Employee® Application Response File

Figure 4.5 - Part 2 of 9

;Is this field part of the primary key Y/N
n
;Default value :

; Page :

1

;Line

9

;Column :
17

; Prompt
JOB
;Display prompt above field Y/N :
n

;Allow field to be entered Y/N

y
:Allow field to be updated Y/N

Yy
; SQL>

;Is field mandatory Y/N :
n)

;Is field fixed length Y/N

n

;Auto jump to next field Y/N :
n

;Convert field to upper case Y/N
;Help message :

Enter employee's job title -
;Lowest value :

;Highest value

;Field name :

salary

;Type of field :
money

;Length of field :
7

;Is this field in the base table Y/N :

y

;Is this field part of the primary key Y/N :
n

;Default value :

1000.00

; Page

1

;Line

5

*"Employee® Application Response File

Figure 4.5 - Part 3 of 9

;Column :

51

; Prompt

SALARY :

;Display prompt above field Y/N :
n

;Allow field to be entered Y/N :

Y

;Allow field to be updated Y/N :
Y

; SQL>

;Is field mandatory Y/N

Yy
;Is field fixed length Y/N
n

;Auto jump to next field Y/N :

n

;Convert field to upper case Y/N :
n

;Help message :
Enter employee salary
;Lowest value :

;Highest value :

6000.00

;Field name

comm

;Type of field :

money

;Length of field :

7

;Is this field in the base table Y/N :
Y
;Is this field part of the primary key Y/N :
n

;Default value :

; Page :

1

;Line

8

;Column :

51

; Prompt

COMMISSION :

;Display prompt above field Y/N

*Employee®™ Application Response File

Figure 4.5 - Part 4 of 9

;Allow field to be entered Y/N :
b4

;Allow field to be updated Y/N :
Yy

; SQL>

;Is field mandatory Y/N :

n

;Is field fixed length Y/N

n

;Auto jump to next field Y/N
n

;Convert field to upper case Y/N
n

;Help message :

Enter employee's commission -
;Lowest value :

;Highest value :

3000.00

;Field name :

deptno

;Type of field

int

;Length of field :

2

;Is this field in the base table Y/N

4

;Is this field part of the primary key Y/N
n
;Default value

; Page :

1

;Line :

10

;Column :

30

; Prompt

DEPTNO :

;Display prompt above field Y/N
n

;Allow field to be entered Y/N

"Employee® Application Response File

Figure 4.5 - Part 5 of 9

Y

;Allow field to be updated Y/N
Y

; SQL>

select dname

into dname

from dept

where deptno = &deptno

;Message if value not found
Invalid department number
;Must value exist Y/N :

b4

;:Is field mandatory Y¥Y/N

n

;Is field fixed length Y/N

Y
;Auto jump to next field Y/N

n

;Convert field to upper case Y/N :
n

;Help message :

Enter employee's department numQer
;Lowest value : :

;Highest value :

;Field name :

dname

;Type of field :
char

;Length of field :
10

;Is this field in the base table Y/N :
n
;Default value :

; Page

1

;Line :

10

;Column :

46

; Prompt

NAME :

;Display prompt above field Y/N :
n

;Allow field to be entered Y/N :

*Employee®™ Application Response File

Figure 4.5 - Part 6 of 9

82

n
:SQL>

;Field name :

;Block name :

projects

; Table name

pe

;Check for uniqueness before inserting Y/N

y

;Buffer how many records ?

3

;Base crt line ?

19

; How many physical lines per record ?
1

;Field name :

empno

;Type of field :
int

;Length of field :
4

;:Is this field in the base table Y/N

y

;Is this field part of the primary key Y/N :
Yy

;Field to copy primary key from :

emp .empno

; Page :

; SQL>

;Field name

projno

;Type of field :

int

;Length of field :

3

;Is this field in the base table Y/N :
Y

;Is this field part of the primary key Y/N :
b4

;Field to copy primary key from :

;Default value :

*Employee® Application Response Pile

Figure 4.5 - Part 7 of 9

; Page :

1

;Line

1

;Column

22

; Prompt :

PROJNO :)

;Display prompt above field Y/N

y
;Display prompt once for block Y/N

y

;Allow field to be entered Y/N :
y

;s SQL>

select pname

into pname

from proj

where projno = &projno

;Message if value not found
Invalid project number
;Must value exist Y/N :

y
:1Is field fixed length Y/N :

Yy

;Auto jump to next field Y/N :

n

;Convert field to upper case Y/N :
n

;Help message :

Enter employee's assigned project
; Lowest value :

;Highest value :

;Field name :

pname
;Type of field
char

;Length of field :
10

;Is this field in the base table Y/N :
n

"Employee®™ Application Response File

Figure 4.5 - Part 8 of 9

4-84

;Default value :

; Page

1

;Line :

1

;Column :

36

; Prompt :

PROJECT NAME

;Display prompt above field Y/N :

?Display prompt once for block Y/N :
?Allow field to be entered Y/N

?SQL)

;Field name :

;Block name :

P T 1 T T 1t 1 t

*"Employee®™ Application Response File

Figure 4.5 - Part 9 of 9

4-85

Some changes will cause the order or number of questions IAG
asks to be altered. This will occur if the new response
triggers a different set of conditional questions. The
response file will no longer be synchronized with the list of
questions asked by IAG. To compensate, the wuser can
anticipate the new question list and insert new responses in
their proper place. If previously asked questions will no
longer be asked, their associated responses must be deleted.

Adjusting the response file may become extremely complicated.
An alternative apprmach would be to temporarily switch the
input source to the user's terminal. This way the designer
could answer each question individually, under the control of
IAG, without having to correctly anticipate the new set and
order of questions. The IAG will switch from the reponse
file to the designer's terminal when a 's§sw' response is
encountered. The designer must change the original response
to a 's$sw' in the first question to be answered from the

terminal. This question will then be reasked from the
terminal.

The designer must decide where to resume the use of the
response file. A convenient approach is to resume at the
beginning of the next field. In this manner all the
questions from the '$sw' to the next field will be answered
from the terminal. To accomplish this, the designer must
delete all the unwanted responses from the response file.

For example, changing the 'Page:' response from blank to a
page number will cause the associated field to be displayed.
This will trigger additional questions concerning the field's
display position, prompt and data entry attributes. 1In this
case the simplest approach would be to replace the 'Page :'
response with a '$sw' and delete all the remaining responses
for the field. When executing IAG the 'Page :' and
subsequent responses for this field would be entered from the
terminal. When the 'Field name :' question is asked again a
'9sw' will resume the use of the response file.

This approach may be expanded to add new fields or blocks.
For example if a new field was to be added after 'ename' the
"Field name : " response for 'job' would be changed to '$sw'.
When the input source is switched to the terminal this
question will be reasked. The new field would then be
defined. When the "Field name : " question is asked again, a
response of 'job' is entered. A '%sw' response to the next
question, "Type of field : ", will cause the resumption of
the response file.

When making this type of modification to an application the
user should not suppress the creation of a new response file.
The new file will contain the combined responses from both
the o0ld response file and user's terminal.

Some text editors will not permit blank lines within the
edited file. To support these editors IAG will interpret a
*//' in columns 1 and 2 as a blank line.

4.5 Generating the Sample Application

This section will examine the IAG question and answer
dialogue which defined the application shown in figure 4.4.
Two processing blocks were defined for this single screen
application. The first deals with employee information which
is inserted into or retrieved from the "EMP" table in the
sample "PERSONNEL" database. The second allows an existing
employee to be assigned to one or more projects. This block
references the "PE" table, which was created to allow
employees to be assigned to multiple projects. Refer to the
SQL Language examples in the ORACLE User's Guide for more

details.

The name of the application is "employee" and was generated
with the command string:

IAG employee

Figure 4.5 is a listing of the "employee.inp" response file
which was created from this terminal session. This file is
included within the ORACLE distribution system, which allows
this application to be generated using the command above.
The first question identifies the sample ‘personnel'’
database. An initial value of 3K bytes is specified for the
SOL workarea. If that proves insufficient the value could be
changed within the 'employee.inp' response file and the
application regenerated.

The 'emp' block is the first defined and hence will be the
first processed when the application is executed. Since the
table and block names are the same, the table name could have
been omitted and the block name would have been used. Prior
to inserting a new row IAP will check that the primary key is
unique within the table. The primary key may consist of one
or more columns within the block. For a multi-column key,
the combined columns will uniquely identify a row. One
record will be buffered for this block which means that only
one record will be displayed at a time. with the block
questions completed the set of field questions will be asked
for each field within this block.

4-87

'empno' is a four digit integer which maps to 'empno' column
in the base table, 'emp'. Fields which are not in the base
table, and do not map directly to a column will be discussed
later. 'empno' is the only column in the primary key, and
will be used to qualify rows for update and delete
operations. Although it is the primary key, its value will
not be copied from another field in this or another block.

The display area for this field will begin in the 17th
position of the seventh line of page 1. Since the prompt is
not displayed above the field, it will be placed immediately
to the left. This field can be entered, but cannot be
updated. Since fields within the primary key cannot be
updated, the question "Allow field to be updated" is not
asked, and a response of "N" is assumed. Primary key fields
are also mandatory, hence a reply of "Y" is assumed for the
question "Is field mandatory".

No SQL statement was defined for this field. This feature
will be discussed later for the 'deptno' and 'projno' fields.
Since the field is defined as 'fixed length' all four digits
of an employee number are required for a valid entry. By
selecting 'Auto jump', an automatic 'next field' is generated
after the last character is entered. If the entry passes
validation, the cursor will be moved to the next field
position.

Converting to upper case has no meaning for numeric fields,
and either reply is ignored. The 'Help message' will be
displayed when the operator enters the 'HELP' function key.
The valid range for employee numbers is between 1000 and 8000
inclusively. This range will be checked for both data input

or update.

The 'ename' field maps to the 'ename' column in the base
table; 'EMP', Since it is defined as ‘'alpha' only the
letters 'A' - 'Z' will be accepted. Responding "Y" to 'upper
case' will force lower case letters to be displayed, and
stored in upper case.

When an application is executed, the processing order of
fields within a block is determined by the order the fields
were defined to IAG. 1In this block 'empno' will be the first
field processed, followed by ‘'ename', 'salary', etc. This
order is independent of the page and display position of the
field. If the next field is on a different page, the

appropriate page will be displayed automatically.

1

88

'salary' is a 'money' type field and is restricted to a
number with exactly two positions to the right of the decimal
point. Since only a 'Highest value' was specified any value
less than or equal to 6000 will be accepted. The 'comm' is
not mandatory, allowing the operator to omit this field on
insertion or update. Fields which are not entered are stored

as nulls within the database.

A SQOL SELECT statement was defined for the 'deptno’ field.
This statement will be executed each time the value of
‘deptno' is modified. The purpose of this feature is to

- initialize other fields with a value from the
database.

- display information related to the entered field.

- check the existence of the entered field in a
table of acceptable values.

In this case the 'deptno' SELECT will serve to verify that
the entered department number exists in the department table,
and to aid the operator in verifying, by department name,
that the desired number has been entered. After executing
the SELECT, the INTO clause causes the ‘dname' field in the
block to be initialized with the value of the 'dname' column.
This value will be immediately displayed for the nperator.
The row returned is determined by the WHERE clause; the
'deptno' column must be equal to the entered value of the
field 'deptno'. The '&' signifies a literal substitution of

the field value 'deptno'.

A "Y" response to the "Must value exist" question requires
that at least one row be returned. This implies that the
entered department number must be within the 'dept' table.
If not, the value will be rejected. A special message 1is
defined to inform the operator that the value does not exist.
"Invalid department number" will be displayed when a
non-existent value is entered.

The 'dname' field is not in the base table. Even though it
contains database information, that data is not mapped to or
stored in the "EMP" table. In this case it is wused to
display the department name associated with the entered
rdeptno'. The field is used strictly for operator reference
and may not be entered. Entering data would serve no
purpose, since the entered value would only be displayed, and
not retained or used elsewhere.

4-89

A blank response to the "Field name" question (following
definition of ‘dname"') signifies the end of field
specification for the 'emp' block. The next block defined is
'projects', which refers to the 'pe' database table. In this
case up to three records may be simultaneously displayed as
illustrated in figure 4.4. A 'base' or starting screen line
must be defined for the first record display area.
Additionally, each record area may occupy onhe or more
physical 1lines. For this block, three records may be
displayed, beginning on line 19, containing one line for each
record area. -

‘empno' is the first field defined. This field comprises
half of the primary key for the 'pe' table. Its value will
always be equal to the value of 'empno' in the 'emp' block
(see "Field to copy primary key from"). Furthermore, the
blank response to "pPage:" designates the field as
non-display. The value can be neither entered nor updated

within this block.

Copying the primary key in this manner establishes a logical
connection between the two application blocks. Entered or
retrieved 'projects' information 1is implicitly associated
with the last referenced employee number within the ‘'emp'’
block. The blocks could have been explicitly associated by
requiring the operator to repeat the 'empno!' within the
‘projects’ block. However, this requires additional
keystrokes and is error prone. Making the field non-display
simplifies the display area, especially since the field is
already displayed on this screen page.

'projno' is a three digit integer which comprises the second
half of the primary key. Unlike 'empno', its value will be
entered by the operator. It will be displayed on the first
(and only) line of each record display area. The prompt
"PROJNO" will be displayed once on the line above the display
or 'scrolling' area (line 18). Prompts may be repeated
within each record display area of a multi-record block.
However, this is most useful for prompts which are displayed
to the left rather than above the field display area.

A SELECT statement has been defined for the 'projno' field.
Its purpose is the same as described for ‘'deptno' in the
'emp' block, requiring the operator to enter a project number
which already exists in the 'proj' table. If it does exist,
the associated project name will be displayed in the ‘pname’
field. An appropriate message will be displayed if the value
is not found. 'pname' is not in the base table and is
provided only as an aid to the operator. Data may neither be
entered nor updated in this field.

A blank response to "Field name:" terminates the field
definitions for the 'projects' block. The blank response to
"Block name:" terminates block specification. The 1input

which follows is a line by line specification of the text
used to enhance the screen page. This text is combined with
the field defined prompts to create the display screen
layout. The text must be supplied a page at a time in the
order of the physical page number. The 'gpage' command is
used to indicate the end of one page and the beginning of the
next. 'gsline' commands establish positioning to a specific
line on the currently defined page. The 'send' terminates
the text input process and signals IAG to compile the

application.

Compilation errors will be reported at the designer's
terminal. Since IAG does not access the database dictionary
during this process, errors relating to invalid 'column' or
‘table' specifications will not be detected. These errors
will be detected and reported during IAP execution. Once
compiled, an application may be ~immediately executed.
Section 3 of the "IAF Terminal Operator's Guide" discusses
the operation of this 'employee' application.

ADVANCED APPLICATION

TECHNTIOQUES

5.1 Introduction

This section will present some addtional techniques for using
IAF. These techniques include consecutive sequence number
genertion, setting up field defaults to eliminate setting up
field defaults to elminate redundant data entry, using views,
and a more sophisticated use of SQL within an application.

5.2 Assigning Sequence Numbers

In many applications it is necessary to uniquely identify new
entries by assigning a consecutive sequence number. Upon
entry the new record would be assigned a value one greater
than the current/maximum value. An example is the '‘orderno’
in the sample order entry application.

Within an IAF application, sequence numbers can be
automatically retrieved. This is accomplished with a SQL
SELECT statement which selects the maximum value of the
sequence field plus 1. The SELECT statement in the case of

the order entry application is:

SELECT max(orderno)+1
INTO orderno
FROM order

91

This statement should be defined within any mandatory field.
when a value is established for that field, either by
operator entry, default value, or initialized via an INTO
statement, this SQL statement will be executed and the
'orderno' initialized. Using a field which is not mandatory
will not insure that a value will be assigned prior to
insert.

The sequence field may optionally be displayed if the
operator needs the power to override the derived value. In
most cases the sequence field is a part of the IAF primary

key and thereby not updatable.

An assigned value is not stored within the database until the
record is inserted. Thus, it is possible that another
operator may be assigned the same number. To minimize the
interval between the time the value is computed and stored,
the field used to trigger the SELECT should be at the end of
the block. This assumes that the operator will perform the
insert shortly after entering the triggering field.
Duplicate record insertions can be prevented by including the
sequence number in the primary key and requesting a check for
uniqueness prior to executing the insert.

5.3 Operator Defined Defaults

In many applications the operator will repetitively process a
block to insert multiple records. For this type of data
entry application it is convenient to assign default values.
Literal default values can be assigned when the application
is defined, but they remain static over the life of the
application. It may be more convenient to permit each
operator to define his own set of defaults depending on his
talk data entry tasks.

Operator defined defaults can be achieved by creating an
additional block expressly for default specification. The
fields defined in this block would be referenced in the
"Default :" responses of fields in other blocks. This form

of default is described in Sections 3 and 4.

when the application is initially executed, the operator
would first process this form to enter the desired defaults.
when other blocks are cleared or initialized in "INSERT"
mode, the referenced default values would be copied. The
values could be changed by the operator at any time by
reprocessing this default block. The defaults then remain in
effect until the application is terminated.

This approach can be extended to permit the operator to
retain these defaults across executions of the application.
This is accomplished by creating a "default" table within the
application's database. Each operator would have their own
set of default records. Instead of entering the values
within the "defaults" block, the appropriate record could be
retrieved. The fields within the "defaults" block would map
to columns within this table.

The defaults block could also be initialized from some other
database table. In this case the "default" fields would not
be from the base table. At least one field from the base
table must be defined, and at least one of these base table
fields must be designated as part of the primary key. These
fields are necessary to fulfill an IAF requirement, but will
have no effect on the referenced table since this block would
not be used for database modification. A dummy table could

be defined for this purpose.

5.4 Using Views

As discussed in earlier sections an IAF application allows
fields on a screen to be mapped directly to the columns of a
database table. There is a one to one correspondence between
a field and a single column. The association is implicit,
requiring that the field and column names be the same. This
precludes the possibility that a screen field could map to
the average salary, maximum order number, or computation of
(price x qgty). However, there may be a need to have
application blocks which report this summary information.

An effective way to provide this type of report is through
SQL defined views. A view may be defined which simply
projects a set of columns from a qualified set of rows for a
single table. Although IAF could map directly to the table
in this case, it cannot restrict the set of rows nor project
a derived column (an arithmetic expression consisting of one
or more columns - ie. (qty*price)). A view defined column
name would be associated with each item in the select list.

93

An application block could reference this view as if it were
a table. The fields would refer to the view defined columns.
ORACLE restricts the use of views to retrieval operations.
Therefore, if an operator attempted to insert, update, or
delete a record within this block an ORACLE error would be
returned. Since there is no mechanism to disable these
functions by application block, the designer should define
these fields so they can be neither entered nor updated.
(Note that IAF requires at least one field in a block to be
enterable.) Any view may be referenced by an IAF block.
This includes views of joined tables or views which use the
built—in functions to create virtual columns (ex: avg (sal) or

max(gqty)) .

In some applications it may be desirable to have a summary
report which assembles data from multiple tables. Since
multiple tables are involved a different block would have to
be generated to retrieve data fromeach table. The operator
would have to process each block separately to assemble the
desired information. A simpler approach is to create a view
which joins the referenced tables. A single block is defined
which could present all the data in a single operation.
Again, this block could be used for retrieval purposes only.

5.5 Using the SELECT Statement

Any field may have an associated SQL SELECT statement. The
statement is executed each time the field is modified. A
field can be modified as the result of an operator entry,
assignment of a default value, record retrieval, copied
primary key value, or the object of another field's SELECT
statement. Recall that, an INTO clause can direct the output
of the first row returned to other fields within the block.
on each execution, only the first row will be processed, with

the remaining rows ignored.

The main purpose of this feature is to test for the existence
of a field's value within a table of acceptable values, and
to initialize other fields within the block. The second use
offers a great deal of application flexibility. The full
power of the SQL select can be utilized. No restrictions are
placed on the content of this statement which may include
arithmetic expressions, multi-table joins, nested selects,
and GROUP BY, ORDER BY, and CONNECT BY clauses. A block
field value may be substituted within the SELECT anywhere a
character or numeric literal can be used.

5.5.1 Cross Field Totaling

For certain applications it is desirable to display a field
whose value is computed from other fields. In the order
entry example, the ‘'cost' of an item is equal to the
'quantity' times the ‘'price'. Although ‘'cost' would not
normally be stored in the database (it could be derived from
the 'quantity' and ‘price' columns) it may be helpful for the
operator to see this value as the data is entered.

The present version of IAF does not explicitly support the
equating of a field value to the result of an arithmetic
expression of other fields within the block. However, the
same result can be achieved with an arithmetic expression in
the select list of a SQL query. 1In this case the expression
includes any fields within the block; database columns are
not involved. The values of the fields are substituted by
the IAP prior to statement execution. SQL will evaluate the
expression and pass the result back to the IAP. The IAP
places this result into the field specified on the INTO

statement.

For example, assume the following fields are part of the
'‘orderitem' block:

PARTNO QTY X PRICE = cosT

A2B451 - 20 2.50 50.00

If the operator entered the 'partno', 'qty', and ‘price', the
'‘cost' will be computed and displayed. If the operator
changes either the 'qty' or 'price' a new value of ‘cost' is
automatically computed. This value will be recomputed each
time either the 'qty' or 'price' is modified (including
record retrieval). Note that if any field in the expression
has not been assigned a value, or the value is null, the
value of the expression is null. For example, if the annual
salary (annsal = sal*l2+comm) was computed using the "EMP"
table, and either 'sal' or 'comm' were null, a value for
‘annsal' would not be displayed.

96

The technique employed is to specify the following SQL
statement within the 'qty' and 'price' field definitions:

SQL>select &gqty*&price
SQL>into cost
SQL>from orderitem

The select 1list contains the expression to be computed.
'sqty' and 'sprice' are variables whose associated field
values will be substituted prior to statement execution. The
INTO clause causes the result of the expression as returned
by SQL to be stored and displayed in the 'cost' field. Any
table name within the database may be specified in the FROM
clause. Although a single row is processed by the query, no
column data is returned. A WHERE clause is unnecessary.

Since the cost is not stored within the database record, the
tcost' field is defined as "not from the base table". If the
computed value was to be retained the field could be mapped
to a database column. In either case the field should not be

entered into.

5.5.2 Cross Field Totaling - Manual Request

In the previous discussion, the computation was automatically
triggered by modifying any field within the expression. This
was accomplished by defining the SQL statement in every field
participating in the computation. In this manner the SQL
statement is triggered for execution each time any of the
associated fields are modified. Omitting the statement from
any field would inhibit the recompilation when that field was
changed. This omission may be desirable if another SQL query
must be triggered by that field. If omitted from all the
associated fields another triggering mechanism is required.

As an alternative, the computational SQL statement may be
defined with the field which is receiving the result. In the
order example, the same statement as described in 5.5.1 would
be defined within the 'cost' field. When the 'cost' field is
modified by the operator, the statement will be triggered,
and the newly computed value displayed. with this approach,
the operator must manually request recompilation. The field
may be modified by entering at least one valid character.

5.5.3 Combining Detail and Summary Information

A SQL query can be used to add summary information to the
detail field entries within a block. Referring back to the
order application, the operator may want to review the order
following the entry of the individual 1line items. This
‘review' block would contain the summary of the itens ordered
in addition to the general order information. A sample

layout might be:

" ORDER SUMMARY SCREEN "

ORDERNO: _5674 DATE: 04/01/81
CUSTNO : 87653 CUST NAME: Leisure Time Products

NO. ITEMS ORDERED : 6 SUB TOTAL :$ 349.52
SALES TAX : 27.50

- e - — -

TOTAL :$ 377.02

The orderno, date, customer number and customer name fields
map to the base table 'order'. 'orderno' is the primary key
and is copied from the 'order' block. Number of items
ordered and sub total are computed by the following SQL

query:

SQL>select count(*),sum(gty*price)
SQL>into no items,subtotal
SQL>from orderitem

SQL>where orderno = &orderno

This statement may be included with any of the four base
table fields. The result is that the summary of all the
items associated with the order is computed from the
'orderitem' table and displayed in the 'review' block.
Within this block, only the base table fields could be
modified. The other fields should not be entered into.

The 'no items' and 'subtotal' fields contain the count of
items, and the sum of the cost of each item. The 'salestax'
and 'total' fields are computed with the following SQL query
defined with the 'subtotal' field :

SQL>select &taxrate*&subtotal,(1+&taxrate)*&subtota1
SQL>into salestax,total
SQL>from order

The 'taxrate' field was derived from the "state' field in the
'‘order' block and is stored in the 'order' row.

5.5.4 Summary Reports

In section 5.3 a technique was discussed for creating a
summary block containing fields from multiple tables. That
appronach was to create a view which Jjoined all the
participating tables. Each column in the view is mapped to a

field in the block.

An alternative approach is to use SQL queries to assemble the
desired data. The block would contain both 'database' fields
from the base table, and ‘control' fields to receive the data
from the other tables. After retrieving the base table
record, the retrieved field values would trigger the defined
SQL statements. Each field could have an associated query.
These SELECTs would retrieve the data for the 'control’
fields. Each of the 'control' fields could have its own SQL
statement which would also be triggered.

APPENDIX A

CRT INTERFACE UTILITY
Introduction

This section describes the IAF utility allowing a user to
specify a non-standard crt for use with IAF. This utility,
called CRT, compiles information from a user database,
containing crt-descriptive parameters. The compiled
information 1is then available to the IAP processor as

needed.

A common limitation of programs which use the advanced
features of a CRT is that the program can only run on the
CRT for which it was originally intended. The reason for
this is that for every maker of CRT devices, there is a
different way of invoking these features. However, most
manufacturers have chosen a fairly compatible scheme for
controlling CRTs. This compatibility amongst CRTs lets IAP
view all CRTs as being equivalent functionally and uses
variables (which are read by IAP at program startup) to
characterize their differences. These variables or
parameters are stored in source form in a user-provided
database. After a CRT's parameters have been entered into
the database, the CRT utility compiles this source
description into a file which IAP can directly access.

4-100

Required CRT Features

The following characteristics are required for IAF to
interface to a particular CRT:

(1) Transmits each character as its entered
(2) Use the ASCII character set

Besides the above characteristics, the CRT must be able to
perform certain control functions. Most CRTs support these
functions, however not all of them will employ a compatible
method of invoking them. A CRT must support the following
features to be compatible:

(1) Move cursor left one position

(2) Move cursor right one position

(3) Absolute cursor positioning to column and row
(4) Clear to end of screen

In addition, the following restrictions apply to (3):

(3a) Row and column numbers must be able to be
expressed either as ASCII strings (ie. Row 23
would be expressed as "23") or as a single
character whose ASCII value is equal to the
number plus an offset (ie. If the offset was
31 then row 23 would be the ASCII character

6“) .

(3b) Row and column numbers must begin with 0 or 1

and increase monotonically.

If a given CRT meets these requirements then it should be
able to be supported by IAF. A possible exception to this
might be that the CRT has certain timing characteristics
that limit how fast data/command strings can be sent. IAF
assumes that the CRT can handle continous transmission of
data/commands up to the baud rate of the terminal. Since
most terminals meet this requirement for the required
functions, this should not generally be a problem.

4-101

Optional Peatures Utilized By IAF

Besides the required functions, IAF can take advantage of
some specialized functions that are provided by more
sophisticated CRTs. These include:

(5) Underlining (or equivalent attribute)
(6) Reverse video (or equivalent attribute)
(7) Split screen scrolling

The features of (5) and (6) are attributes of the characters
being displayed and as such make the following assumptions:

a) A given attribute may be turned on and will
stay on until it is explicitly turned off.
That is, all characters transmitted after that
will have the attributes assigned until
another attribute sequence is detected.

b) Turning attributes on or off does not move the
cursor.
c) Turning an attribute on or off does not "mark"

a certain portion of the display area as
having that attribute (ie. the PE OWL has this
feature).

The feature (7) refers to is the ability to define a subset
of the lines on the CRT which can act as an independent
scrolling region from the rest of the lines on the CRT. For
example if lines 1 through 7 are defined as a scrolling
region, then these lines can be scrolled up or down without
affecting lines 8 through 24. Top and bottom line numbers

must meet the same requirements as (3a) and (3b) .
CRT Definition - Preparation

Defining a CRT can be as simple as entering data into a
form. A form is provided for this purpose and can be used
as soon as at least one CRT definition exists. Before
defining a CRT the following steps must have been performed.
Normally these steps would have been carrried out as part of
the ORACLE installation procedure.

4-102

(1)

(2)

Create a database called CRT (If space is a
premium, any existing database can be used, in
which case this step may be skipped). This is
where the CRT definitions will reside. This
database may be created with DBF as follows:

DBF C CRT CRT.DBS 1K

A 1k database should be able to hold quite a
few CRT definitions. The database may of
course be a secure database so that only
certain users may define or look at CRT
definitions, as in the following example:

DBF C CRT CRT.DBS 1K JON/DOE

Initialize the database. This consists of
creating the tables and inserting data into
them. This can easily be accomplished by
logging on to UFI, as follows:

SQL CRT

substituting the particular database name for
CRT if not using the CRT database. The SQL
statements for initializing the database are
stored on a command file provided with the
ORACLE system. The following command will
cause UFI to process that command file:

QCRT.SQL

The last thing the command file will do is
select out the names of CRTs that have been
pre-loaded into the database. If the CRT in
question is among these, the CRT may be
directly ~compiled as described in the
"Compiling CRT Descriptions" section of this
document. Exit from UFI by typing:

$EXIT

Parameters Used to Define a CRT

Once the CRT database has been created and initialized, the
process of CRT definition may begin. The parameters for
defining a CRT are usually available in the CRT manual.

4-103

Values will be required (possibly NULL) for the following
parameters. These parameters are stored in a table called
crt. To enter these parameters into the database the crt
form provided with ORACLE may be used, or SQL INSERT
statements may be used to bootstrap IAP for the first CRT.
Some CRT definitions will already exist in the CRT database
as a result of running the CRT.SQL command file. If the
terminal is already defined, the crt form may be used to add
additional CRT definitions. To find out what CRT
definitions exist and a description of them, type SELECT
NAME FROM CRT while in UFI.

PARAMETER TYPE DESCRIPTION

NAME CHAR(20) The name by which the CRT will be
referenced. It should conform to
the naming conventions for files in
the operating system.

LINES NUMBER The number of lines of text that
will fit on one screen. This value

is 24 for most CRTs.

COLUMNS NUMBER The number of characters that will
fit on on line of text. This 1is
generally 80 or 132 for nmost
terminals.

MSGL NUMBER The line to display help messages
and diagnostics on. This is
normally line 23. It can be no
greater than LINES.

MODL NUMBER The line to display mode and other
status information. This is
normally line 24. It can be no
greater than LINES.

4-104

BASE

OFFSET

CLEARSCREEN

BACKSPACE

NUMBER

NUMBER

CHAR(20)

CHAR(20)

Should be 1 or 0 depending on how
the CRT numbers its 1lines. For
example a 24 line CRT may number
its lines from 0 to 23 or
alternativly 1 to 24. Generally
numbering starts with 1.

If row and <column values are
represented as single characters
(for instance when postioning the
cursor) then an offset value must
be supplied. This number is
usually 31 (decimal) and when added
to a row or column value determines
the character used to represent
that wvalue to the CRT. Leave the
value NULL if the terminal
represents these values as ASCII
strings. See the section on CRT
Requirements for further details
concerning offsets.

The escape sequence to clear the
screen or clear to end of screen.
This is usually a 2 or 3 character
sequence beginning with the escape
character (033 octal). Later it
will be shown how these sequences
can be easily represented in the
database.

The escape sequence (or control
character) that will move the
cursor left one position. This is
a non-destructive backspace, that
is it should not erase any
characters. Control H works on
most CRTs.

4-105

FORESPACE CHAR(20) The escape sequence for moving the
cursor right one position. This
must also be a non-destructive
sequence. A space character is not
an acceptable FORESPACE sequence

GOTOXY CHAR(20) The model escape sequence for
postioning to an absolute column
and row on the screen. The word
model is used because the actual
escape sequence has the actual row
and column values put into the
sequence when its used as opposed
to the model esacpe sequence which
has placeholders for the row and
column values. More on that later.

TSET CHAR(20) A set of escape sequences used to
configure the terminal into a
particular mode. This sequence is
executed once at program startup
prior to any other sequnces.

TRSET CHAR(20) This sequence is executed prior to
leaving the program to reconfigure
the terminal back to a starting
state. The definition of CRTs does
not provide for storing the initial
state of the terminal and restoring
it to that starting state.

BOLDON CHAR(20) This sequence turns the inverse
video attribute on. Any other
attribute could be substitued for
reverse video as well (such as
highlighting).

4-106

UNDERON

ALLON

ATTOFF

WINDOW

SCRUP

CHAR(20)

CHAR(20)

CHAR(20)

CHAR(20)

CHAR(20)

This sequence turns the underline
attribute on. Like the former, any
other attribute could be
substituted for underlining.

This sequnce turns both underlining
and reverse video attributes on
simultaneously.

This sequence turns all attributes
off.

This model sequence creates a new
scrolling region which is a subset
of the lines on the display. It is
a model sequence for the same
reasons as GOTOXY is. The actual

top and bottom lines are
substituted at the time the window
is created. The model sequence

supplies placeholders for the
actual values.

This sequence causes a window to
scroll up one line causing the top
line to disappear and a new line to
appear on the bottom line of the
window.

4-107

Control Sequences for IAP

Besides defining the parameters of a CRT, control sequences
for invoking IAP functions (ie. NEXTFIELD, PREVFIELD, etc.)
must alsn be defined. These control sequences map a key or
keys to a particular IAP function. When that key(s) 1is
pressed IAP will recognize it as a control sequence and
execute the appropriate function. To avoid ambiguity,
control sequences must begin with a non-printing character.
More than one sequence can be defined to invoke a particular
function and not all functions have to be defined allowing a
subset of functions to be available.

Some CRTs will provide a group of keys (called function
keys) which when pressed will send out an escape character
followed by one or more characters. Defining these keys as
control sequences makes invoking functions easier for the
IAP operator. If the CRT does not provide these Kkeys,
single control characters make good alternatives. 1Its also
helpful if certain common functions such as NEXTFIELD are
mapped to appropriate keys 1like TAB or RETURN. The
BACKSPACE function should be defined to be the same as the
operating system's backspace key for consistency.

Since control sequences must use non-printing characters, it
would be helpful if these sequences could be entered as
printing sequences so that later it would be possible to see
what was entered. For that reason the following conventions

are used when defining CRT control parameters and control
sequences:

\ooo Where ooo is a 1 to 3 digit octal number
representing some ASCII character.

\e Represents the escape character (\033).

\\ Represents the \ character.

4-108

These sequences will Dbe translated to their defined
representations prior to being sent to the CRT.
Additionally there are similar conventions for representing
the placeholders for inserting the x and y screen
coordinates used in GOTOXY and the top and bottom lines used
in the WINDOW sequence. These formal parameters tell IAP
where to insert the actual values when it wants to execute
that function. The following conventions are used:

\x The x coordinate for GOTOXY. This corresponds
to the column to postion to.

\y The y coordinate for GOTOXY. This corresponds
to the line to position to

\t The top line in the WINDOW function.

\b The bottom line in the WINDOW function.

Function to Control Sequence Mapping

Defining the function to control sequence mapping consists
of entering rows into the esc table in the CRT database.
This may be done by INSERT statements when bootstrapping IAP
or as part of the form crt. The esc table has the following

structure:

NAME CHAR(10) The CRT the mapping is to be
associated with.

FUNC CHAR(2) A one or two character abbreviation
of the IAP function name.

ESCSEQ CHAR(20) The control sequence used to invoke
the function.

COMMENTS CHAR(20) A description of what key(s) ¢to
press to cause ESCSEQ to be
generated. This description will
be used to drive the IAP function
HELPKEYS which describes to the
user how to invoke IAP functions.

4-109

The allowable values FUNC may take on are contained in the
table functions. To list the allowable values while in SQL
type SELECT * FROM FUNCTIONS. They are listed here for

convienence:

NF Next Field

NR Next Record

NB Next Block

PF Previous Field

PR Previous Record

PB Previous Block

CF Clear to end of Field

CR Clear Record

CB Clear Block

I Insert record

0 Query record

U Update record

D Delete record

X Exit IAP

DC Delete Character (backspace)

H Help

DA Display field Attributes

R Redisplay screen

MR Move cursor Right

ML Move cursor Left

CM Change character Mode (Replace or Insert)

FM change Functional Mode (Insert or
Query/Update)

CA Clear All

DK Display function Keys

SB Scroll forward one Block

P Print form

4-110

Compiling CRT Descriptions

At this point it is assumed that a CRT description has been
entered into the CRT database as outlined above. Now it is
necessary to compile the CRT description into a format that
IAP can read. The output of CRT is a system library file
which is read by IAP at startup. The CRT description is
compiled by executing the CRT utility as follows:

CRT crtname [user/id]
or
CRT crtname database [user/id] -u

The first case applies when the crt information has been
stored on the crt database and the second case applies when
a user database has been used. The user/id parameter is
optional depending on whether 1its a secure database.
Crtname is the name entered into the NAME column of the crt
table. If no diagnostics come out, then the description was
compiled successfully. An output file called crtname.crt
will be placed in the system library.

After a description has been compiled successfully, IAP may
use that CRT as follows:

IAP formname crtname
or
IAP formname

The first format is used to specify a particular CRT. The
second format is used to specify the default CRT (explained

below).

It may be desired to have a particular CRT act as the
default. This can be accomplished copying the crt file into
a new file called default.crt (which should reside in the
system library). 1In this case the crtname parameter may be
omitted when invoking IAP and that CRT will be the default.

ORACLE
REPORT WRITER/TEXT PORMATTER

USER'S GUIDE

Oracle Users Guide - Version 2.3

copyright (c) April 1981
By Relational Software Incorporated
All rights reserved. Printed in U.S.A.

"ORACLE?™"
REPORT-WRITER

USER'S GUIDE

TABLE OF CONTENTS

Report Writer Overview 5-1
Using the Report Formatter (RPF) 5=-T7
Report Formatter (RPF) . 5-19
Using the Report Writer Utility 5-43
(RPT)

Report Writer Utility (RPT) 5-70

5-1

REPORT - WRITER

OVERVIEW

The ORACLE Report Writer provides SQL's query capabilities,
in addition tn text formatting capabilities, to enable ORACLE
to pronduce reports that combine information derived from the
database with additional textual information such as
headings, explanatory text and any other material desired.
Potential applications for the Report Writer are quite
varied. 1In the simplest case, it can be used to produce a
report derived from a single ORACLE table, with column
headings, columns of database information, and totals as
desired. Examples of more complex applications are the
production of rteports with many levels of nesting, with
multiple breaks in columns, and with a variety of subtotals
and totals presented. Other applications that emphasize the
text processing capabilities could include the production of
computer-generated correspondence, with name and address
information, as well as information included in the
correspondence derived from the database, and the production
of perindic budget and cost reports used in the management of
a business. Of course, the Report Writer can also be used to
print on preprinted forms.

The Reponrt Writer is comprised of two programs that must both
be used to derive information from the database and produce a
report which presents the derived information in the desired
fashion, as illustrated by Figure 1.1. The first of these,
RPT, derives database information through SQL statements.
The second, RPF, is a text formatter that formats the
information based on format commands included in the text.

Generation of a report is controlled by a single file, the
report control file, which contains report writer statements
(for RPT), text formatter commands (for RPF) and any other
text material that is to be included in the report.

This file can be created using any standard text editor.
Once the report contronl file is complete, RPT is executed.
RPT reads the report control file, scanning for report writer
statements. Text formatter commands and user text are merged
with the database-derived information that is produced by the
RPT rtun.

|Report Writer Statements|
| +

User Text

I
|
+ I
Format (RPF) Command |

REPORT

WRITER /

Database + User Text |
| And]

FILE]
Format (RPF) Commands]|

TEXT

| AAAAAAA] | |
I.......l|+
| XXXXXXX]|+

output report

| "cuser>" |
| Database |

ORACLE DATABASE

* Report Generation Process "

Figure 1.1

Report Writer statements cause RPT to open the usetr's ORACLE
database to derive information for the report. Incorporated
within a report program are SQL queries to derive the desired
data. Other statements cause RPT to include report heading
and footing information, use specific data output formats,
and conditionally branch to and execute other SQL or RPT
statements. RPT can be directed to intersperse the database
information within the RPF commands and user supplied text.

When RPT processing 1is completed, the interim file it
produces 1is processed by the Report Formatter (RPF) to
generate the desired veport. Before processing by RPF, at
the end of the RPT run, the interim file contains text
supplied by the user, information extracted from the database
and RPF commands specifying how that information should be
placed on the report. RPF commands can specify:

- horizontal and vertical margins

- centering and underlining

- tabulation

- page numbering

- spacing and actual placement of text

RPF output can be directed to a line printer, typewriter
terminal, or CRT. Figures 1.2, 1.3, and 1.4 are examples of
Report Writer-generated rvteports. A detailed explanation of
these repnrt programs is provided in Section 5.

This manual serves two purposes. It is a detailed reference
manual on the RPT Repnrt Writer and the RPF Report Formatter.
It also serves as a User's Guide, informing the reader by
example how the various features of these two programs
interact to construct a complete report. The reader 1is
encouraged to first become familiar with the RPF text
formatting language before tackling the RPT programming
statements.

TECHNOLOGY

NAME

SMITH
ALLEN
WARD
JONES
MARTIN
BLAKE
CLARK
SCOTT
OATES
TURNER
ADAMS
JAMES
FORD
MILLER

JOB

CLERK
SALESMAN
SALESMAN
MANAGER
SALESMAN
MANAGER
MANAGER
ANALYST
PRESIDENT
SALESMAN
CLERK
CLERK
ANALYST
CLERK

SYSTEMS,

PERSONNEL REPORT FOR SEPTEMBER, 1980

SALARY

$800.00
$1,600.00
$1,250.00
$2,975.00
$1,250.00
$2,850.00
$2,450.00
$3,000.00
$5,000.00
$1,500.00
$1,100.00

$950.00
$3,000.00
$1,300.00

END OF REPORT

Figure 1.2

="pxample 1 - Tabular Report .

I

N C

COMMISSION

$300.00
$500.00

$1,400.00

DNO

20
30
30
20
30
30
10
20
10
30
20
30
20
10

Division Payroll Report

by Department

******i**t******ﬁ**********t**t**********i************

DEPTNO: 010 - - DEPTNAME: ADMINISTRATION

********tt******#******t*t****t*t********i************

EMPNO NAME MONTHLY COMM ANNUAL
SALARY COMPENSATION
7782 CLARK $3162.50 $37,950.00
7934 MILLER $1300.00 $15,600.00
7839 OATES $5750.00 $69,000.00

Department Summary

AVG = $3,404.17 MIN = $1,300.00 MAX = $5,750.00 $122,550.00

ARRRRARRRARRRARRRARRRRARRRARRRRRARRRRRRANE AR AARREALRES

DEPTNO: 020 - - DEPTNAME: RESEARCH

Y Y222 22 2222222222222 2222 222 222 2 2 2 2 2 4 2 222 24

EMPNO NAME MONTHLY COMM ANNUAL
SALARY COMPENSATION
7369 SMITH $800.00 $9,600.00
7566 JONES $3421.25 $41,055.00
7876 ADAMS $1100.00 $13,200.00
7788 SCOTT $3000.00 $36,000.00
7902 FORD $3000.00 $36,000.00
7955 WILSON
7956 JAKES $1000.00 $12,000.00

Department Summary

* Example 2 - Nested Report "

Figure 1.3

Date : 03/25/81

To: BLAKE
Department : 30 - SALES

Location : PARIS

From : Bill James
Director of Personnel

Subj : 1982 Employee Compensation Plan

Its budget time again! To aid you in completing the salary
portion of your budget I have computed your department's

current salary expenses. For planning purposes we are
presently estimating an across the board increase of 10% in

the 1982 salary pool.

Your department's 1981 figure is: $140,430.00

Estimated 1982 figure is: $154,473.00

In completing your salary plan you should break this total
down by individual employees. Please let me know if you have
any questions on this or related issues.

Bill

Example 3 - Sample Letter

Figure 1.4

5-7

USING

THE REPORT FORMATTER

(RPF)

2.1 Overview

This section discusses methnds for using RPF commands to create
a complete report. First, a simple example is presented, and
methods for producing it are described; then a sequence of
increasingly complex examples is presented, each with its own
discussion of methods for producing it.

RPF receives both the input it processes and the commands that
direct the processing in the same file. Thus, commands
imbedded within the file to be formatted are used to control
the formatting operation. The RPF user presents commands to
RPF by inserting them into the file to be formatted, usually
using a text editor (of course, if the file is constructed by a
program, RPF commands can also be inserted by the program).
This process is illustrated by the diagram of Figure 2.1.

The imbedded commands control a variety of options, such as
what margins to use, when to skip to the next page, how far to
indent a paragraph, where to skip a line, how to number the
pages, etc.

RPF reads an input file and formats it into output pages as
directed by the imbedded commands. The text is viewed as a
series of words. A word is a collection of one or more
characters which is terminated by at least one space or an end
of line character (An end of line character is inserted into
the text file by the editor when the user enters a carriage
return) . RPF places each word, one after another 1into the
output line. One space will separate each word on output,
regardless of the number of spaces the user may have entered
between the words on input.

/ \
I | <
[: 1<
\ /
/ \
USER

TERMINAL

- - —— —————— ————— - —

/ R P F \

"FORMATTED OUTPUT"

= rPigure 2.1 *

When the line is full and the next word will not entirely fit
within the current line, the last word is shifted to the right
so that the last character is aligned with the right margin. A
word is indivisable and is never split between lines. RPF puts
spaces between words so that the right and left margins are
justified. RPF will continue to place words in the output
pages until the end of the input file is encountered.

RPF allows the user to define the starting and ending positions
nf the output line. The area on a line where text is placed is
called a column. If the user does not specify the boundaries
of a column, RPF will place the text in a default column which
begins in position one and extends to position 132.

2.2 Example 1 — A Simple Letter

Now that the basics have been reviewed, let's look at the input
file which is required to produce a simple letter. Figure 2.2A
is a listing of the file which created the letter in figure
2.2B. The input file was created using a standard text editor.
The line numbers and titles were added after RPF was executed.

RPF differentiates its commands from the user's text by the
leading '.'(period) or '#'(pound sign). A user may begin words
with these characters providing the word is not exactly like an
RPF command. If it is, a second '.' or '#' will tell RPF that
this is text. On output only one '.' or '#' will be printed.
Commands may be specified with either upper or Ilower case
letters.

The letter was printed with left and right margins of '13' and
173', This was done by defining a single column beginning in
position '13' and extending to position '73'. The command to
do this is shown in Line 1.

The '.dt' command on Line 1 defines a table with an identifier
of '1' and contains the column beginning in position '13' and
extending through and including peosition '73'. Notice the
period following the '73'. It is required to tell RPF that
there atre no more columns in this table.

X3

T S Sl)
NMBWNHROWOJIOHU & WN -

.dt 1 13 73 .

#page 6 58

.sp 1

.t 1

.S 3

January 10, 1981

.S 3

Mr., William 0. Smith .n
3752 Oakwnod Drive .n Seaport, Me. 96142
.s 4

Dear Bill:

. 4 .p

I hope ynu have received the medical and dental insurance forms that I se
.s 1

.p The form you submitted for your November 1, 1980 visit to Dr. George
Smedley did not indicate the nature of the treatment. Please have the
doctor write me a note describing the reason for the visit and the
treatment which was prescribed.

.b .p

If you have any questions please give me a call at my office.
.S 2 .

Sincerely,

.S 4

Sharon Brown

.te

Example 1 - RPF Input Text

* pPigure 2.2 A "

January 10, 1981

Mr. William 0. Smith
3752 Oakwnnd Drive
Seapnrt, Me. 96142

Dear Bill:

I hope you have rveceived the medical and dental
insurance forms that I sent.

The form you submitted for your November 1, 1980 visit
to Dr. George Smedley did not indicate the nature of the
treatment. Please have the doctor write me a note describing
the reason for the visit and the treatment which was

prescribed.
If you have any questions please give me a call at my

office.

Sincerely,

Sharon Brown

Example 1 - RPF Qutput

*» Figure 2.2 B "

11

Defining a table does not automatically cause the text to be
placed within the specified column boundaries. A table must be
invoked before it will take effect. The 't' command in Line 4
invokes table '1'. If user text was included prior to Line 4
it would have been formatted according to the definition of the
default table; a single column beginning in position '1l' and
extending through position '132'.

The 'page' command on Line 2 defines the top and bottom margins
of a page. RPF will begin placing text on the sixth line of
every page and automatically skip to the next page after
completing line 58. All pages are assumed to have 66 lines.
If the print spacing is six lines per inch, the 66 lines will
cover a standard 11 inch page.

The 'sp' command defines the spacing between lines. Since the
default is single spacing this command could have been omitted.
The '.s 3' command on lines 5 & 7 will cause three lines to be
skipped. Printing on stationery will require skipping enough
lines to have the first line printed below the letterhead.

Line 6 contains the first line of user text. Three words are
specified: ‘'January’, '10,', and '1981'. Remember that the
number of spaces between words on input has no effect on the
spacing on output. These words could have been input on
separate lines and still produced the same results.

Line 8 contains the name of the addressee followed by a '.n'
(new line) command. This is the same as the 'return' key on a
typewriter. The 'n' command on Line 9 causes the city/state to
be printed on the line following the street address.

The paragraph command ('.p') on Line 12 causes the text which
follows to begin on the next line and be indented five spaces.
The text within the body of the letter is printed within the
column boundaries. As noted above as many words as possible
will be placed on a line. The word 'insurance' would not
completely fit on the same line as 'dental'. The word ‘dental’
was aligned with the right hand margin, and the additional
spaces were evenly distributed throughout that line.

The blank line ('.b') command inserts one blank line and has
the same effect as '.s 1' (skip one line).

The table end ('.te') command on Line 25 instructs RPF that
table '1' is no longer active. Column boundaries revert back
to the default table. If the active table is not terminated an
' UNEXPECTED END OF COLUMN' message will be issued.

The sample letter was printed on a typewriter quality printer
with the following system command:

RPF ttl:/pa=letter.abc

where ttl: is the system address for the desired printer. The
/pa instructs RPF to pause and sound the alarm before printing
each page. This will permit the user to individually load each
sheet of paper. When ready, any charvacter may be entered to
start the printing. The entered character will not be printed.

'letter.abc' is the name of the input text file. 1If the file
qualifier is omitted (in this case 'abc'), 'rpf' is assumed.

2.3 Example 2 — A Tabular Report

The second example is the tabular report shown in figure 2.3B.
Figure 2.3A is a listing of the input text file which produced
this report. The line numbers and titles in 2.3A were added
after RPF was executed.

The '.dt' command on line 1 defines table 'l' which contains a
single column extending from position 13 to 73. A second
table, table '2', is defined on line 2. This table contains 5
columns; the first extending from position 1 to 5, the second
from 9 to 28, the third from 32 to 39, and so on. Notice that
the fifth column is defined by the last pair of numbers; 52 and
0. The zero signifies that this column ends on the right hand
margin of the column in which this table is invoked. We will
see a little later how table '2' is used to create this tabular

report.

WOoOJdAUT W -

.dt 1 13 73 .

dt 2159 28 32 39 42 49 52 0 .
.page 6 58

.t 1

.5 4

.cul " ALL SEASONS SPORTING GOODS " .
.5 2

.cul MONTHLY SALES REPORT .

.S 4

.t 2

ITEM .n NO. .nc

.cen ITEM . .n .cen DESCRIPTION . .nc
.r PREVIOUS .n MONTH .nc

.t CURRENT .n MONTH .nc

.t ¥Y-T-D .nc

.S 2

2354 .nc NFL Football .nc $175.34 .nc $202.45

.s 1

6734 .nc Chicago Cubs Baseball Uniform .nc $56.10

.5 1
8940 .nc Alpine Skis .nc $941.84 .nc

.S 1

.NC .NC ——===——= .n $1173.28 .nc —-—---
$4434.47

.te .s 3

.cul END \ OF \ REPORT .

.te

.nc $564.89
.nc $162.38

.nc

$1005.93 .nc $3582.57 .nc

--== .n $1307.76

* Example 2 - A Tabular Report *

Figure 2.3 A

.nc $287.01

ITEM
NO.

2354

6734

8940

" ALL SEASONS SPORTING GOODS *

MONTHLY SALES REPORT

ITEM PREVIOUS CURRENT
DESCRIPTION MONTH MONTH

NFL Foontball $175.34 $202.45
Chicagn Cubs $56.10 $162.38

Baseball Uniform

Alpine Skis $941.84 $1005.93

$1173.28 $1307.76

END OF REPORT

"Example 2 — A Tabular Report"

Figure 2.3 B

$564.89

$287.01

$3582.57

$4434.47

Line 3 defines the top and bottom margins of the output pages,
and line 4 invokes table 'l1'. Since table '*1' has only one
column, the text that follows will be formatted within that
column's boundaries. The '.cul' command on line 6 indicates
that the text between the command and the terminating period
should be centered within the current column and undetrlined.
Since the current column extends from position 13 through 73,
this text is centered on the page.

Figure 2.3A was printed on a special printer which allows bold
face type to be substituted for underlined characters. If this
option was not selected or a standard line printer was used,
the specified text would have been underlined. If the output
device is a video terminal (CRT) the user can specify at RPF
execution time that all underlined text be displayed in reverse
video. See Section 2.6 - 'Executing RPF' for additional

information.

The '.cul' command on line 8 produces a second line of centered
and underlined text.

At this point we are ready to create our tabular report. The
report will contain five columns across the page. If this
report was being typed the user would probably set tab stops
for the first position of each column. With RPF a new table is
invoked to establish these column boundaries. The command on
line 10 invokes table '2', which was previously defined on line
2. Unlike table 'l1' which had only one column, table '2'
provides five columns in which to output text.

When a table is invoked it subdivides the tcurrent' column. In
this case the 'current' column is the single column of table
1Y, Therefore, invoking table '2' subdivides the 61 print
positions from position 13 through 73 into five separate areas
or columns. The column boundaries for a table are interpreted
relative to the current column. For example the first column
in table '2' begins in relative position 1 and extends to
relative position 5. Since the current column begins in
position 13, the absolute boundaries of this column are 13
through 18. The last column begins in relative position 52
(absolute 65) and extends to the end of the current column

(absolute position 73).

A table must completely fit within the column in which it is
invoked. The column in which table '2' was invoked contained
61 print positions. If any columns in table '2' extended
beyond relative position 61 an error would be indicated. For
example, if the last column was defined as '52 65', when the
command on line 10 was executed RPF would have returned the

error "COLUMN TOO SMALL".

Now that table '2' has been defined and invoked, output text
may be placed in each of the five columns. The text on line 11
is placed within the first column. The '.n' command causes the
text 'NO.' to be placed on a new line within this column. The
'.nc' command causes the placement of text in the current
column to stop. The text which follows will be place on the

first line of the next column in table '2'.

Line 12 requests that the words 'ITEM' and 'DESCRIPTION' be
centered on the first two lines of the second column. The '.t'
(right justify) command on lines 13, 14, and 15 tells RPF that
all subsequent text lines for columns 3, 4, and 5 should be
right justified. Notice that the column headings are aligned
with the right hand boundary of these columns.

Advancing past the last column of a table ('.nc' on line 15)
causes the first column to become current again. The '.s 2'
command on line 16 would have the same effect in addition to
skipping two lines. Line 17 places the first line of data into
each column of the report. Notice that the dollar values in
the last three columns are right justified. Lines 19 and 21
define the output for the second and third lines of the report.

The text 'Chicago Cubs Baseball Uniform' would not fit on one
line nf the 'ITEM DESCRIPTION' column. As explained above, RPF
will place as many words as possible on a line of a column.
When a line is full, the last word is right aligned and the
remaining text is placed on the next line. Since 'ITEM
DESCRIPTION' required two lines, RPF adjusted the other columns
so that all the entries for the next item ('ITEM NO.' 8940) are
on the same line. RPF will cause the appropriate number of
lines to be skipped within each column so that text placement
will begin on the line after the longest column.

The summary information is specified on lines 23 and 24. Since
no text was displayed in the first two columns, two '.nc’
commands were included to position to the third column. The
output text for the last three columns contains a line of
dashes followed by the column total on the next line.

5-18

The '.te' on line 25 terminates the current table; Table '2'.
Terminating a table causes the previously invoked table to
become active again; Table 'l'. The text on line 26 will be
centered and underlined within the column boundaries of 13 and
73. The back slash '\' requests RPF to insert a second blank
character between each of the words. Normally only one blank
separates words on output.

The '.te' on line 27 terminates Table 'l' causing the default
table to become active.

5-19

REPORT FORMATTER

(RPF)

3.1 Overview

The Repnrt Formatter (RPF) reads a file which contains text
for the report, database-derived information produced by RPT,
and RPF commands. RPF then writes a file that contains the
text of the original file, arranged as directed by the RPF
commands. In addition to the imbedded RPF commands, the
final format is also controlled by the choice of RPF options,
which are selected at the start of RPF execution. The file
read by RPF is usually constructed by the use of a text
editor; then RPT is executed first, to process commands to
derive database information for the report, then RPF is
executed to format all of the report information for

printing.

In addition to the use described above to generate an ORACLE
report, RPF can also be used alone as a general-purpose
formatting program for a variety of word processing
applications, such as correspondence, memoranda and reports
such as this manual, which is itself produced using RPF.

3.2 RPF Input

Input to RPF consists of text and RPF commands, intermixed in
the input file. The basic unit of text data is a word which
is a string of one or more characters terminated by a blank,
tab, carrier return, or form feed (newline) character. The
input string:

The boy went<tab>to the<cr> store.

contains the following six words: "The", "boy", "went", "to",
"the", and "store". Blanks, tab, carrier return, form feed,
and characters serve only as delimiters and have no effect on

the placement of words in the RPF output.

3.2.1 RPF Command Format

RPF commands control the placement of words in an output
line, horizontal and vertical margins, page numbering and
control, horizontal and vertical spacing, line skipping, etc.

All RPF commands start with either a pound sign (#) ot period
(.). The "#" or "." may be used interchangeably without
affecting the meaning of the command. Words which begin with
a "#" or "." but are not valid commands will be treated as
text. To produce output that is identical to a valid
command, the valid command is preceded with an additional "."
nr "4". For example, #b is a command to insert a blank line,

but ##b will be treated as text and output as $b.

Commands may be specified in upper ov lower case characters.
Each command may be followed by one or more parameters.
Commands and their associated parameters are separated by one
or more blank, tab or form feed character. A single "." or
wgn is used to terminate commands which have a variable
number of parameters, or operate on a group of words (e.qg.
centering, underlining, etc.).

3.3 Tables and Columns

RPF processes text one word at a time, placing each word into
the output line within the boundaries of the current column.
A column is defined by its starting and ending character
position. Words are placed into columns separated by at
least one blank character, beginning with the first character
position, and extending to the end of the column. Words are
indivisable, and are not split across the lines of a column.
Therefore, a word's length must be less than or equal to the
width of the current column, or an error indication will be
given by RPF.

The width of a column is equal to the last character position
minus the first character position plus 1. The last word 1is
aligned with its last character placed in the last column
position. Any additional spaces introduced by alignment are
evenly distributed throughout the line.

Figure 3.1, Example 1 shows the text of Lincoln's Gettysburg
Address placed in a column beginning in position 1 and
extending to position 132. Note that all lines except the
last are right justified.

cxample 1: Default Table

1 132
v v
+===+
| |
v " Table 1 - Column 1 " v
P SRR ISR P S S e >+

"Fourscnre and seven vyears ago our fathers brought forth on this
continent a new nation, conceived in liberty, and dedicated to the
proposition that all men are created equal.

Example 2: Define Table Within Current Column of Previous Table

1 4 76 132
v v v v
| I
v " Table 1 - Column 1 " v
B S ittt e e e e et e, —— >+
| |
v " Table 2 - Column 2 " v
e >+

"Fourscore and seven years ago our fathers brought
forth on this continent a new nation, conceived in
liberty, and dedicated to the proposition that all
men are created equal.

TABLES AND COLUMNS

Figure 3.1 - Part 1 of 2

1 4 10 25 30 45 76 132
v Vv v v v v v
+==+=====+==============+====+==============+:========+================

v " Table 1 - Column 1 "
D SRR P Sttt e >+
| |
v " Table 2 - Column 1 " \
e — e — = O B e utmtade o ——— >+
| I I I
Table 3 | " Column 1 " v v " Column 2 " v
+lmmmm———————— >+ e >+
6 22 26 41
"Fourscore and and dedicated to
seven years ago the proposition
our fathers that all men are
brought forth on created equal.
this continent a
new nation,
conceived in
liberty,

TABLES AND COLUMNS

Figure 3.1 - Part 2 of 2

A table consists of from 1 to 20 columns, and defines the
boundaries for word placement in the current line. The
default table shown in Example 1 contains one column, and
serves as the initial table definition. Other tables may be
defined, and invoked within the boundaries of the current
column.

Example 2 of figure 3.1 shows a second table which has been
invoked within the single column of the default table. This
table has one column which extends from the 4th position to
the 76th position. The text of Example 1 is reformatted
within this new table and column definition.

A table is always invoked within a ceolumn, and its column's
character positions are counted relative to the beginning of
that column. Example 3 shows a third table which contains
two columns; the first begins in relative position 6 and ends
in position 22 and the second begins in relative ponsition 26
and ends in position 41. This table has been invoked within
the single column of table 2. Since the column in Table 2
begins relative position 4 of the single column in the
default table, the c¢olumns of Table 3 begin in absolute
locations 10 and 30.

A table must fit within the column in which it is being
invoked; that is, the length of the table must be less than
or equal to the length of the column. The length of a table
is equal to the last character position of the last column
defined in that table. For example, Table 3 has a length of
41 (the second and last column extends from position 26
through 41). Therefore, this table can fit within the
current column, whose length is 73 (76-4+1).

In Example 3, the sample text has been partially displayed in
both columns of the table. RPF will place words into the
current column until a command to advance to the next column
is encountered. In this example, a "next column" command
after the word "liberty," causes RPF to place the remaining
text inton column 2

Commands to define and invoke tables and advance the column
position are presented in detail in seciion 00.

3.4 Imbedded Blanks

Sometimes it is necessary to preserve a specified number of
blank spaces between two wotds. Normally, the number of
blanks between words in the input file is ignored, and RPF
will separate words by single blanks. A back slash character
fnllowed by a blank is used to include additional blanks in

the output, as illustrated by this example:

Input Text OQuput Text
1- Abraham Linconln Abraham Lincoln
2- Abraham Lincoln Abraham Lincoln
3- Abraham \ Lincoln Abraham Lincoln
4- Abraham \ \ Lincoln Abraham Lincoln
5—- Abraham\\Lincoln Abraham\Lincoln

Lines 1 and 2 show normal RPF operation. The combined "\ "
causes a second blank to be included in line 3 and a third in
line 4. The double back slash on line 5 informs RPF that it
is desired to have a "\" printed in the output text, as
opposed to reserving blanks. A single "\" in the text will
be ignored.

3.5 RPF Commands

This section will discuss each RPF command in detail. The
commands will be presented in alphabetical order, and no
attempt will be made to demonstrate their interrelationship.
Figure 3.2 provides a summary of these commands.

Alternate Page Number: placement for even !
numbered pages. |

___ |
Blank: Insert one blank line in output text.|
___ |
Center: Center following text in current |
column, |

Column Literal: Suspend formatting for the |
fnllowing lines in the current column |

___ |
Column Skip: Skip 'n' lines in current |
column |

Center With Underline: Center and underline |
the following text within the current cnlumn|
___ |
Define Table: Define the column boundaries |

for the specified table. |
___ |

Figures: Reserve specified page numbers |
in output document for figures, charts, etc.|

___ |
Horizontal Spacing: for characters on |

Diablo type printer |
___]

Indent: Ident the following text in current |
column. |

Literal: Suspend formating for the fnllowing]|
text lines; column definitions are ignored. |

New Line: in the current column. |

New Cnlumn: Advance to next column |
___ |

End current and start new page. |

RPF Commands

Figure 3.2

| .P | Paragraph: New line to be started within |
I | the current column, indent 5 spaces at the |
I | beginning of the line. |

| .PAUSE | Pause: Pause outputting to terminal until |
| | signal from operator |
et et |
| .R | Right Justify: Set/reset switch to right |
| | justify all text placed in current column |
[it |
| .S | Skip: Skip specified number of lines |
| = e e e — |
| .SP | Spacing: Define spacing for current column I
| mm e e —m e |
| .SPN | Start Page Numbering: specify page numbering|
| s mm e — e mm e — e e |
| .T | Table: Invoke specified table within the |
| | current column |
PR LRSS !
| .TE | Table End: Terminate table and revert to |
| | previous column definition |
RS !
| UL | Underline: Underline the following text. |
SRS |
| VS | Vertical Spacing: Define vertical spacing |

| | for Diablo type terminal. |

RPF Commands

Figure 3.2 (Continued)

For the purpose of the following command discussions two
pointers will be introduced. The column pointer identifies
the current column within the active table. The line pointer
identifies where the next line of text for a column will be
outputted. Each column has its own line pointer. For some
commands, diagrams will be provided to exemplify the movement
of these pointers. The following diagram shows a two column
table with the column pointer positioned to column 2. Column
2's line pointer points to line 1, while Column 1's line
pointer points to line 4.

Cnlumn 1 Line Column 2
|-————————- | Pointer --> |

l
Line | mmmm e | |~ |
Pointer |-------=---= ' | \ Column Pointer
I

——> | | |

3.5.1 Alternate Page Number

This command is used to define the character position where
the page number will be printed for even number pages. If
both sides of the paper are used during reproduction, this
command will allow even numbered page numbers to appeatr on
the outside edge of the page. See #SPN command for details

on page numbering.
.APN <position>

<position> is the absolute peosition that the
first character of the page number
will be placed on even numbered
pages.

3.5.2 Blank

This command causes one blank line to be inserted, and is
equivalent to #S 1. This command affects all the columns in
a multi-column table. Refer to #S command for details on the

advancing of column and line pointers.

.b

3.5.3 Center

This command causes the specified text to be centered within
the current column. The centering takes place on the next
line and includes all the words between the command and the
first unattached "." or "#". The centered text must fit

within the current column.

CEN <text> .

<{text> . is the collection of words to be
centered. Note that standard
formatting 1is performed; multiple
blanks, and tab and form feed
characters are ignored.

3.5.4 Column Literal

This command defines one or more lines of text which will be
outputted in the current column without formatting. Each
line will be sent to the output terminal exactly as entered,
including multiple blanks, tab characters and form feed
characters. The length of each line must not exceed the

width of the current column.

.cl
<text lines>

<text lines> lines of text sent unformatted to
output terminal

3.5.5 Column Skip

This command causes the specified number of blank lines to be
inserted into current column. This command has no effect on
any other column. The following diagram shows two blank
lines inserted into column 2 whereas these lines need not be
blank for columns 1 and 3.

Column 1 Column 2 Columns 3
| e - | mmmmm ! | -——-
| -=mmmm oo | | |-——-1
| mmm oo | ! | -—=-1
| = mmmmmm - | = ! | -——-1
| —mm oo R R | |--—-1

.CS <no. lines>

<no. lines> is the number of blank lines
inserted.

3.5.6 Center With Underline

This command causes the specified text to be centered within
the curtent column and underlined. Centering takes place on
the next line and includes all words between the command and
the first unattached "." or "#". The centered text must fit

within the current column.
.CUL <text> .

<text> is the collection of words to be
centered and underlined. Note that
standard formatting is performed;
multiple blanks, and tab and form
feed characters are ignored.

3.5.7 Define Table

This command defines a table and its associated columns. The
command does not cause the table to be invoked. For
information on invoking a table, refer to section 3.5.21

(Table Command) .
.DT <table id> <spl> <epl> <sp2> <ep2> ... <spn> <epn> .

<table id> is a number from one to ten which
identifies the table.

Specifying a previously used
<table.id> will cause the old
definition to be replaced with the
new definition.

<spn> <epn> Each pair of numbers defines the
boundaries of a column.

<spn> is the starting position of the
nth column relative to the beginning
of the table.

<epn> is the ending position of the
nth column relative to the beginning
of the table.

The boundary of a column includes the
starting and ending column positions.

The starting position of a column
must be at least one greater than the
ending position of the previous
column.

At least one column must be defined
in a table.

If the ending position of the last
column is less than or equal to zervo,
the ending position will default to
the end of the column in which the
table is being invoked. Extending
the last defined column to the end of
the invoking column causes the right
margin to be right justified.

The .DT command is terminated by a single unattached "." or
ll#ll.

Example:

.DT 1 12 24 32 48 . This command defines a table with an
id of 1 which contains two columns.
The first extends from position 12 to
position 24, and the second from
position 32 to position 48.

.DT 1 13 73 . Two one column tables are defined.

.DT 2 5 0 . The single column of table 2 extends

from position 5 to the end of the
column in which it 1is invoked. If
table 2 was invoked within table 1,
the output text would be right
aligned.

3.5.7 Figures

This command reserves the specified page numbers for figures,
charts, diagrams, etc. If page numbering 1is wused, the
specified page numbers will be omitted from the output

document.
.F <pgnol> <pgno2>

<pgnol> Is the page number to be skipped in
the output document.

This command is terminated by a single unattached "." ovr "§".

3.5.8 Horizontal Spacing

This command is used to set the horizontal spacing on the
Diablo printer terminal.

-.HS <spacing>

<spacing> is the number, when multiplied by
1/60 of an inch, will determine the
spacing from one character to the
next. For example, a value of 6 will
provide spacing of 1/10 of an inch,
yielding 10 characters per inch.

Note: The spacing between words is
variable and beyond the user's
control, but 1is as close to the
defined spacing as possible.

The default value is 6, or 10 lines per inch.

3.5.9 Indent

This command is used to indent the following text within the
current column. It is a shorthand way to define and invoke a
table with one column, which begins the specified number of
spaces within the current column and extends to the end. For
example, .I 5 is equivalent to invoking the table defined by
.,DT1 50 . . The indenting is terminated when a .TE command
is encountered. This command follows the same rules used in

invnking tables.
.I <indent-number>

<indent-number> is the number of spaces to indent the
following text

3.5.10 Literal

This command defines one or more lines of text which will be
written exactly as entered without formatting. Commands
embedded within these lines are ignored and treated as text.
Table and column definitions are suspended, with each output
line beginning in position 1. Literals are the only case
where multiple blanks, tab characters and form feed
characters can be explicitly included in the output document.

The command is terminated when a "." or "#" is encountered in
the first character position of a line. Any other text on
this terminating line is ignored.

.L

<text lines>

<text lines> are the 1lines which are sent
directly as entered to the output
terminal.

3.5.11 New Line

This command causes a new line to be started in the
current column. Note that an automatic .N command 1S
issued whenever any other command is encountered (e.g.

#T, #B, etc.).

3.5.12 New Column

This command causes the current column to end and the
next column to be started. If the current column is the
last column in the table, the first column of the table

is started.

If the current column contains multiple lines, .NC will
cause the text to be placed in the top line of the new
column. This is shown in the following diagram:

I
I — | f B |
| | \ Place text after #NC
[

—

in previous column

Advancing to the first column will cause each column's
line pointer to be set to the line following the longest
conlumn.

_Place text after #NC

3.5.13 New Page

This command causes a new page to be started.

-.NP

5-34

3.5.14 Paragraph

This command causes a new line to be started within the
current column, and five spaces to be inserted at the
beginning of the line.

.P

3.5.15 Page

This command defines the top and bottom margins of a
page.

.PAGE <top-line> <bottom-line>
<top-line> is the number of lines skipped

from the top of the page before
outputting text.

<bottom-line> specifies the last line on the
page where text will be
outputted.

Line number one is the first line of the page. When a
page is full RPF will automatically skip to the next
page. See Section (3.6.3) for a discussion of page
advancing and printer form feed.

3.5.16 Pause

This command causes RPF to pause and wait for a single
character to be input from the output terminal. Any
character is acceptable, and will cause the printing to
resume. The entered character will not be printed. The
purpose of the pause is to allow the operator to adjust
the form or change the paper before printing will

continue.

The .PAUSE command is ignored if the PA switch is not
selected when RPF is invoked. See section 3.6.4 for
details on the PA switch.

. Pause

5-35

3.5.17 Right Justify

This command causes the text within the current column to
be right justified. Right justification is most useful
for aligning a column of numbers. The default for any
column is left justification.

-R

This command sets a switch which indicates that all text
placed in this c¢olumn will be right justified. Right
justification will remain in effect for this column until
another .R command is issued or the table is terminated.

3.5.18 Skip

This command causes the specified number of lines to be
skipped. This command should be specified while
positioned in the first column of a line; skipping will
effect all columns across the line.

.S <no. of lines>

<no. of lines> is the number of 1lines to be
skipped

Following a .S , text output will resume at the beginning
of the current column (automatic new line - .N).

3.5.19 Space

This command sets the spacing in the current column. The
default is single spacing.

.SP <spacing>

<spacing> is a number indicating the
spacing for the current column.
For example, .SP 3 will cause the
spacing to be set to triple
spacing.

The spacing value will remain in effect until another .SP
command is issued When a table is invoked, all the
columns in that table will take on the spacing value of
the column in which it was invoked. When a table is
terminated, a column's spacing value will revert back to
the value when the table was invoked.

Each column within a table may have a different spacing
value.

3.5.20 Start Page Numbering

This command defines page numbering. Parameters specify
the starting page number, type of numbering, and
placement of the number on the page.

.SPN <type> <pos> <skip-lines> <start-number>
[<sect-number>]

<type> is the number 1, 2, or 3
indicating the type of numbering:

1- Section Page Numbering:
The page number is printed as
m-n, where "m" is the section
number and "n" is the page
number.

2 - Letter Page Numbering:
The page number is printed as
-n-, where "n" is the page
number. I1f the page number
is one, the page number is
not printed.

3 - Perind Page Numbering:
The page number is printed as
n. , where "n" is the page
number.

<pos> is the starting character
position where the page number
will be printed.

Note: Page numbering is always
printed on the first printable

line on a page. See section
3.2.15, # PAGE command for
defining page margins.
<skip-lines> is the number of lines to skip
after printing the page number.
<start—-number> is the number of the first output
page.
<sect-number> is the section number "m", if

type 1 page numbering has been
selected. 1Invalid for the other
numbering types.

For example:
.cen .SPN 1 70 41 2 .

will cause Section Page Numbering to be used, beginning
at page 2-1 of section 2 . The page number will be
printed on the first line, beginning in position 70 , and
4 lines will be skipped before text will be printed.

5-38

3.5.21 Table

This command invokes the specified table within the
current column. The column boundaries defined in the
invoked table are interpreted relative to the start of
the current column.

Text following the .T command is placed in the first of
the invoked table. Placement of text in other columns is
accomplished by wusing the .nc command. A table |is
terminated with a .TE command.

.T <table id>

<table id> is the table number specified
when the table was defined (See
.DT command, Section 3.5.7).

Refer to Section 3.3 for a detailed discussion of Tables
and Columns.

3.5.22 Table End

This command indicates the end of a table. When a table
is ended, the column in which the table was invoked is in
force, and text output will continue at the beginning of
that column.

.TE

5-39

3.5.23 Underline

This command causes the specified text to be underlined.

-ul <text>

<text> is the text to be underlined.

The underlined text is terminated by the first unattached
ll.ll or ll#ll.

3.5.24 Vertical Spacing

This command is used to set the vertical spacing on the
Diablo printer terminal.

.VS <spacing>

<spacing> is the number, when multiplied by
1/48 of an inch, will determine
the spacing from one line to the
next.

For example, a value of 8 will
provide spacing of 1/6 of an
inch, yielding 6 lines per inch.

The default value is 8, or 6 lines per inch.

3.6 Executing RPF

The Report Formatter (RPF) is invoked from the user's
terminal. output can be directed back to the invoking
terminal, or to any other terminal or line printer device
including the system spool printer

To execute RPF enter the following command:

RSX-11M,VMS

RPF <output-dev>[/SW.../SW]=<input-file>

UNIX
RPF <input-file> <output-dev> [-SW .. -SW]

<input -file> is the name of the input text
file. For RSX-11M and VMS, |if
the file name extension is not
specified, the format
<input-file>.RPF is assumed.

<output -dev> is the name of the output device.

For RSX-11M and VMS, valid names
are TT4:, TI:, LP:, or SPOOL for
the spool printer. ,

For UNIX, valid device names are
/dev/ttye, /dev/lp, /di etc.

One or more switches (SW) can be specified to control the
execution of RPF. The order of specification is not
significant, and switches can be expressed in upper or
lower case characters. The following sections describe

each switch in detail.

5-41

3.6.1 All Bold —- AB

This switch will cause the entire output document to be
printed in bold face. Bold face printing is supported
only on the DIABLO terminal. For other terminal types
the switch is ignored. The BF (Bold Face) switch must
also be specified.

3.6.2 Bold Face ~-- BF

This switch will cause all underlined text to be printed
in bold face. Bnld face printing is supported only on
the DIABLO terminal. For other terminal types the switch
is ignored.

3.6.3 Form Feed -- FF

This switch will cause a form feed character to be sent
to the terminal prior to printing a page. If not used,
the appropriate number of blank lines are printed to
position the top of the next page. RPF assumes a 66 line
page when inserting blank lines. Forms of other lengths
requires the use of FF for positioning.

The switch is ignored for terminals which do not support
a form feed character.

3.6.4 Pause —- PA

This switch will cause RPF to suspend printing at the end
of each page and when a .PAUSE command is encountered.
Printing is resumed after any input character is entered.
The entered character is not printed.

Pause allows documents to be printed on cut forms, and
for special setup during the printing process. The
command will be ignored if PA was not specified.

3.6.5 Page -- PG:n[:m]

This switch will cause a range of pages to be printed,
from n to m. For example:

PG:5 ——- Print the fifth through the last page.
PG:5:7 --- Print pages 5, 6, and 7.
PG:5:5 --- Print only page 5.

3.6.6 Upper Case —— UC

This switch will cause all alphabetic characters to be
printed in upper case.

3.6.7 VT100 —— VT

This switch will cause all underlined text to be output
in reverse video. If not specified for a video display
terminal, underline text will be displayed then
overwritten with underline characters.

USING THE

REPORT WRITEHR UTILITY

4.1 Overview

This section will demonstrate by example how Report Writer
statements are combined with RPF commands and user text to
generate a complete treport program. The approach will be to
present the output report along with the generating program.
The discussion will center around the report structure and
the Report Writer statements. A working knowledge of RPF is
assumed, and individual commands will not be discussed. It
is recommended that the vreader refer to sections 2 and 3 to
nbtain the necessary RPF background.

4.2 Example 1 - Tabular Report

Figure 4.1A is a listing of a simple tablular report. The
data for this report was obtained from the 'EMP' table within
the ORACLE demonstration database ('PERSONNEL'). The report
program which generated this report is listed in Figure 4.1B.
The line numbers and titles were added after execution.

To aid the reader in distinguishing between RPF commands and
RPT statements, all RPF commands will use the '#' instead of
the '.'. Either symbol is allowed, but this convention
simplifies the reading and debugging of report programs.
Other conventions have also been .adopted which simplify the
report writing process.

TECHNOLOGY

NAME

SMITH
ALLEN
WARD
JONES
MARTIN
BLAKE
CLARK
SCOTT
OATES
TURNER
ADAMS
JAMES
FORD
MILLER

JOB

CLERK
SALESMAN
SALESMAN
MANAGER
SALESMAN
MANAGER
MANAGER
ANALYST
PRESIDENT
SALESMAN
CLERK
CLERK
ANALYST
CLERK

SYSTEMS,

PERSONNEL REPORT FOR SEPTEMBER,

SALARY

$800.00
$1,600.00
$1,250.00
$2,975.00
$1,250.00
$2,850.00
$2,450.00
$3,000.00
$5,000.00
$1,500.00
$1,100.00

$950.00
$3,000.00
$1,300.00

END OF REPORT

"gExample 1 - Tabular Report *

Figure 4.1-A

I

N C

COMMISSION

$300.00
$500.00

$1,400.00

DNO

20
30
30
20
30

10
20
10
30
20
30
20
10

OOJAAUT D WN -

—
o

[
—

—
N

s
w

-
>

—
n

-
N

s
~

[
@

[
O

NN
- O

N
N

.

N
w

NN
(SRt ==

NN
~ o

o
©

W .o
[@e]

w
N

w
p—

ww
W

w
(92}

W
N

W
~J

S W W
O O

I
N+

5-45

REM ***

.REM ****x** SAMPLE REPORT 1 ----- SIMPLE TABULAR REPORT *****xx*
+REM ***

. REM
.REM **%xkkk% Define RPF Tables -—-— Print Title

.REM
.REM "Table 1"
CREM A mmm o

.REM 4
.REM "Table 2"

REM +-==+ +-——=——e—- + Am———————- + mmmm——— + + +———+
.REM 1 5 10 20 25 35 40 50 55 65 67 O

.REM
#dt 1 4 76 #
#dt 2 1 5 10 20 25 35 40 50 55 65 67 0 #
#t 1
#page 6 58
#s 3
$cul TECHNOLOGY\N\NSYSTEM S, \N\ INC#$
$s 3
#cul PERSONNEL REPORT FOR SEPTEMBER, 1980 #
#s 3
. REM
.REM ***&kkkx Declare Program Variables kkkkkdkkk
.REM
.DATABASE personnel
.REM *****%* print all positions of empno - ie. 0682
.DECLARE empno 0999
.DECLARE ename alo
.DECLARE job alo
.DECLARE sal $99,999.99
.REM ******* print 'comm' as blank if value is zero
.DECLARE comm $B99,999.99
.DECLARE deptno 99
.REM
.REM **kkkkkkk Define SELECT Macro
.REM
.DEFINE selemp
SELECT empno,ename,job,sal,comm,deptno
INTO empno,ename,job,sal,comm,deptno
FROM emp

kkkkhkkkk

kkkkkkkk

khkkkkkkhkhkkhkkkk

khkkkhkkkk

"Example 1 - Tabular Report"”

Figure 4.1B - Part 1 of 2

5-46

43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:

.REM
.REM ***kkkkkx
.REM

.DEFINE body
.REM ****** print each column variable

Define BODY

Macro Akkhkkhk

—— Advance to next column **#*%*

.PRINT empno
#nc
.PRINT ename
#nc
.PRINT job
#nc
.PRINT sal
$nc
.PRINT comm
#nc
.PRINT deptno
#nc
.REM
.REM ***kkkk% Define HEAD Macro *kkkkk
.REM
.DEFINE head
.REM **#** Invoke "Table 2" - Report Column Layout khkkkhhkk
#t 2
.REM *kkkkkdkkkx Print Column Headings *****kkkix
#r EMPNO #n ---—--— #nc
NAME #n ---- #nc
JOB #n --- #nc
$r SALARY $n --————- #nc
#$r COMMISSION $n —----——-——--— #nc
#r DNO #n --- #nc
#b
.REM ***%kx**x*x* Eyxecute body macro to print first row khkkkkkk
.body
.REM
.REM ***kkkkkkik Define Foot Macro *kkkkkk
.REM
.DEFINE foot
fte
#s 4
#cul END OF REPORT #
.REM
.REM #***xkx**** procedure Section --- Generate Report ko ok ok okok ok
.REM
.REPORT selemp body head foot
fte
.STOP

"Example 1 - Tabular Report"”

Figure 4.1B - Part 2 of 2

The reader should be reminded of the basic rules which apply
to RPT:

- RPT's main function is to copy RPF commands and
user text, as encountered, to the interim file which
will subsequently be processed by RPF. Database
information can be included within this output file
using the PRINT command.

- Program variables and macros (Procedural and
SELECT) must be defined prior to being referenced.
Macro definitions are stored as enconuntered, and not
executed until explicitly or implicitly requested.

- RPF commands and user text may be defined anywhere
within a program.

The basic structure for this report is depicted in figure
4.1C. The .REPORT statement drives the retrieval of data and
causes the appropriate head, body, and foot macros to be
executed. The SQL query defined within the 'selemp' macro
(lines 38 through 42 of figure 4.1B) selects all the columns
from all the rows in the 'EMP' table. The procedural macros
used to output and format this data will be discussed later.

The RPF table definitions used to format the output are
pictorially displayed on lines 8 through 12. The data fields
returned for each row will be formatted in the six columns
defined by Table '2'. Lines 14 through 22 contain the RPF
commands to define these tables and the report titles. These
commands could also have been included after the program
DEFINE and DECLARE statements.

Line 26 1identifies the single database which will be

referenced within this report. Since the ‘'personnel'
database is secure, a valid ‘'userid/password' must be
specified when the report is executed. Following the

'DATABASE' statement the program variables are declared. The
declarative statements may be specified in any order,
providing the definition precedes its use.

47

.REPORT = —=———=—————=
/
/ "selemp"
\
\
|
I
|
body [
____________ + o ——
| I
"head" | | "body"
I I
____________ + $m——_—_——— e —
. REPORT selemp

\
\
/
/
foot
—_— i
| |
| | "foot"
| |
...+ + ________________

body head foot

"Example 1 - Tabular Report®™

Figure 4.1C

By specifying a '0' in the format definition of 'empno', all
leading zero digits will be printed. Remember that the
declared format defines the maximum value of a variable in
addition to the printing format. For example, 'sal' (line
31) can honld a maximum value of 99,999.99; 100,000.00 will
overflow this variable. Overflowed variables will be print
with a '#' in all digit positions. The 'B' on line 33 will
cause zero commission value to be printed as blanks. Any
variable which has the 'NULL' value will be printed as

blanks.

The 'selemp' SELECT macro defines the SQL query which drives
this report. The INTO statement identifies the program
variables which will receive the column values defined in the
select list. There is a one—-to-one cotrrespondence between
each column returned and its associated program variable.
Column and variable names do not have to be the same.

Lines 43 through 88 define the head, body, and foot
procedural macros which will be implicitly executed as a
result of executing the '.REPORT' statement on line 89. The
head macro called ‘head' will be executed once for the first
row returned from the query. Table '2' is 1invoked to
establish the six column print layout. RPF commands and user
text is included to print the column headings (lines 67 -
74) . Notice the "$#r! command to establish right
justification for the empno, salary, commission, and
department number columns. After inserting a blank line the
body macro is explicitly executed (Line 76). This will cause
the first row to be printed. 1If omitted, the first row of
data would be lost.

The body macro ('body') is implicitly executed for the second
through last row returned. A '.PRINT' statement is used to
cause the current value of the program variable to be
included in the output interim file. Figure 4.1D 1is a
partial listing of the generated 'interim file'. The '#nc'
commands causes the row information to be printed in the
correct report column. Notice the database information which
has been interspersed between the RPF commands.

After the last row of the query has been processed, the foot
macto (Lines 81-85) is executed. In this example the foot
simply terminates Table '2' and prints 'END OF REPORT' .

50

#dt 1 4 76 #

#dt 2 1 5 10 20 25 35 40 50 55 65 67 0

#t 1
$page 6 58
$§s 3

4cul TECHNOLOGYN\NSYTEMS , \\

s 3

#cul PERSONNEL REPORT FOR SEPTEMBER, 1980 #

#s 3

#t 2

#r EMPNO #n --—--
NAME #n --—- #nc

JOB ¢n --- #nc

#r SALARY #n —---—-
#r COMMISSION #n

$r DNO #n --- d{nc
#b

7369

$nc

SMITH

$nc

CLERK

#nc

$800.00

#nc

$nc

20

$nc

7499

#nc
ALLEN
#nc
SALESMAN
$nc
$1,600.00
$nc
$300.00
#nc

30

$nc

7521

#nc

WARD

#$nc
SALESMAN
#nc
$1,250.00
$nc

* Example 1 - Tabular Report - 'Interim File'

Figure 4.1D

Following the '.REPORT' statement in the procedure section is
a '.te' to terminate Table 'l1' and a '.STOP' statement to
terminate the report program. The 'STOP' is optional, and if
omitted the program would end after the last statement. When
included, a stop message is displayed on the executing
terminal.

Report generation is a two step process. This report was
generated using the following system commands:

Step 1 - RPT Execution:
>RPT sampl.rpt sampl.rpf SCOTT/TIGER

Where 'sampl.rpt' is the input report text file, and
'sampl.rpf' is the interim file created by RPT.
Since the 'PERSONNEL' database is secure, a valid
userid and password must be provided. Note: The '>'
is an RSX11M system prompt, and will vary by
operating environment, however the command text is
the same across the supported systems.

Step 2 - RPF Execution:
>RPF LP:=sampl

Where 'LP:' is the system name for the output
device. The output may be directed to either a
system device or another file. The input file is
the file created by RPT in the previous step. Since
no file extension was specified, 'rpf' was assumed,
and the fully qualified name 'sampl.rpf' is used.

4.3 Example 2 - Nested Report

Figure 4.2A is a listing of a nested report. A nested report
is one in which a second report is executed within the head,
body, or foot macro of the primary report. 1In this example,
the primary or 'outer' report, provides a listing of the
department names and numbers for each department within the
division. Then for each department selected, a second report
is executed which lists the employees in that department.
After listing the individual employees, the department's
salary summary is reported.

51

by Department

RRRRRARRRARRRAARRARARRA AR AR R R A AR RARARRARR AN AR AR AR A RARERE

DEPTNO: 010 - - DEPTNAME: ADMINISTRATION

RRARRARRARRRRRRRRRRARRRRRARARRRRRRARRRAR R AR AR ARAR AR AR

EMPNO NAME MONTHLY COMM ANNUAL
SALARY COMPENSATION
7782 CLARK $3162.50 $37,950.00
7934 MILLER $1300.00 $15,600.00
7839 OATES $5750.00 $69,000.00

Department Summary 0@ @0 ——m—==—=——ooo

AVG = $3,404.17 MIN = $1,300.00 MAX = $5,750.00 $122,550.00

AARARRERR AR R AR R AR R A RRRR AR R AR AR AR ARNARRR AR AR R SRR AR AR

DEPTNO: 020 - - DEPTNAME: RESEARCH

KRR RARRERRRRRRRRRRRRRRA AR AR A AR RARERNRRRRRAA AR AR AR AR A RER

EMPNO NAME MONTHLY COMM ANNUAL
SALARY COMPENSATION
7369 SMITH $800.00 $9,600.00
7566 JONES $3421.25 $41,055.00
7876 ADAMS $1100.00 $13,200.00
7788 SCOTT $3000.00 $36,000.00
7902 FORD $3000.00 $36,000.00
7955 WILSON
7956 JAKES $1000.00 $12,000.00

Department Summary 0 @@—m=-—————==o

* Example 2 - Nested Report *

Figure 4.2A - Part 1 of 3

5-53

AVG = $2,053.54 MIN = $800.00 MAX = $3,421.25 $147,855.00

***********************t****************************i*

DEPTNO: 030 - - DEPTNAME: SALES

*****************ti***********************************

EMPNO NAME MONTHLY COMM ANNUAL
SALARY COMPENSATION
7499 ALLEN $1600.00 $300.00 $19,500.00
7521 WARD $1437.50 $500.00 $17,750.00
7698 BLAKE $3277.50 $39,330.00
7654 MARTIN $1437.50 $1400.00 $18,650.00
7844 TURNER $1500.00 $0.00 $18,000.00
7900 JAMES $950.00 $11,400.00
7989 CARTER $1500.00 $0.00 $18,000.00

Department Summary = TTTTTTTTTTOS

AVG = $1,671.79 MIN = $950.00 MAX = $3,277.50 $142,630.00

*******t*i**t*t**ﬁ************************************

DEPTNO: 040 - - DEPTNAME: OPERATIONS

***********i*****ﬂ**********t****************i********

"Example 2 - Nested Report®

Figure 4.2A - Part 2 of 3

5-54
Division Totals

MINIMUM MAXIMUM AVERAGE
SALARY SALARY COMPENSATION
$800.00 $5,750.00 $25,814.69

End Of Report

"Example 2 - Nested Report®

Figure 4.2A - Part 3 of 3

TOTAL
COMPENSATION

$413,035.00

A block diagram of this example is provided in Figure 4.2C.
The 'inner' report which lists the employee information is
explicitly executed within the body macro ("deptbody") of the
'nuter' department report. Associated with this 'inner'
report are head, body, and foot macros labeled "emphead",
"empbody", and "empfoot". Notice that within the "empfoot"
macrn, two other macros are explicitly executed. The
"deptsum" select macro uses a SQL query to compute the
summary salary information. The procedural macro "compsum"
adds the department summatry to the division totals. The
division summary is generated by the "deptfoot" macrto after
all departments have been processed.

Figure 4.2B is the program listing for this example. The
line numbers and titles at the bottom of the page were added
after the report was executed. The data for this report was
obtained from the 'DEPT' and 'EMP' tables within the
'PERSONNEL' database (Line 16).

This report contains three SELECT macros. "seldept" (Lines
42-46) drives the outer report berequesting each department's
name and number from the 'DEPT' table. The absence of the
"WHERE" clause will cause all the rows in the table to be
returned. The "selemp" macro will drive the inner report
returning all the employees in a particular department. The
substitution variable 's&deptno' will cause the current value
of the program variable ‘'deptno' to be substituted into the
"WHERE" clause.

The fifth value returned in the SELECT list(Line 51) is the
computed annual compensation. The null function was required
for the 'comm' column because all employees other than
salesman have a null value for commission. If 'nvl' was
omitted the annual compensation for non-salesman would be
assigned the null value and printed as blanks.

The "deptsum" SELECT macro is explicitly executed in the foot
macro of the inner report. After all the employees in a
department have been listed this query uses the SQL built-in
functions to compute the count, minimum, maximum, average,
and sum of the salaries for the reported department. This
technique for computing summary information requires a second
pass of the data.

001:
002:
003:
004:
005:
006:
007:
008:
009:
010:
011:
012:
013:
014:
015:
0l16:
017:
018:
019:
020:
021:
022:
023:
024:
025:
026:
027:
028:
029:
030:
031:
032:
033:
034:
035:
036:
037:
038:
039:
040:
041:
042:
043:
044:
045:
046:
047:
048:
049:
050:

5-56

* % %

kkk
* % *

.REM
-REM
.REM
.REM
.REM
.REM
.REM
.REM
.REM
.REM
.REM
.REM
.REM
.REM
.REM
.DATABAS
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.REM **
.REM
.REM
.REM
.REM
.REM
-REM
.REM
.DEFINE

* k*

* %

.REM
.REM
.REM
.DEFINE

ek
¢k

xkk*** SAMPLE REPORT 2 NESTED REPORT **

This sample demonstrates the capability to nest a report within the
head, body, or foot of another report. In this example the "payroll
status for each department within a division will be reported. The
compensation for each employee is listed , followed
by the department's summary information. At the end of the report
the entire division's summary information is reported.

Declare variables
E personnel

deptno 000

dname alsb

empno 0999

ename alb

monsal $9999.99
comm $9999.99
annsal $99,999.99
deptsum $999,999.99
deptmin $9,999.99
deptmax $9,999.99
deptavg $9,999.99
deptcnt 9999

divsum $999,999.99
divavg $99,999.99
divmin $9,999.99
divmax $9,999.99
empcnt 9999

***********************************ﬁ*******************************

De £fine SELECT Macraos

Select Department Information
seldept

SELECT deptno,dname

INTO deptno,dname

FROM dept °
Select Emplnyee Data Within a Department

selemp

" Example 2 - Nexted Report Program Listing

Figure 4.2B - Part 1 of 5

{

051:

O_..:
054:
055:
056:
057:
058:
059:
060:
061:
062:
063:
064:
065:
066:
067:
068:
069:
070:
071:
072:
073:
074:
075:
076:

077

.

0/9:
080:

081:

-

082:
083:
084:
085:
086:
087:
088:
089:
090:
091:
092:
093:
094:
095:
096:
097:
098:
099:
100:

o e

.REM
. REM
.REM
.DEFINE

.REM
.REM
. REM
.REM
.REM
.REM
.REM
.REM
.DEFINE

.REM
.REM
.REM
.DEFINE

5-57

SELECT empno,ename,sal,comm,(sal*l2 + nvl (comm,0))
INTO empno,ename,monsal,comm,annsal

FROM emp

WHERE deptno = &deptno

Select Department Summary Information

deptsum
SELECT count(sal),min(sal),max(sal),avg(sal),sum(sa1*12+nv1(comm,0)

INTO deptcnt,deptmin,deptmax,deptavg,deptsum
FROM emp
WHERE deptno= &deptno

**1

De fine Procedural Macros

**i
Division Report "Head"

depthead
.REM This head macro just processes the first row of

.REM Department report. It is required only because a foot
.REM is specified on the REPORT statement.
.deptbody

DEPARTMENT Report "Body?"

deptbody
.REM
. REM Ex ecute Employee Report
.REM
.REM Print Heading For Department
.REM
#s 2
#cul ARKAKRKKRKAAKAAAATXARAKRKKRRA AR A KA A Ak hhkhhhhkkkhkhhhkhhkhhhdkk #
#b
#cen
DEPTNO:
.PRINT deptno
- - DEPTNAME:
.PRINT dname
#
#b
#CUl khkkhkhkhkhkhkhkhkhkhkhhhkhhhhhkhhhhhhkhkhkhkhkhkhkhkkhkhkkhkhhkhkhhhhhhhhhdk #
#s 2
.REM Report Each Employee within the current Department

* Example 2 - Nexted Report Program Listing

Figure 4.2B - Part 2 of 5

101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
l116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:

135

136:
137:
138:
139:
140:

141:

-

142:

143:

144

145:
146:

147

148:
149:
150:

.REM
.REPORT selemp empbody emphead empfoot

.REM
.REM DEPARTMENT Report "Fonoot"
.REM
.DEFINE deptfoot
.REM Compute Division summary information
. REM
.REM Compute "Average Monthly Salary”
.REM
.DIV divavg divsum empcnt
.REM
.REM Output: Maximum and Minimum Salary
.REM Average and Total Yearly Compensation

.REM

#np

4cul Division \ TotalstHtE

$s 1

#t 4

#r #nc #r #nc #r #nc #r #nc

MINIMUM #nc MAXIMUM #nc AVERAGE #nc TOTAL #nc

SALARY #nc SALARY #nc COMPENSATION $#nc COMPENSATION #nc
——————— $nc —~—=—=——- $nc ---—-—-——-—---=-- $nc ----—-----=--
.PRINT divmin

$nc

.PRINT divmax

#nc

.PRINT divavg

#nc

.PRINT divsum

jte

s 2

#cul End \ Of\NReport #

$te

. REM ***

.REM
.REM EMPLOYTEE "H e ad" Macraon
.REM
.DEFINE emphead
#t 2

s 1
EMPNO #nc #cen NAME # #nc MONTHLY i#nc COMM #nc ANNUAL #nc

#nc #nc SALARY #nc #nc COMPENSATION #nc

————— #nC ——=—————————=——= §nc -------- #nc -------- §nc
———————————— #nc

.REM Set-up Right/Left Justification Switches

.REM Insert One Blank Line

#nc #nc #r #nc #r #nc #r #nc

* gxample 2 - Nexted Report Program Listing

Figure 4.2B - Part 3 of 5

khkkhkkhkkdkk

151:

~w3:

154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177

8:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:

.REM
.REM
.REM
.DEFINE

. REM
.REM
.REM
.DEFINE

.REM
. REM Execute 'Body' Macro to Process First Rew
.empbody
EMPLOYEE Report "Body"
enpbody
.PRINT empno
#nc
.PRINT ename
#nc
.PRINT monsal
#nc
.PRINT comm
#nc
.PRINT annsal
#nc
EMPLOYESTE Report " Foot"
empfoot
.REM

.REM Compute Department Summary Information
.REM

.EXECUTE deptsum

#te

#t 3

#s 2

#cul Department Summary # #nc -—-—--—-—--—-- #nc
#s 1

\ AVG =

.PRINT deptavg

\ MIN =

.PRINT deptmin

\ MAX =

.PRINT deptmax

$nc #r

.PRINT deptsum

#te

.REM Execute macro to compute division totals

.compsum

.REM **

.REM
-REM
.REM

Compute Diwvision To tals

.DEFINE compsum

.ADD empcnt empcnt deptcnt

* Example 2 - Nexted Report Program Listing *

Figure 4.2B — Part 4 of 5

201: .ADD divsum divsum deptsum

202: .IF "sdeptmax <= &divmax" THEN complO

203: .REM Set New Maximum

204: .EQUAL divmax deptmax

205: .&complO

206: .IF "s&deptmin >= &divmin" THEN comp20

207: .REM S et N ew Minimunm

208: .EQUAL divmin deptmin

209: .&comp20

210: ..

211: .REM

212: .REM ***
213: .REM

214: .REM

215: .REM Report: Main Section
216: .REM

217: .REM

218: .REM De fine "RPF" Commands
219: .REM

220: #dt 1 10 75 #

221: #dt 2 5 9 13 27 31 38 42 49 55 0 #

222: #dt 3 1 51 55 0 #

223: #dt 4 1 9 12 20 23 37 47 0 #

224: #page 6 58

225: #spn 2 42 2 1

226: #sp 1

227: .REM

228: .REM Ex ecut.e Division Report
229: .REM

230: .REM Print Report Title

231: #t 1

232: #s 4

233: $cul Divisioen \ Payroll \ ReportH#
234: %s 2

235: #cul by Department #
236: .REM Initialize Division Minimum and Maximum Values

237: .REM Highest value for Minimum; Lowest Value for Maximum
238: .SET divmin 9999.99

239: .SET divmax 0

240: .REM

241: .REPORT seldept deptbody depthead deptfoot

242: .STOP

* Example 2 - Nexted Report Program Listing

Figure 4.2B - Part 5 of 5

.REPORT

« REPORT

5-61

o +
| |
| "deptfoot" |
|
o +
fomm +
I |
| "empfoot" |
| I
R e +

I

Fmm +

| "compsum" |

____________ |

/ \ I

/ "deptsum” \--+
\ /
\ /

seldept deptbody depthead deptfoot

*Example 2 - Nested Report®

Figure 4.2C

An alternative approach would be to accumulate the values in
program variables as each row is processed, then compute the
summary data using the RPT mathematical functions. This
technique was used to generate the "Division Totals" shown on
the third page of the report (Figure 4.2A). However, instead
nf computing for each employee row, division totals were
computed using each department's summary data. This choice
was made to improve performance by reducing the frequency of
execution of the "compsum" macro. In most cases the
difference would not be significant, however to analyze the
maximum and minimum values of 'salary' two "IF" statements
are required. As utlined in section 4.4.4.3.1 "IF Statement
Guidelines", "IF" statements processing is fairly time
consuming and therefore the frequency of execution should be
minimized.

The procedural macro "depthead" was included only because a
"frot" macro was required for the outer report. Because the
procedural macros on the .REPORT statement (Line 241) are
positionally defined a 'head' macro name must precede the
'foot' name. The explicit execution of the body macro
"deptbody" causes the first row to be processed.

The body of the "Department Report" lists the department's
name and number, then executes the inner employee report
(Line 102). In the 'foot' of the department veport the
average compensation is computed (Line 112). The headings
for the division totals are printed in Lines 121 to 124.
Line 121 does not output any text, but has the effect of
skipping a single line. The '#r' commands executed in each
column forces right justification.

The head macro of the "Employee Report" ("emphead") prints
the headings for this inner report and sets the justification
for the output columns (Line 150). Again, the body must be
executed to cause the first row to be processed. The 'body'
outputs each column of data retreived, and the 'foot'
computes and lists the department summary information.

"compsum" uses the 'ADD' statement to accumulate the sum of
the compensation and the total number of employees. The "IF"
statements compare current department minimum and maximum
salaries with those values for the division. Since blanks
were included within the expressions they must be enclosed
within double quotation marks ("). If a new max or min
values is not established then the expressions are true and
control is passed to the macro label specified after the
"THEN" clause. Since no "ELSE" statement was specified, a
false condition causes the next instruction to be executed.
The "EQUAL" statements cause the division values to be set
equal to the corresponding department values.

Line 211 is the end of the macro definitions and the
beginning of the Procedure section of this report program.
As defined on lines 220 through 223, four tables were
trequired for this report. Tables 2, 3, and 4 are invoked
within table 1 at various places in the report. The '$spn’

command (Line 225) causes the pages of the rvreport to be
numbered. Type 2 format (Letter Page Numbering) was selected
to be printed beginning in print positieon '42'. Two lines
will be skipped after printing the page number. Numbering
will begin with '1', however with type 2 the number is not

printed on page one.

The "SET" statements (Lines 238,239) initialize the values of
the division minimum and maximum salaries. The "REPORT"
statement executes the outer report which drives the entire

program.

4.4 Example 3 - Sample Letter

This example demonstrates the flexibility of the report
writer to construct a computer generated letter. Fixed text
is combined with database information to form the completed
memo . The power of SQL allows the desired data to Dbe
obtained from the database, and the RPF commands and RPT
statements permits the data to be interleaved within the

letter format.

63

Figure 4.3A shows the sample which is composed of data from
the 'EMP' and 'DEPT' table. The report was executed to
generate multiple copies of this memo, each addressed to a
different manager. The manager's name was obtained from the
"EMP' table, and the manager's department number, name and
lncation from the 'DEPT' table.

The current 1981 and proposed 1982 salary figures arve
included within the body of the memo. This information is
obtained by computing the sum of the salaries of each
employee in the 'EMP' table who 1is in the addressee's
department. This information will be different for each
managetr's copy of the memo. Although this memo 1is very
simple, it demonstrates the vreport writer's ability ¢to
combine and include data from various tables in the database
into a single letter.

Figure 4.3C provides a block diagram of the report program.
A single '.REPORT' statement with only a body macro was used.
The SELECT statement which drives the report generation joins
the 'EMP' table to the 'DEPT' table to retrieve the adressee
data. Within the body a second SELECT is explicitly executed
to compute the current and proposed salary data for the

addressee's department.

A program listing of the report is provided in Figure 4.3B.
The line numbers and titles were added after execution. In
the 'DECLARE' variables section, the variable 'curdate' has a
format of 'date'. This means that the value of curdate is in
the internal Julian day number format. If this variable was
assigned its value from a column in a SELECT list, that
column value must also be in Julian day format. Presently,
only IAF supports the creation of a column value in this
format. In this program 'curdate' is used to output the
current date at the time of execution. Assigning the
variable to the current date is accomplished by the .SET
statement on line 22. The litetral ' $DATE$S' instructs RPT
to obtain the date from the system, convert it into Julian
format, and then store it inte the variable referenced on the

SET statement.

The first of the two SELECT macros, 'seladdr', joins the
'EMP' to the 'DEPT' table to acquire the addressee
information. The second predicate in the WHERE clause
restricts the list of addressees to department managers. The
'selsum' macro uses the SQL arithmetic capabilities to
compute both the current sum and the sum incremented by 10%
for employees in the manager's department (Line 44).

5-65

Date : 03/25/81

To: BLAKE
Department : 30 - SALES
Location : PARIS

From : Bill James
Director of Personnel

Subj : 1982 Employee Compensation Plan

Its budget time again! To aid you in completing the salary
portion of your budget I have computed your department's
current salary expenses. For planning purposes we are
presently estimating an across the board increase of 10% in

the 1982 salary pool.

Your department's 1981 figure is: $140,430.00

Estimated 1982 figure is: $154,473.00

In completing your salary plan you should break this total
down by individual employees. Please let me know if you have
any questions on this or related issues.

Bill

Example 3 - Sample Letter

Figure 4.3A

5-66

I01: .REM
'02: .REM
1I03: .REM
04: .REM
I05: .REM
i06: .REM
1I07: .REM
i108: .REM
1I09: .REM
110: .REM
111: .REM
112: .REM
113: .REM
114: .REM
115:

116

117

118:

119:

120

)21: .REM
122:

123:

124:

)25: .REM
126: .REM
)27: .REM
128: .REM
)29: .REM
1I30: .REM
}31: .REM
132: .REM
)33: .DEFINE
)34:

135:

)36:

137:

)38:

139: ..
)40: .REM
)41: .REM
)42: .REM
)43: .DEFINE
)44

)45:

146

)47 :

)48: ..
J49: .REM
)50: .REM

khkkhkhkkhkkkkkk

Akkkhkkkkkkx
***.

**

SAMPLE REPORT 3 GENERATED LETTER kkkkkkkhkk: ¥
a%

This sample demonstrates the capability to create a computer

generated letter o
combined with the

r memorandum. Information from the database is
predefined text to form the completed letter.

A REPORT statement is used to drive the generation of multiple
letters, each with a different addressee and variable data.

khkhkkkkkkkkkhkkkkxk

**

Db E C L A R E vV A R I A B L E S

.DATABASE personnel
.DECLARE addressee alo0
.DECLARE deptno 999
.DECLARE dname al5
.DECLARE 1loncation al5
.DECLARE curdate date

Set the variable 'curdate' equal to today's date

.SET curdate $$DATESS
.DECLARE sumsal

.DECLARE sumsal+ $999,999.99
**

$999,999.99

khkkkhkhkhhhhkhkhkkhhkkk

De £fine SELECT Macros

**

Select Managers and their Departments
seladdr
SELECT emp.ename,dept.deptno,dept.dname,dept.loc
INTO addressee ,deptno,dname,location
FROM emp,dept
WHERE emp.deptno=dept.deptno
AND job = 'MANAGER'
Select Department's Current Payroll
selsum
SELECT sum(sal*12) ,sum((sal*1.1)*12)
INTO sumsal,sumsal+
FROM emp
WHERE deptno = &deptno

» Example 3 - Sample Letter Program Listing

Figure 4.3B - Part 1 of 2

5-67
051: .REM De £fine Procedural Macros
or . REM
05\14‘REM khhkhhhhkhkhkhkhkhhkhkhkhkhkrhhhhhkhhhkhhhkhhhkhhkkhhhhhhhhkhkhhkhhhhbhrhkhbddhdhhkkd
054: .DEFINE memobody
055: #np
056: Date :
057: .PRINT curdate
058: #s 2
059: To:
060: .PRINT addressee
061: #b Department
062: .PRINT deptno
063: -
064: .PRINT dname
065: #b Location
066: .PRINT location
067: #s 2 From : Bill James #p \ \ Director of Personnel
068: #s 2 Subj : 1982 Employee Compensation Plan
069: #s 2
070: Its budget time again! To aid you in completing the salary portion
071: of your budget I have computed your department's current salary
072: expenses. For planning purposes we are presently estimating an
073: acrnss the board increase of 10% in the 1982 salary pool.
074: #s 2
075: .REM
076: .REM S ELECT Department's Salary Total
077 - .REM
0’ .EXECUTE selsum
07y: #i 10 Your department's 1981 figure is:
080: .PRINT sumsal
081: #b Estimated 1982 figqure is:
082: .PRINT sumsal+
083: #s 3
084: #te
085: In completing your salary plan you should break this total down by
086: individual employees. Please let me know if you have any questions
087: on this or related issues.
)88: #s 3
089: Bill
J90: ..
791: .REM khkhkhkhhkhhkhhkhkhkhhkhkdkhhhhkhhkhhhkhhhhkhhkhhhhkhhhhkhhkhhkhkhhkhkhkhkhkhkhkhkkhkkkkkhkkhkhkkhkkkkk
J92: .REM
J93: .REM PROCEDURE SECTTION
J94: .REM

J95: .REM Ahkhkhkhhkhkhkhhhhkhhhkhhhhhhkhhhkhhhhkhhhhhhhkhhkhhkhkhkkhhhhkhhhkhdhdhkdhhkdhhkhhdkrdhrdi

)96: #dt 1 13 73 #

J97: #t 1

)98: #page 8 56

J99: .REPORT seladdr memobody
L0O0O: .STOP

“Example 3 - Sample Letter Program Listing"

Figure 4.3B - Part 2 of 2

.REPORT | —=r——mr——————

\
/ "seladdr" \
\ /
\ /

|

[

[

body |
e T
| "memonbody" I
| |
o e +

|

I

|

|
/ \
/ "selsum"” \
\ /
\ /

"Example 3 - Sample Letter

Figure 4.3C

The .REPORT statement on line 99 drives the generation of
these multiple memos. only a body macro "memobody" is
specified. Since no head macro was included, the body will
be executed for the first row returned. The structure of the
body is similar to the RPF examples presented in Section 3.
Interspersed within the text are PRINT statements which cause
the appropriate database information to be included within
the memo output. The EXECUTE statement on line 78 executes
the 'selsum' to compute the salary sums. The '#p' command
and double back slash '\' on line 67 are used to force the
author's title to be alligned under his name. Each "\
causes one additinnal blank to be included. The '#np' on
line 55 causes each copy of the memo to be printed on a
separate page.

70

REPORT - WRITER - UTILITY

(RPT)

5.1 Overview

The ORACLE Report Writer Utility (RPT) interprets and
executes a report generation program. A Report Program may
consist nf report writer statements, RPF commands, and user
text. The use of RPF to format text is described in an
earlier section, and a working knowledge will be assumed.

This section will concentrate on the statements necessary to
construct a report program. The structure of a program will
be described along with a detailed discussion of each
programming statement.

5.2 Report Generation Process

Figure 5.1 is an overview of the report generation process.
The report program is created using a standard text editor.
This file is passed as input to the RPT utility.

The program file may contain report text and RPF commands in
addition to the RPT program statements. The text and RPF
commands are ignored by RPT and are copied as encountered
directly to the "Interim File". On the other hand, Report
Program statements are interpreted and executed. The main
purpose of the report program is to direct the retrieval of
database information, and properly place that data into the
"Interim File". Each data item which RPT places into the
output file is treated by RPF as a "word". This "Interim
File" must subsequently be processed by the RPF utility.

|Report Writer Statements]|
| + |
User Text |
I
|

REPORT

WRITER

INTERIM TEXT | Database + User Text |

FILE | And]
—————————————— | Format (RPF) Commands|

— ———— i —— ————————

TEXT

+|
+1 1
| AAAAAAA] | |
R I
| XXXXXXX|+

I

l

I
+

output report

" Report Generation Process

FPigure 5.1

5-71

| "cuserd>" |
Database |

ORACLE DATABASES

72

In this manner database information is merged with text to
form the finished report. Text can be included for report
titles, column headings, descriptive information, or the body
nf a letter for computer gJgenerated correspondence. RPF
commands can be used to control text and data placement into
a tabular format, spacing, underlining, margin control, and
page numbering. Any valid RPF command is permitted in a
report program.

5.2.1 Executing RPT

The RPT utility may be executed from the user's terminal or
scheduled within a batch procedure. The utility is executed
with the following command:

RPT <input file> <output file> [userid/password] [-c]

<input Is the name of the file which
file> contains the RPT report program.
<output Name to be assigned to the "Interim
file> File" created by RPT and subsequently
processed by RPF.
userid / This parameter is required only if
password the ORACLE database to be processed

is secure.The 'userid' must have been
defined using the SQL Define User
Statement, and have been granted

‘read' privileges to the desired
data.
-cN Where N specifies the size of the SQL

work area to be requested for each
SQL query defined in the report. If
omitted, a default value of 3K bytes
will be used.

5.3 Report Structure

The RPT programming language is similar in many ways to
conventional languages 1like COBOL or PL/I. Although no
explicit declaration of program sections is required (ie.
COBOL Data Definition Section) a logical grouping of
statements is helpful 1in providing clarity. The three
sectinns of a RPT program are:

- Data Declaration Section
- Macro Definition Section
- Procedure Section

The Data Declaration Section contains the definition of the
user's ORACLE database, and "local" variables to temporarily
store retrieved database information. Variables may also be
defined for counters, to store totals, and as temporary
storage.

Two types of "macros" may be defined within a Macro
Definition Section. The "SELECT" macro is used to define a
SOL select statement. A "Procedural” macro is similar to a
COBOL program subroutine, and is a collection of executable
RPT statements.

The Procedure Section contains executable RPT statements
which comprise the main body of a report program. Within
this section "SELECT" and "Procedural” macros can be either
explicitly or implicitly executed.

Again, these are purely logical sections; no language
statements exist to define the beginning of one or the end of
another. There are virtually no restrictions on where RPT
statements may be used within a program. variables however,
must be defined before they are used. RPF commands and
report text may be included anywhere within a program, and
will be copied into the "Interim File" as encountered within
the program's execution.

73

5.4 RPT Language Statements

This sectinn will describe each RPT statement. Figure 5.2 is
a summary of these statements.

The general form of a report statement is:

.<command> <argl> <arg2> ... <argn>

Repnort statements begin with a period (".") immediately
fnllowed by the RPT command. <command> must be one of the
commands listed in Figure 5.2. Although commands and

reserved words will be specified in upper case, either upper
nr lower case is permitted.

A RPT command may begin anywhere on the input line. Each
command occupies the entire line; report text or nther
commands may not be included. All the arguments associated
with a command must be specified on the same line.

A command may have one or more arguments. Arguments are
specified positionally in the defined order. Each argument
must be separated by at least one blank space. Arguments are
specified by replacing <argl> <arg2> ... <argn> with either a
numeric or alphabetic character string.

Some arguments may contain blank spaces. If one or more
imbedded blanks are included the entire argument must be
enclosed in double quotes. For example

.ASK "Please enter request date : " date

contains two arguments; the message "Please enter request
date : " and the variable 'date'. The double quotes serve to
delimit the beginning and end of an argument, and are not
considered a part of the string. Arguments which may contain
blanks are denoted with optional quotes (["1<arg>("]).

Arguments enclosed within square brackets "[]" are optinnal;
those enclosed within vertical bars "| |" indicates a choice
of one.

5-75

| DECLARATTIVE STATEMENTS |

.DATABASE <database name>
.DECLARE <program variable name> <format>
.SET <program variable name> <literal value>

.EQUAL <destination variable> <source variable>

+==+
+==+
| MACRDO DEFINTITTION STATEMENT |
+==+
| |
| .DEFINE |<SELECT Macro Name> | |
| | <Procedural Macro Name>| |
l L] I
| Macro Text Lines |
I . |
| . |
I .o |
| |
+==+
+==+
| MACRDO EXECUTTION STATEMENTS |
+==+
| |
[.<Procedural Macro Name> |
| |
| .EXECUTE <SELECT Macro Name> |
| |
| +« REPORT <SELECT Macrons > <Body Macro> |
[[<Head Macro> [<Foot Macro>]] |
| |
+==+

RPT Statements - Figure 5.2 (Part 1 of 2)

5-76

RPT Statements - Figure 5.2 (Part 2 of 2)

+==
| PROGRAM CONTROL STATEMENTS
+===:::=:
I

| .&<Label Name>

|

| .GOTO <Label Name>

I

I .IF ["]<Expressinn>["] THEN <Labell> [ELSE <Label2>]

I

| .STOP

I
+==::::==
+==
| ARITHMETTIZC S TATEMENTS
+==
|

| | ADD |

| .|SUB | <Dest Var> |<Source Var 1>]||<Source Var 2>

] IMUL | | <Literal> | 1 <Literal> |

[|DIV |

I | DSUB]

I
+==
+==+
| MISCELULANEGOUS STATEMENTS
+==
|

I .PRINT <Prngram Variable Name>

|

| .ASK '<Message>' <Program Variable Name>

I

| .REM <Cnmment Text>

I

===z ===—=—=rs=C-SS==CSSCSCECSSSSSEE=SSE=SSSSSSSSSXSSSSSSSSSRE=ES==ES

5.4.1 Declarative Statements

5.4.1.1 DATABASE

This statement specifies the ORACLE database to be processed
within this report. Only one database may be processed per
report program.

.DATABASE <database name>

<database is the name of any valid database.

name> If the database is secure a
userid/password must be supplied at
RPT execution time as part of the RPT
command line.

5.4.1.2 DECLARE

This statement is used to declare a program variable and the
edit format for printing. All ©program variables are
initialized to null and must be referenced in other

statements.

.DECLARE <var name> <format>

<var name> Is the name assigned to this program
variable. The name may be from 1 to
X characters, with the first

character alphabetic.

<format> is the edit format used when
outputting this wvariable to the
"Interim File". The format will also
control rounding and overflow when
used 1in arithmetic statements. A
variable's data type is indicated by
its format specification. Three data
type are currently supported;
alpha-numeric, numeric, and date.

Date

A 'Date' variable 1is defined by specifying a format of
'DATE'.

The output format of a 'date' type variable is MM/DD/YY.
Internally, a 'date' variable is a numeric variable which
contains the associated date in an absolute Jjulian day
number. This approach allows one date to be subtracted from
another using a standard arithmetic subtraction function (see
sectinn 5.4.5.5 - DSUB). For example:

01/20/81 - 12/29/80 = 22

provides the numeric result of 22. Numeric values may also
be added to or subtracted from a date. This is useful in
printing invoices where the due date may be computed to be
the current date plus 30 days.

A 'date' variable may have its value initialized in a number
of ways. It may be assigned a literal value of the form
MM/DD/YY, or may be set equal to the value of another 'date’
variable. If its value is assigned as a result of a column
returned in a SQL SELECT, the database value must be in
internal 'Julian Day' format. presently, the only method for
storing internal date data items within a database is by
entering the data using an IAF application.

To create a 'date' compatible column, the column must be
defined as a 'number' in the SQL CREATE TABLE statement. The
column's value must be initially entered and always updated
using an IAF application, where the field type is defined as
'‘date’'.

Alpha-numeric

An 'Alpha-numeric'’ variable may contain any printable
character, and is defined by specifying a format of 'An' (
where n = number of characters). When a report is executed
all alpha-numeric variables are assigned the 'NULL' value.

Numeric

'"Numeric'
symbols:

5-79

variables are specified wusing the following

9 - defines each digit of a numeric variable.
Leading zeros are not displayed.

. - Defines the position of the decimal point within
a numeric wvariable. The position 1is wused for
arithmetic alignment and is displayed on output.

, - Causes a comma to be inserted on output.
Omitted on output if there are no digits to the left
of this position.

$ - causes a dollar sign to precede the number on
output.
MI - Causes the minus sign to be displayed to the

right of a negative number. The default is to the
left.

PR - Causes the variable to be displayed within "<
>" brackets when negative.

0 - May be used instead of a 9 to designate a digit.
Normally leading zeroes are suppressed, however a
zero in the format will cause every digit position
to be filled.

V - Defines the position of the decimal point within
a numeric variable. The position is wused for
alignment in arithmetic statement, but the decimal
point is not displayed on output.

B - Causes the variable to be output as blanks if
its value is zero.

The following are examples of various formats:

999.99
999Vv99
9,999
9,999
99999
09999
9999
9999MI
9999PR
B999
B999
99.99

$99.99
DATE
A5

A20

(1) - If the value

Value Displayed
56.478 56.48
56.478 5648
8410 8,410
639 639
607 607
607 00607
-5609 -5609
-5609 5609-
-5609 <5609>
564 564
0 blanks
124.98 (1) 4.4
24.98
45.23 $45.23
2441453 (2) 12/23/80
Customer Custo
Customer Customer

retrieved into this variable from the

database is greater than can be displayed by the format, #'s

will be displayed.

If the variable is overflowed due to an

arithmetic operation, a truncated value will be displayed.

(2) - Julian day number for 12/23/80

5.4.1.3 SET

This statement sets the value of the variable equal to the

specified literal value.

.SET <variable name> <literal value>

<variable
name)

<literal
value>

any previously defined program
variable.

numeric or character literal. The
literal type must match the variable
type. The special literal "$$SDATESS"
may be used to assign the system date
to a date variable.

.SET name JONES - sets the current value of the variable
'name' equal to JONES.

.SET empno 5647 - sets the current value of the numeric
variable 'empno' equal to 5647.

.SET today SSDATESS - sets the value of the date variable
'today' equal to the current date.

5.4.1.4 EQUAL

This statement will set the value of one variable equal to
the value of another variable. Both variables must be of the

same data type.
.EQUAL <dest var)> <source var>

The <dest var> will be set equal to the value of the <source
var>,

For character variables, the value of the <source var> will
be truncated if longer than the <dest var>, and blank filled

if shorter.

For numeric variables, 1if the format of the <dest var>
contains fewer decimal places, the value of the <source var>
will be rounded. No provisions are made for overflow.

If the value of the <source var)> cannot be stored within the
format of the <dest vard> variable, the wvalue will be
truncated in the destination.

5.4.2 Macro Definition Statements

RPT recognizes two types of macro statements; SELECT and
Procedural. Both types are defined in the same manner, and
RPT will distinguish them by the way they are invoked and the
type of statements they contain.

5.4.2.1 DEFINE

This statement is used to define a SELECT or Procedural
Macron. Execution of this statement stores the macro away for
future use. Nothing is output to the interim file. Notice
that ".." (two periods) on a line by themselves are used to

complete the macro definition.

.DEFINE |<SELECT Macro Name> |
| <Procedural Macro Name> |

Macrn Text Lines

<SELECT Macro Name> Name of the macro being
<Procedural Macro Name> defined.

Ends the Macro definition.

5.4.2.2 SELECT Macro

A SELECT Macro contains the text of a SQL query. Only one
query may be specified within each SELECT macro. These
queries are used to retrieve the data which will be included
within the report. The macro may include any SOL clause or
parameter which is valid within a SELECT statement. In this
manner the full power of the SQL query language may be used
to extract the database information.

In addition to the standard SQL clauses, an INTO clause must
also be included. This clause specifies the program
variables which will receive the column values returned in
the SELECT clause. For example a report program has three
variables defined; alpha, beta, and gamma. If the following
SELECT macro named 'sample' were executed:

.DEFINE sample
SELECT empno,ename,locC
INTO alpha,beta,gamma
FROM emp,dept
WHERE emp.deptnn=dept.deptno
and sal > 5000;

the values returned for 'empno', 'ename', 'loc' are stored in
the program variables ralpha','beta','gamma’ respectively.
The program variable must be of the same data type as the
column or expression in the SELECT clause. 1t should be
noted that an INTO clause, as well as any SQL clause, may be
defined in a 'free format', and the structure used here is

for readability purposes only.

The value of a program variable may be substituted for any
literal defined in the WHERE or SELECT clause of a SQL query.
when used in this manner, the variable name must be preceded
with an '&'. The variable name may not include an underscore
character ' ' For example, if the following SELECT macro:

.DEFINE seldept
SELECT deptname,location

INTO dname,loc
FROM dept
WHERE deptno = &dno

were executed with 'dno' equal to 20, the value of 20 would
be substituted into the WHERE clause, and the ‘name' and
"location' of department 20 would be stored into the program
variables 'dname' and 'loc'. Both the program variable and
the database column must be the same date type.

84

From the above examples, it can be seen that the results of
one query may be stored into a program variable, and used as
a substitution variable within annther query. This technique
is used to construct queries which produce nested reports.
Nested reports are discussed in Section 5.4.3.3.1. The
fnllowing two SELECT statements would be used to generate a
report of each course in the ' PHYSICS' department, and for
each course a list of students and their grades:

.DEFINE courses
SELECT cname,cnumber,cdate
INTO cname,cnumber ,cdate
FROM conurse
WHERE cdept = 'PHYSICS'

.DEFINE students
SELECT sname,grade
INTO sname ,grade
FROM students
WHERE course = s&cnumber

5.4.2.3 Procedural Macro

A 'Procedural Macro' is similar to a programming language
subroutine. It may contain both RPT language statements, and
user text and RPF commands. When invoked, the RPT statements
within the macro are executed, and user text and RPF commands

cnpied to the 'Interim File'.

A macro may not be defined within a macro. Macros may be
invoked from within other macros. The fnllowing procedural
macro outputs the heading of a report. The .PRINT statement
outputs the value of the variable 'year',6 and is explained in
a later section.

.DEFINE heading
#t 2
#cul Corporate Finance Report #
#s 2
#cul Fiscal Year
.PRINT year
#

5.4.3 Macro Execution Statements
5.4.3.1 Procedural Macro Execution

A procedural macro may be explicitly executed anywhere within
an RPT program including from within another procedural
macro. The named macro is executed by specifying:

.<procedural macro name>

The macro must have been defined in the program prior to its
execution. The statement:

.summary

will cause the procedural macro named 'summary' to be
executed. Following the macro execution the next sequential
statement is executed.

5.4.3.2 SELECT Macro Execution

A SELECT macro may be explicitly executed with the following
RPT statement:

.EXECUTE <SELECT macro name>

The EXECUTE statement will cause the specified SELECT macro
to be executed. Following the execution of the query, the
first row will be returned. The values of the selected
columns will be placed into the corresponding program
variables as defined on the INTO clause.

Executing a query in this manner will always return only the
first row. If the macro is re-executed, the entire query
will be reprocessed, and again the first row is returned.

Explicit execution of SELECT macros is useful where only one
row is returned. For example, if the average sal for a
department was ton be reported in a summary section, the
following query could be executed to return this result:

.DEFINE deptavg
SELECT avg(sal)
FROM dept
INTO avgsal
WHERE deptno = &dno;

.SET dno 30
.EXECUTE deptavg
.PRINT avgsal

Another use of the EXECUTE would be to look up a customer's
name and address, based on the customer number, for a
computer generated form letter. The following example would
accomplish that task:

.DEFINE custaddr
SELECT custname,custaddr
INTO name ,addr
FROM custlist
WHERE custno = &customer

.EXECUTE custaddr
.PRINT name

#n

.PRINT addr

#n

5.4.3.3. REPORT Statement

The REPORT statement causes the automatic execution of SELECT
and procedural macros which drives the generation of most
reports. Unlike the EXECUTE statement, the REPORT statement
will cause every row returned from the SELECT to be
processed. For each row the specified procedural macros are
executed. Figure 5.3 depicts the structure of a REPORT

statement.

The three proncedural macros correspond with the head, body,
and foot of a report. The head macro is executed once within
a REPORT statement, when the first row is returned. 1Included
within this macro would be the column headings, descriptive
text, and reponrt titles. Since the body macro is not
executed for the first row returned (if the heading argument
is included) ynu should either execute the body macro as part
of the heading or make other arrangements to print the first
row. This allows flexibility in setting up reports since it
may be desirable to handle the first row differently than
succeeding rows.

The body macro is executed for the second through the last
rows. If a foot macro was not specified, the body would also
be executed for the first row. Its function is to output
each row of data within the desired format. Other functions
cnuld be to accumulate tntals, maintain counters, and control
page breaks.

The foot macro is executed after the last row of the query
has been processed. Within this macro summary calculations
and fonotnotes could be included.

The head, body, and foot are standard procedural macros and
may contain any valid RPT statement. Within these macros,
nther macros can be executed. For example, within the foot
of a report the following SELECT could be executed to compute
salary statistics for the department 10:

.DEFINE summary
SELECT max(sal),min(sal) ,avg(sal) ,sum(sal)
INTO maxsal ,minsal,avgsal,sumsal
FROM emp
WHERE deptno=10

5-88

<head macro>

———————————— o4

/ SQL QUERY \ | [

/ \ | BODY |

\ (SELECT) / [|

\ / I I

———————————— o=+
<{select macro> <body macrao>

T +

I I

I |

| FOOT |

I I

R e T ey +

<foot macro>

.REPORT <select macro> <body macro> [<head macro> <foot macro>]

REPORT Statement Structure

Figure 5.3

5-89

5.4.3.3.1 Nested Reports

A REPORT statement can be executed within the head, body, or
foot macros of another REPORT. Figure 5.4 shows the
structure of such a report.

In this example, the departments within a company are
reported. For each department, a list of the projects within
that department 1is generated. Within the body of the
‘department' report, is a REPORT statement to generate the
projects report.

Multiple levels of nested REPORT statements may be
constructed. Additionally, multiple REPORT statements may be
included within a head, beody, or foot of another report.
Figure 5.5 shows the structure and format of an 'employee
personnel' report, listing for each employee, the employee's
job history, salary history, and project assignments.

5.4.3.3.2 Disjunctive Reports

Two or more SELECT macros may be specified in a REPORT
statement. In this case multiple SELECT's will be executed,
and a row from each returned. The head, body, and foot
macros would be executed exactly as with a single SELECT,
however data from multiple selects may now be printed. The
rows from each SELECT are returned in step with each other.

The data retrieved from multiple selects may be entirely
independent, referencing different tables. For example, an
employee's job history may be retrieved by one SELECT, while
a list of the employee's current projects by another. This
data could be printed side by side in separate columns across
the page as shown in figure 5.6.

The multiple SELECT macros may be specified with either an
'"AND' or an 'OR' between each select macro. 'AND' indicates
that the report should be executed only if both selects (on
either side of the 'AND') return at least one row. An 'OR'
indicates that the report should be executed if at least one
of the selects (on either side of the 'OR') returns at least
one row. Note that if only one SELECT is specified in a
report and n® rows are returned, the report will not be
executed. Also note that if two or more selects are
specified the select argument will need to be enclosed in
quotes as in "sell AND sel2".

5-90

.REPORT = —=——=———————-
/ \
/ "seldept” \
\ /
\ /
|
body |
o +
| "deptbody"” [
| I
fomm +
|
I
.REPORT = -——-———==—===
/ \
/ "SeleOJ" \
\ /
\ /
|
head body I foot
o Formm + o ——
| "projhead" | "projbody" | | "projfoot”
I I | I
o fomm e + fommm e
DEPARTMENT / PROJECT REPORT
Department Department Department
Number Name Location
067 Circuit Dev Boise
Project No. Project Name Comp Date
563 Board Design 04/30/81
894 Chip Manufact 06/01/81

NESTED REPORT

Figure 5.4

5-91

.REPORT --——-===-=--=
/ \
/ "selemp" \
\ /
\ /
I
body |
o —— +
| "empbody" |
I I
o +
I
|
.REPORT --—-=—=-=—=-= .REPORT -————-=——=== .REPORT -—--=———====-

/ \ / \ / \
/ "seljob" \ / "selsal" \ / "selproj" \
\ / \ / \ /

\ / \ / \ /

I I I
body [body | body |
Fomm e + S ettt t + R e ittt +

| "jobbody" I | "salbody" | { "projbody" I
| I I I
Frm e + o + ettt +

EMPLOYEE PERSONNEL REPORT

Emplnyee Number

MULTI

Employee Name

Martin, R.J.
Job Title Start Date
Prog Trainee 06/14/72
Programmer 12/06/75
Analyst 05/23/77
Salary Start Date
$9,600.00 06/14/72
$13,200.00 02/01/74

Project Assignments

Sales Report System

PLE REPORTS WITHIN A REPORT

Figure 5.5

5-92

.REPORT = -—=—=——=————m
/ \
/ "selemp" \
\ /
\ /
I
body |
o - +
I "empbody" " I
I I
o —— +
I
I
.REPORT = ----—-—-—--
/ "seljob" \
IIORII ____________
/ \ /
/ "selproj" \ /
\ /-
\ /
I
head body] foot
Fom e + o — + mmemmm—m
I "head" I l nbodyn I "fOOt"
I I I I
Fom + o + tmmmmm e
EMPLOYEE REPORT
Employee Number Employee Name Job History
——— Current
4028 Murphy, P.E. Title Date Projects
Pgmr Lv1ll 06/72 Design 33
Pgmr Lv12 12/74 Doc 45
Analyst 07/75
Sr. Anal 08/78

®* DISJUNCTIVE REPORT "

Figure 5.6

5.4.3.3.4 REPORT Statement Format

The format of the REPORT statement is:

.REPORT <SELECT macros> <body macro> [<head macro> <foot macro>]

<SELECT name of SELECT macro executed for
macros> this report. If two are specified,
they must be joined by an 'AND' or
'OR'! and enclosed within double
guotes.
<bondy name of the body macro which will be
macro> executed for the 2nd thru 1last
returned rows.
<head name of the head macro which is
macrod> executed for the first row returned.

This parameter is optional.

<fnot name of the foot macro which is
macro> executed after the last row is
returned. This is an optional

parameter and can only be specified
if a head macro is also specified.

5.4.4 Program Control Statements

RPT provides statements to control the program execution
within a procedural macro. Only the .STOP statement may be
used outside of a procedural macro.

5.4.4.1 Label Definition Statement

A label may be defined within a procedural macro using the
following statement:

.&<label name>

<label From 1 to 8 character name; first
name> character must be alphabetic.

A label may be referenced only within the macro in which it
was defined. Label definitions do not span macros. Since
label definitions are local, the same label name may be used
in multiple macros.

93

5.4.4.2 GOTO Statement

The GOTO statement causes an unconditional branch to the
specified label. The format of this statement is:

.GOTO <label name>

<label) The name of a label defined within
name> the current procedural macro.

Figure 5.7 lists a sample program which demonstrates the use
nof the GOTO statement. '

5.4.4.3 1IF Statement

This statement causes a branch to the specified macro label
depending on the result of an expression. The IF statement
is only valid within a procedural macro. The format is:

IF <expression> THEN <labell> [ELSE <label2>]

<expressiond>

An <expression> may compare the value of a program
variable with other ©program variables or 1literal
constants. Program variable names must be preceded with
an ampersand '&'. If the '&' is omitted an "Invalid

Column Name" message will be displayed.

The IF statement supports the complete set of relational
and logical operators, and arithmetic expressions
permitted within a WHERE clause of a SQL statement.

Character constants must be enclosed within single
qguotation marks. All literal values and program
variables within an expression must be of the same data

type.

5-95

.REM ***
REM **kkkkkkkk EXAMPLE OF "GOTO" STATEMENT Kk kkk kA kk
.REM ***
. REM

.REM Define Macro

«REM

.DEFINE macrol
.GOTO labell

.&label?2
two
.GOTO end
.&labell
none
.GOTO label?2
.&end
.REM
.REM
.REM
.macrol

Execute Macro

Generated Output

one two

*Sample GOTO Program"

Figure 5.7

If the 1literals, program variables, and relational

operatsrs are separated by one or more blank characters,
the entire expression must be enclosed within double

quotation marks(").

A program variable used in an expression may not have the
NULL wvalue. If the value is NULL, the report program
will be terminated with an error. To prevent this
situation all variables should be initialized to either

zeros or blanks.

If the variable is assigned a value from a database
column which allows NULLs, the null value function (NVL)
should be used to assign a non-NULL value. For example
the variable salary used in following IF statement:

.IF " &salary > 10000 " THEN ...

then the SELECT macro should define the NVL function in
the SELECT list:

SELECT NVL(sal,0)

INTO salary
FROM ...

If any variable participating in the expression has the
null value the ORACLE error: "unexpected end of sequel

statement" will be displayed.

The following are valid expressions:
&name="'SMITH'
&salary*2<4500
"sdept=10 or &div='MOTOR'"

" gsal > 5000 and &job = 'plumber'’

<labell>

If the <expression> evaluates to 'True', processing
contrnl will be transferred to <labell>

<label2>

If the <expression> evaluates to 'False', processing
control will be transferred to <label2>. If "ELSE
<label2>" is omitted, and the expression is 'False', the
next sequential statement is executed.

.REM
.REM
.REM

khkhkkhkkhkkkk

.DATABASE IAFDEMO

.REM
.REM
.REM

.DECLARE x 999

.REM
.REM
.REM

.DEFINE macrnl

.REM
.REM
.REM
.macrol

.&labell

Loop Counter =
.PRINT x

.ADD x x 1
IF "gx <=5 "
End of Lnop

EXAMPLE OF

Define Loop variable

Define Macro

THEN labell

Execute Macro

5-97

"IF THEN" STATEMENT
T S 12 T 122 2 2 X222 222 2 R R 2 2 2 2 2 2 A A A bbb

* %k k Kk kkk

Generated Output

Loop Counter
Loop Counter
Loop Counter
Loop Counter
Loop Counter
End of Loop

o
Ul W N =

W

* Sample IF THEN Program

Figure 5.8

5.4.4.3.1 1IF Statement Guidelines

IF statement processing is fairly time consuming, and should
therefore be used cautiously within a report program. It can
be used effectively for contrnlling the overall flow of a
report, where the statement will be executed infrequently.
For example, depending on the current date or a terminal
input variable, certain sections of a report may be included
or excluded. The IF statement(s) contronlling these
conditinnally executed sections would be executed once for
the entire report.

In contrast, executing an IF statement for each row
processed, could severely lengthen the report execution time
if a large number of rows were processed. For example,
although RPF supports page control, there is no mechanism to
reprint page headings for each page break. One method of
reprinting the headings would be to count each line which is
generated, then at the top of page execute a special heading
routine. However, for each line printed an IF statement
would have to be executed to test for an end of page
condition. This use of the IF statement is not recommended

for reports of substantial length.

Some uses of the IF statement can be replaced with SQL
functions. For example computing the maximum and minimum
value of a variable over a range of rows could be
accomplished by comparing each new value with the previous
maximum and minimum values. This requires two IF statements
for each row. Another approach would be to execute a SELECT
in the report 'foot' which used the MIN and MAX SQL
functions. The second approach would be more efficient.

5.4.4.4 STOP Statement

The STOP statement will terminate the execution of the report
program. STOP may be included in the procedure section or a
procedural macro. The format of the statement is:

.STOP

If a STOP is not included, the program will terminate
following the execution of the last program statement.

5-99

5.4.5 Arithmetic Statements

RPT provides statements to perform addition, subtraction,
multiplication, and division between two program variables.
The results of the operation are stored in a third variable.
The formats are:

| ADD |
.1suB | <dest var> <source varl> <source var2>
|MUL |
|
[

IDIV

<dest var>
<{snurce varl>
<source varz2>

For all arithmetic statements except DSUB, a numeric
literal may be substituted for the input arguments
<snurce varl> and <source var2>.

These numeric variables must have been previously
defined. The maximum number which can be stored in
a variable is determined by the format specified on
the DECLARE statement. If the result of the
arithmetic operation overflows the <dest var>, the
high order digits will be lost, and no error will be
indicated. These digits are lost both on output and
in subsequent arithmetic operations.

For example, if the result is '456' and the format
of <dest var> is '99', '56' is stored in <dest var>
and the high order digit '4' is lost.

If the decimal portion of the arithmetic result
contains more digits them defined in the <dest var>
format, the low order digits will be rounded off.
For example, if the the result was '46.576' and the
format of the <dest var> was '99.99', the number
146.58' will be stored.

5-100

5.4.5.1 ADD

The value of <source varl> is added to <source var2> and the
result is stored in <dest var>. For example, if X=5 and Y=6
then:

.ADD Z X Y

will set Z=11. The result may be stored into one of the
source variables with:

.ADD X X Y

results in X=11.

5.4.5.2 SUB

The value of <source var2> is subtracted from <source varl>
and the result is stored in <dest var>. For example, if X=5
and Y=3 then:

.SUB Z X Y
will set Z=2. The statement:
.SUB X X Y

set the value of X=2.

5.4.5.3 MUL

The value of <source varl)> is multiplied by <source var2> and
the result is stored into <dest var>. For example, if X=5
and ¥=6 then: N

.MUL Z X Y
will set Z=30. The statement:

.MUL X X Y

sets the value of X=30.

5-101

5.4.5.4 DIV

The value of <source varl> is divided by <source var2> and
the result is stored into <dest var>. For example, if X=10
and Y=2 then

DIV Z X Y
sets the value of Z=5. The statement:

DIV X X Y
sets the value of X=5. 1If a number is divided by zero (ie.
<source var2>=0), a "** DIVIDE BY ZERO (X/Y) **" error

message will be 1issued and the report program will be
terminated.

5-102

5.4.5.5 DSUB

This statement subtracts one 'date' variable from another,
storing the result into a ‘numeric' variable. This allows
the number of days between twn dates to be computed. For
example, if DATE1=01/24/81 and DATE2=12/25/80 then

.DSUB RESULT DATEl DATE2

set the value of RESULT=30. Note that neither DATEl nor
DATE2 may be literals. 5.4.6 Miscellaneous Statements

5.4.6.1 PRINT Statement

The PRINT statement inserts the contents of the specified
program variable into the output "Interim File". This is the
only mechanism for inserting database informatinn into the
nutput report. The content of the variable will be formatted
according to the format defined on the DECLARE statement.
The data will be treated as a separate word when processed by
RPF.

The format of the statement is:

.PRINT <variable name>

PRINT statements may be interspersed with RPF commands to
print the data in the various columns of a tabular report.
Refer to the Sample Reports in Section 5 for examples of the
use of PRINT.

5-103

5.6.2 ASK Statement

The ASK statement displays a message on the user's terminal,
and allows the user to enter a value to be assigned to the
specified program variable. ASK provides a means for the
user to dynamically control the flow and output of a report.

The format of this statement is:
.ASK "<message>" <variable>

<message> is a 1 to x character message which
will be displayed on the user's
terminal. If the message contains
blank characters, the message text
must be enclosed within double
quotes(").

<variable> is the name of the program variable
whose value will be set equal to the
data value entered by the user. The
entered data value must be of the
same data type as the ©program
variable.

If a numeric variable is specified,
and the entered data is alphanumeric,
the variable is set equal to zero and
no error is indicated.

If a 'date' variable is specified,
the format of the input is MM/DD/YY.
The date routine will verify that the
entered date is valid. If invalid,
the operator will be requested to
re-enter the data.

5-104

5.4.6.3 Remark Statement

The REM Statement allows the report programmer to include

comment lines within the program source file. The entire
line of text fonllowing the REM statement is treated as a
comment and ignored by RPT. The remark statement will not be
output to the interim file. The format of this statement is:

.REM <comment text>

ORACLE

HOST LANGUAGE INTERFACE

Oracle Programmer's Guide - Version 2.3

Copyright (c) April 1981
By Relational Software Incorporated
All rights reserved. Printed in U.S.A.

ORACLE

HOST LANGUAGE INTERFACE

TABLE OF CONTENTS

Introductinn
Program CALL Summary
Compiler Language Interface

LOGON CALL
OPEN CALL
SQL CALL
DESCRIBE CALL
NAME CALL
DEFINE CALL
BIND CALL
EXECUTE CALL
FETCH CALL
CLOSE CALL
LOGOFF CALL

SQL Substitution Vvariables
Data Types

Data Type Descriptions

Data Conversinns

Internal Numeric Format
CURSOR Data Area

Program Interface Data Areas
FORTRAN Example Program

"Cc" Example Program

COBOL Example Program
ASSEMBLY Language Interface
Linking Instructions for RSX/IAS
System Resources for PDP-11 Programs
Linking Instructions for VAX-1l1

ORACLE

HOST LANGUAGE INTERFACE
INTRODUCTION

SQL is designed to be used as a stand-alone terminal language
for interactive users, and as a data sublanguage embedded in
a host programming language. All SQL query, data
manipulation, data definition, and data control facilities
are available from both the interactive and data sublanguage

interface.

ORACLE interfaces to FORTRAN, COBOL, PL/1, "C" and other high
level host programming languages by means of program calls.
ORACLE interfaces to assembly language via macro
instructions.

A program establishes communication with ORACLE by issuing
the LOGON call. Communication takes place via the Logon Data
Area (LDA) defined within the user program. A user program
issues one and only one LOGON to ORACLE.

A program opens a database and creates a "cursor" by issuing
an OPEN call. A cursor is the name of a data area which is
used to identify and control an active SQL statement. The
Cursor data area is defined within the user program. ORACLE
permits user programs to have multiple active SQL statements.
This is accomplished by a single program issuing multiple
OPEN's to establish multiple cursors.

The SQL call is used to associate a SQL statement with a
cursor. 1In the case of a query, the SQL call defines a set
of rows to be retrieved and logically positions the cursor
just before the first row.

Subsequent calls related to the same SQL statement reference
the same cursor.

The following sections assume that the reader is familiar
with SQL, section 3.12 of the "ORACLE Introduction", and at

least one programming language.

ORACLE

HOST LANGUAGE INTERFACE

PROGRAM CALL SUMMARY

There are eleven different ORACLE calls or macros that may be
used to access the database.

The LOGON call establishes communication between a program
and ORACLE.

The OPEN call connects a program to a database and creates a
cursor.

The SQL call is used to pass a SQL statement to ORACLE.

The DESCRIBE call is used to dynamically determine the nunber
and data types of fields to be retrieved during a query

operation.
The NAME call is used to retrieve table and column names.

The DEFINE call identifies to ORACLE the location of data
field buffers in the user program.

The BIND call allows programs to dynamically substitute
variables into SQL statements.

The EXECUTE call causes ORACLE to process the SQL statement.

The FETCH call is used to retrieve rows, one at a time,
during a program query operation.

The CLOSE call closes the database and disconnects the cursor
from ORACLE.

The LOGOFF call disconnects the user program from ORACLE.

ORACLE

COMPILER LANGUAGE INTERFACE

The following general

ORACLE:

literals

variable-length
fields

length field formats

CODING RULES

rules apply to user programs calling

may be used within the CALL parameter
list if they are permitted by the
compiler. Note that the use of a
literal must generate a pointer to
the literal as a result of the CALL;
the PDP-11 compilers always generate
pointers to literals, but the VAX
compilers may generate a pointer to a
character string descriptor which
cannot be used by the ORACLE Host
Language Interface. An example is
the VAX FORTRAN compiler which
generates pointers to descriptors for
all references to ~character data
types. In order to circumvent the
FORTRAN calling defaults, use the
"$REF" function to force a call by
reference.

variable length parameters are passed
to ORACLE with an accompanying length
field in the form: parameter,length.

Length fields are binary numbers
(FORTRAN INTEGER; COBOL PICTURE S9999
COMP; etc.) of the standard word size
for the computer on which ORACLE is
running (32 bits for the VAX, 16 bits
for the PDP-11). The 1length field
may be omitted if the wvariable
parameter is terminated by a binary
zero.

missing parameters

If a length field or other optional
parameter 1is omitted from a call
parameter list, the user may code
comma comma (,,) to indicate the
absence of the parameter. For
example: "paraml,lenl,param2,len2 vs.
paraml, ,param2,,". In some languages
("C" for example) the comma comma
notation is not allowed to indicate a
missing parameter in a call parameter
list. If comma comma notation is not
permitted, the user may code a minus
one (-1) to indicated the missing
parameter. For example:
(paraml,-1,param2,-1).

The LOGON Call

CALL OLOGON (lda[,areacount])

The LOGON call establishes communication between ORACLE and a
user program.

Communication takes place via the Logon Data Area (LDA)
defined within the user program. The LOGON call connects the
LDA to ORACLE. A program logs on to ORACLE one and only one
time. A program has one and only one LDA.

The LDA is a 64 byte data area defined within the user
program. The first two bytes of the LDA contains a return
code indicating the result of the LOGON. A zero return code
indicates a successful LOGON. Error return codes are listed
in the "Mescages and Return Codes" section of this manual.

1da specifies the name of the 64 byte
Logon Data Area defined within the

user program.

areacount specifies an integer number
indicating the number of ORACLE SQL
statement work areas (SWA's) to be
concurrently maintained in main
storage. This optional parameter is
used only if the user program is
opening multiple cursors and and the
user does not want ORACLE to swap
SWA's. (See the section on "Program
Interface Data Areas." at the end of
this manual.) Areacount should be
equal to or 1less than the maximum
number of cursors the program will
open. The default value for

areacount is one.

LOGON Examples:
FORTRAN

Log on to ORACLE using a Logon Data Area named LDAREA.

CALL OLOGON (LDAREA)

COBOL

Log on to ORACLE using a Logon Data Area named LDAREA and a
integer named AREACOUNT.

CALL "OLOGON" USING LDAREA,AREACOUNT.

MACRO-11 ASSEMBLY LANGUAGE

Log on to ORACLE specifying the address of the LDA in
register 2.

CCALL OLOGON,R2

The OPEN Call

CALL OOPEN (cursor,lda,dbn,dbnlen[,areasize][,uid,uidlen])

The OPEN call establishes a cursor to operate on a specific
database.

A cursor is a data area defined within the user program. The
OPEN connects the cursor to ORACLE. The cursor name is used
to identify an active SQL statement within the user program.

Each cursor may control only one SQL statement at a time.
The same cursor may be reused to control another SQL
statement after the first statement's operation has been

completed.

A single user program can have multiple SQL statements active
at the same time. This is accomplished by issuing multiple
OPEN's to establish multiple cursors within the program.
These OPEN's can be to the same or different databases.

The cursor data area contains status information on an active
SQL operation. All subsequent ORACLE calls referencing a SQL
statement reference it by cursor name. The first two bytes
of the cursor contain a return code indicating the result of
the OPEN. A zero return code indicates a successful OPEN.
Error return codes are listed in the "Messages and Return

Codes" section of this manual.

cursor specifies the name of a 64 byte data
area within the user program. The
cursor data area 1is connected to
ORACLE by the OPEN call. Each cursor
defines an active SQL statement
within the program.

lda specifies the name of the Logon Data
Area specified in the LOGON call.

dbn specifies the name of the ORACLE
database as defined in the Database

File (DBF) utility.

dbnlen specifies a binary integer indicating
the length of the database name. If
the database name was specified as a
literal, this parameter may be

omitted.

areasize

uid

uidlen

specifies a binary integer indicating
the size of the ORACLE SQL Work Area
(SWA) in 1increments of 1K Dbytes.
This optional parameter is used only
if the user wants a work area other
than the default size of 3K bytes.
The SWA must be large enough to
contain the compiled SQL statement
plus one row of data of the table or
view being processed. ORACLE SQL
work areas can vary in size from 1 to
l6. See the section on "Program
Interface Data Areas" at the end of
this chapter. Note that if multiple
cursors of different sizes are to be
opened, the one with the largest SWA
size must be opened first.

specifies the user identification and
password as defined by either the
Database File (DBF) utility or the
SQL "DEFINE USER" function.

specifies a binary integer indicating
the length of the user identification
and password. If they were specified
as a literal, this parameter may be

omitted.

OPEN Examples:

FORTRAN

Open the PERSONNEL database and establish the cursor CURSI.
The name of the Logon Data Area (LDA) is LDAREA. Specify the
database name and user id as literals and take the default 3K

SQL work area size.

CALL OOPEN(CURSI,LDAREA,'PERSONNEL',,,'SCOTT/TIGER')

Open the personnel database and establish the cursor CURS2.
The name of the program's LDA 1is LDAREA. Specify the
database name and the length of the database name as program
variables DBN and DBL. Specify a 5K SQL work area. The user
identification and password are not specified, i.e., the
database is not secure.

CALL OOPEN(CURS2,LDAREA,DBN,DBL,5)

COBOL

Open the personnel database and establish a cursor CURS1.
The name of the Logon Data Area is LDAREA, the database name
is contained in a variable named DBN, its 1length is in
DBNLEN, the area size is in a variable named AREASIZE, the
user identification and password are contained in a variable
named UID, and its length is in UIDL.

CALL "OOPEN" USING CURS1,LDAREA,DBN,DBNLEN,AREASIZE,UID,UIDL.

MACRO-11 ASSEMBLY LANGUAGE

Open the personnel database and pass the address of the
cursor to ORACLE 1in register Zero. The address of the
program's LDA is in register 2. Specify the database name in
program variable DBN and pass the length of the database name
as a literal. Specify a 1K SQL work area. The user
identification and password are not specified, i.e., the
database is not secure.

OOPEN RO,R2,BN,#9,#1

The SQL Call

CALL OSQL (cursor,sqlstatement,sqllen)

The SQL call passes a SQL statement to ORACLE, and associates
that SQL statement with an open cursor. Subsequent calls
reference the SQL statement by cursor name.

The SQL call may contain any wvalid SQL query, data
manipulation, data definition or data control statement.
ORACLE parses the statement and selects an optimal access
path to perform the requested function, however, the

operation is not executed at this time.

SQL syntax error codes will be returned in the cursor
RETURN-CODE area along with a pointer to the text in error.
See the parse errors section in Messages and Return Codes for
a complete list of syntax errors.

cursor specifies the name of a 64 byte data
area within the user program. The
cursor data area contains status
information on an active SQL
operation. Each cursor defines an
open SQL statement within the user
program. The SQL call attaches a SQL
statement to the cursor. A cursor
may be serially reused by subsequent
SQL calls within a user program, or
the program may define multiple
concurrent cursors.

sqlstatement specifies any valid SQL query, data
manipulation, data definition, or
data control statement. The

statement may contain substitution
variables anywhere a constant |is
permitted. Substitution wvariables
are identified by preceding the
variable name with an ampersand, i.e.

- &EMPNO. These substitution variables

then may be referenced symbolically
in a BIND call.

sqllen specifies a binary integer containing
the length of the SQL statement. If
the SQL statement was specified as a
literal this parameter may be
omitted.

SQL Examples:
FORTRAN

Pass a SQL query statement to ORACLE using the cursor CURSI.
Specify the SQL statement as a literal.

CALL OSQL(CURS1,'SELECT ENAME,SAL FROM EMP WHERE DEPTNO =
&DNO; ')

Pass a SQL statement to ORACLE using the cursor CURS2.
Specify the SQL statement as a program variable named QUERY1
with the length of the SQL statement specified as as literal.
CALL OSQL(CURS2,QUERY1,28)

COBOL

Pass the SQL statement contained in a variable named SQLSTM
with length contained in SQLSTML to ORACLE. Use the cursor
named CURSI].

CALL "OSQL" using CURS1,SQLSTM,SQLSTML) .

MACRO-11 ASSEMBLY LANGUAGE

Pass a SQL statement to ORACLE using the cursor CURS1.
Register 1 points to the length of the SQL statement.
Register 1 plus 2 points to the the SQL statement itself.

CCALL OSQL,#CURS1,2(R1), (R1)

The DESCRIBE Call

CALL ODSRBN (cursor,position[,dbsize][,dbtype][,fsize])

The DESCRIBE call returns internal data type and size
information for a field or expression listed in the SELECT

clause of a gquery statement.

DESCRIBE operates positionally, one field at a time,
referencing each field in the SELECT clause as if each were

numbered consecutively, left to right, beginning with 1.

DESCRIBE can be used after a SQL, EXECUTE, or FETCH call to
determine the maximum size and internal data type (dbsize &
dbtype) of fields to be returned as the result of a query.
If DESCRIBE is used after a FETCH Call, the actual size of
the field just fetched (fsize) may be returned in addition to

dbsize and dbtype.

I1f the user specifies a position number greater than the
number of fields in the SELECT list, DESCRIBE returns an
end-of-file indicator in the RETURN-CODE of the cursor data
area. This allows programs to dynamically determine the
number of fields to be returned as the result of a query.
This is necessary if the program does not know in advance how
many fields there are in the SELECT list, as in the case of

SELECT *.

cursor specifies the name of a 64 byte data
area within the user program. The
cursor data area contains status
information on an active SQL
operation. Each cursor defines an
active SQL statement within the user
program. DESCRIBE uses the cursor
name to reference a specific SQL
query statement that had been passed
to ORACLE in a prior SQL call. The
RETURN CODE area of the <cursor
indicates success (code of 0) or
failure (non-zero) of the DESCRIBE
call. All error return codes are
listed in the "Messages and Return
Codes" section of this manual.

position

dbsize

dbtype

specifies the position of a field or
expression listed in the SELECT
clause of a SQL query statement.
Fields and expressions in a SELECT
l1ist are separated by commas. Each
field or expression is then
referenced positionally as 1if the
fields were numbered left to right
consecutively beginning with 1. The
position number is specified as a
binary integer. 1if the user
specifies a position number greater
than the number of fields in the
SELECT 1list, DESCRIBE returns an
end-of-file indicator (+4) in the
RETURN-CODE of the cursor data area.

returns a binary integer specifing
the maximum size of the field. If
the field is defined as CHAR in the
CREATE or EXPAND TABLE, the length
returned is the maximum length
specified for the field 1in that
particular CREATE or EXPAND TABLE.
Fields defined as NUMBER in the
CREATE TABLE, and fields that contain
the results of expressions always
return a size of 8.

returns a binary integer that
indicates the internal data type of
the field as it is stored in the
database. Fields defined as CHAR in
the CREATE or EXPAND TABLE are stored
as variable length ASCII strings and
return a value of 1. Fields defined
as NUMBER are stored in ORACLE
extended precision floating-point and
return a value of 2. Fields that
contain expression results also
return a value of 2.

fsize returns a binary integer that
indicates the actual size of the data
field returned by the last FETCH
operation. The value returned is the
actual length of the field as stored
in the database before it is moved to
the user buffer where padding or
truncation may take place. ORACLE

suppresses leading zeros on numeric
data and trailing blanks on character
data before storing the fields in the
database. This field is valid only
if the DESCRIBE is issued after a
FETCH call.

DESCRIBE Examples:

FORTRAN

Request a description of the first data field in the SELECT
list in the SQL query statement referenced by the cursor

CURS1. Specify the position as a literal. Return the
maximum size of the field and the internal data type into the

program variables SIZE and TYPE.

CALL ODSRBN(CURS1,1,SIZE,TYPE)

COBOL

Request a description of the data field in the SELECT list in
the SQL statement referenced by cursor CURS1 whose number is
given in variable POS.

CALL "ODSRBN" USING CURS1,POS,SIZE,TYPE,ACTSIZE.

MACRO-11 ASSEMBLY LANGUAGE

Describe the second data field in a SELECT list controlled by
the cursor pointed to by register 0. Return the data fields
maximum size and internal data type into the program
variables SIZE and TYPE.

ODSRBN RO,#2,#SIZE,#TYPE

The NAME Call

CALL ONAME (cursor,position,tbuf,tbufl,cbuf,cbufl)

The NAME call is used to retrieve the names of the tables and
columns used in a SELECT clause of a SQL program query. NAME
operates positionally one field at a time, referencing each
field or expression in a SELECT clause as if each were
numbered sequentially from left to right beginning with 1.

NAME may be used after a SQL call to determine the table
name, column name, or expression string of fields to be
returned. If the requested field is an expression (e.g.,
SAL+COMM), then no table name can be returned, and the column
name is the literal expression text.

If the user specifies a position number greater than the
number of fields 1in the SELECT 1list, NAME returns an
end-of-file indicator in the RETURN-CODE of the cursor data
area. Programs can use the end-of-file status to dynamically
determine the names of fields to be returned as the result of
a query for which the number of fields is unknown, as in the
case of SELECT *.

cursor specifies the name of a 64 byte data
area within the user program. The
cursor data area contains status
information on an active SQL
operation. Each cursor defines an
active SQL statement within the user
program. The NAME call references
the cursor name to associate a data
field buffer with a specific SQL
statement.

position specifies the position of a field or
expression in the SELECT clause of a
SQL query statement. Fields are
separated by commas and numbered left
to right consecutively beginning with
1. The position number is specified
as a binary integer. NAME uses the
position number to relate buffers to
fields in the SELECT list.

tbuf

tbufl

cbuf

cbufl

specifies the location of the data
field buffer within the user program
where the name of the table of which
the field 1is a column 1is to be
stored. 1f tbuf is zero, then the
table name will not be stored.

specifies the location of a binary
integer which indicates the length of
tbuf. If the table name to be stored
is longer than tbufl, then the table
name will be truncated; if it is
shorter, then tbufl will point to a
binary integer which is the length of
the table name stored in tbuf. If
tbufl is =zero, then the table name
will not be stored.

specifies the location of the data
field buffer within the user program
where the name of the column or
expression is to be stored. If cbuf
is zero, then the column name will
not be stored.

specifies the location of a binary
integer which indicates the length of
cbuf. If the column name to be
stored is longer than cbufl, then the
column name will be truncated; if it
is shorter, then cbufl will point to
a binary integer which is the length
of the column name stored in cbuf.
If cbufl is zero, then the column
name will not be stored.

NAME Examples:
FORTRAN

Retrieve the table and column names for the second field in
the SELECT list associated with the cursor CURS1.

CALL ONAME(CURS1,2,TABLE,TABLEL,COL,COLL)

COBOL

Retrieve the table and column names in the SELECT list
defined by CURS4 which has its position number specified by a
variable named SELPOS.

CALL "ONAME" USING CURS4,SELPOS,TABLE,TABLEL,COL,COLL.

MACRO-11 ASSEMBLY LANGUAGE

Retrieve the table and column names for the second field in
the SELECT list associated with cursor CURS2.

CCALL ONAME,#CURS2,#2,#TABLE,#TABLEL,#COL,#COLL

18

The DEFINE Call

CALL ODFINN (cursor,pos,buffer,bufl[,ftype][,rcode][,fdig])

The DEFINE call is used to define one output buffer for each
field in a SELECT list within a SQL program query.

DEFINE specifies the location and size of a data field buffer
in the user program. Define also passes the external data
type of the field as defined by the user program, and
optionally specifies a field return code. DEFINE defines one
data field buffer at a time. Buffers are defined after the

SQL call and prior to the FETCH call.

SELECT buffers are always defined positionally. Fields
within the SELECT list are referenced as if they were
numbered consecutively, left to right, beginning with 1.
During a FETCH, ORACLE will convert each field from internal
to the specified external data type and then store the fields
in the defined buffers.

ORACLE provides return code information at the row level,
"cursor" return code, and optionally at the field level,
"field” return code. During each FETCH, ORACLE establishes a
return code for each field processed. This code indicates
either successful completion (return code = 0) or an
exceptional condition such as: null field fetched, field
truncated, etc. The field return code is stored in the rcode
variable for each defined field. At the completion of each
FETCH, the last non-zero "field" return code encountered is

placed in the "cursor" return code.

cursor specifies the name of a 64 byte data
area within the user program. The
cursor data area contains status
information on an active SQL
operation. Each cursor defines an
active SQL statement within the user
program. The DEFINE call references
the cursor name to associate a data
field buffer with a specific SQL
statement.

pos

buffer

bufl

ftype

rcode

fdig

6-19

specifies the position of a field or
expression in the SELECT clause of a
SQL query statement. Fields are
separated by commas and numbered left
to right consecutively beginning with
1. The position number is specified
as a binary integer. DEFINE uses the
position number to relate buffers to
fields in the SELECT list.

specifies the location of the data
field buffer within the user program.

specifies the length of the buffer
being defined. The buffer length 1is

specified as a binary integer.

is a binary integer that specifies
the data type that the field is to be
converted to before it is moved to
the user Dbuffer. I1If the ftype
parameter is omitted no conversion
takes place. A list of external data
types and type codes is contained in
the section on data types in this
manual.

specifies a two byte binary field
defined in the user's program into
which ORACLE will place a field
return code. Field return codes are
filled in after a FETCH operation.

The number of fractional digits (to
the right of the decimal point) to be
returned for datatype 7 (COBOL
implied decimal). f£fdig Iis required
for datatype 7, and is ignored for
all others.

DEFINE Examples:

FORTRAN

Define a data field buffer for the second field in the SELECT
list associated with the cursor CURS1. The data field is to
be fetched into a program variable named DEPT which is
defined as INTEGER*2. ORACLE is to convert the field to
integer external data type (3). At the completion of each
fetch ORACLE will place a return code 1into the program

variable RC2.

CALL ODFINN(CURS1,2,DEPT,2,3,RC2)

COBOL

Define a buffer for the field in the SELECT list defined by
CURS4 which has its position number specified by a variable
named SELPOS. The buffer is EMPNO with its 1length in
variable EMPNOL. The data type is specified in the variable
CBL and has FRAC fractional digits. The picture for EMPNO is
S99999Vv99 USAGE IS DISPLAY.

MOVE 8 TO EMPNOL. MOVE 2 TO FRAC. CALL "ODFINN" USING
CURS4,SELPOS,EMPNO,EMPNOL,CBL, FRAC.

MACRO-11 ASSEMBLY LANGUAGE

Define a data field buffer for the second field in the SELECT
list associated with cursor CURS2. The data field buffer in
the user program is named DNAME and has a length of 20,
specified as a literal. The field is to be returned to the
program in ASCII format (l). After each fetch, ORACLE will
place a return code for the data field into the program

variable ERR1.

CCALL ODFINN,#CURS2,#2,NAME,#20.,#1,#ERR]

The BIND Call

CALL OBIND (cursor,sqlvar,sqlvl,progvar,progvl[,ftype])

CALL OBINDN (cursor,sqlvarnum,progvar,progvl[,ftype])

The BIND call is used to dynamically modify a SQL statement
after it has been passed to ORACLE in a SQL call. The
statement may then be executed, modified again, re-executed,

etc.

The BIND call specifies that a program value 1is to be
assigned to a SQL substitution wvariable within a SQL

statement.

BIND and BINDN are exactly the same except in the way they
reference SQL substitution variables. BINDN references SQL
substitution wvariables numerically. BIND references SQL
substitution variables symbolically by name. The name of the
variable to be bound must be specified in upper case.

At the time of the BIND, ORACLE converts the program variable
from external to internal format, and then moves the data
value into the SQL statement. BIND is used after the SQL
call and prior to the EXECUTE call. The completion status of
the BIND is indicated in the RETURN CODE area of the cursor.
All return codes are specified in the "Messages and Return
Codes" section of this manual.

cursor specifies the name of a 64 byte data
area within the user program. The
cursor data area contains status
information on an active SQL
operation. Each cursor defines an
active SQL statement within the user
program. BIND uses the cursor name
to reference a specific SQL
statement.

sqlvar specifies the character string name
of a substitution variable within the
SQL statement, i.e. WHERE EMPNO =
&EMPLOYEE. BIND moves the program
variable value into the SQL

substitution variable &EMPLOYEE.

sqlvl

sqlvarnum

progvar

progvl

ftype

specifies a binary integer indicating
the length of the character string
specified for the sglvar parameter.
For example, &EMPLOYEE has a length
of 9. If the substitution variable
was specified as a literal this
parameter may be omitted.

specifies a binary integer that
references a SQL substitution
variable within the SQL referenced by
the cursor. For example, if
sqlvarnum contains the value 2, it
references a SQL substitution
variable defined as &2.

specifies the name of a wvariable
defined within the user program. The
value within the program variable is
substituted into the SQL statement at
the time of the BIND.

specifies a binary integer containing
the length of the program variable.
A length of zero indicates a null
value is to be bound to the progvar
parameter.

specifies a binary integer that
indicates the data type of the
program variable as it 1is defined
within the user program. ORACLE
converts the program variable from
external to internal format before it
is bound to the SQL statement. A
list of external data types and type
codes is contained in a separate
section of this manual.

BIND Examples:
FORTRAN

Bind the value contained in the program variable DEPT to the
SQOL substitution variable &DNO. DEPT is defined in the user

program as INTEGER*4.
CALL OBIND(CURS1,'&DNO',,DEPT,4,3)

Bind the value contained in the program variables EMPNO and
DEPT to the SQL substitution variables &l and &2

CALL OSQL(CURS1,'SELECT EMPNO FROM EMP
1 WHERE EMPNO=&1 AND DEPTNO=&2')

CALL OBINDN(CURS1,1,EMPNO,4,3)

CALL OBINDN(CURS1,2,DEPT,4,3)

COBOL

Bind the value contained in program variable EMPNO to the SQL
substitution wvariable which is specified in wvariable
EMPNO-NAME which has a length specified in EMPNO-N-L.

CALL "OBIND" USING CURS1,EMPNO-NAME
, EMPNO-N-L, EMPNO, EMPNO-L, INT4.

MACRO-11 ASSEMBLY LANGUAGE

Bind the value contained in program variable DEPT to the SQL
substitution variable pointed to by ADRDNO. ADRDNO 1is a
program variable containing the 4 byte ASCII string &DNO.
The data type of the value contained in DEPT is integer with

a length of 4.

CCALL OBIND,RO,#ADRDNO,#4,EPT,#4,#3

EXECUTE Call

CALL OEXEC (cursor)

The EXECUTE call causes the SQL statement currently
associated with the cursor to be processed.

If the SQL statement is a data manipulation, data definition,
or data control statement, the wentire SQL function s
performed at this time; the RETURN CODE is set and a count of
the rows processed by the statement is placed in ROW COUNT
field of the cursor data area. If the SQL statement is a
query, the user program must explicitly request each row of
the result using the FETCH call.

cursor specifies the name of a 64 byte data
area within the user program. The
cursor data area contains status
information on an active SQL
operation. Each cursor defines an
active SQL statement within the user
program. The EXECUTE call executes
the SQL statement attached to the

cursor.

EXECUTE Examples:

FORTRAN

Execute the SQL statement which was passed to ORACLE using
CURS1.

CALL OEXEC(CURS1)

COBOL

Execute the SQL statement which was passed to ORACLE using
CURS1.

CALL "OEXEC" USING CURSI.
MACRO-11 ASSEMBLY LANGUAGE
Execute the SQL statement which was passed to ORACLE using

the cursor pointed to by register zero.

CCALL OEXEC,RO

The FETCH Call

CALL OFETCH (cursor)

The FETCH call returns rows of a query result to the user
program, one row at a time. Each field of the query 1is
placed into a buffer identified by a previously executed
DEFINE call. Fields that are requested by the user program
in character string format are left justified and padded with
trailing blanks. Character strings that are too large for
the field buffer are truncated and the ORACLE field return

code is set to +3.

If null values are encountered in any field of the fetch, the
ORACLE field return code for that field is set to +2 and the
user buffer remains unchanged. To determine which specific
fields are null or have been truncated, the user program must
have specified field return codes in the DEFINE buffer calls,
or a DESCRIBE call may be issued. If multiple non-zero field
return codes are encountered in a single FETCH, the cursor
return code will contain the last non-zero field return code.

After the last row of the query result has been returned to
the user program, the next fetch will return an end-of-file
return code of +4. After each FETCH the cursor row count is
updated. When end-of-file has been reached, the row count
will contain the total number of rows found by the query.

cursor specifies the name of a 64 byte data
area within the user program. The
cursor data area contains status
information on an active SQL
operation. Each cursor defines an
active SQL statement within the user
program. The cursor maintains
position on a set of rows that
satisfy a query as those rows are
retrieved, one at a time by the FETCH

call.

FETCH Examples:
FORTRAN

Fetch a row for the SELECT statement passed to ORACLE using
CURS1. CALL OFETCH(CURS2)

COBOL

Fetch a row for the SELECT statement passed to ORACLE using
CURS1.

CALL "OFETCH" USING CURSI.
MACRO-11 ASSEMBLY LANGUAGE

Fetch a row for the SELECT statement passed to ORACLE using
CURS2.

CCALL OFETCH,#CURS2

The CLOSE Call

CALL OCLOSE (cursor)

The CLOSE call disconnects a cursor from ORACLE and frees all
resources obtained by the OPEN, SQL, and EXECUTE functions
using this cursor. If the CLOSE fails, the RETURN CODE area
of the cursor contains the status indicator. All of the
return codes are listed in the "Messages and Return Codes"

section of this manual.

cursor specifies the name of a 64 byte data
area within the user program. The
cursor data area contains status

information on an active SQL
operation. Each cursor defines an
active SQL statement within the user
program. CLOSE disconnects the

cursor from ORACLE.

CLOSE Examples:
FORTRAN

Close the cursor CURS1l.

CALL OCLOSE(CURS1)

COBOL

Close the cursor CURS1.

CALL "OCLOSE" USING CURSI.

MACRO-11 ASSEMBLY LANGUAGE

Close the cursor pointed to by register zero.

OCLOSE RO

The LOGOFF Call

CALL OLOGOF (lda)

The LOGOFF call disconnects a program from ORACLE and frees
all ORACLE resources owned by this program. If the LOGOFF
fails, the reason is indicated in the first two bytes of the
Logon Data Area (LDA). A complete list of return codes is
given in the "Messages and Return Codes" section of this

manual.

lda specifies the name of the Logon Data
Area specified in the LOGON call.

LOGOFF Examples:
FORTRAN

Log off from ORACLE.

CALL OLOGOF (LDAREA)
COBOL

Log off from ORACLE

CALL "OLOGOF" USING LDAREA.
MACRO-11 ASSEMBLY LANGUAGE

Log off from ORACLE.

CCALL OLOGOF,R2

ORACTLE

HOST LANGUAGE INTERFACE

SQL SUBSTITUTION VARIABLES

When SQL is used within a host programming language,
substitution variables may be used within the SQL statement.

SQL substitution variables allow user programs to dynamically
modify SQL statements, and then execute those modified

statements.

SQL substitution variables are identified by an ampersand.
Substitution variables may be wused anywhere in a SQL
statement that a constant may be used. For example, in
FORTRAN:

CALL O0SQL (CUR1l,'SELECT ENAME,SAL
1 FROM EMP
2 WHERE DEPTNO = &DEPT;"')

The BIND call is used to substitute values into a SQL
substitution variable.

CALL OBIND (CUR1,'s&DEPT',5,DEPT,2,3)

DEPT is a variable defined in the user program as a 2 byte
fixed point number.

SOL substitution variables may also be used to BIND values in
INSERT and SET statements.

CALL 0SQL (CUR2,'INSERT INTO DEPT:
1<&A,&B,&C,NULL>;"')

Null values may be inserted into the database by specifying
NULL in the INSERT list or by binding a value with a zero
length to a SQL substitution variable.

CALL OBIND (CUR2,&C,2,LOC,0,1)

ORACLE

HOST LANGUAGE INTERFACE
DATA TYPES

ORACLE performs data conversions for most data types provided
by the supported languages. On retrieval (SELECT)
operations, ORACLE will convert from the internal format of
the data as stored in the database, to an external format as
defined by the user program. On storage (INSERT and UPDATE)
operations, ORACLE will convert from external to internal

data types.

The user specifies the external data type for SELECT
operations with the DEFINE call. The user specifies external
data types for INSERT and UPDATE operations with the BIND

call.

Internally, ORACLE stores characters in ASCII and numbers in
a variable length extended precision (maximum 22 bytes)
floating point format.

If the user does not want ORACLE to do any conversion on
numeric data, the data may be defined as a character string
for both the internal and external data type.

The following is a list of the external data types supported
by ORACLE:

DATA TYPE CODE FORTRAN COBOL
varying-length 01 LOGICAL*1 PIC X...X
character string

ORACLE internal 02 N/A N/A

numeric

8 bit fixed 03 LOGICAL*1 N/A

point

16 Bit fixed 03 INTEGER*2 PIC S9(4)

point COMP

32 Bit fixed 03 INTEGER*4 PIC S9(9)

point COMP

32 Bit floating 04 REAL*4 N/A

point

64 Bit floating 04 REAL*8 N/A

point

Null terminated 05 LOGICAL*1 PIC X...X

string

Raw data 06 LOGICAL*1 PIC X...X

COBOL implied 07 N/A PIC S9V9

decimal

ORACLE

HOST LANGUAGE INTERFACE
DATA TYPE DESCRIPTIONS

The use of each of the ORACLE external data types is
described below.

DATA TYPE DESCRIPTION

01 The varying length character string format is a
string of ASCII characters whose length 1is
determined by a length field. Trailing blank
characters are discarded on input. ORACLE pads
the string with trailing blanks on output. If
the length specification is missing on input,
the string length is determined by scanning the
string until a null character (a zero byte) is
encountered. The length is required on output.
An all blank field, or one whose length |is
specified as zero on input is treated as a NULL
by ORACLE if the internal datatype is CHAR; if
the internal type is NUMBER, then an all blank
field is converted to zero. A zero length
output length specification is invalid. When
the ORACLE internal data type is NUMBER, input
character strings are converted to internal
numeric format until an invalid numeric
character is encountered, e.g., '1234.45bcd' is
converted to 1234.45, and the 'bcd' is ignored
without any error indication. Qutput to an
ASCII buffer from an internal numeric datatype
to a character string which contains the ascii
character representation of the internal
number. The field width determines the
precision. The number will be converted to
scientific notation if required by the field
size., e.g., if the number is 123456789 and the
field width is 6, the output string will be
'1.2E08'.

02 See the section on internal numeric format.

03

04

05

06

The integer number format is used to process
numbers which have no fractional parts. The
integer number is a signed binary number of
one, two, or four bytes. The significance
order is determined by the host language being
used. The length specification is required for
input and output. If the number being output
from ORACLE is not integral, the fractional
part is discarded. Integer numbers may be used
only with internal numeric columns.

The floating number format is used to process
numbers which have fractional parts, or which
exceed the capacity of integer number format.
The number is represented using the computer's
floating point format with a length of either 4
or 8 bytes (REAL*4 or REAL*8). The length
specification is required for input and output.
Since the internal numeric format is decimal
based, some precision may be lost during the
conversion from the computer's binary floating
point format to and from ORACLE's decimal
format.

The null terminated string format is exactly
like the wvarying 1length <character string
format, except that the string 1is always
terminated by one byte of zero (the NULL
character). Oon input, the string length is
ignored and the string scanned for the null.
Oon output, the null is placed after the last
character returned. If the string exceeds the
field length specified, the string is truncated
and the last character position of the buffer
contains the null. Trailing blanks are
discarded on input., A zero length string (null
in the first position or an all blank field) is
treated as NULL by ORACLE.

The raw data format is used for binary data.
The contents of the buffer are not interpreted
in any way by ORACLE for either input or
output. The length is required for input and
output. On output, only the number of
characters stored in the database are returned;
the remainder of the output buffer 1is not
modified. The number of characters actually
returned may be determined using the DESCRIBE
call.

07

The COBOL implied decimal data type is used to
return non-integral numbers from ORACLE to a
COBOL data type which is suitable for
calculation. The COBOL data area must be a
signed numeric display field with an implied
decimal point. The number of digits to the
right of the decimal point is specified with
the DEFINE call. The wvalue returned may be
used as is for COBOL calculations, or may be
moved to a computational field prior to
calculations. The number will never be
converted to scientific notation. If the
number to be returned loses significant digits
during the conversion, ORACLE fills the buffer
with "*" characters.

ORACLE

HOST LANGUAGE INTERFACE

DATA CONVERSIONS

The following table specifies the data conversions supported
by ORACLE.

- +

\ SYSTEM FORMAT| TO ORACLE |FROM ORACLE|
e I pm———— - |
USER FORMAT \ | CHAR |NUMBR|CHAR | NUMBR/|
o +-——— +————— +-———- +————- !
JASCII | YES | YES | YES | YES |
|- +————— +————- - +————- |
| INTERNAL NUMERIC | YES | YES | YES | YES |
| - +———— - +————- +—-——- |
| 8 BIT FIXED PT. | - | YES | - | YES |
| ——— $o——— R R e I
|16 BIT FIXED PT. | - | YES | - | YES |
| ——mm e - +-———- - +-————- 4 |
|32 BIT FIXED PT. | - | YES | - | YES |
|- +————- e +————- - !
|32 BIT FLOATING | - | YES | - | YES |
[i - +-——— te——— |
]64 BIT FLOATING | - | YES | - | YES |
tommr - +-————- - +———-- |
INULL TERM. STR. | YES | YES | YES | YES |
o +——=—= +-———- t————- - +
| RAW DATA | YES | YES | YES | YES |
e +
| COBOL IMPLIED | NO | NO | NO | YES*|
o +

* NOTE: The COBOL 'number' datatype must have a
picture of the following form:
PICTURE S9(N)V9(N) USAGE DISPLAY SIGN
LEADING SEPARATE.

ORACLE

HOST LANGUAGE INTERFACE
INTERNAL NUMERIC FORMAT

Database fields defined as NUMBER in the CREATE TABLE are
stored in the database in ORACLE's variable length extended

precision floating point format.

ORACLE floating point numbers vary in length and occupy from
1 byte to 22 bytes of real storage. The ORACLE internal
numeric format is depicted below:

The number consists of a sign bit (0 is negative, 1 is
positive), a 7 bit exponent and up to 21 bytes of significant

digits.

The exponent represents the number of digit positions to
shift the radix point (which is assumed to be to the left of
the leftmost digit). The exponent is expressed in excess 64
format, so that an exponent of 64 indicates a 0 shift, 63 a
shift to the left of one digit, 65 a shift to the right of

one digit, and so on.

Each digit is stored in one byte and is a base 100 digit
represented as a binary number from 0 to 99. Each shift of
the radix point changes the magnitude of the number by a
power of 100. Trailing zero digits are discarded. Negative
numbers are indicated by a sign bit of zero and the digits
are stored as the 100's complement of the number.

The ORACLE numeric format can represent numbers ranging from
10 ** -128 to (10 ** 128) - 1 with up to 42 digits of

precision.

ORACLE

HOST LANGUAGE INTERFACE

CURSOR DATA AREA

The cursor is a 64 byte data area defined within a user
program. A cursor is identified to ORACLE in an OPEN call.
The cursor data area contains status information on an active
SQL operation. Each cursor defines an active SQL statement
within a user program. All ORACLE calls that reference a SQL
statement reference it by cursor name. The cursor format is
depicted below:

e —————— e m e ——— +
| 0 | 2 |
[RETURN CODE | FUNCTION TYPE

| __

| 4 |
I ROWS PROCESSED COUNT |
| mm—m e m e —————— e — oo I
| 8 111 110 |
| PARSE ERROR OFFSET | FILLER | FUNC CODE |
| __

12

ORACLE SYSYEM

PARAMETER AREA

RETURN CODE contains a two byte binary number
that indicates the completion code
for the specified operation. Zero
indicates a successful result. A
positive return code indicates a
successful result with an exceptional
condition. A negative return code
indicates an error was encountered in
attempting to perform the specified
operation. See ORACLE Messages and
Codes for a complete list of return
codes.

FUNCTION CODE

ROWS PROCESSED COUNT

PARSE ERROR OFFSET

contains an operation code indicating
the type of ORACLE function
requested. The function codes are:

02 - SQL
04 - EXECUTE
06 - BIND

08 - DEFINE
10 - DESCRIBE
12 - FETCH

14 - OPEN
16 - CLOSE
18 - BINBN

contains a four byte binary number
indicating the count of the number of

rows processed by a SQL operation.

The count will contain the number of
rows inserted, updated, or deleted by
a data manipulation statement, or the
number of rows fetched in a query
statement. This field is valid only
after an EXECUTE or FETCH operation.

contains a two byte binary number
indicating the offset in characters
into the SQL text where the parse
error occured.

40

ORACLE

HOST PROGRAM INTERFACE

PROGRAM INTERFACE DATA AREAS

ORACLE allows a single program to have multiple cursors open
at the same time.

To optimize program performance, it is useful to have an
understanding of the communication between ORACLE and a user

program.

The following is a diagram of a user program named UPDT3 with
two open cursors.

USER PROGRAM ORACLE
o — + U +
| UPDT3 | | COMMUNICATION REGION |
I | T s + d—mm——— - + |
| e + | | | UupPDT3 | | unused |
| | LOGON LDA | i b LCA o LCA o
I oo + I Pol+==t +==+] | |1
| ! | f1c1] tc2ll | |1
| +==————- + o ———— + | |4+ +—=+1] | I
| |OPEN C1| |OPEN C2] | | +-————————- + H—————— + |
I +——————— + +—————— + | |========================|
I I ! |
| SELECT UPDATE |] |
| FROM SET] | ORACLE |
| WHERE WHERE I | I
I | I |
| | I I
o + o +

When program UPDT3 issues the LOGON call, ORACLE allocates an
Logon Control Area (LCA) for UPDT3 in the ORACLE
Communication Region. ORACLE connects this LCA to the Logon
Data Area (LDA) defined within UPDT3. ORACLE will allocate
one and only one LCA for each terminal and program currently
logged on to ORACLE.

when program UPDT3 issues an OPEN call, ORACLE allocates a
SQL Work Area (SWA) for UPDT3 in the ORACLE Communication
Region. ORACLE connects the SWA to the Cursor (Cl) defined

within the UPDT3.

When program UPDT3 issues a second OPEN call, ORACLE
allocates a second SWA and connects it to UPDT3's second
cursor (C2). ORACLE will allocate one SWA for every open

cursor.

If a program opens multiple cursors causing ORACLE to
allocate multiple SWA's to that program, Some of that
program's SWA's may be swapped to disk. However, ORACLE will
maintain at least one SWA in main memory for each program or
terminal logged on to ORACLE.

The default number of SWA's to be maintained in memory for a
given program is one, unless the user specifies a different
number in the optional "areacount" parameter in the LOGON
call.

The default size of each SWA is 3K bytes. The user can
override the default by specifying the "areasize" parameter
of the OPEN call. The SWA must be large enough to contain
the compiled SQL statement plus one row of data of the table
or view being processed.

SAMPL1 -
COMPILER)
SAMPL2 -
COMPILER)
SAMPL3 -
COMPILER)

Ahkkhkkkkhhkhkhhhkhhhkhkkhhhhhkhhhkhrhkdhhkhhhhhhhd

FORTRAN

*
*
*
EXAMPLE PROGRAMS *
*
*

*
*
*
*
*
*

AhkhkhkhhhhhhhhkhkhkhArhhkhrhkhdhhkhhhhhkhhhkhkd

Table of Contents

INSERTS ROWS WITH NO DATA CHECKING (FOR VAX
INSERTS ROWS WITH SOME DATA CHECKING (FOR PDP 11

INSERTS ROWS AND INSURES DATA VALIDITY (FOR PDP 11

QOOO000000000000000000

oNoXKe!

OO0

(o NOoNe!

PROGRAM SAMPL1

SAMPL]1 IS WRITTEN FOR THE VAX FORTRAN COMPILERS. NOTE
THE $REF IS USED WHENEVER A LITERAL STRING IS PASSED
TO ORACLE.

SAMPL1 IS A SIMPLE EXAMPLE PROGRAM WHICH ADDS NEW EMPLOYEES
ROWS TO THE PERSONNEL DATA BASE. VERY LITTLE CHECKING IS
DONE TO INSURE THE INTEGRITY OF THE DATA BASE. THE PROGRAM
QUERIES THE USER (VIA DEVICE 5) FOR DATA AS FOLLOWS:

Enter employee number:
Enter employee name
Enter employee job
Enter employee salary:

Enter employee dept

THE NEW EMPLOYEE ROW IS INSERTED AND THE DEPARTMENT
TABLE IS UPDATED TO INCREASE THE EMPLOYEE COUNT. IF
THE EMPLOYEE NUMBER IS ENTERED AS '0O', THEN THE
PROGRAM TERMINATES.

IMPLICIT INTEGER*2 (A-Z)
LOGICAL*1 ENAME(10) ,J0B(9)
INTEGER*2 LDA(32),CUR1(32),CUR2(32)

LOGON TO ORACLE

CALL OLOGON(LDA)
IF (LDA(l).NE.O) GO TO 10000

OPEN TWO CURSORS FOR THE PERSONNEL DATA BASE

CALL OOPEN(CUR1,LDA,
X $REF('PERSONNEL'),,,%REF('QA/TEST'))
IF (CURL(l).NE.0) GO TO 10000

CALL OOPEN(CUR2,LDA,
X $REF('PERSONNEL'),, ,$REF('QA/TEST'))
IF (CUR2(1).NE.O) GO TO 10000

PASS THE SQL STATEMENTS TO ORACLE

CALL OSQL(CUR1,
1 $REF('INSERT INTO EMP(EMPNO,ENAME,JOB,SAL,DEPTNO)
2 <&EMPNO, §ENAME , &JOB, &SAL,&DEPTNO>;"'))

IF (CUR1(1l).NE.O) GO TO 10000

NOTE THAT THE 'NULLF' FUNCTION FORCES THE EMPCNT TO ZERO
IF IT IS NULL

oEeNONe!

CALL OSQL(CURZ,

1 $REF('UPDATE DEPT SET EMPCNT=NULLF(EMPCNT,0)+1
2 WHERE DEPTNO=&DEPTNO;'))

IF (CUR2(1l).NE.O) GO TO 10000

C

C READ THE USER'S INPUT FROM DEVICE 5 (NORMALLY, THE TERMINAL)

C

10 WRITE(5,100)

100 FORMAT('$Enter employee number: ')
READ (5,110,END=5000,ERR=10)EMPNO

110 FORMAT(I5)
IF (EMPNO.EQ.0) GO TO 5000
WRITE (5,120)

120 FORMAT('S$Enter employee name : ')
READ (5,130)ENAME

130 FORMAT(10Al)
WRITE (5,140)

140 FORMAT('SEnter employee job : ")
READ (5,150)JO0B

150 FORMAT(9A1)

153 WRITE (5,155)

155 FORMAT('$Enter employee salary: ')
READ (5,110,ERR=153)SAL

158 WRITE (5,160)

160 FORMAT('$Enter employee dept : ')
READ (5,110,ERR=158)DEPT

BIND ALL SQL SUBSTITUTION VARIABLE VALUES.
IF ANY ERRORS OCCUR, PRINT AN ERROR MESSAGE,
BUT CONTINUE.

OO0 0n0n

CALL OBIND(CUR],$REF('&EMPNO'),,EMPNO,2,3)
IF (CUR1(1l).NE.O) GO TO 1000

CALL OBIND(CUR1,S$REF('&ENAME'),,ENAME,10,1)
IF (CUR1(1l).NE.0) GO TO 1000

CALL OBIND(CUR1,%REF('&JOB'),,JOB,9,1)

IF (CUR1(1l).NE.O) GO TO 1000

CALL OBIND(CUR1,S$REF('&SAL'),,SAL,2,3)

IF (CUR1(1l).NE.0) GO TO 1000

CALL OBIND(CUR1,$REF('&DEPTNO'),,DEPT,2,3)
IF (CUR1(1l).NE.O) GO TO 1000

CALL OBIND(CUR2,$REF('&DEPTNO'),,DEPT,2,3)
IF (CUR2(1l).NE.0) GO TO 1000

C
C EXECUTE THE SQL STATEMENTS: CUR1 INSERTS A ROW INTO THE
C 'EMP' TABLE.
C
CALL OEXEC(CUR1)
IF (CUR1(1).NE.O) GO TO 1000
C
C ...CUR2 UPDATES THE 'EMPCNT' COLUMN OF THE 'DEPT' TABLE.
C
CALL OEXEC(CUR2)
IF (CUR2(1).NE.O) GO TO 1000
GO TO 10
1000 CALL ERRRPT(LDA,CUR1l,CUR2)
GO TO 10 ’
C
C CLOSE THE TWO CURSORS
C

5000 CALL OCLOSE(CUR1)
CALL OCLOSE (CUR2)

LOGOFF FROM ORACLE

OO0

CALL OLOGOF (LDA)

STOP 'END OF SAMPL1'

10000 CALL ERRRPT(LDA,CUR1l,CUR2)
GO TO 5000

END

SUBROUTINE ERRRPT(LDA,C1,C2)

ERRRPT PRINTS THE CURSOR NUMBER, THE ERROR CODE, AND THE
ORACLE FUNCTION CODE. IF THE LDA CONTAINS AN ERROR CODE,
A LOGON ERROR IS ASSUMED

LDA IS THE LOGON DATA AREA ARRAY
Cl IS THE FIRST CURSOR ARRAY
C2 IS THE SECOND CURSOR ARRAY

OO0O00000n0

6-46

C
INTEGER*2 LDA(32),C1(32),C2(32)
IF (LDA(1).EQ.0) GO TO 100
WRITE (5,10)LDA(1)

10 FORMAT('OLogon error: ',I5)

GO TO 500

100 IF (Cl(1l).EQ.0) GO TO 200
WRITE (5,110) 1,C1(1),Cl(6)

110 FORMAT('OORACLE error on cursor ',Il,
1 ': CODE IS ',I5,', OP IS ',I5)
GO TO 500

200 IF (C2(1).EQ.0) GO TO 300
WRITE (5,110),2,C2(1),C2(6)
GO TO 500

300 WRITE (5,310)

310 FORMAT('0OUnknown ORACLE error')

500 RETURN
END
PROGRAM SAMPL?2

C
C SAMPL2 IS A SIMPLE EXAMPLE PROGRAM WHICH ADDS NEW EMPLOYEE
C ROWS TO THE PERSONNEL DATA BASE. SOME CHECKING
C IS DONE TO INSURE THE INTEGRITY OF THE DATA BASE.
C THE PROGRAM QUERIES THE USER (VIA DEVICE 5) FOR DATA AS FOL
C
C Enter employee number:
C Enter employee name
C Enter employee job
C Enter employee salary:
C Enter employee dept
C
C THE NEW EMPLOYEE ROW IS INSERTED AND THE DEPARTMENT
C TABLE IS UPDATED TO INCREASE THE EMPLOYEE COUNT. IF
C THE EMPLOYEE NUMBER IS ENTERED AS '0O', THEN THE
C PROGRAM TERMINATES.
c
IMPLICIT INTEGER*2 (A-Z)
LOGICAL*1 ENAME(11) ,JOB(10),DEPT(20)
INTEGER*2 CURS(32,4)
C
C LOGON TO ORACLE
c
CALL OLOGON(CURS(1,1))
IF (CURS(1,1).NE.0) GO TO 10000
C
c OPEN THREE CURSORS FOR THE PERSONNEL DATA BASE
C

CALL OOPEN(CURS(1,2),CURS(1,1),'PERSONNEL',,,'QA/TEST')
IF (CURS(1,2).NE.O) GO TO 10000

CALL OOPEN(CURS(1,3),CURS(1,1),'PERSONNEL',,,"'QA/TEST')
IF (CURS(1,3).NE.0) GO TO 10000

N Ne]

QOO0

1

CALL OOPEN(CURS(1,4),CURS(l,l),'PERSONNEL',,,'QA/TEST')
IF (CURS(1,4).NE.0O) GO TO 10000

PASS THE SQL STATEMENTS TO ORACLE
CALL OSQL(CURS(1,2),'INSERT INTO EMP(EMPNO,ENAME,JOB,SAL,DE

<&EMPNO, &ENAME, &JOB,&SAL,&DEPTNO>; ')
IF (CURS(1,2).NE.O) GO TO 10000

NOTE THAT THE 'NULLF' FUNCTION FORCES THE EMPCNT TO ZERO
IF IT IS NULL

CALL OSQL(CURS(1,3),'UPDATE DEPT SET EMPCNT=NULLF (EMPCNT,0)
1 WHERE DEPTNO=&DEPTNO;')
IF (CURS(1,3).NE.O) GO TO 10000

CALL OSQL(CURS(1,4),'SELECT DNAME FROM DEPT WHERE

1 DEPTNO=&DEPTNO; ')
IF (CURS(1,4).NE.0) GO TO 10000

C DEFINE A BUFFER TO RECEIVE THE DEPARTMENT NAME FOR ORACLE
C

CALL ODFINN(CURS(1,4),1,DEPT,20,5)

IF (CURS(1,4).NE.0) GO TO 10000
C

C READ THE USER'S INPUT FROM DEVICE 5 (NORMALLY, THE TERMINAL)

C

10 WRITE(5,100)

100 FORMAT('S$Enter employee number: ')
READ (5,llO,END=5000,ERR=lO)EMPNO

110 FORMAT(I5)
IF (EMPNO.EQ.0) GO TO 5000
WRITE (5,120)

120 FORMAT('S$Enter employee name : ')
po 125 I1=1,11

125 ENAME(I)=0
READ (5,130)ENAME

130 FORMAT(11Al)
WRITE (5,140)

140 FORMAT('S$Enter employee job : ")
DO 145 I=1,10

145 JOB(I)=0
READ (5,150)JO0B

150 FORMAT (10A1)

153 WRITE (5,155)

155 FORMAT('SEnter employee salary: ')
READ (5,110,ERR=153)SAL

158 WRITE (5,160)

160 FORMAT('S$Enter employee dept : ')
READ (5,110,ERR=158)DEPTNO

BIND ALL SQL SUBSTITUTION VARIABLE VALUES
IF ANY ERRORS OCCUR, PRINT AN ERROR MESSAGE,
BUT CONTINUE.

QOO0

CALL OBIND(CURS(1,2),'&EMPNO',,EMPNO,2,3)
IF (CURS(1,2).NE.O) GO TO 1000

CALL OBIND(CURS(1l,2),'&ENAME',,ENAME,10,5)
IF (CURS(1,2).NE.O0O) GO TO 1000

CALL OBIND(CURS(1,2),'s&JOB',,JOB,9,5)

IF (CURS(1,2).NE.0) GO TO 1000

CALL OBIND(CURS(1,2),'&SAL',,SAL,2,3)

IF (CURS(1,2).NE.0) GO TO 1000

CALL OBIND(CURS(1,2),'&DEPTNO',,DEPTNO,2,3)
IF (CURS(1,2).NE.0) GO TO 1000

CALL OBIND(CURS(1,3),'&DEPTNO',,DEPTNO,2,3)
IF (CURS(1,3).NE.0) GO TO 1000

CALL OBIND(CURS(1,4),'&DEPTNO',,DEPTNO,2,3)
IF (CURS(1,4).NE.O) GO TO 1000

EXECUTE THE SQL STATEMENTS. CURSOR NUMBER 3 SELECTS
'‘DNAME' FROM THE 'DEPT' TABLE. IF THERE IS NO SUCH DEPARTM
(AS DETECTED BY A RETURN CODE OF 4 TO THE FETCH CALL), THEN
AN ERROR MESSAGE IS DISPLAYED.
CALL OEXEC(CURS(1,4))
IF (CURS(1,4).NE.0) GO TO 1000
DO 450 I=1,20
450 DEPT(I) = 0

CALL OFETCH(CURS(1,4))

IF (CURS(1,4).EQ.0) GO TO 500

IF (CURS(1,4) .NE.4) GO TO 1000

WRITE (5,400)
400 FORMAT('ONo such department number')

OO0 n0n

GO TO 10
C
C CURSOR NUMBER 1 INSERTS A NEW ROW INTO THE 'EMP' TABLE.
C

500 CALL OEXEC(CURS(1,2))
IF (CURS(1,2).NE.O) GO TO 1000

C CURSOR NUMBER 2 UPDATE THE 'EMPCNT' COLUMNS IN THE 'DEPT' T

CALL OEXEC(CURS(1,3))
IF (CURS(1,3).NE.0) GO TO 1000
WRITE (5,600) ENAME,DEPT
600 FORMAT(' ',11Al,' added to the ',20Al,' department')
GO TO 10
1000 CALL ERRRPT(CURS(1,1),4)
GO TO 10

C CLOSE THE THREE CURSORS

C

5000 CALL OCLOSE(CURS(1,2))
CALL OCLOSE(CURS(1,3))
CALL OCLOSE(CURS(1,4))

LOGOFF FROM ORACLE

OO0

CALL OLOGOF(CURS(1,1))

STOP 'END OF SAMPL2'
10000 CALL ERRRPT(CURS(1,1),4)

GO TO 5000

END

SUBROUTINE ERRRPT(CURS,N)

ERRRPT PRINTS THE CURSOR NUMBER, THE ERROR CODE, AND THE
ORACLE FUNCTION CODE. IF THE LDA CONTAINS AN ERROR CODE,

A LOGON ERROR IS ASSUMED

CURS IS THE CURSOR ARRAY
N IS THE NUMBER OF CURSORS (INCLUDING THE LDA) IN THE ARRAY

aOOoOO0n00O00n

INTEGER*2 CURS(32,N)

IF (CURS(1l,1).EQ.0) GO TO 100
WRITE (5,10)CURS(1,1)
10 FORMAT('OLogon error: ',I5)
GO TO 500
100 Do 110 I=1,N
IF (CURS(1,I).NE.0O) GO TO 150
110 CONTINUE
150 IF (I.LE.N) GO TO 300
WRITE (5,200)
200 FORMAT('0Unknown ORACLE error')
GO TO 500
300 WRITE (5,400)I,CURS(1,I),CURS(6,I)
400 FORMAT('QOORACLE error on cursor 'L,I11,
1 . code is ',15,', op is ',I5)
500 RETURN
END

OOO0O0000 0000000000000 00000000N0n

Q0N

PROGRAM SAMPL3

SAMPL3 IS A SIMPLE EXAMPLE PROGRAM WHICH ADDS NEW EMPLOYEE

ROWS TO THE PERSONNEL DATA BASE. CHECKING

IS DONE TO INSURE THE INTEGRITY OF THE DATA BASE.

THE EMPLOYEE NUMBERS ARE AUTOMATICALLY SELECTED USING

THE CURRENT MAXIMUM EMPLOYEE NUMBER AS THE START.

IF ANY EMPLOYEE NUMBER IS A DUPLICATE, IT IS SKIPPED.

THE PROGRAM QUERIES THE USER (VIA DEVICE 5) FOR DATA AS FOL

Enter employee name
Enter employee Jjob
Enter employee salary:
Enter employee dept

THE NEW EMPLOYEE ROW IS INSERTED AND THE DEPARTMENT
TABLE IS UPDATED TO INCREASE THE EMPLOYEE COUNT. IF
THE EMPLOYEE NAME IS NOT ENTERED, THEN THE PROGRAM

TERMINATES.

IF THE ROW IS SUCCESSFULLY INSERTED, THE FOLLOWING
IS PRINTED:

ENAME added to DNAME department as employee # NNNNN
IMPLICIT INTEGER*4 (A-2)

THE MAXIMUM LENGTHS OF THE 'ENAME', 'JOB', AND 'DNAME'
COLUMNS WILL BE DETERMINED BY AN ORACLE CALL. THE
PROGRAM ASSUMES THAT THE SUM OF THE LENGTHS WILL BE

LESS THAN 100 BYTES. THE COLUMNS WILL ALL BE STORED
IN ONE ARRAY -- STRNGS.

LOGICAL*1 STRNGS(100) ,ENMFMT(6) ,JOBFMT(6) ,DEPFMT(70)
INTEGER*2 CURS(32,6)
LOGON TO ORACLE

CALL OLOGON(CURS(1,1))
IF (CURS(1,1).NE.O0) GO TO 10000

OPEN FIVE CURSORS FOR THE PERSONNEL DATA BASE

oo O NS oOonNon oNo NP oNoNe! aonon0n

oo RO NOR L

CALL OOPEN(CURS(1,2),CURS(1,1),'PERSONNEL'
IF (CURS(1,2).NE.O) GO TO 10000

CALL OOPEN(CURS(1,3),CURS(1,1),'PERSONNEL'
IF (CURS(1,3).NE.0O) GO TO 10000

CALL OOPEN(CURS(1,4),CURS(1,1),'PERSONNEL'
IF (CURS(1,4).NE.0) GO TO 10000

CALL OOPEN(CURS(1,5),CURS(1,1),'PERSONNEL'
IF (CURS(1,5).NE.Q) GO TO 10000

CALL OOPEN(CURS(1,6),CURS(1,1),'PERSONNEL’
IF (CURS(1,6).NE.0) GO TO 10000

¢+ 'QA/TEST')

¢+ v ' QA/TEST')

¢+ ¢ 'QA/TEST'")

++'QA/TEST')

++"QA/TEST'")

RETRIEVE THE CURRENT MAXIMUM EMPLOYEE NUMBER

PASS THE SQL STATEMENT TO ORACLE

CALL OSQL(CURS(1,2),'SELECT MAX(EMPNO) + 10 FROM EMP; ')

IF (CURS(1,2).NE.0) GO TO 10000

DEFINE A BUFFER TO RECEIVE THE MAX(EMPNO)+10 FROM ORACLE

CALL ODFINN(CURS(1,2),1,EMPNO,4,3)
IF (CURS(1,2).NE.0) GO TO 10000

EXECUTE THE SQL STATEMENT

CALL OEXEC(CURS(1,2))
IF (CURS(1,2).NE.O) GO TO 10000

FETCH THE DATA FROM ORACLE INTO THE DEFINED BUFFER

CALL OFETCH(CURS(1,2))
IF (CURS(1,2).EQ.0) GO TO 50
IF (CURS(1,2).NE.4) GO TO 10000

CURSOR RETURN CODE 4 MEANS THAT NO ROW SATISFIED THE QUERY,

SO GENERATE THE FIRST EMPNO

EMPNO=10
CONTINUE

DETERMINE THE MAX LENGTH OF THE EMPLOYEE NAME AND JOB TITLE

PASS THE SQL STATEMENT TO ORACLE. IT WILL NOT BE EXECUTED.

CALL OSQL(CURS(1,2),'SELECT ENAME,JOB FROM EMP; ')
IF (CURS(1,2).NE.O) GO TO 10000

CALL ORACLE TO DESCRIBE THE TWO FIELDS SPECIFIED IN THE ABO
SOL STATEMENT. WE ARE ONLY CONCERNED ABOUT THE LENGTH.

oEeNoNe!

CALL ODSRBN(CURS(1,2),1,ENAMEL)
IF (CURS(1,2).NE.0) GO TO 10000

CALL ODSRBN(CURS(1,2),2,J0BL)
IF (CURS(1,2).NE.O) GO TO 10000

PUT THE LENGTHS INTO THE FORMATS SO THAT THE ENAME AND JOB
COLUMNS WILL BE PRINTED CORRECTLY.

OO0

ENCODE(6,60, ENMFMT) ENAMEL
60 FORMAT('(',I2,'Al)")
ENCODE(6,60,JOBFMT) JOBL

PASS THE SQL STATEMENTS TO ORACLE

aO0n

CALL OSQL(CURS(1,2),'INSERT INTO EMP (EMPNO, ENAME,JOB,SAL,DE
1 <&EMPNO, &ENAME, &JOB, &SAL,&DEPTNO>; ')
IF (CURS(1,2).NE.O) GO TO 10000

CALL OSQL(CURS(1,3),'UPDATE DEPT SET EMPCNT=NULLF (EMPCNT,0)

1 WHERE DEPTNO=&DEPTNO;"')
IF (CURS(1,3).NE.0) GO TO 10000
CALL OSQL(CURS(1,4),'SELECT DNAME FROM DEPT WHERE

1 DEPTNO=&DEPTNO; ')
IF (CURS(1,4).NE.O) GO TO 10000

CALL OSQL(CURS(1,5),'BEGIN TRANSACTION 1 ON TABLE EMP,DEPT

1 UPDATE;"')
IF (CURS(1,5).NE.O) GO TO 10000

CALL OSQL(CURS(1,6),'END TRANSACTION 1;')
IF (CURS(1,6).NE.O) GO TO 10000

CALL ORACLE TO DESCRIBE THE 'DNAME' COLUMNS - ONLY THE LENG
IS OF CONCERN

[eNe Ko K?!]

CALL ODSRBN(CURS(1,4),1,DEPTL)
IF (CURS(1,4).NE.0) GO TO 10000

PUT THE MAXIMUM 'DNAME' LENGTH INTO A FORMAT SO THAT IT WIL
BE PRINTED CORRECTLY.

oo NoNe!

ENCODE(70,70,DEPFMT) ENAMEL , DEPTL
70 FORMAT('('* '',',12,'Al,'' added to the '',',I2,'Al,"’

1 department as employee # '',I5)"')

[N N®!

C

DEFINE THE BUFFER TO RECEIVE 'DNAME' FOR ORACLE

CALL ODFINN(CURS(1,4),l,STRNGS(ENAMEL+JOBL+4),DEPTL,S)
IF (CURS(1,4).NE.O) GO TO 10000

C READ THE USER'S INPUT FROM DEVICE 5

C
100
120

140

153
155

158
300
160

aOanon

[oNeX®!

OO0O0O00000n0n

390

400

WRITE (5,120)
FORMAT('S$Enter employee name :
READ (5,ENMFMT,END=1000)(STRNGS(J),J=1,ENAMEL)

IF (STRNGS(1).EQ.' ') GO TO 1000
WRITE (5,140)
FORMAT('S$Enter employee job : ")

READ (S,JOBFMT)(STRNGS(J),J=ENAMEL+2,ENAMEL+2+JOBL—1)
WRITE (5,155)

FORMAT('$Enter employee salary: ')

READ (5,158,ERR=153)SAL

FORMAT(IS5)

WRITE (5,160)

FORMAT('S$Enter employee dept : ')

READ (5,158,ERR=300)DEPTNO

BIND THE DEPTNO VARIABLE

CALL OBIND(CURS(1,4),'&DEPTNO',,DEPTNO,4,3)
IF (CURS(1,4).NE.0) GO TO 700

EXECUTE THE SQL STATEMENT

CALL OEXEC(CURS(1,4))
IF (CURS(1,4).NE.0) GO TO 700

FETCH THE ROWS: DEPTNO IS A UNIQUE COLUMN, SO A MAXIMUM OF
ONE ROW WILL BE FETCHED. IF CURSOR RETURN CODE 4 IS
RETURNED, THEN THERE IS NO SUCH DEPARTMENT.

NOTE THAT THE DNAME AREA OF STRNGS WILL BE SET TO ALL NULLS
PRIOR TO THE CALL TO ORACLE

DO 390 I=ENAMEL+JOBL+4,ENAMEL+JOBL+4+DEPTL+2
STRNGS(I)=0

CALL OFETCH(CURS(1,4))

IF (CURS(1,4).EQ.O) GO TO 410

IF (CURS(1,4) .NE.4) GO TO 700

WRITE (5,400)

FORMAT ('0ONo such department number"')

GO TO 300

BIND ALL SQL SUBSTITUTION VARIABLE VALUES
IF ANY ERRORS OCCUR, PRINT AN ERROR MESSAGE,

BUT CONTINUE.

HBOOOOOO

10 CALL OBIND(CURS(1l,2),'&ENAME',,STRNGS(1l) ,ENAMEL,1)
IF (CURS(1l,2).NE.O0) GO TO 700
CALL OBIND(CURS(1,2),'&JOB',,STRNGS(ENAMEL+2) ,JOBL,1)
IF (CURS(1,2).NE.0) GO TO 700
CALL OBIND(CURS(1,2),'&SAL',,SAL,4,3)
IF (CURS(1,2).NE.O) GO TO 700
CALL OBIND(CURS(1,2),'&DEPTNO',,DEPTNO,4,3)
IF (CURS(1l,2).NE.0) GO TO 700
CALL OBIND(CURS(1,3),'&DEPTNO',,DEPTNO,4,3)
IF (CURS(1,3).NE.O0) GO TO 700

C
c EXECUTE THE SQL STATEMENTS. CURSOR 5 ASKS ORACLE TO
C BEGIN AN UPDATE TRANSACTION ON TABLES 'EMP' AND 'DEPT'.
C ALL OTHER TRANSACTIONS ON THOSE TWO TABLES WILL BE
c BLOCKED UNTIL AN 'END TRANSACTION': CURSOR 6.
C
CALL OEXEC(CURS(1,5))
IF (CURS(1,5).NE.0) GO TO 700
C
c BIND THE EMPNO
C
450 CALL OBIND(CURS(1l,2),'&EMPNO',,EMPNO,4,3)
IF (CURS(1,2).NE.0) GO TO 700
C
C EXECUTE THE INSERT (CURSOR 2)
C
500 CALL OEXEC(CURS(1,2))
IF (CURS(1,2).EQ.0) GO TO 600
C
C IF THE CALL RETURNS CODE -9 (DUPLICATE VALUE IN INDEX), THE
o GENERATE THE NEXT POSSIBLE EMPLOYEE NUMBER
c
IF (CURS(1,2).NE.-9) GO TO 700
EMPNO=EMPNO+10
GO TO 450
o
C EXECUTE THE UPDATE (CURSOR 3)
c
600 CALL OEXEC(CURS(1,3))

IF (CURS(1,3).NE.0) GO TO 700

530 WRITE (5,DEPFMT) (STRNGS(J) ,J=1,ENAMEL) , (STRNGS(K) ,
1 K=ENAMEL+2+JOBL+2,ENAMEL+2+JOBL+2+DEPTL-1) ,EMPNO
GO TO 800

700 CALL ERRRPT(CURS(1,1},6)

800 CALL OEXEC(CURS(1,6))
EMPNO=EMPNO+10
GO TO 100

C
C CLOSE THE FIVE CURSORS
C
1

000 CALL OCLOSE(CURS(1,2))
CALL OCLOSE(CURS(1,3))
CALL OCLOSE(CURS{(1,4))
CALL OCLOSE(CURS(1,5))
CALL OCLOSE(CURS(1,6))

LOGOFF FROM ORACLE

o000

CALL OLOGOF(CURS(1,1))

STOP 'END OF SAMPL3'
10000 CALL ERRRPT(CURS(1,1),6)

GO TO 1000

END

SUBROUTINE ERRRPT(CURS,N)

ERRRPT PRINTS THE CURSOR NUMBER, THE ERROR CODE, AND THE
ORACLE FUNCTION CODE. IF THE LDA CONTAINS AN ERROR CODE,

A LOGON ERROR IS ASSUMED

CURS IS THE CURSOR ARRAY
N IS THE NUMBER OF CURSORS (INCLUDING THE LDA) IN THE ARRAY

OO0OO0O0000n

INTEGER*2 CURS(32,N)

IF (CURS(1l,1).EQ.0) GO TO 100
WRITE (5,10)CURS(1,1)
10 FORMAT('0OLogon error: ',I5)
GO TO 500
100 po 158 I1=1,N
IF (CURS(1,I).NE.0O) GO TO 150
158 CONTINUE
150 IF (I.LE.N) GO TO 300
WRITE (5,200)
200 FORMAT('0Unknown ORACLE error')
GO TO 500
300 WRITE (5,400)I,CURS(1,I),CURS(6,I)
400 FORMAT('OORACLE error on cursor ',I11,
1 ‘. code is ',I5,', op is ',I5)
500 RETURN
END

hkhkkhhkkkhkkkhhkhkhhhkhhkrhkhhhhhhrhhkhkdhhhhhkk

C

* *
* *
* *
* EXAMPLE PROGRAMS *
* *
* *

2222222222322 XSRS 2200 R R 2 0

Table of Contents

samplel - INSERTS ROWS WITH NO DATA CHECKING
sample2 - INSERTS ROWS WITH SOME DATA CHECKING
sample3 - INSERTS ROWS AND INSURES DATA VALIDITY

/* VOID samplel

samplel is a simple example program which adds new employee
records to the personnel database. Very little
checking is done to insure the integrity of the
database. The program queries the user for data

as follows:

Enter employee number:
Enter employee name:
Enter employee job:
Enter employee salary:
Enter employee dept:

The new employee record is inserted and the department

table is updated to increase the employee count. If
the employee number is entered as '0', then the progra

terminates.
*/
#include <std.h>
char dbn[]{"personnel"}; /* data base name
char uid[] {"ga/test"}; /* user id/password
char insert[] {"INSERT INTO EMP(EMPNO,ENAME,JOB,SAL,DEPTNO):\
<&EMPNO,&ENAME,&JOB,&SAL,&DEPTNO>;"};
char update[]{"UPDATE DEPT SET EMPCNT=\
NULLF (EMPCNT,0)+1 WHERE DEPTNO=&DEPTNO;"};

main()

{

/* employee number, salary
department number

int 1da[32],cursl[32],curs2([32]; /* lda and two cursors
char ename[1l1],job[1l1l]; /* employee name and job

int empno,sal,deptno;

/*
log on to ORACLE, open the database (two cursors), and pass
the SQL statements to ORACLE. The program exits if any error
occur.

*/

if (ologon(lda,-1) ||

oopen(cursl,lda,dbn,—l,—l,uid,—l) b
oopen(cursZ,lda,dbn,—l,—l,uid,—l) |
osql (cursl,insert,-1) ||
osql (curs2,update,-1))

{

errrpt(lda,cursl,curs2);

goto errexit;

}

/*

*/

/*

*/

6-59

read the user's input from STDIN. If the employee number is
entered as zero (or just <cr> or if -eof- (control Z) 1s

encountered, exit.

for(;0 < askn("Enter employee number: ",&empno) && empno != 0;
{
asks("Enter employee name : ",ename);
asks("Enter employee job : ",job);
askn("Enter employee salary: ",&sal);
askn("Enter employee dept: ",&deptno);

bind all SQL substitution variable values and execute the SQL
insert and update. If any errors occur, print an error messag

but continue.

if (obind(cursl,"&EMPNO",-1,&empno,2,3) b
obind(cursl,"&ENAME" ,-1,ename,-1,1) |
obind(cursl,"&JOB",-1,job,-1,1) |1
obind(cursl,"&SAL",-1,&sal,2,3) |1
obind(cursl,"&DEPTNO",-1,&deptno,2,3) ||
obind(cursZ,"&DEPTNo",—1,&deptno,2,3)|I
oexec(cursl) I
oexec(curs2))

errrpt(lda,cursl,curs2);

}

errexit:

/*
*/

}
/*

close the cursors and log off from ORACLE

oclose(cursl) ;
oclose(curs2);
ologof(1lda);
return{0);

COUNT askn(text,variable)

*/

print the 'text' on STDOUT and read an integer variable from
SDTIN.

text points to the null terminated string to be printed
variable points to an integer variable

askn returns a 1 if the variable was read successfully or a
-1 if -eof- was encountered

int askn(text,variable)

char text(];
int *variable;

{

return(ask("$i",text,variable));

}

60

/*
COUNT asks(text,variable)

print the 'text' on STDOUT and read up to 10 characters into
the buffer pointed to by variable from STDIN.

text points to the null terminated string to be printed
variable points to a buffer of at least 11 characters

(to insure room for the trailing NULL)

asks returns a 1 if the variable was read successfully or a
-1 if -eof- was encountered
*/
asks(text,variable)
char text[],variable[];

{
return(ask("$10.10p",text,variable));

}

/*
COUNT ask(fmt,text,variable)

print the 'text' on STDOUT and read from STDIN according to th
format text pointed to by 'fmt'. The format string is passed
directly to the c library routine 'getfmt'.

fmt points to a format string for getfmt

text points to tne null terminated string to be printed

variable points to a buffer of sufficient length to hold the
input specified by the format. No length checking is
performed.

ask returns a 1 if the variable was read successfully or a
-1 if -eof- was encountered
*/
ask(fmt,text,variable)
char fmt[],text([],variable(];
{
putfmt ("\ngp",text);
putch(-1);
return(getfmt(fmt,variable));

/*
VOID errrpt(lda,cursl,curs2)

errrpt prints the cursor number, the error code, and the
ORACLE function code. If the lda contains an error code,
a log on error is assumed.

lda points to an ORACLE log on data area.
cursl points to an ORACLE cursor area.
curs2 points to another ORACLE cursor area.
*/
errrpt(lda,cursl,curs2)
int 1da[32],cursl[32],curs2(32];
{
int curserr,cursfcn,cursnum;
if (lda[0])
putfmt("Logon error: %i\n",1da[0]);
else

{
if (cursl[0])
{
cursnum=1;
curserr = cursl{o0
cursfcn =
}
else
{
cursnum=
curserr
cursfcn
}
putfmt ("ORACLE error on cursor gis \
code is %i, op is $i\n",cursnum,curserr,cursfcn);

}

return(0);

}

[N

curs2(0];
curs2(5];

6-63

/* VOID sample2

sample2 is a simple example program which adds new employee
records to the personnel database. Some checking
is done to insure the integrity of the data base.
The program queries the user for data as follows:

Enter employee number:
Enter employee name:
Enter employee job:
Enter employee salary:
Enter employee dept:

The new employee record is inserted and the department
table is updated to increase the employee count. If
the employee number is not entered, then the program

terminates.

*/

#include <std.h>

char dbn[] {"personnel"}; /* data base name
char uid[]{"qa/test"}; /* user id/password
char insert[] {"INSERT INTO EMP(EMPNO,ENAME,JOB,SAL,DEPTNO) :\
<&EMPNO,&ENAME,&JOB,&SAL,&DEPTNO>;"};

char update[] {"UPDATE DEPT SET EMPCNT=\

NULLF(EMPCNT,0)+1 WHERE DEPTNO=&DEPTNO; " };

char select[]{"SELECT DNAME FROM DEPT WHERE \
DEPTNO=&DEPTNO; " };

main()

/* employee number, salary
department number
int curs[4][32]); /* lda and three cursors

char ename[11],job[11],dept[21]; /* employee name,job,dept

int empno,sal,deptno;

/*
log on to ORACLE, open the data base (three cursors), and pars
the SQL statements. The program exits if any errors occur.
*/
if (ologon(curs[0],-1) ||
oopen(curs(l],curs[0],dbn,-1,-1,uid,-1) ||
oopen(curs[2],curs(0] ,dbn,-1,-1,uid,-1) ||
oopen(curs(3],curs(0],dbn,-1,-1,uid,-1) ||
osqgl (curs[l],insert,-1) ||
osql (curs[2],update,-1) ||
osgl (curs[3],select,-1) ||
odfinn (curs{3],1,dept,21,5,-1))

errrpt(cursf0],4);
goto errexit;

}

/*
read the user's input from STDIN. If the employee number is
entered as zero (or just <cr> or if -eof- (control Z) 1s

encountered,exit.
Verify that the entered department number is valid and echo th

departments name

*/

for(;0 < askn("Enter employee number: ", &empno) && empno != 0;
{
asks("Enter employee name @ " ,ename) ;
asks("Enter employee job : ",job);
askn("Enter employee salary: ",&sal);
askn("Enter employee dept: " &deptno) ;
/%

bind all SQL substitution variable values and execute the SQL
statements. If any errors occur, print an error message,
then continue.
*/
if (obind(curs[l],"&EMPNO",—l,&empno,2,3) |
obind(curs[l],"&ENAME",—l,ename,—l,l)]
obind(curs[l],"&JOB",—l,job,—l,l) |}
obind(curs[l],"&SAL",—l,&sa1,2,3) I
obind(curs[l],"&DEPTNO",—1,&deptno,2,3)||
obind(curs[Z],"&DEPTNO",—1,&deptno,2,3)||
obind(curs[3],"&DEPTNO",—1,&deptno,2,3)||
oexec(curs([3]) |
ofetch(curs(3]) 1]
oexec(curs[1l]) I
oexec(curs{2]))

if (curs[3][0]==4)
putfmt ("\nNo such department number\n") ;
else
errrpt(curs[0],4);

}

else

} putfmt ("\n%$p added to the %p department\n",ename,dept

errexit:

/%

close the cursors and log off from ORACLE

*/
oclose(curs[1l])
oclose(curs[2])
ologof(curs[0])
return(0);

14

-
1
r

/*
COUNT askn(text,variable)

print the 'text' on STDOUT and read an integer variable from
SDTIN.

text points to the null terminated string to be printed
variable points to an integer variable

askn returns a 1 if the variable was read successfully or a
-1 if -eof- was encountered
*/

int askn(text,variable)
char text([];
int *variable;
{

return(ask("si",text,variable));

/*
COUNT asks(text,variable)

print the 'text' on STDOUT and read up to 10 characters into
the buffer pointed to by variable from STDIN.

text points to the null terminated string to be printed
variable points to a buffer of at least 11 characters

(to insure room for the NULL)

asks returns a 1 if the variable was read successfully or a
-1 if -eof- was encountered
*/
asks(text,variable)
char text[],variablel[];
{ .
return(ask("%10.10p",text,variable));
}
/*
COUNT ask(fmt,text,variable)

print the 'text' on STDOUT and read from STDIN according to th
format text pointed to by 'fmt'. The format string is passed
directly to the c library routine 'getfmt'.

fmt points to a format string for getfmt

text points to tne null terminated string to be printed

variable points to a buffer of sufficient length to hold the
input specified by the format. No length checking is
performed.

ask returns a 1 if the variable was read successfully or a
-1 if -eof- was encountered
*/
ask(fmt,text,variable)
char fmt[],text[],variable[];
{
putfmt ("\ngp",6text);
putch(-1);
return(getfmt(fmt,variable));

/*
VOID errrpt(cur,n)

errrpt prints the cursor number, the error code, and the
ORACLE function code. 1If the lda contains an error code,
a log on error is assumed.

cur points to an ORACLE cursor array. curs[0] is assummed to b
the lda.
n the the number of cursors in the array (including the lda)
*/

errrpt(cur,n)

int n;
int cur[][32]);

int i;

if (cur[0][0])
putfmt ("Logon error: %i\n",cur[0][0]);

else

{

for (i=1;i>=n|lcur[i][0}!=0;i+=1){}
if (i==n)

putfmt ("Unknown ORACLE error\n");
else

putfmt ("ORACLE error on cursor %$i: \
code is %i, op is si\n",i,cur([i][0],cur([i][5]);

return(0);

}

/* VOID sample3

sample3 is a simple example program which adds new employee
records to the personnel data base. Checking
is done to insure the integrity of the data base.
The employee numbers are automatically selected using

the current maximum employee number as the start.
If any employee number is a duplicate, it is skipped.
The program queries the user for data as follows:

Enter employee name:
Enter employee Jjob:
Enter employee salary:
Enter employee dept:

The new employee record is inserted and the department
table is updated to increase the employee count. If
the employee name is not entered, then the program
terminates.

If the record is successfully inserted, the following
is printed:

ename added to department dname as employee # nnnnnn

*/

#include <std.h>

char dbn[]{"personnel"}; /* data base name
char uid[] {"qa/test"}; /* user id/password

char insert{]{"INSERT INTO EMP(EMPNO,ENAME,JOB,SAL,DEPTNO) :\
<&EMPNO, &ENAME , &JOB, &SAL, &DEPTNO>; " };

char update[]{"UPDATE DEPT SET EMPCNT=\

NULLF (EMPCNT,0)+1 WHERE DEPTNO=&DEPTNO;"};

char select[]{"SELECT DNAME FROM DEPT WHERE \
DEPTNO=&DEPTNO; " };

char maxemp[]{"SELECT MAX(EMPNO) + 10 FROM EMP;"};

char selemp[] {"SELECT ENAME,JOB FROM EMP;"}; /* used to determi
ename, job size

char begtrn[]{"BEGIN TRANSACTION 1 ON TABLE EMP,DEPT UPDATE;"};
char endtrn[] {"END TRANSACTION 1;"};

main()
int empno,sal,deptno; /* employee number, salary
department number
int curs[6][32]); /* 1da and three cursors
char strings{100]; /* employee name,job,dept

int enamel,jobl ,deptl; /* the max length of cols

/*
log on to ORACLE, open the data base (three cursors), and pars
the SQL statements. The program exits if any errors occur.
Determine the lengths of the variable length strings via ODSRB
*/
if (ologon(curs[0],-1) ||
oopen(curs[l],curs[O],dbn,—l,—l,uid,—l) I
oopen(curs[2],curs[O],dbn,—l,—l,uid,—l) i
oopen(curs[B],curs[O],dbn,—l,—l,uid,—l) |
oopen(curs[4],curs[0],dbn,-l,—l,uid,—l) [
oopen(curs[S],curs[O],dbn,-l,—l,uid,—l))
{
errrpt(curs(0],6);
goto errexit;
}
/*
retrieve the current maximum employee number
*/
if (osql(curs{l],maxemp,-1) ||
odfinn(curs[1l],1,&empno,2,3,-1) ||
oexec(curs[1l]) ||
ofetch(curs[1l]))

{
if(curs[1][0]==4) empno=10;
else

{
errrpt(curs(0],6);
goto errexit;

}
}
/*

determine the max length of the employee name and job title
*/
if (osql(curs[l],selemp,-1) ||
odsrbn(curs([1],1,&enamel,-1,-1) |
odsrbn(curs[1],2,&jobl,-1,-1) |
odfinn(curs(l1l],1,strings,enamel,1,-1) |1
odfinn(curs[l],2,&strings[ename1+1],job1,1,~l))
{
errrpt(curs(0],6);
goto errexit;

}

/*
*/

/*

*/

/*

*/

parse the insert, select, and update statements

if (osgl (curs[2],update,-1) |1
osql (curs[3],select,-1) |
osgl (curs[l],insert,-1) |
osql (curs(4] ,begtrn,-1) |
osql (curs([5],endtrn,-1) !
odsrbn(curs(3],1,&deptl,-1,-1) I
odfinn (curs[3],l,&strings[ename1+job1+2],deptl,S,—l))

{

errrpt(curs[0],6);

goto errexit;

}

read the user's input from STDIN.

not entered, exit.
Verify that the entered department number is valid and echo th

department's name

|
I
I
I
r

I1f the employee name is

for(;0 < asks("Enter employee name : "\
strings,enamel) ;empno+=10)
asks("Enter employee job : ",&strings[enamel+l] ,jobl);
askn("Enter employee salary: ",&sal);

for (;0>=askn("Enter employee dept : »,&deptno) | |

obind(curs[3],"&DEPTNO“,—1,&deptno,2,3)lI

oexec(curs(3]) I
ofetch(curs[3]);
putfmt ("\nNo such department\n")){}

bind all SQL substitution variable values and execute the SQL
statements. If any errors occur, print an error message,

then continue.

if (obind(curs[l],"&ENAME",—1,strings,—1,1) |]

obind(curs[l],"&JOB",—1,&strings[enamel+l],—1,1)
obind(curs([1},"&SAL",-1,&sal,2,3) | |
obind(curs[l],"&DEPTNO",—1,&deptno,2,3)I|
obind(curs[2],"&DEPTNO",—1,&deptno,2,3)II
oexec(curs[4]))

errrpt(curs[0],6);

else

{
for (; 0==obind(curs[1],"&EMPNO",-1,&empno,2,3) &&

-9==cexec(curs[1l]) ;empno+=10)
/* test code */
{

errrpt(curs(0],6);

/* end of test code */

if (cursf[1][0])
errrpt(curs{0],6);
else

{
if (oexec(curs[2]))
errrpt(curs(0],6);
else
putfmt ("\n%p added to the %p department \

as employee number %i\n",\
strings,&strings[enamel+jobl+2],empno);
}

if (oexec{curs(5]))
errrpt(curs(0],6);
! }

}

errexit:
/*
close the cursors and log off from ORACLE

*/
oclose(curs([l]);
oclose(curs[2]);
oclose(curs([3]);
oclose(curs([4]);
oclose(curs(5]);
ologof(curs([0]);
return(0);

}

/*

COUNT askn(text,variable)

print the 'text' on STDOUT and read an integer variable from
SDTIN.

text points to the null terminated string to be printed
variable points to an integer variable

askn returns a 1 if the variable was read successfully or a
-1 if -eof- was encountered
*/
int askn(text,variable)
char text([];
int *variable;
{

return(ask("si",text,variable));

}

/*
COUNT asks(text,variable,len)

print the 'text' on STDOUT and read up to 'len' characters int
the buffer pointed to by variable from STDIN.

text points to the null terminated string to be printed
variable points to a buffer of at least 'len'+1l characters

asks returns the number of character read into the string, or
-1 if -eof- was encountered
*/
asks(text,variable,len)
char text{],variablel[];

{
char fmt[14],lens([6];
int x;

x=itob(lens,len,10);

lens[x]="'\0";

cpystr(fmt,"%“,lens,".",lens,"p",NULL);
return(EOF==ask(fmt,text,variable)?EOF:lenstr(variable));

}
/*
COUNT ask(fmt,text,variable)

print the 'text' on STDOUT and read from STDIN according to tb

format text pointed to by 'fmt'. The format string is passed
directly to the c library routine 'getfmt'.

fmt points to a format string for getfmt

text points to tne null terminated string to be printed

variable points to a buffer of sufficient length to hold the
input specified by the format. No length checking is

performed.

ask returns a 1 if the variable was read successfully or a
-1 if -eof- was encountered
*/
ask(fmt,text,variable)
char fmt{],text([],variable[];

{

putfmt ("\ngp",text);
putch(-1);
return(getfmt(fmt,variable));

}

o))
|

73

/*
VOID errrpt(cur,n)

errrpt prints the cursor number, the error code, and the
ORACLE function code. If the lda contains an error code,
a log on error is assumed.

cur points to an ORACLE cursor array. curs[0] is assummed to b
the lda.
n the the number of cursors in the array (including the 1lda)
*/
errrpt(cur,n)
int n;
int cur[]1([32];

int i;

if (curf{o0](0]})
putfmt ("Logon error: $i\n",cur{0][(01);
else

{
for (i=1l;i<n&&cur([i] [0]==0;i+=1){}

if (i==n)
putfmt ("Unknown ORACLE error\n");
else

putfmt ("ORACLE error on cursor %i: \
code is %i, op is $i\n",i,cur(i] [0],cur([i]} [5]);

return(0);

}

C OBOL

*
*
*
EXAMPLE PROGRAM *
*
*

*
*
*
*
*
**

Table of Contents

ORACBL - INSERTS ROWS AND PRINTS EMP TABLE

IDENTIFICATION DIVISION.

PROGRAM-1ID.

ORACBL.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
pPDP-11.

SOURCE-COMPUTER.
OBJECT-COMPUTER.

DATA DIVISION.
WORKING-STORAGE SECTION.

01

01

77
77
77
77
77
77
77

77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77

77
77

77
77

LDA.

02 LDA-RC
02 FILLER
CURSOR.

02 C-RC
02 C-TYPE
02 C-ROWS
02 C-OFFS
02 C-FNC
02 FILLER
AREA-COUNT
AREA-SIZE
DATA-BASE
DATA-BASE-L
USER-ID
USER-ID-L
SQL-SEL
SQL-SEL-L
SQL-INS
SQL-INS-~L
EMPNO-RC
EMPNO-N
ENAME
ENAME-L
ENAME-RC
ENAME-N
FTYPE
ERRTYPE
EMPNOX
EMPNOX-L
EMPNOX~-N
EMPNOX-N-L
ENAMEX-N
ENAMEX-N-L
INT4

ASC
EMPNOX-A

EMPNOX-A-X
EMPNOX-A-L
MSG-TO-0OP

P

PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

DP—llo

S9999 COMP.
S9999 COMP

$9999 COMP.
S9999 COMP.
S9(9) COMP.
S9999 COMP.
59999 COMP.
59999 COMP
§9999 VALUE
S9999 VALUE
X(16) VALUE
89999 VALUE
X(8) VALUE
$9999 VALUE
X(40) VALUE
$9999- VALUE
X(40) VALUE
S$9999 VALUE
S9999 COMP.
S9999 VALUE
X(19).
59999 VALUE
59999 COMP.
S9999 VALUE
59999 COMP.
+9999.
S9(9) COMP
59999 VALUE
X(7) VALUE
$9999 COMP
X(7) VALUE
$9999 COMP
59999 COMP
59999 COMP
S9(9) SIGN

VALIUE _lo

RED
PIC
PIC

EFINES
59999 COMP
X(45) VALUE

"+AAAAAAAAA

OCCURS 31 TIMES.

OCCURS 26 TIMES.
1 COMP.
3 COMP.
"personnel"”.
9 COMP.
"ga/test".
7 COMP.
"SELECT EMPNO,ENAME FROM EMP".
40 COMP.
"INSERT INTO EMP:<&EMPNOX, &ENAMEX
40 COMP.

1 COMP.

10 COMP.

2 COMP.

VALUE O.
4 COMP.
" &§EMPNOX" .
VALUE 7.
" &ENAMEX" .
VALUE 7.
VALUE 3.
VALUE 1.
LEADING SEPARATE DISPLAY

EMPNOX-A PIC X(10).

VALUE 10.

Enter new empno (+]|- and 9 digits)

PROCEDURE DIVISION.

BEGIN.
*

* LOGON TO ORACLE
*

CALL "OLOGON" USING LDA-RC,AREA-COUNT.
IF LDA-RC NOT = 0 PERFORM ORA-ERR GO TO EXIT-STOP.

* OPEN THE PERSONNEL DATA BASE

CALL "OOPEN" USING C-RC,LDA-RC,DATA-BASE,DATA-BASE-L,
"AREA~SIZE,USER-ID,USER-ID-L.
IF C-RC NOT = 0 PERFORM ORA-ERR GO TO EXIT-LOGOF.

»

INSERT A RECORD

CALL "OSQL"™ USING C-RC,SQL-INS,SQL-INS-L.
IF C-RC NOT = 0 PERFORM ORA-ERR GO TO EXIT-CLOSE.
INSERT-ONE.
DISPLAY MSG-TO-OP.
ACCEPT EMPNOX-A.
IF EMPNOX-A = 0 GO TO SELECT-IT.
MOVE EMPNOX-A TO EMPNOX.
CALL "OBIND" USING C-RC,EMPNOX-N,EMPNOX-N-L,EMPNOX,
> EMPNOX-L,INT4.
IF C-RC NOT = 0 PERFORM ORA-ERR GO TO INSERT-ONE.
CALL "OBIND" USING C-RC,ENAMEX-N,ENAMEX-N-L,EMPNOX-A-X,
EMPNOX-A-L,ASC.
IF C-RC NOT = 0 PERFORM ORA-ERR GO TO INSERT-ONE.
CALL "OEXEC" USING C-RC.
IF C-RC NOT = 0 PERFORM ORA-ERR.
GO TO INSERT-ONE.
*

* PARSE THE SELECT
*
SELECT-IT.
CALL "OSQL" USING C-RC,SQL-SEL,SQL-SEL-L.
IF C-RC NOT = 0 PERFORM ORA-ERR GO TO EXIT-CLOSE.
*
* DEFINE THE RECEIVING DATA AREAS
*
CALL "ODFINN" USING C-RC,EMPNO-N,EMPNOX,EMPNOX-L,INT4,

EMPNO-RC.

IF C-RC NOT = 0 PERFORM ORA-ERR GO TO EXIT-CLOSE.
CALL "ODFINN" USING C-RC,ENAME-N,ENAME,ENAME-L,ASC,
ENAME-RC.

IF C-RC NOT = 0 PERFORM ORA-ERR GO TO EXIT-CLOSE.

*

* EXECUTE THE QUERY BLOCK

*

CALL "OEXEC" USING C-RC.
IF C-RC NOT = 0 PERFORM ORA-ERR GO TO EXIT-CLOSE.

FETCH-ONE.

*

* BLANK ALPHA AREAS AND FETCH THE ROWS

*

MOVE SPACES TO ENAME.
CALL "OFETCH" USING C-RC.
IF ENAME-RC NOT = 0
MOVE ENAME-RC TO ERRTYPE
DISPLAY "NON-ZERO RETURN ON FETCH OF ENAME; CODE IS :
ERRTYPE.
IF C-RC NOT = 0 PERFORM ORA-ERR GO TO EXIT-S.
MOVE EMPNOX TO EMPNOX-A.
DISPLAY "EMPNO = ",EMPNOX-A," ;ENAME = ",6ENAME.

GO TO FETCH-ONE.

EXIT-S.
EXIT-CLOSE.

*

* CLOSE THE DATA BASE

*

CALL "OCLOSE" USING C-RC.
IF C-RC NOT = 0 PERFORM ORA-ERR.

EXIT-LOGOF.

*

*

* LOG OFF FROM ORACLE

CALL "OLOGOF" USING LDA-RC.
IF LDA-RC NOT = 0 PERFORM ORA-ERR.

EXIT-STOP.

STOP RUN.

ORA-ERR.

*

* PRINT ORACLE ERROR NOTICE

*

DISPLAY "ORACLE ERROR"
MOVE C-FNC TO ERRTYPE.

DISPLAY "ORACLE FUNCTION = ",ERRTYPE.
MOVE LDA-RC TO ERRTYPE.
DISPLAY "LDA ERROR = " ,ERRTYPE.

MOVE C-RC TO ERRTYPE.
DISPLAY "CUR ERROR = " ,ERRTYPE.

14

ORACLE

ASSEMBLY LANGUAGE INTERFACE

To use the ORACLE user interface from a MACRO-11 language
the programmer must invoke and use the CCALL macro

program,
as described below.

The CCALL macro works as follows:

The CCALL macro is the SDLLIB.MLB. The user must
include this library as part of his assembly.

The CCALL macro is invoked with the .MCALL directive.

The format of the CCALL macro is:

CCALL FUNC,Pl,...,Pn

where:

FUNC

Pl,...,Pz

is the function to be <called (e.g.
OOPEN, OSQL,...)

is the parameter list as defined in the
programming interface. All of the
parameters must be able to be objects of
a MOV instruction. A parameter can be a
list of values, in which case the values
are added together before they are put in
the parameter list. An example of this
is <R1,#OFFSET>. This would cause R1l and
#OFFSET to be added together to produce a
single parameter for the parameter list.
This mechanism allows users to easily
pass pointers to a data area in a
structure pointed to by a register.
Also, if the first item in this list is
'B' then the next item in the list is a
byte and must be able to be the object of
a MOVB instruction.

An example of the CCALL macro:

CURSOR: .BLKB 64.
LDA: .BLKB 64.
DBNAME: .ASCIZ /ACCOUNTING/
CCALL OOPEN, #CURSOR, #LDA,#DBNAME, #-1,#-1

when calling an ORACLE function, registers RO and Rl
are volatile and may be destroyed.

Upon return from an ORACLE function, RO contains the
return code (the first word of the cursor) .

To include the MACRO-11 interface to ORACLE the user
should follow the instructions that C programmers do
to include the C interface.

80

ORACLE

HOST LANGUAGE INTERFACE

LINKING INSTRUCTIONS FOR RSX/IAS

When a user wishes to create his or her own database task,
the distributed user interface modules must be included in
the task image. The user code interface is provided in four
object libraries:

* QFOLIB.OLB
* QCELIB.OLB
* ORALIB.OLB

* CLIB.OLB

The first two libraries, OFOLIB and OCELIB, provide the Host
Language Interface between a host language, such as FORTRAN,
and ORACLE. The libraries are used in the following way in
the task build:

OCELIB/LB:ORACEE for C and assembly language programs
OFOLIB/LB:0ORAFOR for FORTRAN and COBOL programs

The third library, ORALIB, contains object code which has
several responsibilities. The first 1is to provide the
primary intertask communication and handshake between the
user task and ORACLE via the SDAT$ and RCVD$ system service
routines. The second function provides the user interface to
the ORACLE context region. This region is used by the user
interface to pass commands and data to ORACLE and used in
turn by ORACLE to pass data back to the user. This module
will identify the user task name to ORACLE and then wait to
receive a mapping context message from ORACLE. Upon the
completion of this initialization, the user task may enter

into transactions with ORACLE.

The fourth library contains common routines used by the 'C'
language programs in OFOLIB, OCELIB, and ORALIB.

LINKING AN RSX-11M TASK

Two special steps must be taken to include the ORACLE

Interface program in a user task.

1. 1Include OFOLIB or OCELIB, ORALIB, and CLIB in the list of

library files.

2. Add an extra address window at task build time.

Examples:

The TKB command input which builds the SAMPL1 FORTRAN
program:

SAMPL1/-FP,SAMPL1/-SP
SAMPL1,[1,1])F4PEIS,[1,1] F4POTS/LB
(1,1)OFOLIB/LB:ORAFOR
[1,1]ORALIB/LB

[1,1]CLIB/LB

/

WNDWS=1

STACK=3000

UNITS=13

//

The TKB command input which builds the sample3 "C" program:

sample3/cp,sample3/-sp
sample3
[1,1]ocelib/lb:oracee
[1,1]oralib/1lb
[1,1}clib/lb:chdr
[1,1]clib/1b

/

stack=3000
units = 13
wndws = 1

extsct=$99998:3000
//

LINKING AN IAS TASK

Two special steps are required to include the ORACLE
Interface in a user task.

1. 1Include OFOLIB, OCELIB or ORALIB, and CLIB in the list of
object files;

2. Add an extra region descriptor block;

Examples:
The command input to TKB to build the SAMPLI1 FORTRAN

program:

SAMPL1/CP/-FP,SAMPL1/-SP
SAMPL1

F4POST/LB
OFOLIB/LB:ORAFOR
ORALIB/LB
CLIB/LB

/

STACK=3000

UNITS = 13

ATRG = 1

//

The command input to TKB to build the sample3 "C" program:

sample3/cp,sample3/-sp
sample3
ocelib/lb:oracee
oralib/lb
clib/lb:chdr
clib/1lb

/

stack=3000

units = 13

atrg = 1
extsct=5$99998:3000
//

Note: if a user task is multi-user, the task must have a name
of the form: $$$abc

SYSTEM RESOURCES FOR PDP-11 PROGRAMS

ORACLE makes use of certain system resources which are
discussed here to prevent conflict with user software.

SEND/RECEIVE DATA directives may not be used.

Neither SQL statements nor data to be used by ORACLE may
reside in locations mapped to addresses 140000(8) through

177777(8) .

None of the modules included from the ORACLE libraries
(OFOLIB, OCELIB, ORALIB, and CLIB) may be mapped by an
address window which also maps virtual locations 140000(8)

through 177777(8).

Programs which are larger than 140000(8) bytes should use an
overlay structure in which the ORACLE library modules are in
the root and the remainder of the program is in a memory
resident overlay. An example task builder imput file is
contained in DBFTKB.CMD and DBF.ODL which follow.

DBFTKB.CMD (referenced by TKB @DBFTKB on RSX11lM systems):

DBF/CP,DBF/-SP=DBF/MP
STACK=3000

UNITS=13

WNDWS=1

TASK=...DBF

ASG=TI:13
EXTSCT=$99998:4000

/

DBF.ODL (referenced above in the first TKB command line):

.ROOT DBF010-*! (DBF040-DBF050)
DBF010: .FCTR DBF020-DBF025-DBF030
DBF020: .FCTR CLIB/LB:CHDR: .END:SBREAK
DBF025: .FCTR DBFLIB/LB:DBFKNL:DBFDTA
DBF030: .FCTR CLIB/LB-OCELIB/LB:ORACEE-ORALIB/LB-CLIB/LB
DBF040: .FCTR DBFLIB/LB:MAIN-DBFLIB/LB
DBF050: .FCTR ORALIB/LB-CLIB/LB
.END

LINKING INSTRUCTIONS FOR VAX/VMS

Two object libraries provide the native mode user code
interface on the VAX/VMS distribution:

* ORALIB.OLB
* CLIB.OLB

The first 1library, ORALIB, provides the Host Language
Interface between a host language, such as FORTRAN, and
ORACLE. The library also contains an object code which has
several responsibilities. The first is to provide for the
creation of and subsequent communication with a detached
ORACLE process. The second function provides the user
interface to the ORACLE context region. This region is used
by the user interface to pass commands and data to ORACLE and

used in turn, by ORACLE to pass data back to the user.

It should be noted a user image must reserve the address
range 0C000-10000 (hex). This is may be accomplished by
including the distributed pad option file in your 1link
command. (Note the inclusion of ORAPAD.OPT in the example,

below) .

A sample command procedure for linking a "C" program is
listed below:

$!

St UFILNK.COM

$!

$! VAX/VMS UFI LINK COMMAND FILE
$!

SDEL UFI.EXE;*,UFI.MAP;*

SLINK /EXE=UFI/MAP=UFI -
CLIB/INCLU=CHDR/LIBR,-
UFILIB/INCLU=UFIPAD/LIBR,-
ORAPAD/OPTIONS, -
ORALIB/LIBR, -

CLIB/LIBR

A sample command procedure for linking a FORTRAN program is
listed below:

St
$1! SAMPLE FORTRAN/ORACLE LINK PROCEDURE
St
SLINK /EXE=SAMPL1/MAP=SAMPL1 -
SAMPL1, -
ORALIB/LIBR, -
ORAPAD/OPTIONS, - ! PADS 0C000-10000

CLIB/LIBR

ORACLE

DATA BASE ADMINISTRATOR'S GUIDE

Oracle Programmer's Guide - Version 2.3

Copyright (c) April 1981
By Relational Software Incorporated
All rights reserved. Printed in U.S.A.

ORACLE

DATABASE ADMINISTRATOR'S GUIDE

TABLE OF CONTENTS

I. INTRODUCTION 7-1

II. DATABASE DIRECTORY FUNCTIONS (DBF)

Introduction 7-2
Operation 7-3
DBF Functions 7-5
III. DATABASE RECOVERY FUNCTIONS (JNL)
Introduction 7-13
Journal Procedures 7-16
JNL Functions 7-18
JNL Messages 7-24
IV. DATABASE LOADER FACILITY (ODL)
Introduction 7-26
Raw Data Requirements 7-26
ODL Operation 7-27
ODL Control Language 7-28
ODL Messages 7-33
Sample ODL Input 7-36
V. UNLOAD/RELOAD FACILITIES .
Introduction 7-37
Unload Tables (EXPORT) 7-38

Reload Tables (IMPORT) 7-40

I. INTRODUCTION

Within an ORACLE environment there are a number of functions
which should be under control of a centralized database
administration. These functions, summarized below, are
described in detail in this manual and in the ORACLE
Installation Guide.

o ORACLE Installation

The ORACLE Installation facilities are described in the

ORACLE Installation Guide.

o} ORACLE Initialization

The ORACLE Initialization procedures are described in

the ORACLE Installation Guide.

o Database Creation & Directory Functions

Each ORACLE system contains a database directory which
describes existing databases and the operating system
files utilized for them. The DBF utility provides
functions for creating databases, and for adding to,
removing from, and listing information in the database

directory.

o] Database Backup & Recovery Procedures
Standard procedures should be established for

periodically saving the files comprising databases,

through use of operating system utilities. The ORACLE
Journal provides a means to recover databases following
hardware failures. The JNL utility provides functions
for controlling the Journal and for applying the

Journal in the recovery process.

o) Database Loader

The ORACLE Loader Utility provides facilities for

loading raw data from one or more files into a database
table.

o Table Unload & Reload

The Unload Reload Utility provides functions for
unloading tables from a database and subsequently

reloading those tables into the same database
another database.

DBF

DATABASE FILE UTILITY

I. INTRODUCTION

DBF is the ORACLE utility supporting the functions of
establishing a database and mapping that database onto
operating system files. ORACLE maintains a directory of
databases under 1its control. The DBF utility is used to
establish, modify, and delete entries in this directory.
When performing initialization functions on an existing
database, any data in the existing database will be deleted.
The directory contains information on the databases, their
extents, and the physical files used. DBF provides functions

to:
o Establish a database as an existing or new file;

o Add an existing or new file as an extent to an
existing database;

o Remove an existing database from the database
directory;

o Enter the files of an existing database into the
database directory;

o Reallocate an existing database extent to another
file;

o Identify the system database;

o List database directory information.

When ORACLE is installed, the ORACLE system database is the
first database to be created. THE DBF utility is used to
create the system database. Subsequently, whenever the
operating system is initialized, the DBF utility must be used
to identify the system database to ORACLE, before normal
ORACLE processing can proceed.

I1I. OPERATION

Wwhen an ORACLE database is opened, ORACLE obtains the
information about that database from the database directory.
From that point on the information is maintained until the
last active user of that database issues a CLOSE. Thus, if
DBF is used to modify information about a database when that
database is opened, ORACLE will not use the new information
until that database is subsequently closed by all active
users of that database, and then reopened.

When a database is created or initialized by DBF, that
database is established as a secure or nonsecure database,
through the user-name parameter. Once a database has been
created as a secure database, access to it is restricted to
the user who created it and to any users specified by him
(see DEFINE USER statement in sQL). For a secure database,
all DBF functions (except SYSTEM DATABASE, LIST, and ENTER)
require specification of the user-name/password, and may only
be performed by the creator of that database.

DBF is invoked with the following command:

DBF dbf-command [parameter-list]

where
dbf-command is a code identifying the

function to be performed;

parameter-list is an optional list of one
or more parameters used for
the function.

Parameters must adhere to the following conventions:

1.

Database-names consist of any printable characters
and can be up to 16 characters long.

Database-names must be unique.

File-names must follow the conventions of the host
operating system for naming files.

The database-names "ORACLE" and "ORAWRK" are reserved
for the system database and the ORACLE Work database.

The user-name consists of any printable characters
and can be up to 20 characters long.

The password consists of any printable characters and
can be up to 20 characters long.

Database-names, user-names, and passwords are
automatically converted to upper-case characters.

For the CREATE and EXTEND functions, the size
parameter refers to the size of the operating system
file being created. It may be expressed as a number
of 512-byte blocks, or as a number followed by the
letter "K", representing the number of 1024-block

units, as follows:

500 means 500 blocks (256,000 bytes)
3K means 3x1024 = 3072 blocks (1,572,864 bytes)

The minimum size of a database is 1024 blocks. The
system database must be a single extent (single file)
and its size must be at least 4096 blocks.

III. DBF FUNCTIONS

Create Database

o

This function creates a file under the host file system,
initializes the created file as a database, and enters the
new database into the database directory.

C
DBF CREATE db-name file-name size [user-name/paswrd]
where:

db-name is the name of the newly created
database;

file-name is the name of the file to be
created and initialized as a
database;

size is the size of the file to be
created, expressed as a number of
512-byte blocks, or as a number
followed by the letter "K"
representing a multiple of
1024-block units;

user-name/paswrd is the optional parameter used to

identify the creator of the
database, which must be provided if
the database is to be secure
(protected with the GRANT/REVOKE
privileges). 1If only a user-name is
specified, DBF will prompt the user
for a password, which when entered
will not be displayed on the screen.

Extend Database

This function creates a file under the host file system,
initializes the created file as an extent to the specified
database, and enters the new extent into the database

directory.

E
DBF EXTEND db-name file-name size [user-name/paswrd]
where:

db-name is the name of an existing database
which is to be extended;

file—name is the name of the file to be
created and initialized as an
extent;

size is the size of the file to be
created, expressed as a number of
512-byte blocks, or as a number
followed by the letter "R"
representing a multiple of
1024-block units;

user-name/paswrd is the optional parameter
identifying the user, required for
any secure database. If only a

user-name 1is specified, DBF will
prompt the user for a password,
which when entered will not be
displayed on the screen.

Initialize Database

This function initializes an existing file as a database and
enters the new database into the database directory.

I
DBF INIT db-name file-name [user-name/paswrd]
where:

db-name is the name of the newly initialized
database;

file-name is the name of an existing file to
be initialized as a database.

user-name/paswrd is the optional parameter used to

identify the creator of the
database, which must be provided if
the database is to be secure. If
only a user-name is specified, DBF
will prompt the user for a password,
which when entered will not be
displayed on the screen.

Initialize Database Extent

This function initializes an existing file as an extent to
the specified database and enters the new extent into the

database directory.

IE
DBF INITEXTENT db-name file-name [user-name/paswrd]
where:

db-name is the name of an existing database
which is to be extended;

file-name is the name of an existing file to
be initialized as an extent.

user-name/paswrd is the optional parameter
identifying the user, required for
any secure database. If only a

user-name is specified, DBF will
prompt the user for a password,
which when entered will not Dbe
displayed on the screen.

Remove Database

This function removes a database from the database directory.
Note that the files belonging to the specified database are
not deleted or in any way removed from the host file system.

Removing a database from a directory would be required when
performing the following functions:

e}

Moving a database from one ORACLE system to another;

o Renaming a database;

o Taking a database off-line.

R
DBF REMOVE
where:
db-name

user-name/paswrd

db-name [user-name/paswrd]

is the name of the database to be
removed.

is the optional parameter
identifying the user, required for
any secure database. If only a

user-name is specified, DBF will
prompt the wuser for a password,
which when entered will not be
displayed on the screen.

Enter Database

This function enters a set of existing database extent files
(which have previously been initialized) as a single database
into the database directory. The Enter Database function is
also used to re-enter a previously removed (see REMOVE
function) database, into the database directory.

DBF EETER db-name fnl ... f£nn
where:
db-name is the name of the database to be
entered into the database directory;
fnl .. £nn is the 1list of file-names of the

files which make-up the database.
These files must be entered in
extent number order. If the
file-name list is not entered, DBF
will prompt for each file-name as
follows:

enter extent file n:

Responding to a prompt with a CR or
~7 indicates that all files to be
entered have been specified.

10

Move Extent

This function logically moves an extent of a database from
one file to another and updates the database directory to
reflect the change. Note that no files are copied or
deleted. The file being moved to, must be an exact duplicate
of the specified extent file. When extents are added to an
existing database, the extents are assigned sequential
numbers by ORACLE. The MOVE function requires identification
of the extent to be moved, by extent number.

ME
DBF MOVE db-name file-name ext-num [user-name/paswrd]
where:

db-name is the name of an existing database
to be operated on;

file-name is the name of an existing file
which is an exact duplicate of the
specified extent file;

ext-num is number which specifies the extent
to be moved.

user-name/paswrd is the optional parameter
identifying the user, required for
any secure database. If only a

user-name is specified, DBF will
prompt the user for a password,
which when entered will not be
displayed on the screen.

Reinitialize Database

This function re-initializes an existing database. All data
in the database is lost and the database is like a newly

initialized database.

CAUTION! This function deletes the data in an existing
database and should be used with extreme care.

DBF géINIT db-name [user-name/paswrd]
where:
db-name is the name of the database to be
reinitialized.
user-name/paswrd is the optional parameter used to

identify the creator of the
database, which must be provided if
the database is to be secure
(protected with the GRANT/REVOKE
privileges). If only a user-name is
specified, DBF will prompt the user
for a password, which when entered
will not be displayed on the screen.

System Database

This function identifies the system database to ORACLE. The
specified file must already exist. When the system database
is created or initialized, this function is automatically
performed. This function is required when bringing up ORACLE
(such as in a newly initialized operating system).

SD
DBF SYSTEMDB file-name
where:
file-name is the name of the file to be known

to ORACLE as the system database.

List Database Information

This function displays information from the database
directory. The display contains information about a database
and 1its extents. If a database name is not specified,
information will be displayed for all databases in the

directory.

For each database the following information is provided:

Database Name;
User Name (Displayed only for secure databases);

Security/Journal Flags
('S' for Secure database, 'J' for Journaling);

(3) For Each Extent:
(a) Extent Number;
(b) Number of Blocks;
(c) File Name.
(4) If LU is specified, the number of unused blocks
in each database is also displayed.

—~ e~ o~

1
2
2

— N

L
DBF LIST [db-name]
LU
where:
db-name is the optional parameter specifying
the name of the database to be
listed.
SAMPLE DISPLAY
DATABASE NAME FLAGS EXT BLOCKS FILE
USER NAME #
demo sJ 1 1024 DRO:[1,1]DEMO.DBS;1
1024
kcm] 1 4096 DRO:[1,1]KCM.DBS;1
qQa ===
4096
oracle 1 4096 DRO:[1,1]0RACLE.DBS;1
orasss —==——=
4096

DATABASE RECOVERY FUNCTIONS

(JNL UTILITY)

I. INTRODUCTION

An ORACLE system includes a Journal Task which controls all
writing to the databases. A database may optionally be
journaled, in which <case the Journal Task will write
afterimages of the modified blocks, to a Journal file for use
in forward recovery. The Journal Task uses a single Journal
file for the one or more databases being journaled. A
Journal Utility provides functions for:

o Initiating and stopping the Journal during an ORACLE
session;

o Initiating and stopping the Journal for a database;

o Applying the Journal to one or more databases;

o Querying the status of the Journal activity.

The ORACLE Task also maintains a special single-block Data
Protection file on disk. The relationship is as follows:

$om————— - +
| (JINL) |-—-————m—mmmmmm .
Fomm——— + | Journal | |
| |<===>] Utility |<--=-vemmmmmmm . |
I | tommmo - + I v
| l - | e +
| | I - + |Activityl
l I o + | Journal | | Log |
| ORACLE | | Protection Blk| | File | | File |
| Kernal| R + | I o +
| l - o= + [
| | l - v
I | t——mm + | tm———m +
I [<--->| Journal |-----——————--- ' |Any Op Sys |
o ———— + | Task | |READ Utility|

Application of the Journal is used to restore the status of a
database in the following situations:

(o]

Disk Failure

A disk hardware problem can result in the loss of one
or more database extents (files). This can affect
one or more databases, requiring those databases to
be restored. Note that the LIST function in the DBF
utility can be used to determine the extents which
comprise each database.

System Failure

A system failure can be the result of an Operating
System crash, a power failure, or an ORACLE problem.
When ORACLE terminates as a result of an ORACLE
problem, an ORACLE cleanup task assures that the
database 1is left in a wvalid state. During an
Operating System crash or power failure, the
integrity of the database will be compromised only in
the event that the incident occurs during the actual
writing of blocks to that database. At system start
up time (such as following a crash or power failure),
the ORACLE initialization routine should include the
DISPLAY STATUS function of the JNL utility to
indicate which databases, if any, were affected.
Note that since the ORACLE initialization procedure
initializes the Data Protection Block, it is
imperative that the DISPLAY STATUS function Dbe
performed prior to initialization, in order to
ascertain the status of the databases.

The application of the Journal can only be used to restore
database integrity. The determination as to whether or not
specific SQL Data Manipulation (DML) statements (such as a
global updates) were successfully executed, requires SQL
queries to determine if the update activity was completed.

Note that for the special case of Data Definition (DDL)
statements (CREATE TABLE, EXPAND TABLE, DROP TABLE, DEFINE
VIEW, and DROP VIEW), integrity is automatically guaranteed.
Thus if a DDL statement was in process, but not yet completed
at the time of the failure, ORACLE will automatically back
out any completed portion of the DDL statement the first time

that database is reopened.

The files involved in the Journal functions are named as
follows:

| Protection Blk | Activity | Journal

| Block File | Log File | File
——————————— T T et e et e
VMS | SYSSORACLE : PARAM.JNL | SYSSORACLE:LOG.JNL |user-name
----------- et
RSX-11M,IAS|LB:[1,1] PARM.JNL |ILB:[1,1]LOG.JNL |luser-name
——————————— T T T e

UNIX | /oracle/param.jnl | f/oracle/log.jnl |luser-name

II. JOURNAL PROCEDURES

Proper use of the Recovery Functions in an ORACLE system
requires the establishment of certain operational procedures.
The most important of these involve the periodic saving of
the database (or extents of the database) . This is
accomplished with any of a number of facilities available in
a given operating system. Some of the available facilities
and their characteristics are summarized in Table 1. These
back-up procedures should be performed together with the
other operational procedures instituted for a given computer

configuration.

Another important procedure involves the saving and naming
conventions for the files of the Journal. The Journal
consists of a series of disc files. When the Journal is
initialized (at ORACLE system start up), the name (and size)
is provided for the Journal File. When this file is full,
ORACLE will start another file and automatically name the
next file by incrementing a number in the name (indicated by
a special character). Thus during an ORACLE session, there
will probably be multiple files (depending on the file size
and the update activity), all having a common name with an
increment. If the periodic SAVE spans multiple ORACLE
sessions, a naming convention should be used to be able to
easily identify the many files making up the Journal since
the last periodic SAVE. It might also be appropiate to
archive disc Journal files to tape.

The Journal Utility maintains an Activity Log which is useful
in monitoring the historical series of Journal activity.
This log contains date and time entries for the following:

Journal Start and Journal File name
Journal Start for particular database

Journal Stopped
Journal Stopped for particular database

OO0 0O

This Activity Log file can be read with any convenient system
utility for reading files. The following is an sample of
information on the log.

Tue Mar 24 13:00:44 1981 Journal started on database pers
Tue Mar 24 13:00:48 1981 Journal started on file PER? .JNL

Tue Mar 24 18:06:50 1981 Journal stopped
Tue Mar 24 18:06:56 1981 Journal stopped on database pers

OPERATING | UTIL | DISK | FILE | DISK TO | DISK TO |
SYSTEM | PGM | LEVEL | LEVEL | DISK | TAPE | SPEED
—————————— e ittt e ks At
—————————— e ittt bttt el e i St

VMS | BCK | X [X | | X |HIGH

| cCopPYy | X | X | X | X | LOW

| DSC | X | | X | X |MEDIUM

| FLX | | X [| X | LOW
—————————— e et e e
RSX-11M,M+| BRU | X [X | X | X | HIGH

| PIP | | X | X I |LOW
—————————— T ST e T e
RSX-11M,M+| DSC | X | I X | X | MEDIUM
and IAS | FLX | | X | | X | LOW
—————————— s et et sttty
1AS | copy | | X | X | X | LOW

| BCK [| X I X | X |[HIGH
—————————— e s T e
UNIX Ver6 |DUMP/ | | | | |

and | RESTORE| 1 X | | X | MEDIUM

UNIX PWB | CP I X I X | X | X | LOW

| DD. | X I X I X | X | MEDIUM

| TP | X | X | | X | LOW
—————————— R e e T s sttt
UNIX PWB | VC | X | | X | X | HIGH
only | cpIO0 | l X | X | X | LOW
—————————— e T e S A

TABLE 1
OPERATING SYSTEM BACK-UP UTILITIES

III. JNL FUNCTIONS

JNL is invoked with the following type of command:

JNL jnl-command [parameter-list]

where

is a term specifying the function
to be performed. The jnl-command
may be abbreviated to any unique
subset of the statement verb (ie,
STAR for START or STAT for STATUS).

jnl-command

parameter-list 1is an optional list of one or more
parameters used for the function.

parameters must adhere to the following conventions:

File names must follow the conventions of the host

1.
operating system for naming files.

2. For the START function, the size parameter refers to
the size of the operating system file being created.
It may be expressed as a size of 512-byte blocks, or
as a number followed by the letter "K", representing
the number of 1024-block units, as follows:

500 means 500 blocks (256,000 bytes)
3K means 3x1024 blocks = 3072 blocks

(1,572,864 bytes)

Start Journal

This function starts

the ORACLE Journal. The Start Journal

function would normally be performed as part of the ORACLE

start up procedure.

JNL START
where:

filename

size

The following example
FEB010O1. Each file
blocks in size.

filename size

is the name of the operating system
file to be used as the Journal. The
name must contain a "?2" in some
character position. This special
character will be replaced by the
3-digit number "001". successive files
of the Journal during this ORACLE
session will receive names with
incremented numbers.

is the threshhold size used in
determining when to terminate a
physical file in the Journal and start
another one. The actual size of each
file will be slightly larger than this
value. The size 1is expressed as a
number of 512-byte blocks, or as a
number followed by the letter "K"
representing a multiple of 1024-block

units.

will start a Journal on a file called
of the Journal will be about 3,072

JNL START FEBO1? 3K

Stop Journal

This function stops the ORACLE Journal. It would normally be
performed as part of ending an ORACLE session.

JNL STOP

Start Database Journal

This function starts Journal activity for a database. Once
Journal activity for a database has been initiated in an
ORACLE session, Journal activity for that database will
continue in future ORACLE sessions unless specifically turned

of f with the DBSTOP function.
JNL DBSTART dbname

where:

dbname is the name of the ORACLE database.

Stop Database Journal

This function stops Journal activity for a database. This
function would only be used after it was determined that
there was no need to ever have to recover a particular

database.

JNL DBSTOP dbname

where:

dbname is the name of the ORACLE database.

Apply Journal Block Images

This is the function which applies the afterimages from the
Journal to a saved copy of the databases in an ORACLE
environment. When it is required to recover one or nmore
databases in an ORACLE environment, those databases will be
established by copying the saved versions to a disk and then
performing the JNL APPLY function. Note that this function
will apply the Journal images to all databases for which the
Journal was activated, and that during the APPLY function
those databases will be locked. If it is not necessary to
involve all of those databases, the databases not being
recovered must temporarily removed (DBF REMOVE function) from
the database directory. The temporarily removed database
could still be active by temporarily entering it (DBF ENTER
function) with a different name.

The JNL APPLY function will automatically process the
multiple files of the Journal for an ORACLE session in
sequence. However if a Journal spans multiple ORACLE
sessions, the JNL APPLY function must be executed for each
session and in the proper sequence (note importance for
effective file naming conventions). If, while processing the
multiple Journal files of an ORACLE session, a file |is
required which is not available, a message will be displayed
indicating the name of the file and processing will
terminate. The APPLY function may be continued when the
missing file is made available by invoking the JNL CONTINUE

function.

JNL APPLY filename
where:

filename is the name of the Journal file for an
ORACLE session. The name must contain
a "?" to indicate the position of the
3-digit number, incremented across the
multiple files constituting the
Journal for that session. On PDP-11
cpu's, the file may exist on disk or
tape files. On VAX-11 cpu's, it must
be a disk file.

Continue Applying Journal Images

The CONTINUE function is used when an APPLY function stops
because a file 1is not available. This function permits
continuation of the APPLY once the missing file is made
available.

JNL CONTINUE

Display Journal Status
JNL STATUS

This function causes a display of the status of the Journal
Activity within the ORACLE environment. The Display function
would always be used following an abnormal termination in
order to determine the status of any database update
activity. The Display function is also used to determine the
size (in blocks) of the current Journal file and the total
size of all Journal files of the current ORACLE session. The
output format of the Display function is as follows:

e ———— e —— e — e ——— = +
| |
| DATABASE DDL BAD JNL |
| mmmmmmm e = e e |
| |
| ORACLE NO NO NO |
I [
| PERSONNEL NO YES YES |
| I
| DR1:[1,70]004.JNL is the current Journal file. |
] 358 blocks have been written to the current file. |
| 1969 blocks have been written to the Journal. |
I [
| |
e o - +
where:

DATABASE is the name of the database. All open
databases will be included 1in the
report

DDL indicates that a DDL statement was in

process during the failure, and that
any portion of that DDL statement
which was completed, will
automatically be backed out the first
time that database is reopened. Since
DDL statements are single-threaded, if
a DDL statement was interrupted by the
failure, it is impossible for other
activity to have also been
interrupted.

BAD indicates that the failure interrupted
a database write and that the Journal
must be applied to restore integrity
to that database.

JNL indicates that the Journal is active
for that database. If integrity is
lost in a database for which the
Journal is not active, that database
cannot continue to be used. A back-up
copy must be restored before it can
successfully be returned online.

A "YES" in the DDL column is only to indicate that the DDL
statement in process at the time of the failure will
automatically be backed out. Since the ORACLE system
database is not journaled, a failure on it requires the use
of the DBF utility to re-create it and enter the wuser

databases.

IV JNL. Messages
There are 4 types of messages produced by the JNL utility:

1. Successful Completion
2. Task Failure Reason

3. General Error

4. Function-Specific Error

The messages are denerally self-explanatory. The <item> in
the message examples are replaced by an appropiate data value
when the message is displayed. Those messages notated with
the term " (ORACLE-error)", will be followed by the
appropriate ORACLE error message (see Messages & Codes

Manual) .

Successful Completion Messages:
Journal processing complete
Journal started on database <database-name>
Journal stopped on database <database-name>
Journal started

Status report complete
Journal stopped

Task Failure Reason Messages:
Journal task canceled because

of bad ORACLE buffer cache
of missing ORACLE buffers
of missing KDA
of a database write failure
of a journal write failure
of a journal read failure

General Error Messages:
Not enough arguments
Ambiguous journal command
Invalid journal command
Cannot log on to ORACLE (ORACLE~error)
Cannot open the system database (ORACLE-error)
Journal utility in use
Cannot create journal log file

Function-Specific Error Messages:
APPLY Function:

DBSTART

Read failure on journal file <file-name>
Sequence number failure on Jjournal file
<file~-name>

Incomplete ddl operation found on database

<database-name>

Invalid journal block on journal file
<file-name>

Journal file <file-name> not available
Type 'jnl continue' when file is available
Cannot create apply context file

Database <database-name)> does not exist
Cannot open database <database-name>
Sequence number check

Question mark missing from file name
Invalid file name

Function:
Invalid database name

DBSTOP Function:

Invalid database name

CONTINUE Function:

Cannot open apply context file
Cannot read apply context file

START Function:

Invalid size parameter

Question mark missing from file name
Invalid file name

Journal is already active

STATUS Function:

Cannot open parameter file <file-name>
Cannot read parameter file <file-name>

STOP Function:

Journaled databases are active
Journal is not active

DATABASE LOADER UTILITY

oODL

1.0 INTRODUCTION

ODL is the ORACLE utility for loading raw data from operating
system files into an ORACLE database. ODL may be used to
initially load a database table or to add records to an
existing table. The ODL program functionally will:

1. read the user's input data;

2. perform the mapping from the raw data to a database
table;

3. load the data records into a database table;

These functions are accomplished by using a description
language as input to the ODL program. The general processing
of the ODL program is as follows:

1. read the description language;
2. create the necessary SQL commands;
3. load the data using SQL INSERT commands.

The database table being loaded must have been created with
the SQL "CREATE TABLE" statement prior to use of the ODL
utility for that table.

2.0 RAW DATA REQUIREMENTS

ODL requires the raw data to consist of one or more files of
fixed-length records of a single format. The fields must
also be fixed-length and those fields being loaded (not all
fields need be loaded) must be of one of the following data

types:

o Character String
o Binary Integer Number
o Floating Point Number

Future releases of ODL will support multiple record types,
variable length records, and all host-supported data types.

3.0 ODL OPERATION

ODL will normally operate as a batch process. Therefore the
control statements for ODL are stored on a control file and
used during execution. A log file is utilized for error
messages and statistics resulting from the execution of ODL.
The raw data files are specified in the control statements.
A reject file is maintained for up to 50 rejected raw data
records (input records are rejected when they can not be

loaded into a table).

$mmm————— +
to———— + :
| ctl | - + | ORACLE |
| File |---===-—- > R > | o
te————- + | | tm——————— +
| oDL I
e + | | +--——+
t-——————- + |-=-—-- > | | -—==—= >:Log :
| Rayy | | | | == |File|
| Data | | o + | it
| Files | | v
| | + - +
o ———— + |Reject]
|File |
$————— +

ODL is invoked with the following statement:

ODL ctl-file 1log-file database [user-id/pswrd]

where:
ctl-file 1is the name of the file containing the ODL

Control Language Statements.

log-file is the name of the file for logging error
messages and statistics of the load processor.

database is the name of the database on which the load
is being performed.

user-id is the name of the user as required for a
secure database.

pswrd is the password for that user.

In the following example ODL is being invoked to load data
into the Personnel database (secure). The ODL Control
statements are on a file called loadl.ctl and logging will be
to a file called logl.

ODL LOAD1.CTL LOGl1 PERSONNEL SCOTT/TIGER

The reject file will be given the name of the log file (less
any extensions) plus the extension <.bad>. For example, it
the log file was named <msg.log> (or just <msq>), the reject
file would receive the name <msg.bad>. In the above example,
the reject file will be named <LOG1l.BAD>

Although ODL will allow up to 50 rejected raw data records
before it terminates, the first record read must Dbe
acceptable or ODL will terminate.

4.0 ODL CONTROL LANGUAGE

The language is composed of definition and action statements.
Definition statements define the raw data formats and the
source files for the raw data. Action statements define the
mapping of the input values and constants into the database

table rows.

4.1 DEFINE RECORD STATEMENT

The - DEFINE RECORD statement defines a particular input
record. A list of one or more field definitions separated by

commas, defines the raw data fields to be loaded.
DEFINE RECORD rec-name AS [fld-def,...] fld-def;

where:

rec-name is a name used to refer to the raw data record.

fld-def is the data field definition described as
follows:

fld-def = fld-name (fld-type [, fld-loc])
where:

fld-name is a name used to refer to a raw data
: field.

fld-type defines the data type as follows:

| FLOAT |
| INTEGER | [(size)]
| CHAR |

corresponding to a floating point,
binary integer, and character. The
size in bytes (enclosed in
parenthesis) is optional and is
required for sizes other than
defaults. Acceptable sizes and
defaults are as follows:

defaults
data type sizes PDP-11 VAX-11
FLOAT 8, 4 8 8
INTEGER 4, 2, 1 2 4
CHAR 1 thru 254 1 1

30

fld-loc defines the position of the field in
the raw data record as follows:

| + number |
LOC (| - number |)
| number |

An integer number without any sign is
an absolute location from the
beginning of the record. A sign in
front of the number means the
position is relative to the end of
the last field. The minus sign is
positioned towards the beginning of
the record and the plus sign |is
positioned towards the end. The
default position is at the end of the
previous field or the beginning of
the record for the first field.

If a database column is defined as NUMBER type and the raw
data field is an ASCII string representing a numerical
quantity, then the data type of the DEFINE RECORD filed must

be CHAR. ORACLE handles the conversion to numerical format.

The following is a sample DEFINE RECORD statement:

DEFINE RECORD REC1 AS
FLD1 (CHAR(6)), FLD2 (CHAR(25)),
FLD3 (FLOAT, LOC (+3))

-

4.2 DEFINE SOURCE STATEMENT

The DEFINE SOURCE statement defines the input mediums to ODL
and the records contained within this source.

DEFINE SOURCE src-—-name src—-parms

where:
src-name

src-parms

rec-name

CONTAINING rec—name ;

is a symbolic name for this source.

provide the information necessary to read the
source as follows:

FROM file-name [,file-name]...
LENGTH number

where:

file-name is the operating system file name of
a raw data file. Multiple file names
(separated by commas) can be used to
refer to concatenated files.

length is the raw data record length.

is the record name used in the DEFINE RECORD
statement.

Future releases will provide for multiple record types within
a source and for multiple sources during a load.

The following is an example of a DEFINE SOURCE statement.

DEFINE SOURCE SRC1
FROM FILEl, FILE2, FILE3
LENGTH 80
CONTAINING REC1

-e

4.3 FOR EACH STATEMENT

The FOR EACH statement is a loop mechanism that reads one raw
data record for each iteration. The FOR EACH statement
defines the SQL INSERT statement to be executed for each
record read. Future releases will provide for the use of
multiple INSERT statements involving multiple database
tables, and nested FOR EACH statements for hierarchical data.

FOR EACH RECORD in-stmt NEXT RECORD

where:

(in-stmt) is the SQL INSERT statement as follows:

INSERT INTO tab-name
(col-name,...) : < src-data,... >

where:

tab-name identifies the database table.

col-name is the list of one or more columns,
enclosed in parenthesis for which

values are being loaded.

src—data is the list of raw data field names
and data values, enclosed in angle
brackets and separated by commas.
The 1list can contain any of the
following:

o raw data field-name
o character string
o number
(string of digits
or scientific notation)
o NULL

Note that the "NEXT RECORD" phrase is required (to terminate
the loop function).

The following is an example of a FOR EACH statement.

FOR EACH RECORD
INSERT INTO EMP (EMPNO, EMPNAME, SALARY, COMM) :
< FLD1, FLD2, FLD3, NULL >

NEXT RECORD

5.0 ODL MESSAGES

All ODL messages are written to the log file. The following
statistical messages are written to the log file:

records successfully read
records successfully loaded

When an error occurs on processing a record, the following
message is produced:

RECORD # REJECTED
where # is the relative number of the record being read.

There are three types of errors which can occur during ODL
processing:

o Control Statement Errors
o ODL Fatal Errors
o ORACLE Errors

When an error occurs during processing of a raw data record,
that record 1is written to the reject file. OopDL will
terminate after 50 records have been written to the reject
file. If there is a problem during processing of the first
raw data record, ODL will terminate without 1loading any

records.
1. Control Statement Errors

These messages include information to help locate the error
in the statement. There are 3 formats used as follows: ,

1) message ON LINE # COLUMN #
where message is one of the following:

Number too large
String to large
Bad number
Missing exponent
Identifier too large
Illegal character
Quoted literal not ended

2) SYNTAX ERROR LINE 4 ON INPUT symbol
where symbol identifies where the error

detected

3) symbol : message ON OR ABOUT LINE #
where symbol and message are as follows:

rec field
source
source
source
source
rec name
rec name
table
table
symbol
symbol
symbol
symbol
symbol

message
Field name is ambiguous
Field is improperly aligned
Inconsistent rec field definition
Field location too negative
Bad location field expression
Inconsistent location field
Unsupported field length
Source from clause is missing
Source length clause missing
Multiple sources not supported
Bad source length clause
Record too large for source
Multiple records not supported
Table col/field count mismatch
Multiple tables not supported
Not a record field
Undefined record field
Previously defined
Record name expected
Undefined record name

was

2. ODL Fatal Errors

These errors occur because of an internal problem or because
of a resource, such as memory, being exhausted. The format

is as follows:

ODL FATAL ERROR : message
where message is as follows:

Out of parse stack space
Out of heap space *
Out of table space *

Those messages which can be corrected by linking ODL with
more memory are indicated with an asterisk.

There are a set of fatal messages which can occur if other
errors exist before the fatal error. These errors will
usually disappear when the original error is corrected.
These errors are as follows:

excsub : invalid kind
Illegal insert field definition

defsyn : unknown type
unreachable code - optional length
unreachable code - default length

3. ORACLE Errors
ORACLE error messages have the following format:
call ERROR : message

where:

call is the name of the ORACLE interface subroutine
which failed;

message is the ORACLE error message as listed in the
ORACLE Messages and Codes Manual.

6.0 SAMPLE ODL CONTROL LANGUAGE INPUT

The following ODL control language sequence defines a record
containing an employee name, grade and salary. the salary
field is located 10 bytes away from the end of the grade

field.

The input source has two files with a record length

The database table EMPMAIN is loaded with fields
EMPLOYEE raw data records and with some constants.

DEFINE RECORD EMPLOYEE AS
NAME (CHAR (20)),
GRADE (INTEGER(2)),
SALARY (FLOAT(4), LOC(+10));

define source tape
from dr0:[1,110]1filel, file 2
length 80
containing EMPLOYEE ;

FOR EACH RECORD
INSERT INTO EMPMAIN
(NAME, PERFORMANCE, GRADE, GROSS,
NULCOL, SALARY, START)
<NAME, 87.6543, EMPLOYEE GRADE, .36e + 6,
NULL, SALARY, 356 >
NEXT RECORD

of 80.

from the

ORACLE
UNLOAD/RELOAD DATABASE UTILITY

This utility provides the function of unloading tables of an
ORACLE database onto a sequential file and later reloading
them into a database. This is useful for:

o physically reordering rows of a table;

o) unloading a table, changing column size, nonull, or
image specifications, and reloading that table;

o) moving a database between versions of ORACLE when the
internal format of the database changes.

The following specific functions are supported:

o Unload all tables and/or views of a database;

o Unload selected tables and/or views of a database ;
o Unload tables and/or views without GRANT privileges;
o Unload only the table and view definitions;

o] Reload the previously unloaded tables and/or views;

o Reload the tables and/or views without GRANT
privileges;

o Reload previously unloaded tables by inserting into
existing tables;

o Display the names of tables and views on an unloaded
database.

Tables and views of a secure database may only be unloaded
and reloaded by the owners of the data (creators of the
tables or definers of the views). Therefore Unload/Reload
operations on a secure database require the use of the
user-name/password parameter.

Unloading a database is called EXPorting and reloading a
database is called IMPorting.

EXp will
database.
unloaded,
unloaded.

EXP db-name

where:

EXPORT (Unload Tables)

unload one

or more tables and/or views of a

EXP will display the names of tables and views

and will

db-name

dumpfile

user-name/
paswrd

[user-name/paswrd] [dumpfile] [-

display row counts for each table

ooog3

is the name the database being
unloaded.

is the optional name which |if
provided, will be used to name the
output file. Otherwise, the file
name will be <database-name>.

is the user-name and password
required when unloading tables from
a secure databkase.

is the option which causes EXP to
prompt the user for the table-names
identifying the tables to be
unloaded. Entering a <return> in
answer to the prompt signifies that
no more tables are to be unloaded.

is the option which causes EXP to
prompt the user for the view-names
identifying the views to be
unloaded. Entering a <return> in
answer to the prompt signifies that
no more views are to be unloaded.

G is the option which precludes the
unloading of GRANT privileges
associated with the tables and views
being unloaded.

D is the option to unload only the
table/view definitions and GRANT
privileges.

Cn is the option which overrides the
default wvalue for the size of the
SWA (SQL Work Area) in ORACLE. The
size is expressed as a number (n=1
to 16) of KBytes. The default is 3.

EXAMPLE 1 : EXP PERSONNEL SCOTT/TIGER PERS.SAV -C5

EXAMPLE 2 : EXP CREDIT -TV

The first example will cause the entire PERSONNEL database
(secure) to be unloaded to a file called PERSONNEL.SAV. In
this example the SWA is being overridden and set to 5 KB.

The second example will cause selected tables and views of
the CREDIT (non-secure) database to be unloaded to a file
called CREDIT.EXP. The users will will be prompted for the
tables and views to be unloaded.

IMPORT (Reload Tables)

IMP will reload the one or more tables and/or views of a
previously unloaded database. I1f for some reason, a table
cannot be created in the reloaded database, processing
continues with the next table. If a record can not be
accepted, that record will be displayed and processing will
continue with the next record. If a view definition 1is

rejected, it will be displayed.

IMP will display the names of tables and views being
reloaded, and for each table reloaded, will display the rows
inserted. If the number of rows actually loaded is different
than the rows read, this is indicated with a count of rows

read.

T
\'/
IMP db-name [user-name/paswrd] [dumpfile] [- G]
D
I
Cn
where: db-name is the name of the database being

reloaded. This may or may not be
the same as the name of the database
which was unloaded.

dumpfile is the optional name which if
provided, is used to reference the
input file. Otherwise, the name of
the input file will be assummed to
be <database-name>.

user-name/ is the user—-name and password
paswrd required when reloading tables to a
secure database.

7-41

T is the option which prevents
reloading of tables.

\Y% is the option which prevents
reloading of views.

G is the option which prevents the
inclusion of GRANT privileges on the
tables and/or views being reloaded.

D is the option which overrides all
load options and simply displays the
names of tables and views in the
dump file

I is the option which specifies that
the reload is taking place against
an existing table and the rows are
to be inserted into that table. If
this parameter is not specified, a
reload against an existing table
would result in no rows being
inserted in that table.

Cn is the option which overrides the
default value for the size of the
SWA (SQL Work Area) in ORACLE. The
size is expressed as a number (n=l
to 16) of KBytes. The default is 3.

EXAMPLE 1 : IMP PERSONNEL SCOTT/TIGER PERS.SAV -C5

EXAMPLE 2 : IMP CREDIT -VI

The first example will cause the PERSONNEL database (secure)
to be reloaded from a file called PERS.SAV with a SQL Work

Area of 5KB.

The second example will cause only the tables of the unloaded
CREDIT database (non-secure) to be reloaded from a file
called CREDIT, and if any tables being reloaded are already

in the database, the rows will be inserted.

ORACLE

INSTALLATION GUIDE

Oracle Programmer's Guide - Version 2.3

Copyright (c) April 1981
By Relational Software Incorporated
All rights reserved. Printed in U.S.A.

ORACLE

INSTALLATION GUIDE

TABLE OF CONTENTS

1. Introduction 8-1
2. Architectural Overview 8-3
3. Hardware Requirements 8-9
4. ORACLE/RSX-11M Installation 8-10
5. ORACLE/IAS Installation Procedure 8-15
6. ORACLE/VMS Installation Procedure 8-18
Appendix A -- System Tuning 8-22
Appendix B -- VAX Distribution Directory 8-27
Appendix C -- VAX Privileges and Quotas 8-29
Appendix D -- VAX Command Files 8-30
Appendix E -- Sample VAX installation (VMS 2.1)

Appendix F -- Sample VAX Installation (VMS 2.0)

Appendix G -- RSX11M Distribution Directory

Appendix H -- RSX11M Command Files

Appendix I -- Sample RSX11M Installation

Appendix J -- ORACLE Installation in Small RSX11M
Configurations

Appendix K -- IAS Distribution Directory

Appendix L -- IAS Command Files

Appendix M -- Sample IAS Installation

1.0 INTRODUCTION

This document is a guide to the installation of the PDP-11 or
VAX version of the ORACLE Relational Data Base Management

System running under the RSX-11M, IAS or VMS operating
systems. It is organized in the following manner:

Section 1 is the introduction;

Section 2 presents an architectural overview of ORACLE;

Section 3 presents the computer hardware required to
install and use ORACLE;

Section 4 presents the procedure for installing ORACLE
on an RSX-11M system;

Section 5 presents the procedure for installing ORACLE
on an IAS system.

Section 6 presents the procedure for installing ORACLE
on a VAX/VMS system.

Appendix A contains tuning information for ORACLE.
Appendices B-F are germane to the VAX/VMS installation.

Appendices G-J are germane to the PDP-11 RSX11M
installation.

Appendices K-M are germane to the PDP-11 IAS
installation.

Familiarity with the RSX-11M,IAS or VMS operating system is
assumed in this document. For the purpose of review however,
several terms are given brief definitions.

1. Task or Image -- a linked file which may be installed
and loaded from disk by the operating system and
subsequently executed.

2. Region or Partition -- a named area in memory which
may be accessed by any task with appropriate

privileges.

3. Library -- a collection of macros or routines in one
file.

a) A Macro library is maintained in ASCII format’
for use by the assembler.

b)

An Object 1library contains assembled and/or
compiled routines or subroutines. This 1is
accessed by the task builder at link time. If
all code in the library 1is reentrant, the
library may be memory resident.

2.0 ARCHITECTURAL OVERVIEW

This section of the manual relates ORACLE's functional
attributes to ORACLE's internal structure. This information
is necessary to configure or tune ORACLE for an installation's

particular application environment.

The ORACLE DBMS is composed of five functional areas. (See
Figure 2.1) These are briefly described below:

1) ORACLE Code -- The ORACLE program itself contains
three functional areas:

a) The SQL Data Language - parses and compiles
SQL statements.
b) The Integrated Data Dictionary - decodes data

records.
c) The Kernel - manages space and provides

database access routines.
2) Memory Resident Work Areas
a) Database Buffer Pool Cache.
b) ORACLE Interface Communication Region.

c) Kernel Data Area.

3) User Interface Modules

a) User Friendly Interface (UFI) - terminal
interface.
b) The Host Language Interface - wuser program

interface.

4) The Oracle Cleanup Task

a) Detects user task aborts and frees the
database resources in use by abnormally
terminating user programs and terminal
processes.

5) The Journal Task

a) Writes modified buffers to the journal files
and to the database files.

b) Synchronizes journal and database activities
so that database integrity is insured.

ORACLE Components

/
/
/

|

U | U 8 E R
I PROGRAM

F I
| _____________

I | USER INTERFACE MODULES

OPERATING

SYSTEM

FIGURE 2.1

~

~

N, N, \NR®RWMOE NmO (@ BN
~NON N ©

NN N

N o e o e ——— o o — — —

~
~N

~

2.1 ORACLE Task

The ORACLE task is composed of a header and a stack area
containing code which passes control to a shared code. The
shared code consists of the resident root and eight memory
resident overlays which logically contain the following: (1)
the kernel; (2) the parser; (3) the SQL execute code; and (4)
the space management segment (see the figure below).

root and overlay

[

| |

| supervisor |

| |
$omm——— fommm e fomm +
Ik Ip e Is I
| e | a | x | p s |
| r | r | e | a e |
I n I s | c | cg |
| e l e l u | e |
[1 | r | t | |
| | I e | |
T et e L Lt +

FIGURE 2.2

The Kernel provides the Database Management primitives, such
as, insert or delete a record, scan an index, etc. It also
contains the Data Dictionary manipulation routines.

The Parse and Execute segments comprise SQL. The SQL parser
accesses the data dictionary to validate and translate to
internal form all SQL statements. The Execute overlay then

executes the SQL statement by making Kernel calls.

The Space Management segment is responsible for all disk space
and buffer cache management in the database.

2.2 RegionsS

Three regions are required by ORACLE as work areas: a Buffer
Pool Cache, a SQL work area Region, and the Kernel Data Area.

Buffer Pool

The Buffer Pool is used to store disk blocks that have been
read into main storage. ORACLE disk blocks are 512 bytes long
for the PDP-11. ORACLE maintains recently accessed data in
the buffer pool. ORACLE uses a "least recently used”
algorithm to control reuse of buffers from the pool. The
buffer pool is shared by all concurrent copies of ORACLE.

SQL Work Area Region
The ORACLE SQL Work Area Region is used for passing data
between the user task and ORACLE. The mapping context

returned to the user by ORACLE during initialization is a
window into this region.

When the user program issues an OPEN call, ORACLE allocates a
SQOL Work Area (SWA) from the SQL Work Area Region. The
address of the calling program's cursor is placed into the
SWA, The size of the SWA is 3K bytes unless otherwise
Epecified in the OPEN call. SWA's may be from 1K to 16K
ytes.

When the user program issues a SQL call ORACLE parses and then
compiles the SQL statement. The compiled SQL statement is

stored in the SWA.

The location of buffers and data type conversion information
passed in the DEFINE call is stored in the SWA. BIND calls
modify compiled SQL statements that are stored in the SWA.

When the user program issues an EXECUTE call for a SQL query
statement and subsequently issues a FETCH call, the results of
the query are temporarily stored in the SWA.

Kernel Data Area

The Kernel Data Area (KDA) is used to control allocation of
serially reuseable resources within ORACLE. The KDA contains
buffer and work area headers, ENQ lists, database control

vectors and the dictionary cache.

The Buffer Headers control allocation and identify the
contents of buffers in the buffer pool.

The Work Area Headers control the allocation of Logon Work
Areas (LWA's) and SQL Work Areas (SWA's) from the SQL Work

Area Region.

ENQ entries are used for locking out access to rows of tables
as those rows are being updated.

Database and Extent Vectors are used to control an open
database.

The Dictionary Cache maintains the definition of the active
tables and the columns within those tables that are being
accessed.

Each of these areas may be altered or tuned to reflect a
specific environment. (See Appendix A)

2.3 USER INTERFACE MODULES

The primary interactive user interface to the ORACLE database
system is the User Friendly Interface (UFI). UFI provides the
user with the ability to enter all SQL commands at a terminal.
Additionally, UFI can spool output to a file and optionally
queue the file for printing, write SQL commands to a file,
edit current SQL commands, and execute SQL commands from a
saved file. UFI is installed with the task name SQL.

The Database File utility (DBF) is a task which provides the
user with the ability to manipulate database files in an

on-line environment.

When a user wishes to create his or her own database task, the
distributed user interface modules must be included in the
task image. The user code interface is provided in full in
the HOST LANGUAGE INTERFACE Manual.

The Interactive Application Facilities (IAG and IAF) and the
Report Writer (RPT and RPF) allow database application to be

developed without the need for conventional programming.

2.4 ORACLE Cleanup Task

ORACLE maintains the status of each user/ORACLE task pair in
the Global Task Table (GTT), which resides in the KDA. If a
task terminates execution while ORACLE cursors are still open,
certain cleanup of the ORACLE environment must be done.
Hence, abnormal task termination must be sensed by the ORACLE

data base system.

The ORACLE cleanup task (OCLNUP) is installed at system
startup. It is run every 10 seconds to determine if any user
task has aborted. OCLNUP serializes access to the GTT and
scans it for entries belonging to the exiting task. For each
entry found, the following functions are performed:

Kill the appropriate ORACLE task
Dequeue all owned resources

Close open databases

Free the Kernel context areas

Free the SQL context area (in OCLCTX)
Free any allocated I/0 buffer

Free the GTT entry

% % % * * * ¥

2.5 Journal Task

ORACLE uses a single task to control the updating of the
databases and the creation of the database journal files. The
journal task (JTS) synchronizes the writing of updated memory
buffers to the database files on disk to insure that database
integrity is maintained. The journal files are written prior
to updating the databases so that the journal may always be
used to restore the database to the most current state.

3.0

3.1

HARDWARE REQUIREMENTS

PDP-11

* CPU
* Memory

* Terminal
* Tape

* Disk Space

* Database
Space

VAX
* CPU
* Memory

* Terminal
* Tape

* Disk Space

* Database
Space

PDP-11 with EIS

128K bytes above the operating system
requirements for ORACLE common partitions
64K bytes in a system controlled partition
for UFI; 78K bytes in a system controlled
partition for IAP or RPT

Any supported terminal

9 track, 800 or 1600 BPI -- for tape
distribution of ORACLE

4000 blocks for ORACLE Distribution and task
images

4096 blocks for the ORACLE system database,
at least 4096 blocks for the ORAWRK database
(optional), and at 1least 1024 blocks per
user database. All databases require
contiguous space for each extent (see the
DBF users guide for a description of

extents).

VAX-11/780 or VAX-11/750

300KB required above the operating system
requirements

Any supported terminal

9 track, 1600 BPI -- for tape distribution
of ORACLE

4000 blocks for ORACLE Distribution and task
images

4096 blocks for the ORACLE system database,
at least 4096 blocks for the ORAWRK database
(optional), and at 1least 1024 blocks per
user database. All databases require
contiguous space for each extent (see the
DBF users guide for a description of

extents) .

8-10

4.0 ORACLE/RSX-11M INSTALLATION PROCEDURE

In order to provide the appropriate RSX-11M environment for
ORACLE, a number of options must be selected at system
generation, and several new partitions must be added to the
system. These issues are discussed below.

System Software:

RSX-11M Version 3.1 or later
The following sysgen options must be included:

Mapped System
SEND/RECEIVE Directives

PLAS Directives
STOP Directive

* % % *»

Partitions required in the system are as follows:

* ORACLE 302000 (8)
* OCLCTX 12000 (8) or larger
* OCLBUF 24000 (8) or larger
* OCLKDA 20000 (8)

Four partitions must be added to your system. This is most
easily accomplished by the following procedure:

1. Make a new copy of all privileged tasks;

2. Make a new copy of RSX-11M.SYS from RSX-11M.TSK
(assuming it was saved) and RSX-11M.STB;

3. Edit your VMR install command file to reflect
partition changes;

4, INS [1,54]VMR;-1 INS [1,54]B00;-1

5. Run VMR using the install command file and the new
copy of RSX-11M.SYS;

6. Software boot the new system and save.

The following is a summary of the ORACLE installation
procedure:

1. Log in under a privileged account.

2. Place distribution on appropriate device, allocate
(and mount, if disk) the device.

3. Copy the distribution medium.

4. Execute the command file ORBLD.11M.

5. Log off the system.

4.1 Log on and Copy the Distribution Files

Log into your system under a privileged account in the form
[g,m] where the group number must be in the range of 1 to 7.

1. For magtape distribution use the command

ALL dev:

where "dev" is the device specification of the drive

containing the distribution medium.

2. The following command will copy the ORACLE TAPE
distribution files into the target UIC:

FLX SY:/RS=dev:[*,*]*.*/DO

4.2 Building ORACLE

The distribution kit contains the file ORBLD.11M. This
command file builds and installs ORACLE. Upon successful

completion the validation test may be run and the results
verified. In order to use the Interactive Application

Facility, video terminal description files must be compiled.

The descriptions for VT100, VT52, and OWL terminals may be
built as part of the ORACLE installation.

Type the following command to build and install ORACLE:
@ORBLD.11M

The command file will place the task images on the SY: device
and current UIC for the account to which you are logged on.

4.3 Log Off

Upon successful termination of the validation test the ORACLE
Installation is complete. Log off the system by typing the

command

BYE

The user may wish to add the invocation of the ORACLE install
file ORINS.11M to the system startup command file,
LBO:[1,2] STARTUP.CMD. ORINS.11M installs four copies of
ORATSK named ORAAAA, ORAAAB, ORAAAC, and ORAAAD to support up
to four users. If additional users are desired, ORINS.11M may
be modified to install as many copies of ORATSK as are
required. The task names must continue the sequence given

above.

4.7 ORACLE Files

The following files are reguired to be on the same device and
UIC as the ORINS.11M command file for ORACLE initialization to

succeed:

The following
operate correctly
installation):

OCLCTX.TSK
OCLBUF.TSK

Context Region task image
Buffer Region task image

OCLKDA.TSK Kernel Data Region
OCLKDA.STB KDA Symbol Table
ORACLE.TSK ORACLE Library

ORACLE.STB
ORATSK.TSK

Library symbol table
The ORACLE Task

OCHECK.TSK The ORACLE Task initiator
JTS.TSK The journal creation task
UFI.TSK User Friendly Interface (SQL)
DBF.TSK Create Database Utility

IAP.TSK Interactive Application Procesor
IAG.TSK Interactive Application Generator
IMP.TSK Import Utility

EXP.TSK Export Utility

OIM.TSK 01d Import Utility

RPT.TSK Report Writer Utility

RPF.TSK Report Formatter Utility

JNL.TSK Journal Utility

CRT.TSK CRT Definition Utility

IAGUPGRD. TSK IAF Upgrade Utility

ORINS.11M ORACLE Installation Command File

SDLLIB.MLB

DBFOST.
ORAERR.MSG

System Development Library

files must remain in LB:[1,1] for ORACLE to
(they are moved to LB:[1,1] during ORACLE

DBF initialization statements
ORACLE error message text

following files must remain on a disk for use in task
which use the ORACLE Host Language

building programs
Interface:
OFOLIB.OLB FORTRAN, COBOL, and PASCAL
interface routines
OCELIB.OLB C interface routines
ORALIB.OLB ORACLE interface routines
CLIB.OLB C library routines - this library

is different from any you may have
received from a C compiler vendor

4.8 ORACLE Installation for RSX11M 3.1

There is a deficiency in RSX11M version 3.1 which does not
allow the same task file to be installed with more than one
task name. The task file ORATSK is intalled once for each
potential concurrent ORACLE user with the task names 'ORAAAA',
"ORAAAB', etc. To install ORACLE on RSX11M version 3.1, the
ORATSK.TSK file must be duplicated for each ORACLE task, then
installed with the correct names. The MCR commands used to
accomplish this feat are listed below. The INS commands
should be inserted into the ORINS.11M command file.

SPIP ORAAAA.TSK=ORATSK.TSK ! MAKES DUPLICATES OF ORATSK

>PIP ORAAAB.TSK=ORATSK.TSK
>PIP ORAAAC.TSK=ORATSK.TSK
>PIP ORAAAD.TSK=ORATSK.TSK

SPIP OCLNUP.TSK=ORATSK.TSK ! MAKES A COPY OF ORATSK FOR
> ! ...THE CLEAN UP TASK

>

>INS ORAAAA/TASK=ORAAAA ! INSTALL THE ORACLE TASKS
>INS ORAAAB/TASK=0ORAAAB ! ...THESE INSTALLS SHOULD
>INS ORAAAC/TASK=0ORAAAC ! ...IN BE ORINS.11M

>INS ORAAAD/TASK=ORAAAD
>INS OCLNUP/TASK=OCLNUP

5.0 ORACLE/IAS INSTALLATION PROCEDURE

System Software:
IAS Version 3.0 or later

Create a privileged account for ORACLE; include privilege for
logical block I/0O to a disk. Choose the disk on which the
database will be built. If this is the system disk
timesharing must be shut down and the disk must be mounted DCF

from MCR.
Ex: MOU DBO:IASSYS/CHA=[DCF]

If the disk is other than the system disk it should be mounted
(preferably at system start up) from a privileged account with
the following command:

Ex: MOU/NOOP/GLO/CON dkx:name

The following is a summary of the IAS installation procedure:

1. Log in on the ORACLE account
5. pPlace distribution media on appropriate device and

mount

3. Copy distribution media
4. replace the IAS task builder with the one from the

distribution
5. Edit the following .SRC files to reflect site
requirements: OCLKDA ,OCLBUF,OCLCTX,0RBLD

6. Execute the command file ORBLD.IAS
7. Log off

5.1 LOG ON

Log into the privileged ORACLE Account with the command

LOGIN ORACLE A

5.2 Place Distribution Media on System

1. For magtape distribution

MOU/NOOP/FOR mtx: X

where "mtx" is the device and unit specification of
the drive containing the distribution medium.

2. For disk cartridge distribution use the command

MOU/NOOP dkx: ORACLE

where "dkx" is the device specification of the disk
drive containing the ORACLE distribution.

5.3 Copy the Distribution Files

1. The following command will copy the ORACLE
distribution files into the target UIC:

MC FLX SY:/RS=mtx:[*,*]*.*/DO
2. For disk cartridge distribution use the command

COPY dkx:[1,50]*.* * *

5.4 Replace IAS Task Builder

The task builder distributed with IAS does not handle memory

resident overlays properly. If you have not obtained the
corrected task builder from DEC remove the one currently

installed in the system and install the corrected version.

REM ...TKB
INS TKB

5.5 Edit Source Files

Edit the ORACLE build command file, ORBLD.IAS to set the
creation of the system database to the proper disk. (It must
be mounted Control Functions Enabled).

Edit the files OCLCTX.SRC and OCLBUF.SRC to reflect the number
of wusers which must be concurrently supported by this

installation.

The system may be further tuned by changing OPARAM (ref.
APPENDIX A)

5.6 Build ORACLE

The distribution kit contains the file ORBLD.IAS. This
command file builds and installs ORACLE.

Type the following command to build and install ORACLE:

@ORBLD.IAS

5.7 Log Off

Upon successful termination of the validation test, the ORACLE
Installation is complete. Log off the system by typing the

command

LOGO

5.8 ORACLE FILES

{1,x] OCLCTX.TSK Context Region task image
[1,x%x] OCLBUF.TSK Buffer Region task image
(1,x] OCLKDA.TSK Kernel Data Region

[1,x] OCLKDA.STB KDA Symbol Table

[1,x] ORACLE.TSK ORACLE Library

[1,x] ORACLE.STB Library symbol table

[1,x] ORATSK.TSK The ORACLE Task

[1,x] UFI.TSK User Friendly Interface
(1,x] DBF.TSK Database File Utility
[1,x] CRT.TSK CRT Definition Utility
(1,x] IAG.TSK Create Form Task

[1,x] IAP.TSK Forms Transaction Processor
[1,x] IMP.TSK Import Utility

[1,x] EXP.TSK Export Utility

[1,x] OIM.TSK 0ld Import Utilit{

[1,x] RPT.TSK Report Writer Utility
[1,x] RPF.TSK Report Formatter Utility
[1,x] ORBLD.IAS ORACLE Build Command File
[1,x] ORINS.IAS ORACLE Install Command File
[1,x] ORREM.IAS ORACLE Remove Command File
[1,x] SQLBLD.IAS Personnel Database Build

[1,x] SQLDEMO.IAS Demo using Personnel DB

6.0 ORACLE/VMS INSTALLATION PROCEDURE

This chapter outlines the procedures for installing the ORACLE
system on a DEC 11/780 VAX computer running under version 2.0
of the VMS operating system. These procedures correspond with
ORACLE version 2.3.

6.1 VAX Installation Tape

The VAX installation tape contains a container file of the
files necessary to run the ORACLE Relational Database
Management system. The files are restored into a single

directory using the RMS RESTORE utility (RST).

The tape contains files necessary to install, operate, and
maintain the ORACLE system. They fall into the following

categories:

- Command files to load and install ORACLE;

- Image files of the ORACLE system and related
utilities;

- Library files <containing the native mode user
interface;

- Source files for those modules containing database

tuning parameters;

Appendix 'B' is a listing of the files contained on tape.
6.2 Pre-Installation Activities

Prior to installing the ORACLE system and restoring the
installation tape the following activities must be completed:

1. A new account must be defined on VMS, for example
'"ORACLE', which has the privileges and quotas defined
in appendix 'C'. Note that all ORACLE accounts must
have UIC's with the same group code as ORACLE (ex:
[100,x], where x can have any value). The required
privileges and quotas for a user account are listed in
Appendix 'C'. The user log in command file should
invoke SYS$SORACLE:ORACLE.COM

6.3 Installation Process

1. Log onto the ORACLE system account and use the
following two commands to invoke the ORACLE
bootstrapping loader on the installation tape:

MOUNT MTAO: ORACLE

@MTAQ : ORBOOT

2. The loader will announce itself and ask for the name
of the device to load from. Answer with the same
device name used above (i.e., MTAO:).

3. You will be prompted for any additional information
necessary as the procedure continues.

Note: The following is a summary of the operation of the
loader.

After purging and renaming all files existing in the
directory, the loader will proceed to load the new versions in
from the tape. When done, the loader passes control to the
newly loaded procedure INSTALL.COM. The INSTALL procedure
first insures that there is a LOGIN.COM files which calls
ORACLE.COM. Second, INSTALL configures GRPSYM.COM and
ORACLE.COM so that they define SYSSORACLE as the current
directory. Next, it «calls ORACLE.COM to define ORACLE
symbols. If you are using a different VAX/VMS version than
the one on which the ORACLE system was built, INSTALL will
call LINKORA.COM to relink. The LINKORA procedure reads the
required object libraries off the tape and relinks all ORACLE
components.

6.4 ORACLE Installation and Validation

The following procedures will install and activate the ORACLE
system and validate the installation.

1.

2.

Log on using the 'ORACLE' account.
Type @ORINIT to activate the ORACLE system.

Create a system database using the command below:
$ DBF C ORACLE ORACLE.DBS 4096

The name of the system database (oracle.dbs) and the
size (4096) are installation dependent. Refer to the
ORACLE Utilities guide for a description of these
parameters.

Create and define the 'personnel' user database using
the following command:

$ DBF C PERSONNEL PERSONNEL.DBS 2K SCOTT/TIGER

Build the PERSONNEL database tables.

$ SQL @SQLBLD.SQL

Execute ORACLE validation demonstration.
S SQL @SQLDOC.SQL
At the completion of this step ORACLE is functionally

installed and validated. The system is now available
for general use by other users.

6.5 Daily ORACLE Initialization

To initialize ORACLE on a daily basis perform the following
steps:

1. Log on to ORACLE

2. Enter @ORINIT to load the ORACLE system.

3. Define the system database:

$ DBF SD ORACLE.DBS

To bring down ORACLE at the end of the day perform the

following steps:

1. Log on to ORACLE
2. Type @ORSTOP

3. Log off.
6.6 Site Specific Changes to ORACLE

RUNORA is the executable image which creates the detached
ORACLE processes. It determines both the base priority at
which an ORACLE process runs and how many concurrently active
ORACLE processes can be created. As delivered, RUNORA
activates an ORACLE process at priority 4 and supports six
concurrent users. To change either of these parameters, edit
the RUNORA options file, RUNORA.OPT. Relink RUNORA by typing

the command:
@BLDRUNORA

Then reinitialize ORACLE.

APPENDIX A: SYSTEM TUNING

A.1 Kernal Data Area

There are several parameters in the KDA which may be altered
by the user to reflect his environment. The KDA parameters
are contained in a macro in SDLLIB.MLB which is supplied with
ORACLE. The macro OPARAM must be extracted from the library,
edited to change the desired parameters, the replaced in the
library. The KDA must then be reassembled and the object
program replaced in KDALIB.OLB using the librarian utility.
ORACLE tasks rebuilt by the command file ORBLD distributed
with your system. The maximum allowable size of the KDA is 8K
bytes. The parameters of note are as follows:

BUFS$N Number of 512 byte buffers in OCLBUF; This
is adjusted at run time to reflect the
actual size of OCLBUF. ORACLE will not
execute properly with fewer than 20 buffers
(24000 bytes octal dedicated to the buffer

region.
ENQS$N Number of entries on Resource Wait lists.
DXVSN Number of Database Context Vectors;

Controls the number of databases which may
be concurrently open.

EXVSN The total number of extens which may
comprise the concurrently open databases.

GTTSN Number of User/ORACLE task pairs; Controls
the number of users and user tasks which

are concurrently logged onto ORACLE.

CSTSN Number of active cursors: Controls the
number of cursors which may be concurrently
open.

RLCSN Number of Relations on Cache; This controls

the size of the table definition cache.
This parameter should approach or exceed
the number of tables concurrently accessed
to reduce dictionary access.

DOCSN Number of Domains on Cache; This parameter
controls the number of data item
definitions which are cached in memory.
Occurrence of dictionary access on disk
will diminish as this parameter approaches
the number of Domains concurrently used.

SQLSN Max imum number of 1K SQL Work Areas; This
is set at run time to reflect the size in
1K areas of OCLCTX if it is smaller than

SQLSN.

SWPSN Number of context swap areas in the ORACLE
system database.

FLSSN A threshold number to control the writing
of modified buffers which should be equal
to the number of buffers divided by 8. If
there are fewer than 32 buffers (20 is the
minumum number), FLS$N should be set to 2.
Use of to small a value for FLS$N will
result in degraded system performance,
especially when database journaling 1is

active.

A.2 SQL Work Area

The SQL Work Area (OCLCTX) must be large enough to accommodate
the largest number of concurrent users Yyou wish to support

with your system. It is the area from which individual SWA's
are allocated. A user may allocate a maximum of 16K bytes of
work space. The default allocation is 3K bytes; thus, the
distributed copy of OCLCTX will support a maximum of four
users if each uses the default size. An interactive user may
control the allocation of buffer space in 1K increments
through UFI with the "#WORKSIZE" n command, where 1 <= n <=
16. A user program may control allocation at LOGON and when
OPENing databases.

To change the size of OCLCTX edit the file OCLCTX.SRC to
reflect the new size, reassemble the module and task build.
(If you are using RSX11M, then the size of the context area
may be altered by changing the size of the OCLCTX partition to
the desired size. When OCLCTX is installed into the OCLCTX
partition, its size will increase to fill the partition.
There is no need to edit OCLCTX.SRC, or to rebuild OCLCTX.)
After relinking OCLCTX, reinitialize the ORACLE system to

incorporate the new region.

A.3 ORACLE Buffer Area

The ORACLE Buffer Region (OCLBUF) contains buffers for I/0
operations between the user database, the system database, and
the ORACLE Kernal. Since these buffers are used as a data
cache, disk I/0 may be reduced significantly by increasing the
size of OCLBUF. The effect of size increase is application
dependent, specifically on the number of concurrent users,
concurrent active databases and the randomness of database
use. The minimum size of the OCLBUF is 20 buffers (10240.
bytes). The maximum (and recommended) size is 64 buffers

(32768. bytes).

To change the size of OCLBUF, edit the file OCLBUF.SRC to
reflect the new size, reassemble the module and task build.
(1f you are using RSX11M, then the size of the buffer area may
be altered by changing the size of the OCLBUF partition to the
desired the size. When OCLBUF is installed into the OCLBUF
partition, 1its size will increase to £i11 the partition.
There is no need to edit OCLBUF.SRC, or to rebuild OCLBUF.)
After relinking OCLBUF reinitialize the ORACLE system to

incorporate the new region.
A.4 Database Structure

An ORACLE installation consists of at least two databases: the
system database and one or more user databases.

System Database

The system database contains control information used in
locating user databases. The system database also provides
work areas for sorting and other operations on user databases.
The system database name is always 'ORACLE' and must be at
least 4096 blocks in size. DBF commands are used to create,
initialize, or re-initialize the system database. After it is
created, ORACLE must be informed of its file name every time
ORACLE is initialized by using the "DBF SD' command.

ORACLE Work Database

An ORACLE work database may be created which will be used by
ORACLE for performing ORDER BY, UNIQUE, and GROUP BY
operations. It may be of any size greater than 4096 blocks
and it my be composed of more than one extent. The name of
the work database is always ORAWRK. It may be entered and

removed using DBF at will.

User Databases

Each user database is composed of one or more operating system
files. A user database is composed of a dictionary, indexes

and user data clusters.

The following information may prove useful in approximating
the size of a database:

A 500 block area is reserved in the database for user views.

Fach record which is stored in the database has a 24 byte
header and a 2 byte header for each non-null item in the row.
Additionally, the database space allocation has a 64 byte
granu arity which must be considered when sizing the database.

ORACLE allows any data item within a table to have an index
associated with it. These compressed key indices allow rapid
access to data when querying or updating the database. A key
or image is (7 + key) bytes in length. The format is shown

below:

L length byte

FB flag byte

FC Forward compression

RBA Relative Byte Address (4 bytes)

KEY Compressed key (1.1 bytes, average)

A balanced tree-structure is used to build the database keys.
Thus, the use of forward and backward data compression on the
lowest key 1level provides optimum space utilization and
minimum access overhead. Index blocks split when they become
full. Thus, on the average an index Dblock will be
approximately three-fourths full. '

The following formulae approximate the size of a database in
bytes:

TS = RS + IS + 262144

IS 1.33 * 8.1 * NK

RS = SUM (NR(i) * CEIL { ARS(i) / 64 } * 64), i = 1 to NT

ARS(i) = 24 + (SUM (AS(i,]3) + 2), j =1 to NC(i))
where

TS is the total size of the database in bytes

IS is the size of the image (index) area in bytes
RS is the size of the row area in bytes

NK is the total number of non-null occurrences of imaged
columns

NR(i) is the total number of rows in table i

ARS(i) is the average size of each row in table i

AS(i,j) is the average size of data in column j of table i
NC(i) is the number of columns in each row of table i

NT is the number of tables in the database

CEIL is a function which takes the minimum integer larger then
the number, e.g., CEIL [2.1] = 3.

SUM (AS + 2) for each item is the sum of the average sizes of
the column wvalues

NR is the number of rows in a table
NK is the number of keyed (imaged) items in a table

NI is the number of nonull items in a row

APPENDIX B: VAX DISTRIBUTION DIRECTORY

Directory DRAO:[ORACLE]

BLDRUNORA.COM RUNORA link command file

RSI Full Screen Editor

BSE.EXE

CLIB.OLB "C" Object library

CRT.EXE CRT Definition Utility

DBF.EXE DBF Utility

DBFOST. System Database structure

DEMO.INP IAF demo source file

DEMO.RPT RPT demo source file

EXP.EXE Export Utility

GRPSYM.COM ORACLE group symbol definition command
file

IAG.EXE Interactive Application Generator Utility

IAFDEMO.SQL

IAF DEMO database initialization command
file
Interactive Application Processor Utility

IAP.EXE

IMP. EXE Import Utility

JNU.EXE Journal Utililty

JTS.EXE Journal File Creation/Buffer Flush Task

KDA.SRC Kernal Data Area (OCLKDA) source

LINKORA.COM ORACLE Component relink command file

LOCK.EXE LOCK image -- Locks part of ORACLE in
memory

LOCK1.EXE LOCK1l image -- Locks part of ORACLE 1in
memory

OCLBUF.EXE

OCLBUF global section

OCLBUF.SRC OCLBUF Source

OCLCTX.EXE OCLCTX global section N
OCLCTX.SRC OCLCTX source

OCLKDA.EXE OCLKDA global section

OCLKDA.TSK OCLKDA backup image

OCLNUP.EXE ORACLE Cleanup image

OIM.EXE 0ld Import Utility (Imports an ORACLE 2.2

ORAAAX . EXE
ORACLE.COM

ORACLE.EXE

file)
ORACLE images (where x = A-X)
ORACLE User Symbol definition (reference

in LOGIN.COM)
ORACLE Global section

ORACLE.TSK ORACLE Global section backup
ORAERR.MSG ORACLE Error message file

ORAFOR.MAR FORTRAN HLI Interface source
ORALIB.OLB General User/ORACLE Interface Library
ORAPAD.OPT User image link option file

ORDIR.COM ORACLE account subdirectory creation

ORINIT.COM
ORINS.COM

CRACLE initialization command file
ORACLE "install" command file

OROBJRST.COM
ORSTOP.COM

ORSTOP. EXE
ORVAX.OLB
REGDESC.EXE
RJTS.COM

RLOCK.COM

RLOCK1.COM

RORA.COM

RPF . EXE

RPT.EXE
RPTDEMO.SQL

RSI.EXE
RUNORA. EXE

RUNORA.OPT
SAMPL3.FOR
SQLBLD.SQL
SQLDOC.CMD
SQLDOC.SQL
UFI.EXE

ORACLE objects restore command file
ORACLE Shutdown command file

ORACLE Shutdown executable image
Library containing RUNORA objects

ORACLE Region Descriptor Global Common

Command file to create
running JTS

Command file to create
running LOCK

Command file to create
running LOCKI

Ccommand file to create
running RUNORA

Report Formatter Utility
Report Writer Utility

detached process
detached process
detached process

detached process

RPT demo database initialization command

file
ORACLE AME

Executable image to create detached ORACLE

processes

Link option file for RUNORA

Sample FORTRAN program

validation Database build file
validation Command file with comments

validation Command file

USER FRIENDLY INTERFACE Utility

APPENDIX C: VAX PRIVILEGES AND QUOTAS

Main ORACLE
Process privileges

ALTPRI may set priority to any level

CMKRNL may change mode to kernel

GRPNAM may insert in group logical name table
DETACH may create detached processes

EXQUOTA may exceed quotas

LOG IO may do logical I/0

GROUP may affect other processes in same group
PSWAPM may change process swap mode

TMPMBX may create temporary mailbox

SYSGBL may create system wide global sections
MOUNT may execute mount ACP functions

ORACLE User
Process priveleges :

GRPNAM may insert in group logical name table
GROUP may affect other processes in same group
TMPMBX may create temporary mailbox

Process Quotas: ORACLE USER
CPU limit : INFINITE INFINITE
Buffered I/0 byte count quota : 204890 4096
Timer queue entry quota : 10 10
Paging file quota : 10000 10000
Direct I/ O limit : 12 6
Buffered I/O0 limit: 12 6
Open file quota : 30 20
Subprocess quota : 8 2

AST limit : 10 10

APPENDIX D: VAX COMMAND FILES

Listing of ORACLE.COM

$ASS DRAO: SYSSORACLE
DBF :==$SYSSORACLE : DBF
DTM:==$SYSSORACLE:DTM
EXP:==8SYS$SORACLE : EXP
IAG:==$SYSSORACLE: IAG
IAP:==$SYSSORACLE: IAP
IMP:==$SYSSORACLE: IMP
OIM:==$SYSSORACLE:0IM

RSI:==RUN SYSS$SORACLE:RSI
SQL :==$SYSSORACLE:UFI

SASS/GR
$ASS/GR
SASS/GR
$ASS/GR
$ASS/GR
$ASS/GR
$ASS/GR
$ASS/GR
$ASS/GR
SASS/GR
$ASS/GR
$ASS/GR
$ASS/GR
$ASS/GR
$ASS/GR
$ASS/GR
$ASS/GR
$ASS/GR
$ASS/GR
$ASS/GR
$ASS/GR
$ASS/GR
SASS/GR
SASS/GR
SASS/GR
$SASS/GR
SASS/GR
$ASS/GR

Listing of GRPSYM.COM

DRAQ: SYSSORACLE

SYSSORACLE:OCLNUP
SYS$ORACLE : ORAAAA
SYSSORACLE : ORAAAB
SYSSORACLE : ORAAAC
SYSSORACLE : ORAAAD
SYSSORACLE : ORAAAE
SYSSORACLE : ORAAAF
SYSSORACLE : ORAAAG
SYSSORACLE: ORAAAH
SYSSORACLE : ORAAAI
SYSSORACLE : ORAAAJ
SYSSORACLE : ORAAAK
SYSSORACLE : ORAAAL
SYSSORACLE : ORAAAM
SYSSORACLE: ORAAAN
SYSSORACLE : ORAAAQ
SYSSORACLE: ORAAAP
SYSSORACLE : ORAAAQ
SYSSORACLE: ORAAAR
SYSSORACLE : ORAAAS
SYSSORACLE : ORAAAT
SYSSORACLE : ORAAAU
SYSSORACLE : ORAAAV
SYSSORACLE : ORAAAW
SYSSORACLE : ORAAAX
SYSSORACLE : ORAAAY
SYSSORACLE: ORAAAZ

OCLNUP
ORAAAA
ORAAAEBE
ORAAAC
ORAAAD
ORAAAE
ORAAAF
ORAAAG
ORAAAH
ORAAAI
ORAAAJ
ORAAAK
ORAAAL
ORAAAM
ORAAAN
ORAAAQ
ORAAAP
ORAAAQ
ORAAAR
ORAAAS
ORAAAT
ORAAAU
ORAAAV
ORAAAW
ORAAAX
ORAAAY
ORAAAZ

APPENDIX E —-- Sample VAX Installation (VMS 2.1)

APPENDIX F —- Sample VAX Installation (VMS 2.0)

APPENDIX G —— RSX11M Distribution Directory

34

APPENDIX H —— RSX11M Command Files

APPENDIX I -- Sample RSX11M Installation

36

APPENDIX J
Configurations

ORACLE

Installation

in

Small

RSX11M

APPENDIX K —-- IAS Distribution Directory

APPENDIX L —-

IAS Command Files

APPENDIX M -—- Sample IAS Installation

ORACLE

MESSAGES AND CODES

Oracle Programmer's Guide - Version 2.3

Copyright (c) April 1981
By Relational Software Incorporated
All rights reserved. Printed in U.S.A.

ORACLE

MESSAGES & CODES MANUAL

TABLE OF CONTENTS

ORACLE Status Codes 9-1
Kernel Errors 9-2
Dictionary Errors 9-4
Enqueue/Dequeue Errors 9-5
Sequential Segment Errors 9-6
DDL Errors : 9-7
DML Errors 9-8
Query Errors 9-9
Parse Errors 9-10
Miscellaneous Errors 9-14
System Errors 9-16
RSX-11M IAS & VMS Errors 9-17

UNIX Errors 9-18

ORACLE STATUS CODES (POSITIVE NUMBERS)

000001

000002

000003

000004

fetched item
fetched item
fetched item

end of fetch

unchanged in join
null
truncated

operation

-10

-11

-12

-13

-14

-15

~16

-17

-18

-19

-20

=21

-22

KERNEL ERRORS (-1 to -29)

177777
177776

177775

177774

177773
177772
177771
177770
177767
177766
177765
177764

177763

177762

177761

177760

177757
177756
177755
177754
177753

177752

invalid operation code
no context areas available

non primary item specified during
tuple create

invalid owning relation id on tuple
create

tuple not found

item not found

i/o error

invalid item definition

duplicate item value in index
duplicate item in tuple

user specified context area invalid
invalid relation definition

index only operation and item not
indexable

tuple create and value not unique.

exceeded max owning tuples in
record space

current record space has max leaf
tuples

invalid item length on input
database full

item too long for users buffer
end of index

item replace, lengths not equal

sxv copy and type not index

-23

-24

-25

-26

-27

-28

-29

177751
177750
177747
177746
177745
177744

177743

sxv compare, both equal

sxv compare, sxv gt buf

sxv compare, sxv 1t buf

invalid sxv on temporary index add
read by key and item not indexed
item too large to index

tuple not accessed for update

-30
-31
-32
-33
-34
-35
-36
-37
-38
-39
-40
-41
-42
-43
-44
-45
-46
-47
-48

-49

-50

DICTIONARY ERRORS (-30 to -45)

177742
177741
177740
177737
177736
177735
177734
177733
177732
177731
177730
177727
177726
177725
177724
177723
177722
177721
177720

177717

177716

journal is not active
invalid database name
database already exists
database doesn't exist
cannot open database

getbuf or relbuf error
invalid owning relation
invalid size specification
relation already exists
invalid item attributes
second primary domain specified
domain already exists

cannot lock the database
invalid dxv

not enough space

invalid database

database file does not exist
database file is too small
system database in use

maximum number of columns in table
exceeded

bad database

-51

-52

-53
-54

ENQUEUE/DEQUEUE ERRORS (-51 to -59)

177715

177714

177713
177712

enqueue list area over flow

resource not available and wait not
requested

invalid enq request block

deadlock detected

-60

-61

SEQUENTIAL SEGMENT ERRORS (-60 to -99)

177704 segment not found

177703 segment already exists

-100

-101

-102

-103
-104
-105
-106
-107
-108
-109
-110
-111
-112
-113

-114

be

DDL. ERRORS - -100 to -199
177634 table created
177633 table expanded
177632 first column in table must
indexed or linked
177631 link already exists
177630 relations are already linked
177627 invalid link name
177626 column already exists
177625 view name is already a table name
177624 view already exists
177623 complex item in primary select list
177622 same column name specified twice
177621 table referenced by a view
177620 table not empty
‘177617 view referenced by a view
177616 user already defined

-201

-202

-203

DML ERRORS (-200 to -299)

177467
177466

177465

trying to update primary item
trying to delete mandatory item

missing mandatory item

-300

-301

-302

-303

-304

9-9

QUERY ERRORS (-300 to -399)

177324
177323
177322

177321

177320

end of fetch

trying to select nongroup attribute

user buffer too small

item specified not in select or set
list

where clause insufficient for join

-401
-402
-403
-404
-405
-406
-407
-408
-409
-410
-411
-412
-413
-414
-415

-416

-417

-418
-419
-420
-421

-422
-423

-424

PARSE ERRORS (-400

177157
177156
177155
177154
177153
177152
177151
177150
177147
177146
177145
177144
177143
177142
177141
177140

177137

177136

177135
177134
177133
177132
177131

177130

invalid
missing
missing
missing
missing
invalid
invalid
invalid
invalid
missing
invalid
invalid
missing
invalid
missing
missing

missing

el

colut} ﬂ m

to -499)

sequel statement
right square bracket
'table’ keyword
tadd' keyword
'column’ keyword
create statement
table name

column name
column type

left parenthesis
column size
column modifier
right parenthesis
link name

*from' keyword
'to' keyword

cemi-colon

]

missing where clause

invalid drop statement

table name not in from list

ambiguous column name

missing

'into' keyword

missing colon

-425
-426

-427
-428
~429
~430
-431
-432
-433
-434
-436
-437
-438
-439
-440
~441
-442
-443
-444
-445
-446
-447

-448

-449

-451

-452

177127
177126

177125
177124
177123
177122
177121
177120
177117
177116
177114
177113
177112
177111
177110
177107
177106
177105
177104
177103
177102
177101

177100

177077

177075

177074

missing right angle brackets
missing left angle brackets
invalid constant

too many constants in tuple
missing 'in' keyword

missing ‘'and' keyword

invalid comparision

set function not allowed here
missing 'by' keyword

too many items in select list
missing 'set' keyword

missing equal sign

unexpected end of sequel statement
invalid substitution string
missing period

invalid define statement
missing 'as' keyword

invalid raw text length
missing 'select' keyword

view table not allowed here
asterisk not allowed here
duplicate table name

wrong number of items in select
list

invalid view name
invalid number

unknown substitution variable data

-453
-454
-455
-456

-457

~458
-459
-460

-461

-462
-463
~-464
-465
-466
-467
-468
-469
-470
-471
-472
-473
-474
-475

-476

177073
177072
177071
177070

177067

177066
177065
177064

177063

177062
177061
177060
177057
177056
177055
177054
177053
177052
177051
177050
177047
177046
177045

177044

type

incompatible data types
non-numeric data types
null not allowed here
invalid logical operator

‘order by' not allowed
nested query

reserved table

quoted literal not ended

missing 'but' or 'rights'

keyword

in view or

"all but' not allowed with update

rights on columns
invalid grant option
missing 'on' keyword
invalid keyword
missing '/’

missing 'with' keyword

missing 'connect' keyword

missing 'transaction' keyword

missing comma

invalid transaction number

column name is too large
table name is too large
view name is too large
user name is too large

password is too large

null row indicator not allowed

first table

on

-500

-501

JOURNAL ERRORS (-500 to -599)

177014

177013

journal utility already in use

invalid journal file

9-14

-600
-601
-602
-603
-604
-605
-606
-607
-608
-609
-610

-611

-612
-613
-614
-615
-616
-617
~-618
-619

-620

-621
-622

MISCELLANEOUS ERRORS (-600 to -699)

176650 invalid request type

176647 cannot open user database

176646 invalid sdg

176645 invalid database

176644 invalid data type

176643 bind variable does not exist

176642 prior logon not issued

176641 prior parse not issued

176640 not all variables bound

176637 prior execute not issued

176636 operation terminated by user

176635 cursor control area modified by
user

176634 unimplemented operation

176633 invalid length of input value

176632 insufficient parameters

176631 invalid context area size requested

176630 invalid cursor

176627 cannot open system database

176626 cannot allocate system swap area

176625 logon not issued

176624 oracle routines in same window as

context area
176623 invalid user identifier

176622 security violation

-623
-624

-625

176621
176620

176617

error creating security record
database does not support security

non supported conversion

-701

-702

-703

-704

-705

-706

-707

SYSTEM ERRORS (-700 to -799)

176503
176502
176501
176500
176477
176476

176475

insufficient work area

quad header missing

database name not specified
insufficient system sort space
abort lun assignment error

no rsxllm dynamic memory

global task table full

-801
-802
-803
-804
-805
-806

-807

~808

-809

RSX11M AND IAS ERRORS (-800 to -899)

176337
176336
176335
176334
176333
176332
176331

176330

176327

gtskS$s failure

cannot create oracle task
cannot attach context region
ast failure

gmcx$s failure

elaw$s failure

craw$s failure

default uic different than logon
uic

VMS initialization failure (mb or
ef cluster)

-901
-902
-903

-904

UNIX ERRORS (-900 to -999)

176173
176172

176171

176170

pipe
fork
pipe

pipe

creation error

error

write error

read error

