Version 2.1 for RSX-11

User Manual

October 1986

The software described by this publication is subject to change without notice. Oregon Software assumes
no responsibility for the use or reliability of any of its software that is modified without the prior written
consent of Oregon Software.

Oregon Software holds right, title, and interest in the software described herein. The software, or any
copies thereof, may not be made available to or distributed to any person or installation without the written
approval of Oregon Software.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in sub-division
(b)(3)(ii) of the Rights in Technical Data and Computer Software clause at 52.227-7013 of the Federal
Acquisitions Regulations (FARs).

Name of Contractor and Address:
Oregon Software, Inc,
6915 S.W. Macadam Avenune
Portland, Oregon 97219
Phone: 503-245-2202

© 1986 Oregon Software, Inc. ALL RIGHTS RESERVED. Printed in USA, September 1986.

ISBN 0-92595801-8

Pascal-1, Pascal-2 and Oregon Software are trademarks of Oregon Software, Inc.

DEC, PDP, RSX, RSTS and RT-11 are trademarks of Digital Equipment Corporation. TEX is a trademark
of the American Mathematical Society.

Contents

Pascal-2 V2.1/RSX Introduction . . . + « « ¢ v ¢ o v v v v u h e e e e e e
Certification e
Pascal-2 Documentation chhge e e e e e e e e e e e e e e e e e e e
Style Note8 . . . ¢ ¢ ¢ o v v v v vt e e e e e e e e e e e e e e e e

For MoreInformation ¢« ¢« ¢« ¢ & ¢ ¢ 4 & o ¢ o o « + + « o o v « o o o + o Info-1

Pascal-2 V2.1/RSX User Guide o v v 0 v o v v v v e e e e e e e e e
Getting Started v e e e e e e e e e e e e e e e e e e
Compiling the PPogram . . . + + v ¢ v v vt o o o et o o e e e e e e e e e e
Checking For Errors . . . « © v &+ o v v v v v o o o™ 4 4 4 ot e e e e e e e
The Program Listing « + ¢ « v v v 0 v v v e et e e e e e e e e e e
Compiler Commands « ¢ ¢« v v v v et e e e e e e e e e e e
Compilation Options o .« « v v bt e e e e e e e e e e e e e

Compilation Switches 0 e e e e e e e
Program Options ¢ . &« « 0 i vt e e e e e e e e e e
Compiler Options &+ & v o v ¢ v v e e e e e e e e e e e e
CodeSwitches« v ¢ « i v e s e e e e e
Checking Switches« « v v v v v« e e e e e e
Processor Switches i e e e e e e e e e

Embedded Switches e e e e e e e e e e
ProgramOptions+ e e
Compiler Options« . & ¢ ¢« v v v v e v e e e e e e e e e e

Run-Time Checking Switches v v v v v ..

Compilation Examples o . . 0 0 0 o e e e e e e e e
Building an Executable Task 0 0000w .
Using the Utilities v . v e ..

The Formatter+ « v o o v v v i e e e e e e e e e e e e

The Debugger & o v v v 0 e e e e e e e e e

The Profiler« v v o v 0 e e e e e e

Detecting Run-Time Errorso 0 0oL
Errors Detected at Run-Time v v v v v v v v h
Your Next Step & v ¢« v v v i e e e e e e e e e e e e e

Pascal-2 V2.1/RSX Programmer’s Reference
Introduction . . . e
I/O Control Swntchca e
External Modules «« . . e e e e e e e e e e e e e e e e

Calls to Pascal-2 Routines v . v v v 0 0 C e e e e e e e
Example Using External Directive
Calls to Non-Pascal-2 Routines
Calling MACRO Subrontines « . . . v v v v v o v v v v
Calling FORTRAN Subroutines ¢ . v ¢« v v « v v v v v v v ™
External Module Libraries 00 00000 e .
Extended Precision 0 0 0 0 e e e e e e e e e e e
Overlays e
Examples of ODL Fxles e
Support Library e
Initializing the Support Lnbmry e
Support Library Data Definitions e e e e e e e e e e e e e
Modifying the Support Library’s Global Vu'mblea e e e e e e e e e e e e e
Assigning Input and Output to Different LUNe

E' EEwr &

-

(=3
]

¢ & 8 e
G 0 B pme s

E 0t 0 0 pmt ped pmd pméd s Gmt pmd pus pmd (md b pmd pup
v ¢ B ¢ & ¢

Pt Dmt puet Pt et DS femd pmb bt bmt pmmS D
U L)
B 60 B0 DD e pmt pmt put Pt pumb Pt pumd

NN NO TR W OQ®RP®IITDDDID &

BB BN N
)

[I Y R |
= O O 00 I T e BO e O QD Y e e e

NNNNNQ‘\?NNNNNN
OO DO Ped pmt s et Db put put Pt b s

Changing the Support Library's Event Flag . .
The “No-Extend” Patch
The “No-Attach” Patch
Setting the Length of the Compiler's Lutmg F xle .

Run-Time Organization e e e

Form of the Generated Code
Memory Organization

TheStack

The Heap,
The Stack Frame, .,

Monitoring Memory Usage

The ‘Space’ Fanction . . . e
Function ‘P$inew’ and Procedure ‘P3dmpooe RN
Example: Function ‘NewOK'

Storage Allocation
Run-Time Error Reporting

I/O Error Trapping
Procedure ‘SayEre’
Customizing Error Reporting . . .

Error Termination Status
Implementation Notes, .,

Multiple Source Files
Access to Files and Records . . . C e e e
Local Files Closed on Procedure Ent . .
Specifying the Location of The Compller s Work Fnle:
The Use of 'SY:' , . ., . . . e e e e e

Variable Initialization . . . e e e e e e

Reading MCR Command Lmeo .o ..

Executing MCR Commands from Pascal Programs .

Lazy I/O

Terminal I/O, . . . e e e
FORTRAN Carriage Control e .
Single-Character I/O . .

Detaching From The Termmal e e e e .
Pascal-2's Use OfLUNs
UsingEvent Flags
Random Access to ‘Text' Files

Procedure ‘GetPos’,

Procedure ‘SetPos’ , . , . .", ,
Unsigned Integer Conversion
Multinser Tasks,
Multiple Buffering

Enabling Multiple Bnﬂ’enng On Yonr Syutem “

Resident and Cluster Libraries . . e e e e
Creating a Pascal Resident lemry e e e

Including Pascal Procedures in a Resident Library . .
Building a Resident Library . .

Placing an Existing Procedure in a Reudent bemry
Converting an Entire Program to a Shared Procedure
Compiler Optimizations e e e e e e

Variable Assignments to Regsten e e e

.

3

LY

. e

Assignment of Constants and Addresses to chxsteu ..

Constant Folding

Dead Code Elimination

(I I T R TRy
LN R R R S]
NN NN NN
(= R X ™

[N O T T
L]

G W N B

N = QD R -3

D 0 a3 o3 e
LI
VOt o o g

Nv—mmugg

R i R R S
EEREIEIIIIIIINIZR2 22883889

S$883

2-98
2-98
2-98
2-98
2-98

Boolean Expression Optimization .
Expression Targeting . . .
Common Subexpression Ehmmatlon
Common Branch Tail Elimination
Array Index Simplification . . .
Appendix A: Compilation Error Mmagel
Appendix B: Run-Time Error Messages .
Appendix C: Compiler Errors . . .
Overflow Errors
Consistency Checks
Appendix D: Default File Extensions

°

.

o e

Appendix E: Entry Points in the Pascal Support Lnbnry

Pascal-2 V2.1/RSX Language Specification

.

Introduction to the Language Speciﬁcation .

Changes in the Standard . . , . .
‘For' Statement Control Vanablec
File Declaration
Parameter Compatibility
Procedure and Function Parameters
Conformant Array Parameters .
Literal Strings

‘Write,” ‘Writeln' of ‘Packed Array of Chu' .

Identifiers
Alternate Symbol Repmentahom .
Implementation Definitions
Standard Type ‘Integer’
Standard Type ‘Real’ . .,
Standard Type ‘Char’
Standard Type ‘Text’

‘Set' Types
I/0O Definitions .

Syntax Extensions
Identifiers

Program Heading
Declaration Order . e e
‘%Include’ Lexical Directive . . .
‘%Page’ Lexical Directive
‘External’ and ‘NonPascal’ Directives
Structured Constants . . .
Nested Parentheses ., . . .

.

.

+ e e s

.

Standard vs. Structured Constant Dcclarahons
Multidimensional Arrays of Constants

Statement Labels
Default Case Label (* Othervm’) ..

I/O Support Extensions
External File Access
‘Close’ Procedure

Random Access to Data Fnles (¢ Seek)

String Input (‘Read’ and ‘Readln’)
‘Break’ Procedure
Octal Qutpat
Real Number Formatting
Low-Level Interface

.

3

.

2-113
2-113
2-114
2-115

© 06 %
s
aI OO N U DN et gt pud pmt pt e

1
[+-]

3-8

Qe
@® ®

. 3-8
3-8
. 39
3-10
3-10
3-10
3-10
3-11
3-11
3-11
3-12
3-14
3-14
3-16
3-17
3-17
3-18
3-18
3-20
3-20
3-21
3-21
3-21
3-21
3-22

Boolean Operators on Integer
Nondecimal Integer Constants
Extended-Range Arithmetic
“Origin” Declaration
‘Ref’ Fanction
‘Size’ and ‘Bitsize' Functions
‘Loophole’ Function
Non-Standard Language Elements
Program Parameters
Directives . . . e e e e e e e e
‘Mod’ of Negative Numberl Coe e e
Returning of Structured Types . . o
Additional Predefined Functions and Procednres .
Procedure ‘Delete’, . ..
Procedure ‘Rename’ . . . ,
Predefined Function ‘Time’, . . .
Procedure ‘TimeStamp',
Error Handling
Detected Errors
Undetected Errors e e e e e
Appendix A: Predefined Identxﬁen e e e e e
Appendix B: Reserved Words , ., . . .
Appendix C: Pascal-2Syntax
Pascal-2 Syntax Diagrams
Extended Backus-Naur Form, .
Pascal-2 Lexical Description
Pascal-2S8yntax ,

Pascal-2 V2.1/RSX Debugger Guide
Including the Pascal-2 Debugger in Your Program
Identifying Pascal Statements
Controlling the Debugger
Command Syntax . . . NN
Exiting and Stopping the chngger .
Selective Debugging
Breakpoint Commands . . . e e e e
B, B(): Control Brcakpomts e e e e
K, K(): Killing of Breakpoints
V, V(): Data Breakpoints (Variables)
Execution Control Commands
G:Go e e e e e e
C, C(): Continue Execntxon e e
S, 8(): Step to Next Statement
P, P(): Proceed to Next Statement
Tracking Commands, ...
H, H(): History of Program Execution
T(): Execution Trace
Data Commands . . e e e e e e
W(): Write Vanable Value e e e e e e
Variable Assignment
Informational Commands
D: Display Parameters
L, L(): List Source Lines
Utility Commands . . e e e e e e e

vi

2 G W D WD W D W
DO N NN NN
L OO U N N

(<

5888880808888

W oW W W W W W

(]

W W W
obn
b

o
ot
[5,}

G pes

[+

)
ot

o ol o i o
o

[~

=2}

-3

] 1]]
-3

[+}

PN
LI W
o
(=2 -]

[
.

LU N N 2 R e S T T
OO B B B b et et bt Pt bt et et s
e o N O O

Lol S S SN N S S N S

(ol =0~ B ==« - - 3«

M(): Define Macro o .
X(): ExecateMacro oo .
Execution Stack Commands . . . v e e e

H, H(): History of Program Execuuon SN

N, N(): Names of Variables e e e e e

E() Enter Stack-Frame Context
Stepping Through & Debugger Session
Debugging External Modules

Differences in the Commands

Overlays . . . e e
Appendix A: Debuggcr Command Summary e e
The Pascal-2 Profiler

Pascal-2 V2.1/RSX Utilities Gaide
Introduction to the Utilities Guide
PASMAT: A Pascal-2 Formatter
Overview of Capabilitiess

Comments . . . e e

Statement Bunchmg e e e e e e e e
Tables « . ¢« v ¢ ¢« « v v v e e e
Using PASMAT

Formatting Directives
Limitations and Exvors
PASMAT Examples . . . e e e e e
XREF: A Pascal-2 Cross—Rxference Llster e e e
Using XREFo o
Limitations
PROCREF: Pascal—Z Procedural Croas-Reference Lmter
Using PROCREF

Limitations . . e e e e e e e e e
Dynamic String Package e e e e e

The Procedures and Functions . . e e e e
MACRO-11 Procedures With Pa&cal—Z e e e

Design of MACRO-11 Procedures . . ,
The PASMAC Macro Package,

Using PASMAC+ v v v v v v v
Procedure Definition Macros
The ‘Proc' Macro « « « « « « .

The ‘Func' Macro « .« .
The ‘Param’'Macro

The ‘Var' Macro

The ‘Save’ Macro

The ‘Rsave' Macro

The ‘Begin’ Macro«,

The ‘Endpr' Macro+ . « « . .
Type Definitions AN e e e

Placing PASMAC into the System Macro lemry AN
PROSE: A Text Formatter e e e e
PROSE Basics e e e e e e e e e e
Structure of Directive Lmea e e e e e e e e e
Placement of Directives
Running the PROSE Program
HeaderFiles
Controlling Input to PROSE .,

OV Ot QR QRO O O OROR U O U QR QRO TR UT RO QRN OT OGN OY QR QY R
]

] [l 8 i

ol ln o o B o B > o WD
[I 3
(2.1 [=] Co o o G G BN o

I R R A I D D B =, B < S B, B S R W S s]
B2 B B OO BN Pt Dad b et Pt et e 5 3§ b 8 8
P I OB VW NN L O U R WW N NN s

1]
CEaSGASE8RRRE8EE2ES

vil

INPUT Directive
OPTION Directive .
Setting Up the Docament’s Formas

Page Format
FORM Directive

Page Breaks

Margins .
Paragraphs

Comments . e e e
Changing Format Within the Text

Breaking and Skipping Lines
Keep Buffers . .
Reset Directive .
Creating an Index
Printing the Document
Specifying Output Devices
Printing Selected Pages and Sections

3

°

°

.

°

.

¢

°

.

°

°

.

.

Appendix A: Summary Directive Table

Appendix B: Examples of PROSE Directives in

Appendix C: Historical Notes .

For More Information .

Index

viil

.

.

.

.

.

.

.

.

.

°

Text .

TR T U UR R ON QRO

¢ T ¢ s 0 & ¢ e o 5 o %
O OR UV QU OV T OUY QN CR o
V=TV~ R i Y N N N o)

1]
&3228

m?x?:m?!?\mmmmm
1]

-5 D =) [=]
S3IZ8SRE

I

. Info-1
. Index-1

Preface

This copy of the Pascal-2 User Manual for the RSXoperating system
corresponds to Version 2.1E of the Pascal-2 software. This edition
provides users with an up-to-date, technically accurate manual. We've
corrected many technical errors and revised much of the text for clarity.
The next edition will provide farther improvements, such as & complete
description of the Pascal language as implemented.

Many changes resnlted from user comments, which we continue to en-
courage. For example, users’ feedback helped us clarify our explana-
tions of the role of the taskbuilder and the use of structured constants.
If you wish to contribute the next edition, please fill out and return the
evaluation report provided at the end of this manual, or address your
comments directly to:

David Spencer, Manager
Technical Publications
Oregon Software

6915 SW Macadam
Portland, Oregon 97219-2397

We appreciate hearing from you.

For our technical publishing, we use TEX, a computer-based typesetting
program developed by Don Knuth at Stanford University. This manual
is typeset in the Computer Modern Roman family of type faces with
the TEX system, Masters were produced at Oregon Software on a
Imprint-10 laser printer driven by TEX-in-Pascal and our VAX-11/780.
This edition is the last one to be produced on a laser printer. With
the next release, masters for the user manual will be produced on a
phototypesetter.

L

Pascal-2 V2.1/RSX Introduction

Pascal-2 is an integrated system for software development. At the heart
of the system is a transportable multipass compiler that adheres to the
Pascal standard while performing optimizations to generate compact,
fast code. The Pascal-2 system also offers sophisticated error check-
ing during compilations, extensive error reporting and recovery at run-
time, a Debugger to examine the dynamic state of a running program in
a high-level Pascal context, plus other development utilities. Together,
these components offer the professional programmer a structured and
unified environment in which to design, code, test, maintain, and im-
prove software. Within this environment, more reliable programs may
be produced in less time. Further, programs produced with the Pas-
cal-2 compiler are more portable than those produced with many other

programming packages.

The Pascal-2 Software Development System

Pascal-2 compiler, the support library, the formatters PASMAT and PB, the Debugger and
Profiler, and the cross-references XREF and PROCREF. The text formatter PROSE, and the
installation verifier VERIFY, not shown, are also components of the system. The user creates the
Pascal source program, the included source files, user libraries, and resident libraries. The Text
Editor and Task Builder are supplied by the computer vendor.

xi

ceftiﬁcation Programs compiled under Pascal-2 are portable and reliable becanse of
the compiler's strict implementation of the standard. Also, Pascal-2 is
very consistent from system to system and all Pascal-2 implementations
are consistent with each other. Other compilers may differ according to
the processor and operating system you're using or may not be available
on larger systems,

For Pascal compilers, certification is relatively new. The Federal Soft-
ware Management Support Center (FSMSC), a private company under
contract with the GSA, tests Pascal compilers according to a validation
process that measures a compiler's performance on a suite of 740 test
programs. The tests subject the vendor's claims to comparison with
the published standard. FSMSC testing guarantees that the software
meets ANSI (American National Standards Institute) standards and
FIPS (Federal Information Processing Society) requirements. FSMSC
certification is required for any compiler purchased by an agency of the
federal government.

This version of the Pascal-2 compiler has been certified by the British
Standards Institution (BSI) and the FSMSC for compliance with ISO
Standard 7185, Level 1. During the certification process, Oregon Soft-
ware submitted the compiler to a test program which antomatically
generates a report on the software's performance. The release notes
contain & copy of this report.

Pascal-2 The Pascal-2 user documentation contains information on the use of
Documentation the Pascal-2 compiler and related utilities on Digital's RSX operat-
Package ing systems: RSX.11M, RSX-11M-Plus, IAS, and VAX/VMS-AME.

In general, we assume that readers of the manual are programmers

familiar with Pascal and the RSX operating system. Some sections
assume a detailed working knowledge of the language.

The manual consists of five major guides, as follows:

o The User Guide serves as'a quick overview of the Pascal-2 system,
to give you a feel for how it works. Written for new users, the
guide takes you through the basic steps of compiling, correcting,
and running a Pascal-2 program. The User Guide also provides
brief explanations and examples of some of the standard features
and utilities of the Pascal-2 system.

e The Programmer Reference contains detailed descriptions of com-
pilation commands, embedded and low-level switches, and the low-
level interface between Pascal-2 and the operating system. The
Programmer Reference also contains a miscellany of information
on implementation-related problems, divided into two broad cat-
egories: error recovery and implementation notes. Finally, the
reference describes Pascal-2's optimizations and provides helpful
hints as to the cause of compile-time and run-time errors and ways
to fix the errors.

xi

e The Language Specification describes Pascal-2's language features
in detail. Since the second edition of Jensen and Wirth's User
Manual and Report in 1978, the language has undergone major
changes, which are incorporated in the international Pascal stan-
dard, ISO 7185. Because not everyone is familiar with that doc-
ument, the Language Specification begins by summarizing those
changes and describing the ways that Pascal-2 implements them.
Thus, the guide serves not only as a description of our Pascal prod-
uct but also as a review of the language's evolution since 1978,

e The Debugger and Profiler Guide describes two programs designed
to alleviate tedious aspects of programming and to improve the
usefulness of the Pascal-2 system. The Debugger helps find and
correct errors that cannot be caught at compile time. The execu-
tion Profiler shows less efficient areas of the program in terms of
the number of statements executed.

e The Utilities Guide describes each of the following packages: pro-
gram formatters, & text formatter, cross-reference programs, a
package that helps interface assembler routines with Pascal-2 pro-
grams, and & dynamic string package. Each utility is described in
detail, with examples.

A set of system-specific release notes accompanies each shipment of
the software. These release notes contain installation procedures and
inform the user of software bugs and documentation errors. The release
notes should be kept with the Pascal-2 User Manual for reference.

The Pascal-2 User Manual is not intended to be a Pascal textbook.
Beginners can make their way carefolly through this manunal, but we
refer you to the reading list in the appendix, “For More Information.”

For information on the RSX system, see these RSX manuals: Intro-
duction to RSX, MCR Operations, I/O Operations Reference Manual,
Task Builder, Executive Reference.

In addition, Pascal-1 customers upgrading to Pascal-2 should refer
to the Pascal-2 Conversion Guide and the CONVRS utility, which
are available from Oregon Software. The Conversion Guide explains
specific language differences between Pascal-1 and Pascal-2 and the
practical programming problems created by the differences. The guide
describes the use of the CONVRS utility to help isolate areas in a Pas-
cal-1 program that will have to be modified to convert to Pascal-2;
the guide then details the steps required to convert the programs. The
Conversior Guide concludes with a list of solutions to errors that you
may encounter while completing the conversion to Pascal-2.

xili

Style Notes

xiv

The Pascal-2 User Manual follows these style conventions:

Text: Pascal reserved words, predefined symbols, switches and
compiler directives are in boldface typewriter type: begim,
write, {include, momain. Portions of examples referred to
in text are in boldface typewriter type. System directives are
in upper-case boldface typewriter type: UAITFR, SPAVE. Pro-
gram and system names are in upper case: ROTAT, RSX.

Program Examples: Commands that you should type are in under-
lined boldface typewriter: RUN EX. These commands as-
sume & carriage return at the end.

Program Listings: The Pascal-2 compiler accepts any combination of
upper-case and lower-case characters. Examples in this man-
ual have Pascal words in lower case and have user-defined
words with an initial capital letter and other capitalization as
needed for readability, as shown in this program segment:

procedure Show;
begia
SomsUserfction;
writeln(Result);
end;

Single quotes (*..") in examples and in text appear as “..”.

Terminology: We use standard terms as they are used in documents
describing the RSX operating system.

U

Pascal-2 V2.1/RSX User Guide

Getting Started

This introductory section gives you & tutorial overview of Pascal-2's
features. The User Guide explains how to compile and run Pascal-2
programs, how to interpret program listings and error messages, and
how to use some of the utility programs., This section also provides a
complete list of switches used to control the compilation process.

This guide assumes that you are familiar with: simple RSX commands,
a text editor (e.g., EDIT, TECO, EDT, SOS), and elementary Pascal
programming.

This section does not provide:

e An introduction to Pascal (see Programming in Pascal by Peter
Grogono);

¢ A detailed description of Pascal-2 (see the Language Specification,
and Doug Cooper’s Standard Pascal User Reference Manual);

© An expert's guide to Pascal-2 (see the Programmer Reference).

The first step in running a Pascal program is to enter the program
into the computer and store it in the file system. Use a familiar text
editor to enter the program; store it in a file with the file type .PAS.
The Paacal-2 compiler accepts free-format program files, so use blanks,
tabs, new lines, and form feeds as desired to help make the program
readable.

This Pascal version of a program is called the source program, or the

source file. All other versions of the program are transiations from the
source program,

1-1

Compiling the
Program

1-2

After editing, you must compile your program—translate it into & form
that the computer can execute. The Pascal-2 compilation process is
directed by the PAS system task. The PAS command causes the Pascal-2
compiler to produce an .OBJ object file. The Task Builder combines
the object file with the Pascal-2 library to produce an executable task
image. With a source file called TEST.PAS, the entire compilation
process follows this example:

>PAS TESTY
>TKB TEST/FP/CP = YEST,LB:[1,1]PASLIB/LB

As the example shows, the .PAS, .TSK, and .OBJ extensions may be
omitted from the file names on commands to the Pascal-2 compiler
and the Task Builder. These extensions must, however, be included in
commands to other RSX system programs such as the editor.

This example shows how you may compile a single program. Subse-
quent examples show batch mode and command-file compilations.

Notice, too, the /FP and /CP switches in the Task Builder command.
The /FP switch enables the saving of floating-point context, and the /CP
switch enables checkpointing. We strongly recommend these switches
for Pascal tasks. See the “Compilation Options” for a complete list of
switches,

To illustrate the compilation process, let's say that the program

program First (output);

begin
vrite (’"Things are best im their begimnings"’);
eriteln (’ -- Blaise Pascal’);

end.

is stored in the file FIRST.PAS.

Compilation proceeds as follows:

>PAS FIRST

>TEB FIRST/FP/CP = FIRST,LB:[1,1]PASLIB/LB

>RUE FIRST

"Things are best im their beginnings" -- Blaise Pascal

Notice that no errors were detected. The next example shows what
happens if detectable errors are present in the source program,

Checking For Errors

The Pascal-2 compiler detects nearly 150 types of “grammatical” errors
in & program: errors in syntax such as missing semicolons, undefined
identifiers, missing begin and end reserved words, and similar mistakes.
As an example, the following program contains a deliberate error: a
semicolon is missing between the program heading and the reserved
word begin.

program Secord (output)
begin

writeln (’Things get worse as they comtimue’);
end.

Semicolon errors (the most common errors made by beginning Pascal
programmers) are always detected by the compiler:

Example: Syntax Error Message on Screen]

>PA3 SECOED

Pascal-2 BSX V2.1E 9-Feb-86

7:08 AR Site 81-1 Page 1-1 Oreger Software, 6915

SY Hacadam Ave., Portland, Oregomn 97219, (503) 2456-2202 SECOED

i program Second (output)

“19

e8¢ 19; Use ?;’ to separate statements

. ¢06 There was 1 line with errors detected ¢¢9

YErrors detected: 1

The Program Listing

For each detected error, a line of the source program is printed, then an
arrow indicating the approximate position of the error, then & message
describing the error. (The number “19" is the error message number
generated by the compiler.) See Appendix A of the Programmer Ref-
erence for a complete list of detectable compilation errors.

Many times, to correct an error, you need to see more of the program
than just the line on which the error appears. The Pascal-2 compiler
can be directed to display the entire program, with all detected errors
and other information. This is the “listing” of the program.

To obtain a listing file (.LST), inclade the 1ist switch in the compila-
tion command line:

>PAS SECOED/LIST

1-3

To get a program listing at a terminal, specify TI: as the listing file,
as shown below. The listing also may be written to the line printer or
a disk file.

Example: Program Listing With Compilation Error Message 1

>PAS TBIRD,TI:= THIRD/LIST

Pascal-2 BSX V2.1E 9-Feb-86

7:08 AH 8ite 8i-1 Page i-1 Oregom Software, 6915

S¥ Hacadam Ave., Portland, Oregor 97219, (503) 245-2202 TEIRD,TI: = THIRD/LIST

1 program Third (output)
“19
sve 19: Use ’;’ to separate statemsnts
2 begin
3 sriteln (’Love or hate alters the aspect of justice’);

4 end.

¢osThere was 1 lime with errors detected oee

Compiler Commands

The listing is printed in pages, with a heading on each page showing the
program name, the exact version of the Pascal-2 compiler, the date and
time, and the licensed user identification. The listing also prints owut,
in the left-hand column, the line number for each line of the program.
You also may use the exrors switch to create a listing file containing
only the lines with detected errors.

As illustrated in the example of 1ist, a compilation switch modifies
the compilation process in some way. A switch is signified by a slash
and a descriptive name. All of the compilation switches are explained
in the “Compilation Options” section of this guide.

All Pascal-2 compilation commands are divided into three parts: the
compiler invocation command, the file specifications, and the compila-
tion switches.

The compilation syntax for Pascal-2 is this:

>PAS output-file, listing-filesinput-files/switches

The PAS invocation (or some other name that your system manager
has chosen for the invocation command) must always come first; it may
be written in any combination of upper-case or lower-case characters.
PAS may be followed on the same line by the rest of the compilation
specification or entered on a line by itself. In the latter case, the PAS>
prompt appears for the file specifications and compilation switches.

input-files: The only required file specification is at least one input
file. Multiple input files are concatenated in order, from left
to right, so that a large program can be split into separate files

or go that & common set of definitions can be placed in a con-
figuration file. With “source concatenation” no input file can
contain a program statement, except for the first file listed.
If no output specification is given, the ontput is determined
by the compilation switches; the file name is taken from the
last input file specified; and the output files will be placed in
the default directory. The default input file extension is .PAS.
Multiple input files are separated by & comma.

output-filee The output file specifies the name of the object output,
with a defaunlt extension of .OBJ. If the macro compilation
switch is specified, the output file contains MACRO-11 code
and the default extension is .MAC.

listing-file: The listing file specifies the file to receive the compilation
or error listing, The default listing file extension is .LST.

If an equal sign appears on the command line, but no file
name is listed in the position of the output file, no output file
is generated. If no file name is listed in the position of the
listing file, a listing output is produced only if errors exist;
if errors exist, output is sent to the user's terminal with the
erxors switch assumed.

switches: Program compilation is affected in some way by one or more
of the options described in the next section. Examples in this
manual show the compilation switches after the last file spec-
ification, but switches may appear after any file specification
and wherever they're placed, they apply to the entire compi-
lation, Multiple switches are separated by slashes.

You can also run the compiler directly, responding to the prompt as
shown here:

>RUE [1,54]PASCAL
PA8» ———e—e— prompts for the rest of the command line

1-5

Compilation Options

Compilation Switches

Program Options

1-6

The Pascal-2 compiler provides you with a number of options, which
are implemented by switches entered on the command line or embedded
in the code itself. Switches may be used to change the compiler’s
characteristics or to include a utility program.

Compilation switches provide control over the files generated and over
some aspects of the generated code. A switch is signified by a descrip-
tive name (e.g., check). A switch name beginning with no reverses the
effect of the switch (e.g., mocheck). A switch name may be abbrevi-
ated as long as the shortened form is sufficient to identify the switch.
Three characters of the switch name (excluding the no) always identify
a Pascal-2 compilation switch (e.g., che, Boche; mac, momac).

Some switches, such as object and macro, are incompatible, causing
the error message “conflicting switches specified” if used in the same
compilation.

Pascal-2 compilation switches are:

double Specifies that all real arithmetic is to be done with double-
precision rather than with single-precision. All real variables
are in 8-byte floating-point format. You must use colon no-
tation (e.g., B:18:15) within the program to obtain double-
precision values in the vrite statement. Default is “off”: with
real variables are in 4-byte format. See “Extended Precision”
in the Programmer’s Reference for more details.

pascalil Specifies that the interface with external procedures is com-
patible with Pascal-1. This interface is less efficient than
Pascal-2's and may slow program execution. The pascali
switch simplifies the conversion of programs from Pascal-1 to
Pascal-2 and should be used only when required. Default is
the Pascal-2 interface.

nomaiz No main program is expected; only procedures are compiled.
This switch is used most often to compile modules contain-
ing only external procedure definitions. If a main program is
found, an error message is generated saying that extra state-
ments have been found. Default is main: a main program is
being compiled.

own Specifies that global-level variables are local to the compila-
tion unit and are shared only with other external routines
that have been compiled with the same program name and
with own. Default is “off”: global variables are shared. With
this switch, you can distinguish between “public global” and
“private global” variables.

H

Compiler Options

Code Switches

sowalkback Disables the generation of line number and procedure

(o4 b ¢]

1list

debug

profile

object

BACXO

name tables for the procedure-by-procedure walkback that is
displayed on the terminal when & program contains a run-
time error. The run-time message header and error message
are printed but not the walkback. The debag switch disables
the generation of the walkback. Default is walkback: the
tables are generated, and the full walkback in source terms is
displayed after the run-time error message. See “Run-Time
Error Reporting” later in this section for a discussion of the
error walkback. The walkback switch in external modules
must be set to match those of the main program segment.

Requests that the listing file contain only lines with errors. By
default, this “errors only” listing is printed on the terminal.
You can direct the listing to a disk file by providing a listing-
file specification on the command line. The ezxxors switch is
incompatible with the 1ist switch. It also has no effect when
used with the debug switch or the profile switch, because
both of these switches always generate a listing file.

Requests a full source listing in the listing file, If a listing file
is specified, 1ist is assumed unless you specify the errors
switch. If no listing file is specified, 1ist directs output to &
listing file with the same name as the first input file and the
appropriate extension.

Requests generation of code and auxiliary files to interface
with the Pascal-2 Debugger. Default is “off.”" The debug
switch disables the generation of the walkback and affects
some optimizations (see “Compiler Optimizations”). This
switch cannot be used with the profile switch or the ex-
rors switch.

Requests an execution profile when the program is run. De-
fault is “off.” The switch cannot be used with the debug
switch or the exrors switch.

Generates an object format output file with default extension
.OBJ. Default is normally “on”; object code is generated. The
switch is “off” when noobject is specified or when no output
file is provided on the command line. The switch cannot be
used with the macro switch.

Generates MACRO-11 code in the output file. This code may
be assembled by the HACRO assembler command to produce
an object file. When macro is specified, object is set “off”
and the default extension for the output file becomes .MAC.
Defanlt of macro is “off.” The macro switch cannot be used
with the object switch.

1-7

Checking Switches

Processor Switches

Embedded Switches

1-8

Bocheck Disables all run-time checks, including index range checks,
subrange assignment checks, pointer checks, stack checks, case
label checks, and divide-by-zero checks. Note that compilation
errors are still detected. Thus, if aocheck is specified, var
A:arzay [2..10] of integer; A[1] := 0; is etill detected
as a compilation error, but I := 1; A[I] := 0; is not. After
a program has been fully debugged, the nocheck switch may
be used to reduce the size of the compiled code. Default is
check,

standard Requests that all Pascal-2 extended language features be
flagged as errors. Default is nostandard.

times Prints wall-clock time consumed by the compiler and the com-
pilation rate in lines per minute. Default is “off.”

The processor switch defaults to the processor option for the machine
on which the compiler is running. Change the value by specifying one
of these four switches on the command line:

fpp Requests the compiler to generate code for & machine with
the Floating Point Processor (FPP) option. FPP instructions
include ADDP, HODF, DIVF, etc. This switch implies the eis
switch and may not be specified at the same time as the fis
switch.

fis Requests the compiler to generate code for a machine with the
Floating Instruction Set (FIS) option. FIS supports only the
four basic floating-point instructions and is available on only
a few types of machines. This switch implies the eis switch
and may not be specified at the same time as the £pp switch.

eis Requests the compiler to generate code for & machine with
the Extended Instruction Set (EIS) option. The EIS processor
option includes instructions to perform integer multiplication
and division. Floating-point operations are done with calls to
a floating-point simulator.

sim Requests code with calls to software routines for integer multi-
ply and divide as well as for floating-point arithmetic. Should
be used only if the target machine does not have EIS.

Some characteristics of the compiled code may be controlled by switches
included in the source code. These switches take the form of a Pascal
comment beginning with a dollar sign ‘¢’ and followed by a descriptive
name, for example:

{$indexcheck}

A switch name beginning with “no” reverses the effect of the switch,
for example: -

{$noindexcheck}

Most switches may be abbrevisted to & minimum of three characters,
for example:

{8ind} or {$moi}

However, when using $nopointercheck and $moprofile be sure to
enter more than three characters, or the compiler treats the switch as
an ordinary comment.

Multiple switches may be embedded within a single comment. The
switches must be separated by commas; only the first may have the
dollar sign. The following forms are equivalent:

{$noindex,norange}
{$noindex}{$norange}

Embedded switches are counting switches. Each occurrence increments
or decrements the switch value; the switch is enabled if its value is
greater than zero. The initial value of a switch is controlled by an
equivalent compilation ewitch, sach as debug, if the equivalent compi-
lation switch exists. If no equivalent switch is present on the command
line, the initial value is determined by the defaults described below.

Once set, some switches are valid for the entire program, as with §owa.
In some cases, the “no” form of the switch is the one normally used, as
with $nomain.

Some switches may be turned “on” and “off” for a particular section
of code, either on a statement-by-statement or procedure-by-procedure
basis, The following example shows how debugging may be turned off
for a procedure:

{$nodebug} debugging turned off

procedure P;
begin
body of procedure P
end;

{$debug} debugging enabled again

The compiler does not limit to-the number of command-line switches
you may use. When using embedded switches, you may have up to
ten pairs of $1ist...$nolist switches and up to twenty-five “on...off”
settings for other embedded switches.

The particulars of each switch are described in the following sections.

1-9

Program Options

1-10

$double Specifies that all real arithmetic is to be done with double-

precision rather than with single-precision. All real variables
are in 8-byte floating-point format. $double applies to the en-
tire compilation. You must use colon notation (e.g., §:18: 15)
to print the double-precision values in a write statement.
This switch must appear in the program before any data of
type real is defined or used. Default is “off”; with real vari-
ables in 4-byte format. See “Extended Precision” in the Pro-
grammer’s Reference for more details,

$pascali Specifies that the interface with external procedures is com-

patible with Pascal-1. This interface is less efficient than that
of Pascal-2, and may slow program execution, but should sim-
plify conversion of programs from Pascal-1 to Pascal-2. The
default is “off”; giving the Pascal-2 interface.

External Pascal-2 procedures may be called regardless of the
setting of this switch,

$momain No main program is expected; only procedures are compiled.

$own

This switch is used most often to compile modules contain-
ing only external procedure definitions. If 5 main program is
found, an error message is generated saying that extra state-
ments have been found. Default is $main: a main program is
being compiled.

Specifies that global-level variables are local to the compila-
tion unit and are shared only with other external routines
that have been compiled with the same program name and
with $own. The $own setting applies to the entire compila-
tion unit., Default is “off”: global variables are shared. With
this switch, you can distinguish between “public global” and
“private global” variables.

$nowalkback Disables the generation of line number and procedure

name tables for the procedure-by-procedure walkback that is
displayed on the terminal when a program contains a run-
time error. The run-time message header and error message
are printed but not the walkback. The debug switch disables
the generation of the walkback. Default is walkback: the
tables are generated, and the full walkback in source terms is
displayed after the run-time error message. See “Run-Time
Error Reporting” later in this section for a discussion of the
walkback. The walkback switch in external modules must be
set to match those of the main program segment.

Compiler Options

$nodebug, $debug Disables/enables come of the overhead of the Pas-

cal-2 Debugger. These two switches have effect only when
the debag compilation switch is specified. The debug switch
generates the extra files needed for debugging and sets the
$debug switch “on.” $Bodebug may be used to turn off some
of the debugging overhead for procedures or functions that
have already been fully tested. $Debug may be used to re-
store debugging for other procedures. The walkback switch
in external modules must be set to match those of the main
prograin segment.

$moprofile, $profile Disables/enables some of the overhead of the

$80list

Pascal-2 Profiler. These two switches have effect only when
the profile compilation switch is specified. The profile
switch generates the extra files needed for profiling and sets
$profile “on.” $Hoprofile may be used to turn off profiling
for procedures or functions that do not need to be profiled,
and $profile may be used to restore profiling for other pro-
cedures,

When the begin statement of a procedure is compiled, the
state of the $debug/$modebug and $profile/$moprofile
switches determine debugging or profiling for that entire pro-
cedure. Note that & procedure constitutes the smallest section
of code that can be debugged or profiled; you can’t debug or
profile individual lines of a procedure,

The $debug/$nodebug and $profile/$noprofile switches
serve the same functions as far as the code generated. You
would never use both sets in the same compilation. (You can’t
debug the program and profile it at the same time.)

Turns off the listing of source lines in the listing file; $1ist
restores the listing of source lines. The switch may be turned
on or off after each line of source code. You may have up to
ten §1ist -- $nolist-switch pairs. The listing file displays
the $nolist/$1ist switches, and the line numbers reflect the
lines for which listing has been disabled. In this program
fragment, listing has been disabled on lines 3 through 5:

program Ex(output);
{$nolist}
{$1ist}

[-- I - I X

begin

Lines with errors are displayed even if the $nolist switch is
on. Default is §1ist.

Do not use the $nolist switch during debugging sessions. If
you attempt to access any “unlisted” line(s), the response is
the message “No such statement in this procedure.” Other
errors also may be produced.

1-11

Run-Time Checking
Switches

1-12

¢standard Like the corresponding compilation switch, $standard
causes all extended language features of Pascal-2 to be flagged
as compilation errors. By using the embedded switch at the
beginning of the program, you don't have to use the standard
switch every time you compile the program.

In addition, if you want to compile the program using lan-
guage extensions of Pascal-2, but you want to mark the non-
standard features (for later transportability to another com-
piler, perhaps), ingert the $standard switch at the start of
the program, and enclose any non-standard sections with the
switches §nostandard and §standard. The compiler then
checks the rest of the program for non-standard festures, so
that you may minimize your use of extensions. The $nostan-
dard switch is & textual flag to aid any fature conversion to a
standard program.

The $standard and $nostandard switches may be turned on
or off after each line of source code. Default is $nostandard,
which accepts the extended language features of Pascal-2 as
correct forms.

The compilation switch aockeck turns off all run-time checks. There
is no embedded $nocheck switch. The embedded checking switches
cancel the particular checks listed below. Any of these switches may
be placed at the start of the program to turn off a particalar kind of
check throughout. Or, “on/off” pairings may be used on a statement-
by-statement basis within the program.

Turning off run-time checks reduces the size of the program. However,
we recommend that you do not turn off any checks until the program
has been fully debugged.

$nocheck Turns off all run-time checks.

$noindexcheck Stops generation of code for array bounds checks; no
array index is checked as to whether it is within the array
bounds. Default is $indexcheck.

$nopointercheck Stops gemeration of code that checks for mil or
invalid pointer values. Default is $pointercheck.

$norangecheck Cancels the subrange assignment and case statement
check capabilities. No assignment to a variable of subrange
type is checked as to whether the assigned value is within
the allowed range. Also, case selectors are not checked for
matching labels, Default is $rangecheck.

$nostackcheck Stops the generation of code for stack overflow checks
on procedure and function entry. No entry to a procedure
or function is checked as to whether adequate stack space is
available for local variables. Note that some procedures call
" support library routines that check for stack overflow. Thus,
even when compiled with this switch, some programs may still

report “stack overflow” errors. The default is $stackcheck.

Compilation Examples

Example 1

Example 2

Example 3

Example 4

Example 5

The following examples show the effects of varions switches on the
compilation.

>PAS_PROG/LIST

Compiles the file PROG.PAS and generates an object file PROG.OBJ
and a listing file PROG.LST. The check switch is assumed to be on,
and code is generated for the hardware options of the machine on which
the program is being compiled.

>PAS PR0OG,PROG=PROG

Equivalent to Example 1.

>RUE DB1:[100,10]PASCAL
PAS>PROG=PROG/BOCHECK/FIS

Compiles the file PROG.PAS and generates an object file PROG.OBJ.
Any errors are listed on the user's terminal. No run-time checking code
is generated, and code is generated for a CPU with FIS instructions.

>PAS HEADER,HIDDLE,PROCED/HOEAIE

Concatenates and compiles the files HEADER.PAS, MIDDLE.PAS,
and PROCED.PAS in the order given, and generates an object file,
PROCED.OBJ. This code has no main body and therefore contains
external procedures. The check switch is assumed to be on, and code
is generated for the hardware options of the machine on which the
program is being compiled.

>PAS ,TI:=PROG

Produces a listing file to the terminal but no PROG.OB] file.

1-13

BUildiﬂg an Executable The Task Builder combines the main program with library routines

Task

1-14

from the Pascal and system libraries to produce an executable task
(.TSK) image. Input to the Task Builder may also include external
modules or libraries, overlay descriptions, and options that control
memory and file allocation.

The basic Task Builder command (illustrated with a program called
MAIN.PAS) is:

>TEB HAIB/FP/CP=HAIN,LB:[1,1]PASLIB/LB

This command combines the program MAIN.OBJ with the required
modules from the Pascal library LB:[1,1]PASLIB.OLB and the 8ys-
tem library LB:[1,1]SYSLIB.OLB, and produces the task image
MAIN.TSK. The /FP switch directs the RSX system to save floating-
point context information. The /CP switch designates the task as
“checkpointable”; this means the task may be swapped to disk as nec-
essary, and also that the task may be dynamically extended. The /FP
and /CP switches are recommended for all Pascal tasks.

To include external modules, add the file names to the command line
after the main program:

>TEB HAIN/FP/CP=HAYE,SUB1,SUB2,LB:[1,1]PASLIB/LB

Libraries of external modules may be included in a similiar fashion, but
are marked with the /LB switch:

>TEB HAIN/FP/CP=HAIN,SUB1,LIB1/LB,LIB2/LB,LB: [1,1]PASLIB/LB

To produce a memory map which displays the contents of the task
with the addresses and memory requirements of each component, add
a second output file to the Task Builder command. The map file is
created with the . MAP default extension.

>TEB HAIN/FP/CP,HAIN=HAIN,LB:[1,1]PASLIB/LB

Two Task Builder options commonly used with Pascal programs are
UNITS and EXTSCT. These (and all) Task Builder options require the use
of the multiline form of the TEB command, shown in the next example,
The UEITS option increases the number of logical unit numbers (LUNs)
available to the program. The number of LUNs available determines
the maximum number of files which may be open at any time. Two
LUNs (5 and 6) are always used by Pascal for the standard files input
and output. There are 6 LUNs allocated by default, s0 a program using
four or more files should allocate more LUNs with the UEITS option as
follows.

(Additional UBITS cause a minimal increase in task size, 80 we recom-
mend a large number, 20.)

>TEB
TEB>HAYE/FP/CP=HAIN,LB: [1,1]PASLIB/LB
TEB>/

Enter Options:

TEB>UBITS=20

1EB>//

If used, the Debugger requires five LUNs for operation, g0 you must
always increase the UEITS when you are using the Debugger with your
program, See the Debugger Gulde for details, LUNs are described in
“Pascal-2's Use of LUNa" later in this guide.

The EXTSCT (Extend Section) option allocates additional memory for a
program section. Pascal-2 uses the section named $$EBAP for the stack
and local variables; if dynamic expansion is not available, the $$HEAP
section is used for all buffers and the heap as well. The EXTSCT option
parameters specify the section name and the number (in octal) of bytes
of memory to allocate to that section. This example allocates 4K words
to the stack: ' '

>TEB
TEB>HAIE/FP/CP=HAIE,LB: [1,1]PASLIB/LB
TEB>/

Enter Optioms:
TEB>EXTSCT=$$HEAP : 20000

TEB>//

The full capabilities of the Task Builder are described in the RSX-
11M/M-PLUS Task Builder Reference Manual. See also the “Over-
lays” and “Monitoring Memory Usage” sections of the Programmer’s
Reference.

1-15

Using the Utilities

The Formatter

i-16

[Rmm—

The programmer utility package contains a set of procedures and rou-
tines that enhance the capabilities of the Pascal-2 compiler. This sub-
section shows sample uses of three utilities: PASMAT formatter, the
Debugger, and the Profiler. All utilities are fully explained in Sections
4 and 5 of this manual.

Suppose you have a program, EFACT.PAS, that calculates an 8pprox-
imation of e, the base of the natural logarithms, by summing the series

1
D

i=0
until additional terms do not affect the approximation.

Remember that the compiler accepts a program in whatever format
you choose, So the program may look like this:

program Efact(outpat);

var E, Delta, Fact: real;

H: integer;

begin

E:=1.0; H:=1; Fact:=1.0; Delta:=1.0;
repeat

E:=E+Delta;

B:=H+1; Fact:sFacteB; Delta:=1/Fact;
aptil E = (E+Delta);

erite(’Hith ’, m:1, ! terms, ’);
writeln(’the value of e is’,E:18:15);
end.

The Debugger

To make the program more readable, you decide to format the program
with PASMAT, one of the Pascal-2 utility programs. Give the following
command:

>RUB_PASHAT
PHT>EFACT

and the program is reformatted to look like this:

program Efact(output);

vax
E, Delta, Fact: real;
B: integer;
begin
E := 1.0;
E := 1;
Fact :3 1.0;
Delta := 1.0;
repeat
E := E ¢ Delta;
=0 ¢+ 1;

Fact := Fact ¢ §;
Delta := 1 / Pact;
wstil B = (B ¢ Delta);
erite(’¥ith ?, m:1, ’ terms, ’);
vriteln(’the valne of e is’,E:18:15);
end.,

(PASMAT has many other formatting options. See the Utilities Guide
for details.) Now proceed to compile the program.

>PAS EFACT

>TEB EFACT/FP/CP = EFACT,LB:[1,1]PASLIB/LB

>RUE EFACT

Uitk 11 terms, the value of e is 2.718282000000000

Even after you have corrected any syntax errors caught by the com-
piler, the program may still yield unexpected results. In this situation,
Pascal-2's interactive Debugger can help uncover and correct the prob-
lems. The Debugger takes control of the program and responds to your
commands, displaying execution information in a Pascal context. With
the Debugger, you can watch the progress of the computation, and you
can display intermediate values without making any program changes.
You can then spot the point at which values go awry and correct the
error,

To do this, use the debug switch to compile the program with the
Debugger. You then build the task using the multiline form of the
TEB command to increase the namber of logical units available to the
program. The support library and Debugger open seven files, so you
need at least 7 logical unite to run Efact and the Debugger. (The

1-17

system default is 6.) Although 7 would suffice, we recommend that you
use a larger number than you need, 20 in most cases.

First, compile and task-build the program with the commands:

>PAS EFACT/DEBUG

>TEB the multiline form of the command
TlB)EFlCT/FP/CP'KFACT,LB:[1,1]PASLIB/LB

TEB>/

Enter Optionms:

TEB>UBITS=20

TEB>//

The debug compilation produces four outpat files: EFACT.LST,
EFACT.SYM, EFACT.SMP, and EFACT.OBJ. You need the listing
file to determine the places to set breakpoints in the program. Don't
worry about the other three output files, but don't delete them or the
listing file. The Debugger uses all of them.

After doing & debug compilation, you may find it handy to have a
printout of the listing file. The file looks like this:

Example: Listing From Compilation With Debug Option j

Pagcal-2 RSX V2.1E

7:08 &H Site €1-1 Page 1-1 Oregom Softiware, 6916

S¥ Hacadam Ave., Portland, Oregom 97219, (503) 245-2202 EFACT/DEBUG

Line Stmt

(oY
COWONEN D W

11
12
13
14
16
16
17
i8
19
20

C O OND N D W N =

11
12

program Efact(output);

var

E, Delta, Fact: real;
B: integer;

begin

E := 1,0;
| BRE N H
Fact := 1.0;
Delta := 1.0;
repeat
E := E 4+ Delta;
H:=0+1;
Fact := Fact ¢ §;
Delta := 1 / Fact;
until E = (B ¢ Delta);
wsrite(’Uith ?, n:1, ’ terms, ’);
vriteln(’the value of ¢ is’,E:18:15);

end.

s¢¢ Fo lines with erxrors detected ¢ve

i-18

Two columns of numbers appear on the left side of each page. The
first column, labeled Line, numbers each line of the source program,
The second column, labeled Stmt, gives the statement number of the

first statement on that line. The statement numbers start at 1 for each
procedure or function, increasing by one as each statement is compiled.
The Debugger uses these statement numbers to identify breakpoint
locations in the compiled program.

In the program Efact, for instance, you may want to set a breakpoint
at statement number 7. This is the point at which the approximation
of e changes, If the program compiles. correctly but produces unsatis-
factory results, you may set the breakpoint at HATE,7 to monitor the
approximation to e as the program runs, We'll do just that in the next
example,

Notice that the Debugger allows you to set the breakpoints. In this
example, you tell the program to write the value of e at the break-
point and then continue. (See the Debugger Guide for details on these
commands.)

Example: Setting Breakpoints for Debugger

>BUE EFACT

Pascal Debugger V3.00 -- 12-Aug-83

Debugging program EFACT

} B(HAIE,7) <¥(E);C>

at breakpoint, write E and continue

} 6 start program
Breakpoint at HAIE,7 E := E ¢ Delta;
1.0000000E+00

Breakpoint at HAIE,7 E := E ¢ Delta;
2.0000000E+00

Breakpoint at HAIE,7 E := E + Delta;
2.5000000E4+00

Breakpoint at HAIE,7 E := E ¢+ Delta;
2.666666TE+00

Breakpoint at HAIE,7 E := B + Delta;
2.7083335E+00

Breakpoint at HAIE,7 E := E ¢ Delta;
2.7166669E+00

Breakpoint at HAIE,7 E := E + Delta;
2,.7180557E+00

Breakpoint at HAIN,7 E := E ¢ Delta;
2.7182541E+00

Breakpoint at HAIE,7 E := E + Delta;
2.7182789E+00

Breakpoint at HAIE,7 E := E + Delta;
2.7182817E+00

Uith 11 terms the value of e is 2.718282000000000

Program terminated.

Breakpoint at HAIE,12 writeln(’the value of e is’, E: 18: 15);

} e

quit

1-19

The Profiler Finally, let’s examine the program for efficiency by using the profile
switch, which calls in the Profiler. “Profiling” shows the number of
times each statement is executed, giving you the opportunity to opti-
mize sections of code that are executed many times.

To utilize the Profiler, you must build the task using the multiline form
of the TEB command to increase the number of logical units available
to the program (same as for the Debugger). The support library and
Profiler open seven files, so you need at least 7 logical units to run
Efact and the Debugger. (The system default is 6.) Although 7 would
suffice, we recommend that you use a larger number than you need, 20
in most cases.

Compile and task-build the program with the commands:

>PAS EFACT/PROFILE

>TEB e the multiline form of the command
Tii;kFACT/FP/CP-EFACT,LB:[1,1]PASLIB/LB

TEB>/

Enter Options:

TEB>UEITS$=20

TEB>//

Then execute the program. The Profiler takes control of your program
and asks for the name of the profile output file. The default extension
is .PRO.

l&le: Screen Output From Program Executed Under Profiler’s Control I
>RUB EFACT

profile ¥2.1 12-4ug-83
Profiling program: EFACT

Profile output file name? EFACT ———— Qutput goes to default extension
Uith 11 terms, the value of e ie 2.718282000000000

Program terminated.

Profile being generated

1-20

The output is a listing file and looks like this:

[Example: Profiler’s Execution Summary]
Pascal-2 BSX V2.1E 9-Feb-88 7:08 AH Site B1-1 Page 1-1 Oregon Software, 6915
S¥ Hacadam Ave., Portland, Oxegom 97219, (603) 245-2202 EFACT/PROFILE
Line Stmt
1 program Efact(output);
2 vax
3 E, Delta, Fact: real;
4 B: integer;
5
1 6 i begis
i 7 2 E :» 1.0;
i 8 3 B :=1,;
1 9 4 Fact :2 1.0;
i 10 3 Delta := 1.0;
10 11 é repeat
i0 12 7 E := E ¢ Deltea;
i0 13 8 B:=8 ¢ 1;
10 14 9 Fact :3 Fact ¢ §;
10 15 10 Delta := 1 / Fact;
16 until B = (E + Delta);
i 17 11 vrite(’With ’, 8: 1, ’ terms ’);
i 18 12 vriteln(’the value of e is’, e: 18: 15);
19 end.

Procedure nams

HAXE

¢s¢ Bo lines with errors detected e¢ee

PROCEDURE EXECUTIOE SUHHARY

statements

i2

times called statemente executed

i 57 100.00¥%

There are 12 statemsnts in 1 procedures im this program.
57 statements were executed during the profile.

The leftmost column of the profile listing shows the number of times
each line is executed. The Profiler listing concludes with a “Procedure
Execution Summary” that details each procedure name, the number of
times it is called, the number of statements it contains, and the number
of statements it executes. Note, too, that the suammary shows the per-
cent of execution count taken by each program block. (In this example,
with only one procedure, the portion is 100%.) Given this information,
you can attempt to optimize the procedures and statements that use
a disproportionately large part of the time (“90 percent of the time on
10 percent of the program”).

See the Profiler section of the Debugger Guide for more information
and for a much more detailed example.

1-21

Detecting Run-Time
Ervors

Errors Detected at
Run-Time

Your Next Step

1-22

The errors discussed so far have been compilation errors—errors de-
tected by the compiler. Run-time errors, on the other hand, occur
when a program is executing, after it has been compiler and linked.

A run-time error such as Array imdex out of bounds stops the pro-
gram at the point of error. The Pascal-2 error reporting system prints
the error message, then traces the program's execution history, proce-
dure by procedure, from the point of error back to the main program,

The error traceback, or “walkback,” is intended to make debugging
easier by showing precisely where the program stopped and which pro-
cedures were called to reach that point.

The following is an example of a run-time error and procedure walk-
back. (The program has already been compiled and linked.) Line
numbers appearing in the walkback correspond to line numbers in the
source listing, not line numbers in individual procedures.

$RUF CUSTOR run program CUSTOM
%P2-F-SUBSCRIPT, Array index out of boamds — error message

Error occurred at lime 64 im procedure writelastname
location of error

Last called from lime 90 in procedere buildcustomsrfile
Last called from lime 103 in program customers

Thus ends your guided tour through Pascal-2. At this point, you should
be able to run a few simple programs. Before getting into complex
programs, however, you should consult the Programmer Reference, the
Language Specification, and study the guides for the Debugger and the
Utilities, if you wish to use those options.

Pascal-2 V2.1/RSX Programmer’s Reference

Introduction

1/0 Control Switches

The Programmer’s Reference contains nitty-gritty information about
Pascal-2 for programmers well-versed in the Pascal language. This ref-
erence describes, 1/O control switches, and Pascal-2's low-level inter-
action with the PDP-11. This reference also describes ways to handle
common Pascal-related implementation questions on RSX and contains
other miscellaneous information.

This reference is not:

e an introduction to Pascal (see Programming in Pascal by Peter
Grogono);

e a new user's guide to Pascal-2 (see the User Guide);

e a detailed description of Pascal-2 (see the Pascal-2 Language Spec-
ification).

The reset and rewrite standard procedures accept two additional
arguments specifying the file name of an external file and default fields
of the file name. These arguments can also include 1/O control switches
that give explicit control of the operating system interface details. (A
fourth parameter can also be specified. See the Language Specification
for a complete discussion of reset and revrite.)

The 1/0 switches appear in the file name or default name parameters
23 shown in these examples:

reerite(F, ’data/si:12’,’ .dat/seek/span’);
reset(F,Filename,’/rah/rw’);

A complete list of I/O switches appears below, followed by individ-
ual details. All switches may be abbreviated to the first two letters,
The parameter n is a decimal number unless preceded by a crosshatch
symbol (#), in which case it is an octal number.

/aloc:n (Allocation or Clustersize): The parameter n is the num-
/cl:n ber of 512-byte blocks allocated by the system each time a
file is extended. The parameter n is also the cluster size.
The default cluster size is set by the system manager and is
usually 5 blocks of 512 bytes each. A positive value for n in-
dicates a contiguous allocation; a negative value indicates a
non-contiguous allocation. If n is not & multiple of the de-
fault, the system rounds the value up to the next highest

2-1

/blk

multiple. The following statement creates a large file named
TEST.TXT with a cluster size of 80 non-contignouns blocks.
Later extensions of the file are allocated in 80-block clusters.

rewrite(F, test.txt/cl:-80");

(Blocked): Records in the file are not to cross disk block
boundaries, allowing faster and easier access than unblocked
records at the cost of additional space. This switch is the de-
fault for record files. See the /span and /moblk switches for

" the use of unblocked records.

/oaff:n

/eceo

/ce

/cursox

/d1k

(Buffersize): The /butf switch specifies the storage to be
allocated to a file buffer, with n representing the number of
bytes. Pascal-2 normally allocates the minimum space re-
quired for a file buffer, 512 bytes. For disk files this default
value may be raised by multiples of 512 to improve the ef-
ficiency of I/O transfers, at the cost of additional Memory.
Line-oriented files such as terminal and line-printer files nor-
mally receive buffer space equal to the width of the line, usu-
ally 80 characters. RSX single-character mode requires the
buffer to be set to 1 byte, as shown in this example:

reset(imput,’TI:/buff:1’);

(Cancel Control-O): Used with the terminal, this switch dis-
ables the Control-O (“0) mode and forces the output to the
terminal. (Typing Control-O at the terminal disables output
to the terminal until another Control-O is typed or until an
input operation is performed.) A typical use would be to print
an important error message even if Control-O had been typed.

(Carriage Control): When printed, records in the file are to
be preceded by a line-feed character and terminated by a car-
riage return. Valid only on resrite statements opening disk
files, this switch is useful for creating a printable file of raw
data records. (For information on the opening of interactive
files, sce “Single-Character I/O" later in this guide.) For text
variables this switch is automatically selected,

(Cursor Control): This switch enables terminal-independent
cursor control, allowing Pascal programs to perform cursor po-
sitioning and graphics on a variety of terminals without the
need for recoding for different terminals. The first two charac-
ters on each line are used for specifying the horizontal column
and vertical line number at which the text is to be printed.
Use the chr function to specify these special characters. Col-
umn 1 is the first print position of the line. Line 1 is the top
of the screen. If 128 is added to the line number, the screen
is cleared before the line is displayed. Based on these two
characters, the terminal driver generates the DECESSArY Cursor
control sequences to position the cursor.

(Don’t Lock): This switch is provided for the rare occasions
when the support library is unable to catch an I/0 error and

/1t

/iem:a

/ab¥:n

/noce

/asp

[zak

close the file (disk files only). Use this switch when you want
to be sure that the file is closed after an error, allowing post-
crash access to the file, Even with the /dlk switch, data in
the file etill may be destroyed.

(FORTRAN Carriage Control): The first character of each
record determines the line spacing before displaying the
record, following the FORTRAN conventions. For example,
a ‘1’ in the first print position means a page eject before the

. rest of the record is printed, This switch may only be used

with text files. For details on carriage control, see the section
on “Terminal I/O” later in this guide.

(Logical Unit Number): This switch allows you to specify the
LUN for a specific file other than the default LUN assigned by
Pascal-2. The switch is useful if yon do not want to use Pascal
to access files, for example if you are writing your own low-
level I/O routines. This switch is also useful if 8 program calls
FORTRAN routines that use files. In this way conflicts with
LUN assignments can be prevented. For more information,
refer to the section on Pascal-2's use of LUNs later in this
guide.

(Multiple Buffering): Used with either the /rak or /wbh
switch, this switch specifies the number of buffers (n) to use
in accessing a file. The number of buffers to use with a file
is dependent upon the file's I/O activity, the number of 1/O
operations performed by the program, the number of compu-
tations performed, and the amount of heap storage available
to the program. Multiple buffering allows programs to over-
lap I/O operations with computations, significantly improving
the performance of tasks that handle large volumes of data.
(See “Multiple Buffering” later in this guide for information
on enabling and utilizing the multiple buffering feature on
your system.)

(No Carriage Control): This switch disables the automatic
carriage controls imposed by a device (terminal, line printer,
etc.). Line feed and carriage return characters are omitted
from the file except in the case where the terminal is in ERAP
mode (see the /wal switch, below). This switch is the default
for non-text file variables.

(No Supersede): When a file is created with rewrite and
/nsp, this switch causes an error if a file having the same
name and version number already exists. If you specify a
version number but omit /nsp, the contents of that version of
the file is replaced with the new contents.

(Read Ahead): Used with maultiple buffers, this switch in-
structs the support library to read data from the file into the
file buffer(s) before the information is actually needed by the
program. Thus, program computations overlap file input op-
erations, improving performance. (See “Multiple Buffering”
later in this guide for information on enabling and utilizing
the maltiple buffering feature on your system.)

2-3

2-4

[ral

/xce

/e
/neeche

/ze

/ret

/xe

/seek

(Read All Bits): This switch prevents characters from being
interpreted on input from the terminal. In this binary input
mode, carriage returns <CR> and escapes <ESC> do not termi-
nate the line, and Control-C (€) is not passed to the monitor.
Instead, characters are read until the line buffer fills up. This
switch is often used with the /buff:1 I/O control switch to
enable single-character input. For example:

reset(F,’ti:/ral/buff:17);

Any typed character is returned to the program, including
Control-C.

(Restore Cursor): When this switch is used, the terminal
driver saves the current coordinates of the cursor, prints the
line of output, and then restores the cursor to its original po-
sition. This switch is commonly used in conjunction with the
/cursox file switch to update a field on the terminal with-
out disturbing input or output in progress elsewhere on the
8CTeen,

(No Echo): The terminal driver normally echoes each char-

acter typed as input unless the terminal has been set in no-
echo mode with & SET command. The /xae or /moecho switch
temporarily disables the echoing of input typed at a terminal.
This no-echo mode is often used with single-character input
mode (/baff:1). A good example use of these switches is to
read a password from the terminal without printing (echoing)
it as it is typed.
(Read-Only): Only read accesses to the file are permitted.
This switch is the default for files opened with reset. This
switch permits several users to read the same file simultane-
ously, provided they have all used /ro to open the file. /Ro is
sometimes accompanied by /seek.

(Read With Special Terminators): This switch causes any
non-printing character, such as control characters (e.g.,
RUBOUT, ESC), to terminate a line of terminal input. You can
obtain the actual character that terminated the line from the
file's I/O status block by using the file definitions in LIB-
DEF.PAS.

(Read-Write): Both read and write access permissions are
available. This is the default for files initially opened with
revrite. This switch is implied with /seek, and is required
with /apd in order to append information to the end of the
file (details below).

(Direct-Access): The /seek switch permits use of the seek
standard procedure, and allows both get and put opera-
tions on the file variable. /Seek implies the /rw switch,
The /seek/rw switch combination allows you to update files
opened with reset. For read-only files, you must specify /xo
(read-only) to override the /rw default. The seek procedure
is described in the Language Specification.

/ehe

lei:n

(Share): This switch permits shared access to the file by mul-
tiple users. Note that Pascal-2 offers no built-in facilities for
record locking/unlocking. You can use the predefined function
Boioerror to detect locked records. See “I/O Error Trap-
ping” later in this guide for information on moicerror. To
learn more about shared files, consult the section on “Shared

" Access to Files” in the IAS/RSX-11 I/0 Operations Reference

Manual,

(Size): This switch, used with rewrite, specifies the initial
allocation of space for the file. The parameter n is given in
blocks of 512 bytes. A positive value for r allocates contiguous
blocks; a negative value allocates non-contiguous blocks.

/spanmed (Spanned): Records in the file are allowed to cross disk
/moblk block boundaries, making most effective use of space. In files

[temp

/wal

/ebh

/ebt

created or accessed by Pascal-2 programs, fixed-length records
are normally “blocked.” This mesans that an integral number
of records are stored in one disk block of 512 bytes, with any
remaining storage in that block being unused. The /span and
/aoblk switches cause records to be packed more efficiently,
with records spanning from one disk block to the next. This
action requires additional buffer memory, which is automati-
cally allocated. Some extra computation also is needed.

Spanned and blocked files are not generally compatible. Files
created with /span or /noblk should be read with the same
switch.

(Temporary): This switch marks the opened file for deletion
upon close or at program termination. A file created with
no file name, as in rewrite(F), also is marked as a tempo-
rary file. Do not use /temp to delete existing files. Use the
predefined procedure delete to do this. Delete is described
in the Language Specification.

(Write All Characters): This switch is used in sending binary
output to a terminal-like device. With this switch, the ter-
minal driver does not interpret the data. Line-wrap mode
is disabled. This switch is useful with the /mnocz file switch,
where 8-bit data is written to a device connected to a termi-
nal interface, such as a plotter, which is not really a terminal
device. In this case, /wal signals binary output mode, and
/nocr prevents the terminal driver from generating carriage-

return and line-feed characters at the end of each line.

(Write Behind): With this switch, control returns to the pro-
gram before a write or put operation has completed. This
overlaps program computations with file output operations,
improving program performance. (See “Multiple Buffering”
later in this guide for information on enabling and utilizing
the multiple buffering feature on your system.)

(Write With Break-Through): This switch causes the output
to be written to the terminal regardless of its current state.
The task must be privileged for this switch to take effect. The

2-5

2-6

/PR:0 Task Builder switch should be used with the image file
name in the TEB command line to create a privileged task. Be
careful when using the /wbt switch because of possible side

effects with screen-oriented editors.

The following switches permit access to more specialized capabilities of
the File Control System. The descriptions refer to control fields in the
File Descriptor Block (FDB), which is described in detail in Appendix
A of the IAS/RSX-11 1/0 Operations Reference Manual.

/actl:n Sets F.ACTL to the decimal value of parameter n; F.ACTL

/apd

lext

/fix:n

/irs

/eq

/vaz:n

/et

determines the number of retrieval pointers and magnetic tape
positioning characteristics. For example, setting B to 34816
rewinds the tape before the next operation is performed on
the tape, as shown:

reset(T, mt0:retape.dat/actl:34816°);

Sets FA.APD in F.FACC, indicating that records are to be ap-
pended to an existing file. This switch is used solely in con-
junction with the /rw switch to open an existing file, as shown
in this example:

reset(F,Filenams,’/apd/re’);

Sets FA.EIT in F.FACC, allowing extension of the file. Files
opened with write access are by default opened with extend
and read-write (/xw) access; you would rarely use this switch.

Sets R.FIX in F.RTYP. This indicates a file of fixed length
records of length n; this is the default record structure for
non-text files. For text files opened with this switch, each
record must be exactly n bytes long or an error results.

Sets FD.IES in F.RACC, indicating that put operations in se-
quential mode should update the record and not truncate the
file. This switch is automatically selected when /seek is used.

Sets R.SEQ in F.RTYP to indicate a sequenced file; the sequence
numbers are not readily available to the Pascal programmer.

Sets B.VAR in F.RTYP to indicate a file of variable length
records, with a maximum length of n bytes. This switch can
only be applied to text files, The default length for text
files is /var:132. This switch is useful when you need to
write lines of text longer than 132 characters; for example,
/var:256 indicates that lines in the file cannot exceed 256
bytes.

Sets FA.WRT in F.FACC, providing write but not extend access
to an existing file.

External Modules

Pascal-2 implements separate compilation through the concept of an
external module, & program fragment containing at least one procedure
or function. External modules are compiled independently of other
program units and combined by the Task Builder. External modules
may be stored in libraries to simplify the handling of common routines.
(See the section “Resident and Cluster Libraries.”)

External modules may reference global variables shared by all of the
modules making up a program. If each module (including the main
program) is compiled with the same global variables, the effect is as
if all modules were compiled together. For this to work properly, the
global declarations in the external procedure and main program must
contain the same variable declarations in the same order. Parameter
lists also must agree (i.e., contain the same parameter declarations in
the same order). The simplest and most efficient way to do this is to
place all global declarations, including references to external procedures
and functions, in & header file then include the header file in the external
module and in the main program, vsing the ¥inclede compiler directive
(see “Multiple Source Files").

External routines must be referenced at the outermost (global) level of
a main program, but they may be called from any point in the code,
An external module compilation requires either the nomain compilation
switch or the $nomain embedded switch. Both switches specify that
no main program is contained in the source file. The nomain switch is
specified on the command line, whereas the $nomain embedded switch
is placed at the beginning of the external module.

An external procedure name consists of the first eight characters of
the procedure or function identifer. External procedure names must
uniquely identify an external routine because they are used as global
symbol names by the Task Builder.

Task-building errors most pertinent to external modules are:

e Duplication of external symbols. An external procedure has been
defined in more than one modale. When multiple definitions are
encountered, the Task Builder uses the first definition only and

ignores succeeding definitions.

e Undefined external symbols. The program has referenced an ex-
ternal routine that was not defined in any of the object files or
libraries specified on the command line. This error indicates that
the program contains unresolved global references.

In each case, the Task Builder responds with an error message and
produces an output file that cannot execute (permission bits on the file
are not set).

Two compiler directives, external and nonpascal, allow the use of ex-

ternal modules. The external directive defines a procedure or function
implemented in Pascal-2 as “external,” which means that the procedure

2-7

Calls to Pascal-2 Routines

2-8

may be referenced by other modules and that both the external mod-
ule and the program or module that calls it expects to find the normal
Pascal-2 calling sequence of parameters on the stack. The nonpascal
directive defines & routine written in a language other than Pascal, such
as FORTRAN or MACRO-11, and generates a call to the FORTRAN
interface routine (P$111) in the Pascal support library. P$111 creates
the standard DEC calling sequence of parameters which is expected by
the external module, and which differs from Pascal-2's.

CAUTION

Observe two cautions when using the external or mompascal
directive. Parameters to external routines cannot be checked
by the compiler for type conformance across module bound-
aries, 8o an accidental type mismatch may caunse unpredictable
results. Also, the compiler cannot verify the conformance of
global data. As mentioned above, use of the {inclnde direc-
tive can help reduce problems in this area. Parameters must
be passed by reference.

The syntax of the external directive is similar to the syntax of the
forward directive in that it consists of two distinct parts: the declara-
tion and the body. The declaration includes the external procedure or
function name and the argument list, followed by the external direc-
tive.

procedure GetStrimg(Arg: Argtype); this is the declaration
external ; -——————— external directive is required

This declaration must appear in the external module and in each com-
pilation unit that calls that external routine. You can place the dec-
laration in a header file and use the ¥include directive to insert it
appropriately.

The body of the external module contains the actual code for the pro-
cedure or function and must not include an argument list.

procedure Get3tring(Arg:Argtype);- — this is the procedure body
begin

end;
The body and declaration must be compiled together in order for the
external procedure to function properly. The external procedure may
then be called in the same way as any other procedure or fanction:

GotString(Length) ; - ——————— external procedure call

Example Using External
Directive

The practical application of external procedures is best shown by ex-
ample. The following sample illustrates the declaration and use of ex-
ternal procedures and the correct way to access global variables. Note
that the global declarations must be identical in the external procedure
(CHANGE.PAS) and in the main program (MAINLN.PAS). Note also
the use of the §nomain embedded switch in the external procedure,

First, we create & separate header module HDR.PAS containing the
external procedure reference and the program's global declarations.

Example: Separate Header Module (HDR.PAS)

type global declarations
GlobalType = record
B: booleasn;
V: imteger;
end;
var
Glob: GlobalType;
I: integerx;

procedure Change(P: iateger);
extersal ; ——————— exiernal directive must appear

The file (CHANGE.PAS) consists of the external procedure Change and
the ¥include directive, as follows:

| Example: External Procedure (CHANGE.PAS) |

{$nomain} embedded switch
finclude hdr.pas header module
procedure Change; no parameters here
begin
with Glob do
begin change global variables
B :® true;
V:sV +P;
end;
end;

The external procedure is then compiled with the romajn option em-
bedded, using the command:

>PAS CHAEGE

However, you can omit the embedded option and specify the momain
on the command line in the following manner:

>PAS CHAEGE/EOHAIE

2-9

The externally defined procedure Change may now be called within
any program unit that includes HDR.PAS and is task built with
CHANGE.OBJ. For example, assume that the file MAINLN.PAS con-
niats of this:

Example: External Procedures (MAINLN.PAS)

program Hainline;
¥include hdx; external procedure and global declarations

procedare Before;

begin
with Glob do
eriteln(’Before ezecuting Change, B = ’,B,’ and ¥) §:2,%.2);
end;

procedure After;

begin
with Glob do
vriteln(’After executing Change, B =’ ,B,’ and V = 1,¥:2,7.1);
end;

begin { program Hainlime }
with Glob do
begin initialize global variables
B := falsgs;
¥V := 0;
end;
I := 45;
Before;
Change(I); the external call
After;
end.

Compile MAINLN as you would any other main program and task build
the main program and external module, as shown:

>PAS HAIELE
>TEB HAINLE/CP/FP=HAYINLE,CHANGE,LB: [1,1]PASLIB/LB

Running the program yields these results:

>RUN HAIFLB

Before executing Change, B = false and V = 0.
After executing Change, B = true amd V = 45.

2-10

Calls to Non-Pascal-2
Routines

Calling MACRO Subroutines

The nonpascal directive is used instead of external when the exter-
nal procedure is generated by an assembler or a compiler other than
Pascal-2. Bonpascal creates an interface between the Pascal-2 calling
sequence generated by the main program or module and the standard
DEC calling sequence required by FORTRAN and most MACRO-11
routines. In addition, when the mompascal directive is invoked, regis-
ter BS is used as a pointer to the list of parameters. Parameters must

be passed by reference.
Syntax for the nonpascal directive consists of a separate declaration

and body. The declaration contains the name of the procedure or
function and the argument lis¢, followed by the monpascal directive.

The external declaration for 8 MACRQ function looks like this:
program Test;

var i: imteger;

function afunct (vax i: imteger) : imteger; —— declaration of
nonpascal; MACRO routine

begin body of the main program
i := 10;
writela(afunct(i));

end.

The MACRO routine AFUNCT is written:

; Returms argumeat plus 10

AFUECT::
BOY @2(x5),x0
add 812,x0
rte pc
.end

Type matching for the declaration and use of parameters are the user’s
responsibility.

The sample program Test is compiled with the command:

>HACRO AFUECT
>PAS TEST
>TEB TEST/CP/FP=TEST,AFUECT,LB: [1,1]PASLIB/LB
>RUN TEST
20

MACRO routines written with the Pascal-2 PASMAC utility must be
declared as external rather than mompascal, because PASMAC sim-
ulates the Pascal-2 calling sequence.

2-11

Calling FORTRAN Subroutines

2-12

For Pascal programs to call FORTRAN subroutines, two conditions
maust be met: all parameters mus¢ be passed by reference, not by value,
and FORTRAN subroutines must be declared in Pascal programs with
the nospascal directive.

The procedure forini, supplied in the Pascal support library, initial-
izes the FORTRAN object library, allowing Pascal programs to call
FORTRAN subroutines. The FORTRAN object library must be ini-
tialized in case the called FORTRAN subroutine calls other subroutines
in that library. If the library is not properly initialized, traps or inac-
curate executions can result. The same initialization is required for
FORTRAN subroutines called from MACRO. After forini returns,
you should be able to call almost any FORTRAN subroutine.

Declare forini as shown:

procedure Forini; { FORTRAS inmitialization routime }
external;

Call the FORTRAN initialization procedure at the first convenjent
point in your code, preferably the first statement of the main program.

The program FTEST.PAS shows a way to call FORTRAN subroutines
from a Pascal program. The program reads three integers from the
terminal, calls the FORTRAN subroutine ADDEM to calculate the
sum of the three numbers, then prints the sum.

Subroutine ADDEM.FOR contains these statements:
SUBROUTIEE ADDEE(A,B,C,D)

g ADDS 4, B, C TD PRODUCE D.
‘ IHPLICIT INTEGER (A-Z)
D=4a+B+cC

RETURE
EED

The main Pascal program contains thege lines;

Example: Program With Call to Foriran Subroutine —I

progzram FORtest;
var
A, B, C, D: imtegex;

procedure ADDEH(var 4, B, C, D: imteger);
nonpascal;

begis
erite('Enter 3 valwes: ’);
readln(4, B, C);
ADDEH(A, B, C, D); { add the mumbers}-— FORTRAN call
vritela(’The amswer is *, D);

ead.

Compile and run the program using these commands. Assume that the
FORTRAN subroutine ADDEM has already been compiled.

>PAS FTEST

>TEB FTEST/CP/FP=FTEST,ADDEH,LB: [1,1]PASLIB/LB

>RUE FTEST

Eater 3 valuwes: 20 40 120

The amswer is 180

Two restrictions relate specifically to the use of FORTRAN subroutines
in Pascal programs, First, Pascal-called FORTRAN subroutines cannot
access files opened in the Pascal program. However, these FORTRAN
routines can use files that they themselves open.

Second, FORTRAN eallows the passing of “null” parameters to sub-
routines, in which a comma is used as a place holder for an optional
parameter. Pascal has no such feature. To pass null parameters to
a FORTRAN subroutine from Pascal, use the oxrigin directive to de-
clare the null parameter. The variable and procedure declaration for
the Pascal program is shown below. You may use the same origia
declaration of a null real parameter for zeal and integer.
var
ListHumber, LastList: integer;
Full origim 177777B: integer;-
Revind: booleasn;

null integer parameter

procedure FPREW(var Humber, Last: integer;
var I: integer; var R: real;
var Bew: boolean);

nonpascal;

The FORTRAN subroutine declaration is then:

subroutine FPREE(Humber,Last,I,B, Rew)

When you call the FORTRAN subroutine from the Pascal program,
substitute the appropriate Full variable for any unnecesary parame-
ters. In the case of FPREW, the third and fourth parameters are null

parameters:
FPREU(ListBumber,LastList,IBull,REull, Rewind);

2-13

External Module Libraries

Extended Precision

2-14

Suppose you want a library of procedures that can be referenced by any
program. For a particular program, you do not necessarily reference all
the procedures in that library, and you do not want the entire library
loaded with the program.

Procedures and functions from one compilation unit form a single ob-
ject module and cannot be selectively loaded. For example, if proce-
dures 4, B, and C are compiled together and placed in & library, any
reference to one of them causes all three to be loaded. On the other
hand, if each procedure 4, B, and C is compiled separately and the three
object modules are placed in the same library, then & reference to one
of them causes only that module to be loaded in the program. To keep
final program size to the minimum, library modules should be compiled
separately whenever possible,

Rather than having an external declaration in the main program for
cach procedure needed, create a single “header” file containing the ex-
ternal declarations for all the external procedures defined in the library.
This header file can be included in the compilation with the {inclade
directive placed near the beginning of the program source file. No ex-
ternal reference is generated for any external procedure in the header
file that is not used by the program, so only those modules actually
used by each compilation unit are loaded into the final image file (as-
suming that the library modules modules were themselves separately
compiled). See “Multiple Source Files” for use of the %include direc-
tive. _

By using & header file in this way, you can avoid errors that could
be caused by a mismatched declaration, forcing any change made to
a declaration for an external procedure to be reflected in all programs
using that procedure. Carried to the fullest extent, a library and its
corresponding header file can be used system-wide.

Values of type real are normally stored in the PDP-11 single-precision
format, which requires 2 words of storage per value and offers sbout
7 decimal digits of precision. The double compilation switch or the
$doudble embedded switch gives double precision to all real values.
Each extended-precision value occupies 4 words of storage and provides
approximately 15-digit precision in all real calculations, including the
transcendental functions.

Normal and extended-precision values cannot be mixed in a program:
the double or $§double switch generates extended precision for all real
values. All external modules must be compiled with the same precision
as the main program, even if no real variables are present.

In addition, you must use the colon notation output format (e.g.,
E:18:15) to display double precision values in wxite statements.

Overlays

The Task Builder is capable of creating overlaid tasks, wherein program
memory aress not in use can be shared by other sections. The use
of overlays helps to reduce the memory requirements of a program,
because the entire program does not have to reside in memory.

An overlaid program is divided logically into “segments.” When one
segment is executing, the unused segmente are stored in the task im-
age on the disk. When the executing segment finishes its work, it is
overwritten with the next segment to be executed.

Overlays may need to be used if run-time errors such as “not enough
memory"” or “stack overflow” cause the program to abort. The ex-
amples presented here give only a brief overview of the RSX overlay
capabilities. If you have any problems, see chapters 5 and 6 of the
RSX-11M/M-PLUS Task Builder Reference Manual for further details
and examples; this overview is oriented only toward Pascal tasks.

The overlay structure of a program can be complicated, so a special
“language” exists to define overlsys. That language is the Overlay
Description Language (ODL). An overlay structure is defined in an
ODL file describing each program segment and its position in an overlay
tree. The ODL file has the same name as the root segment, with the
extension .ODL (i.e., MAIN.ODL is the ODL file for MAIN.PAS).
The overlay description file LB:{1,1]PAS.0DL, supplied with Pascal-2,
contains overlay descriptions for the Pascal ron-time library and the
File Control Services (FCS) I/O routines. This file describes the way
you overlay the modules in the Pascal support library and the system
I/0 library. Overlaying these two libraries is your first step toward con-
serving space. The examples that follow show you how to use PAS.ODL
to do this. If, after overlaying these libraries, you find that you still
need to shave the size of a program, then try to split up your code into
overlays. .

These overlay structures are defined in PAS.ODL:

B00Y The essential support library routines that reside in the root
co-tree, This co-tree must always be specified. (Co-trees are
discussed in the Task Builder reference manual.)

LIBR The remainder of the sapport library routines. This co-tree
must always be specified.

8YSI0O A co-tree for the FCS I/O routines used by Pascal. This co-
tree must always be selected.

SIEGLE ' The library routines for single-precision real arithmetic and
transcendental operations. Select this co-tree if your program
uses single-precision real variables or procedures.

DOUBLE The extended-precision library routines. Select this co-tree if
your program uses double-precision real variables or proce-
dures, and is compiled with the double compilation switch.

2-15

2-16

DEBUG2 The Pascal-2 Debugger. Select this co-tree if your Pascal-2
program was compiled with the debeg compilation switch.
When you specify this co-tree in an ODL file, the DOUBLE co-
tree is automatically selected to satisy the Debugger’s need
for double-precision arithmetic. For programs using single-
precision, you have to specify SING, a special variant of the
SINGLE co-tree, designed for nse with DEBUG2. SING ac-
counts for the fact that the Debugger is itself a Pascal program
compiled with double precision.

To illustrate the use of these structures, consider a Pascal program
named DEMO.PAS. If the program uses integer arithmetic only (no
real numbers), the program’s ODL file contains:

@LB: [1,1]P4S.0DL
.ROOT ROOT-DEHO,SYSIO,LIBR
.EED

The first line references PAS.ODL as an indirect file. This file is always
referenced in overlay descriptions. The .BOOT directive in the second
line defines the co-trees selected for the program. BOOT, $YSIO0, and
LIBR must always be selected. The hyphen ‘-’ is used to place your
program (DEHO) in the root. The main program must be in the root
because DEMO.OBJ contains the transfer address for the task. The
.BED directive signals the end of the overlay description.

The following command builds the overlaid task DEMO.TSK. On the
command line, the ODL file is specified with the /HP switch. This
command uses the overlay description file DEMO.ODL to produce the
task DEMO.TSK and the map file DEMO.MAP (the second output
file). DEMO.ODL references the object file DEMO.OBJ as well as the
Pascal overlay file PAS.ODL.

>TEB_DEHO/FP/CP,DEN0=DEH0/HP

When using the Debugger, you must increase the number of logical
unit numbers (LUNs) available to your program when you task-build
the program, as shown below. The default number of LUNs is 6. Since
the Debugger opens several files of its own, we recommend that you
increase the number to 20, to be sure your program can open all its
files. (Extra LUNs use very little memory.)

>TEB

TEB>DEN0/FP/CP, DEN0=DEHO/HP
ENTER OPTIONS:

TEB>UNITS=20

TEB>//

Examples of ODL Files

In the following examples, substitute the name of your program for the
program name DEHO.

Example 1. Overlaying a program that uses single-precision arithmetic.
@LB:[1,1]PAS.0DL

.R00T ADCY-DEHO,S5YSIO, LIBR,SIEGLE

.BED

Example 2. Overlaying & program that uges double-precision arith-
metic.
@LB:[1,1]1PAS.0DL

.B00T RBOOT-DENO,3Y310,LIBR,DOUBLE

.EED

Example 3. Overlaying & program that uses single-precision and /de-
bug.
@LB:[1,1}PAS.0DL —_—

.B00T ROOT-DEHO,85YS10,LIBR,3IEG,DEBUG2

.BED

Example 4. Overlaying a program that uses double-precision and /de-
bug.

In this situation you do not need to specify the DOUBLE co-tree, because
it is sautomatically selected by the DEBUG2 co-tree.
€LB:[1,1]PAS.0DL .

.ROOT 8007T-DEHO,SYSIO,LIBE,DEBUG2

.BED

Example 5. Overlaying external modules.

Suppose that DEMO.PAS calls three separate modules, SUB1.PAS,
SUB2.PAS and SUB3.PAS. If the procedures in $UB1, SUB2 and SUB3
do not call each other you may overlay them, as shown:
€LB: [1,1]PAS.0ODL

.ROOY R00T-DEHO-+(SUB1,8UB2,3UB3) ,SYSI0,LIBR

.EED
The parentheses indicate that the modules SUB1.0BJ, SUB2.0BJ, and
SUB3.0BJ are to be overlaid against each other (they share the same
memory). The asterisk (*) indicates that the automatic loading mech-
anism should be used.

Example 6, Using complex overlay descriptions.

If the overlay description is complex and does not fit on one line, you
can break up the definitions using “factors.” In this example, the factor
USER is defined by the .FCTR directive. The USER factor is then used
in the .ROOT directive. This example is equivalent to the previous
example.
@LB: [1,1]PAS.0DL
USER: .FCTR DENO-e(SUB1,SUB2,SUB3)

.ROOT ROOT-USER,SYSIO,LIBR

.EED

2-17

Support Library

Initializing the Support
Library

2-18

The Pascal support library is a collection of modules contained in an
object module library called PASLIB.OLB located in LB: [1,1). When
compiling & program, the Pascal compiler generates subroutine calls
to routines in the Pascal support library, The Task Builder places
these routines in the psect P§LIBR. The entry points in the library
are identified as p§nnn where nnn is a small integer. Appendix E of
this guide contains a list of these support library emtry points. To
see these subroutine calls, inspect the MACRO-11 code generated by
the Pascal-2 macro switch. Support library routines not called by the
compiler have a name instead of a number following the p$.

Most of the routines in the Pascal support library perform I/0O oper-
ations or arithmetic computations such as floating-point simulation or
trigonmetric function approximation. Other routines allocate dynamic
memory and report error conditions. Still other routines allow you to
change the run-time error reporting to suit your needs. When you build
a Pascal task, the Task Builder searches the Pascal sapport library for
the modules required to run your task. For example, if you compute
a logarithm in your program, the Task Builder includes the support li-
brary module that approximates logarithms ($FL0G, which defines the
entry point p$102).

In most Pascal tasks, the Task Builder includes from 3K words to 9K
words of library modules.

The Pascal support library is initialized at the start of a Pascal pro-
gram. When a typical execution begins, the system transfers control

~ to p$bga, the transfer address of the program, and the support library

initialization procedure p$59 is called. This procedure initializes global
variables used by the support library in module $DATA; then it uses the
EITE$ system directive to expand the program code by 4K bytes to
make room for the stack, which is originally located in low memory.
The routine then moves the stack from low memory to its new location
at the end of the program code.

After the stack is repositioned, control transfers to p$33, the file ini-
tialization routine. P$33 assigns the standard files input and output
(logical unit numbers 5 and 6) to TI:, the terminal. (Logical unit num-
bers are discussed a later subsection and in “Pascal-2’s Use of LUNs”
later in this section.) The support library then transfers control to
the first statement of the program, and execution begins, However, if
the program is being debugged with the Debugger, control tranafers
to p$67, the Debugger initialization routine, instead of the program.
This routine initializes the Debugger and opens its files. The Debugger
then takes over execution of the program. (See the Debugger Guide for
details.)

Support Library Data
Definitions

Constants, date and internal file definitions uweed by the support li-
brary are contained in the file LIBDEF.PAS, included in the Pascal-2
distribution kit. In addition to its use with the support library, this
file is “included” in the installation verification program VERIFY.PAS
and the error-reporting module OPERRQ.PAS. The LIBDEF routine
defines the file name block, the file deacriptor block and related char-
acteristics, the file variable, and the library work area (psect $$VEX1).
By using the ¥include directive, users can inchude LIBDEF.PAS in
any program that accesses the support library’'s work area directly.
The example prograin PFDB.PAS, below, defines a fanction named
GetFDB, which returns the address of the RSX File Descriptor Block
(FDB) as an integer. The FDB is used by the File Control Services
(FCS) to perform I/O operations on the file. The address of the FDB
for a Pascal file can be used to perform special I/O functions such as
spooling the file to the line printer. (See the RSX-11M/11M-PLUS 1/0
Operations Reference Manual for more information.) Also note the use
of the function loophole, which is predefined in the compiler and is
used in GetChannel (and GetLUE). See the Language Specification for
details on loophole.

[Example: Program to Print FDB Address (PRINTFDB.PAS) |

program PrintFDB;
%include p:libdef;

{ Returns the address of the FDB for a Pascal file. Hote: Recoxd devices
such as terminals amd lime primters do mot have FDB’s. }

var
I: text;
Filename: packed array [1.

.10) of char;

function GetFDB(var X: text): imteger;

var
F: user_file.variable; -

data type defined in LIBDEF.PAS

begin { procedure GetFDB }
F := loophole(user.file.variable,l);
GetFDB := loophole(integer, F~.fdb);
end; { procedure GetFDB }

begin { program PrintFDB }
vrite(’Enter & file name:
readln(Filenams);
reset(X,Filenams);

));

vriteln(’The address of ’,Filename,’’’s FDB is: ’,GetFDB(X));

end. { program PrintFDB }

2-19

Modifying the Support
Library’s Global Variables

2-20

To prepare the program for execution, use these commands:

>PAS PFDB

>TEB PFDB/FP/CP=PFDB,LB: [1,1)PASLIB/LB

SRUE PFDB

BErnter a file mame: TEST.TIT

The address of TEST.TET ‘s FDB is: 26268

LIBDEF.PAS can also be used to determine the logical unit number
(LUN) of a file already open to a program. Function GetLUE, sup-
plied below, can replace procedure GotFDB in the above example so the
program can print the LUN associated with the file.

function GetLUN(var X: text): imteger;
var
F: user.file.variable;-—— data type defined in LIBDEF.PAS

begis { procedere GetLUF }
F :® loophole(user.file_variable,X);
GetLUF := loophole(integer, F“.luz);
end; { procedure GetLU§ }

NOTE

The definitions in LIBDEF.PAS are provided for informa-
tional purposes and are subject to change with each release of
Pascal-2. Users who desire a more detailed description of the
internal workings of the Pascal support library must obtain
the library sources.

Certain global variables initialized in the Pascal support library can be
changed at task-build time to fit the needs of a particular application.
The GBLPAT (Global Patch) Task Builder option provides this flexibility.
Pascal-related patches you can perform with the GLBPAT option are:

¢ You can assign the standard files input and output to different
logical unit numbers (LUNs) than the default.

¢ You can change the event flag number used by the support library.
¢ You can prevent your program from being sutomatically extended.

e You can prevent your program from attaching to the terminal
(T1:).

To use the GLBPAT option, you have to know the name of the root
segment of the program. Determine this from the Task Builder map.
The examples that follow assame that the root segment is PROG, See
the RSX-11M/11M-PLUS Task Builder Manual for more details of the
GLBPAT option.

Assigning Input and Output to
Different LUNs

Changing the Support Libsery's
Event Flag

The standard files input and oetpet are opened om LUNs 5 and 8,
respectively, during program initialization. These files can be reas-
signed to other LUNs at task-build time with the GLBPAT option. This
reassignment is necessary if you have an existing program (written
in Pascal, FORTRAN or MACRO-11) that already uses these logical
unit numbers for other files. The global integer variables p$ilun and
péolun, defined in the module $DATA in the Pascal support library, de-
termine the LUNs used for input and outpet, respectively. By default,
péilun is ‘5’ and p$olus is ‘6.’

For example, if you want imput to be read from LUN 1 (instead of 5)
and ountput to be written to LUN 4 (instead of 6), use the following
commands:

>TEB
TEB>PROG/FP/CP=PROG,LB: [1,1) PASLIB/LB
188>/

Enter Optioms:

TEB>GBLPAT=PROG: P$TLUB: 1
TEB>GBLPAT=PROG: P$OLUE : 4

TEB>//

See “Pascal-2's Use of LUNs” later in this guide.

When the support library access a file, two different event flags are
used depending on the type of device being accessed. For I/O to a
directory-structured device such as a disk, the support library uses the
File Control Services (FCS) to access the file. FCS uses event flag
number 32 to synchronize the disk read and write operations. Users
must avoid referencing EFN 32 in their programs. (Refer to the RSX-
11M/M-PLUS 1/0 Operations Reference Manual for more information
on the way FCS uses event flags.) For I/O to a record-oriented device
such as a terminal or line printer, the support library accesses the device
directly using the QI0 (Queue I/O) system directive.

The support library accesses event flag number 17 to test completion
of an I/O operation to a record-oriented device. In case you have an
existing program or package of programs that uses EFN 17, you can
reassign the EFN used by the support library to any unused event flag
number, rather than changing the program code to use another EFN.
The GBLPAT Task Builder option permits this. The event flag number
is stored in the global variable named p$efa in the module $DATA in
the Pascal support library.

The following TEB command illustrates the setting of p$efa to 5. This
command instructs the support library to use event flag number 5 in-
stead of 17 when performing I/O operations on record-oriented devices.

>TEB
TKB>PROG/FP/CP=PROG,LB: [1,1]PASLIB/LB
TEB>/

Enter Optioms:
TEB>GBLPAT=PROG: P$EFE: 5

TI8>//

2-21

The “Ne-Extend” Patch

The “No-Attach” Patch

2-22

See the section on “Using Event Flags” later in this guide for informa-
tion on using event flags from Pascal programs. Also see RSX-1 1M/M-
PLUS Executive Reference Manual for complete details on the use of
event flags.

The global symbol p$aext can be patched to be s BOP (No Operation,
octal 240) instruction, thus preventing Pascal programs from automat-
ically asking RSX for more memory when no space is available on the
free list. This modification may be needed in these circumstances:

© When resident overlays are used (sce the RSX-11M/M-PLUS Ex-
ecutive Reference Manual and the Task Builder manual);

@ When a Pascal task is mapped to shared common libraries;

@ When PLAS directives are being used to change the mapping of
virtual memory.

This patch prevents your program from extending into virtual address
spaces being used for other things. If you use this patch, you must
also explicitly allocate space for $$HEAP with the EXTSCT Task Builder
option, as shown:

>TEB
TEB>PROG/FP/CP=PROG,LB: [1,1] PASLIB/LB
TEB>/

Enter Optioms:
TEB>GBLPAT=PROG: P$UELT: 240
TEBYEXTSCT=$$HEAP : 20000

TEB>//

All Pascal tasks attach to the user's terminal (logical name TI:) when
initialized. You can prevent the Pascal support library from attaching
to TI: by patching the global symbol p$aatt to be a BOP instruction
(octal 240). This patch is useful if you wish to execute additional
tasks from the terminal while the first task is executing. This patch
also allows your program to execute MCR command lines from within
the Pascal program. (See “Executing MCR Commands from Pascal
Programs” later in this guide.)

For the root segment PROG, the patch is:

>TEB
TKB>PROG/FP/CP=PROG,LB: [1, 1] PASLIB/LB
TEB>/

Entexr Options:
TEB>GBLPAT=PROG: P§FATT : 240

TEB>//

For related information, see “Detaching From the Terminal” later in
this guide.

‘Setting the Length of the
Compiler's Listing File

With the GBLPAT Task Builder option, you can change the number of
lines the compiler prints on each page of the listing file it generates.
Make the change permanently by modifying the command file PAS-
CAL.CMD, which builds the Pascal compiler, The GBLPAT option, in
this case, patches the location PAGELE+2 to contain the desired number
of lines, not inclading header lines. The format of the patch is:

>TEB

TEB>PROG/FP/CP=PROG,LB: [1,1]PASLIB/LB
TEB>/

Bater Optioms:

TEB>GBLPAT=BEAP: PAGELE+2: n

TEB>//

where n is the page length in octal lines of source code. The value
‘66’ is the defaunlt page length (54 decimal). If your line printer nses a
different page size, adjust the value 66 up or down as necessary.

2-23

Run-Time
Organization

Form of the Generated
Code

2-24

The run-time organization of a Pascal-2 program is determined by the
compiler, linker, and Pascal-2 support library.

You control compilation with the pas2 command. By default, pas2
instructs the compiler to produce an object file for your program. The
linker combines the object output from the compiler with other object
modules you specify on the command line and with modules called
by the program from the Pascal-2 support library. The linker stores
the executable output. When you run your program, the operating
system then loads the file into physical memory and begins running
the programm.

Pascal-2 code is divided into program sections called “psects.” The
psects for the main program and any separately compiled procedures
are combined with the Pascal support library by the Task Builder to
produce an executable task image. The use of multiple psects arranged
in alphabetical order provides greater flexibility for the combination of
individual procedures into a program.

The compiler generates these psects:

COESTS Contains all constants generated by the compiler. This in-
cludes constants declared by constant declarations or implicit
in the code. This psect also contains jump tables generated by
case statements, so there is a complete separation of instrac-
tion references and data references. The COESTS psects for all
compilation units are concatenated; compiled code does not
attempt to write to this psect.

DIAGS Contains line number and procedure name data used in the
printing of the run-time walkback. The information is encoded
to save space. This psect is not generated if the mowalkback
switch is specified on the command line.

GLOBAL Contains all global variables used in the main program and
external procedures, This psect is arranged so that the global
variables are shared among all procedures. The main program
and all procedures that reference global variables should have
exactly the same declarations. The size of the resulting psect
is that of the largest GLOBAL psect generated by any of the
compilation units,

I the own switch is specified in the compilation, this psect
is instead named with the first six characters of the program
name, allowing multiple global variable segments. Compiled
code writes to this psect.

P$CODE Contains the instruction code for the compilation unit. The
P$CODE psects for all compilation units are concatenated; com-
piled code does not attempt to write to this psect,

PSDYEL Defines a dynamic link to the Post-Mortem Analyzer, which
prints the walkback. This psect has two words. The first word
is a pointer used by the PMA to trace the stack frames for

the walkback. With walkback enabled, the second word of
this psect contains the address of P§PHA, the entry point of
the PMA. If the nowalkback or somais compilation switch is
used, the second word contains & zero and no jump is made
to the PMA.

8HEIFYS Generated only if the target machine does not have the EIS
hardware option (8im). This psect contains a table of shift in-
structions that simulate multiple ehifts. The psect is overlaid
in & manner similar to TABLES and is treated as read-only by
the compiled code.

TABLES Contains bit tables used for access to get elements and indi-
vidual bits within a word. All Pascal compilations generate
this psect, but all copies are overlaid by the Task Builder so
that only a single copy exists in the final program. Compiled
code does not attempt to write to this psect.

The following table summarizes the attributes of the various psects.
Refer to the MACRO-11 manual or the RSX Task Builder Manual for
further information on the meaning of the attributes.

Psect name Attributes

COESTS 20,D,LCL,REL,COE
DIAGS 20,D,LCL,REL,COB
GLOBAL R¥,D,GBL,REL,0VR
P$CODE R0,I,LCL,REL,COE
P$DYNL R¥,D,GBL,REL,0VR
SHIFTS R0,T,GBL,REL,0VR
IABLES _ _ RO.D,.GBL.REL.QVE

So that Pascal programs may be included in libraries, each Pascal-2
object file has a module name consisting of the first six characters of
the output file name, Thus a program compiled with the line:

>PAS RESPROG = HDR,IBPROG

has the module name RESPRO.OBJ. This compilation performs
“gource concatenation.” Note that with source concatenation IN-
PROG.PAS must not contain a program statement or compilation er-
rors result.

2-25

Memory Organization

On the PDP-11, a program has access to 32768 words (frequently ab-
breviated to 32K). The exact arrangement of storage is determined by
the commands to the Task Builder, but a typical program may look
something like Figure 2-1, which represents a snapshot taken during
execution. The numbers are representative; actual values vary from
program ¢o Program.

32K
unallocated, available
for hesp expansion
20K
heap
16K
------------ stack ~-=---c---- k—8P
tables 13K
global variables
constants 9K
program code
task header

Figure 2-1. Typical Memory Layout of a Pascal Program.

2-26

Task Header The task header contains task parameters and data
required by the executive and provides a storage area in which
the task context is saved,

Program Code The program code section contains the instructions
for the user program, plus any support library modules that
may be required. The support library may add from 3K to
9K words of overhead. The size of this section is determined
by the amount of user code.

Constants The constants section consists of all constants, such as
strings or real constants, needed by the program. The section
also contains the jump tables for case statements. The size
of this section is determined by the user code.

Global Variables The global variables section contains the global
variables used by the Pascal main program and external pro-
cedures. The size is that of the largest global variable section
in any compilation unit.

Tables The tables section, which contains data needed by all Pascal
programs, is 40 bytes long.

The Stack

The stack contains all variables local to inner blocks of the program,
plus parameters, procedure linkage information, and temporary work-
ing storage. Upon entry to a procedure or fanction, space is allocated
on the stack (a stack frame) containing space for all storage local to
that block. The format of the stack frame is described below.

The space allocated for the stack is determined by the size of the psect
$SHEAP. If this psect has & size of zero (the default value) then the
task is extended at program initialization by 2048 words and the space
80 obtained is used for the stack. If $$EEAP has m nob-zero size, then
the space provided is used for the stack. The psect size may be set at
task-build time with the option:

BITSCT=s$$HEAP: n

where n is the amount of space (in octal bytes) to allocate to the psect
$$EEAP. A program that makes heavy use of the stack (for local vari-
ables or recursion) requires explicit allocation for $$HEAP.

If the task cannot be extended for some reasonm, space for the stack
and heap must be provided via the EEI8CY command. For example,
the heap must be extended in this way if the Pascal task is not check-

pointable,

The stack pointer (3P) always points to the top of the stack (lowest
physical space). If the space available for the stack is too small, the
stack pointer eventually exceeds the limits of the stack space and causes
the “stack overflow” error.

If you see this error, try extending the heap as described above.

WARNING

Especially large stack overflows, those that extend beyond the
heap and into the program code sections of memory, have the
potential for causing serious problems. In some cases it is pos-
sible for the error to prevent the appropriate error message
from being printed or the program from properly terminat-
ing. In some rare instances, the condition can even lead to
the disraption of the computer's operating system. It is the
programmer's responsibility to avoid such excessively large
overflows by controlling the size of local variables and value
parameters passed to procedures.

2-27

The Heap

2-28

The heap is an area for dynamically allocated memory used for I/0O
control blocks, buffers, and variables allocated with ses.

If the task can be expanded, space for the heap is expanded as necessary.
If no space is available for further expansion or if the task cannot be
expanded, space is taken from the bottom of the stack ares. Thus the
$SHEAP peect can be used for both the stack and the heap.

Space is returned to the heap when files are closed or when variables
previously allocated with the standard procedure mew are deallocated
with the standard procedure dispose. Such space is then available
for farther heap allocation. The error message “not enough memory”
results if no space is available to satisfy a request for heap storage.

Dynamic task expansion as described above requires that the Extend
Task (EXTE$) directive be included during RSX system generation and
that the task be checkpointable (/CP task-build switch). If the task
cannot be dynamically expanded, the EXTSCT=$$HEAP: & option must
be specified at task-build time to allocate space for the stack and heap.

For information on ways to monitor the allocation of the stack and
heap at run-time, refer to the section on “Monitoring Memory Usage”
later in this guide.

L

The Stack Frame As each procedure or function is entered, space is allocated on the stack
for parameters, linkage dats, and local nse. This space is called a “stack
frame”; the “stack” consists of these stack frames,

Figure 2-2 shows the format of a stack frame.

(previous stack frames)

| function return value |
parameters

return link
dynamic link

local variables

register save area

8p

temporary storage

Figure 2-32. Format of a Stack Frame.

Not all of the fields will be used by the compiler for every procedure; only the return link is
present in every frame. It is the responsibility of the called procedure to remove the parameters
and local variables from the stack before a return is made to the caller,

Function Return Value The function return value field appears
only for functions. A value assigned to the function name
within the fanction is stored in this location and left on the
top of the stack when the function returns. Space for this field
is allocated by the calling routine before evaluation of the ar-
guments for the fanction call. The space is removed from the
stack when the calling routine has no further use for the value.

Parameters The parameter area has an entry for each parameter to
the procedure or fanction. The entry for a value parameter
contains the value of the corresponding argument, while the
entry for a variable parameter contains the address of the
argument, Parameters are pushed onto the stack as they are
evaluated, in left to right order, eo the first parameter to a
procedure is the first one pushed onto the stack.

Return Link The return link is the address to which control is trans-
ferred on return from the procedure or fanction.

Dynamic Link By default, procedures compiled with valkback en-
abled establish & dynamic link that points to the dynamic
link in the previous stack frame. The base of the linked list of
stack frames is contained in the first word of the psect P$DYEL.

~When a run-time error is detected, the dynamic link is used

2-29

2-30

to show the procedure calls that led to the error (the proce-
dure walkback). A dynamic link is not present in the stack
frame for procedures compiled with the command line switch
rowalkback.

Local Variables The local variable field contains space for all local
variables of the procedure or fanction. The field js allocated
apon entry to the block.

Register Save Area This area saves the values of all registers used
within the procedure. The registers are saved on entry to
the procedure and restored on exit. Only registers actually
used are saved. The general registers are stored first, with the
highest register used pushed first. (This is important to the
algorithm for locating variables in lexically enclosing blocks.)

Temporary Storage In the process of generating code, expressions
that are used more than once are computed and the values
saved. These values may be saved on the stack if no register
is available to hold them. Also, the stack is used to interface
with support library routines and the operating system,

Monitoring Memory
Usage

A Pascal task is typically arranged in memory with the program code
written to low memory, followed by the defanlt allotment of 4K bytes
(2K words) for the stack. (In this discussion, a typical Pascal task uses
no Task Builder options to rearrange memory.) The remaining memory
is unallocated and available for the heap.

To arrive at this arrangement, the following events occur:

1. The program code is loaded into memory, with the stack in low
INEmOory, o—

2. The support library initialization procedure is called, initializing
the support library and performing the next three steps. (See the
“Support Library” section.)

3. The program is expanded by 4K bytes to make room for the stack.

4. The stack is moved from low memory to its new location immed;-
ately following the program code. In this case, the program section
$$HEAP has & default length of zero.

5. The user program is started. During execution, if the heap is
exhausted, memory is taken from the stack area.

However, this arrangement changes if memory is explicitly allocated
to $$HEAP. Using the EXTSCT Task Builder option, you can set the
size of $$HEAP to any value up to the maximum size for the particular
program. (When $$HEAP is set to its maximum, it includes all memory
not allocated to the program code.) When EXTSCT is used, the sequence
of events leading to execution is:

1. The program code is loaded into memory.

2. The support library initialization procedure is called to initialize
the support library and perform the next three steps.

3. The stack is moved from low memory to the top of the $$HEAP
psect.

4. The maximum stack size is set to the size of $$HEAP,

5. The user program is started.

The remaining memory is available for heap expansion. Again, if the
space used for the heap is exhausted, the heap expands into the stack.

When the size of $$HEAP is set to its maximum for a given program,
the heap is no longer expandable, In this situation, the stack and heap
“gshare” the same memory, meaning the stack begins at the high end
of memory and growe down, and the heap begins at the low end and

ETOWS Up.

2-31

The 'Space’ Function

2-32

In certain applications you may find it advantageous to keep track of
$SHEAP memory as it is allocated to a program. The Pascal support
library contains three routines—space, péinew and p8dispose—that
allow you to keep track of memory allocated to $$HEAP (either the stack,
or the stack and heap). Briefly, the space fanction returns the amount
of $$HEAP (stack, or stack and heap) space available to an executing
program at a particular time. The p$inew function returns the addreas
of a block of memory having a specified length. The pédispose proce-
dure deallocates blocks of memory allocated by péinew. In a later sub-
section, an example of the boolean function BewOE is provided, which
not only shows the correct way to use the three routines but also is
useful in determining whether enough memory is available to satisfly &
request for a block of memory.

Two reasons for monitoring the size of $$HEAP are to find out how
close the program is to running out of memory and to find out whether
enough memory is available to perform a given subtask. For example,
8 checkers-playing program could use these functions (as in BewOE) to
determine the number of moves that the program can look ahead based
on the amount of memory available to perform the look-ahead.

Space can be called independently, whereas pédispose must be used
to deallocate memory allocated by p$inew. The routines are described
in detail below.

CAUTION

Very large stack overflows, those that extend beyond the heap
and into the program code sections of memory, have the po-
tential for causing serious problems. In some cases it is pos-
sible for the error to prevent the appropriate error message
from being printed or the program from properly terminat-
ing. In some rare instances, the condition can even lead to
the disruption of the computer's operating system. It is the
programmer’s responsibility to avoid such excessively large
overflows by controlling the size of local variables and value
parameters passed to procedures.

The space function is used to determine the amount of stack and
$$HEAP space available to an executing program. With this function
you can determine how close the program is to ranning out of memory.

The function space must be declared external to the program, as
shown:

fenction Space: functype; extermal;
where functype is the data type of the function and its returned value,

The fanction is usually declared of type integer but another data type
similar to integer, “unsigned” (0. .65635), can be used to represent

the value. The value returned by space depends on the arrangement
of the stack and heap and the size of $$HEAP.

Figures 2-3, 2-4 and 2-5 on the next several pages are memory dia-
grams showing & task’s arrangement in memory based on the size of
the $$HEAP psect (set at task-build time). The diagrams also show the
relationship between the size of $$EEAP and the returned value of the
space function. These diagrams are designed as an aid in visualizing
the use of the stack and heap and as an aid in understanding the way
the value of space is arrived at.

The figures are divided into “times,” or snapshots of a program in
memory at various stages of its execution. Time 0 in the three figures is
the point at which the user program actually begins execution, after the
program code is loaded into memory, the support library is initialized
and the stack is moved.

The figures contain the following five symbols. Curled braces designate
the value that the apace function would return at the indicated time.
M signifies the total amount of memory being used by the program at
the indicated time. Vertical arrows represent stack and heap expansion.
3P signifies the stack pointer. 64KB stands for 64K bytes or 32K words,
the high end of memory; OKB denotes the beginning of memory.

Figure 2-3 illustrates the memory arrangement of a program task-built
with no'options, By default, the size of $$HEAP is zero and the size of
the stack is 4KB. With this arrangement, the space fanction monitors
the use of the stack only and has no way of knowing how much heap
space has been used or how much remains.

In Figure 2-4 we see a similar layout, except that the $$HEAP psect is
extended to a specific value with the EXTSCT Task Builder option. The
length of $$HEAP can be any value up to the maximum for a particular
program and can be less than the default (4KB) if you want to conserve
space. As with the previous arrangement, the space function monitors
the use of the stack only and has no way of knowing how much heap
space remains.

2-33

64KB

unallocated, available
for heap expansion

M=

+~=§P
stack (4KB)
program code
0KB
Time 0
64KB
unallocated, available
for heap expansion
M = Dl ey heap B 2
o
|
|
| |
ﬂl stack -------|—8P
|
! program code
i
i 0KB
Time 2

84KB
unsallocated, available
for heap expansion
M ~ S S heap ----- £
{ S P stack ----4--- k=8P
gpece @
program code
0KB
Time 1
M ¥ T 84KB
heap full, expanding
into stack
aedeeen gtack ----- Lo
space = { stack =GP
~--p---- heap ----5---
program code
0KB
Time 3

Figure 3-3. Memory arrangement of & program task-built
with no options.

At Time 0, the support library has been initialised but no Pascal statements have been execated.
The size of the stack is 4KB (2K words) and the size of $$HEAP is zero. As time progresses, the
heap and ‘M’ (the amount of memory used) grow toward 64KB (32K words) and the value of
space decreases as the stack grows downward. At Time 3 (should the program run that long),
memory available for heap expansion is exhausted. The heap then expands into the stack ares,
further reducing the value of space.

unallocated, available
for heap expansion

64KB

M=
program code
e P
gpace s $SHEAP
program code
0KB
Time 0
84KB
unsllocated, available
for heap expansion
M =; S i heap eyt
|
i
I
' program code
(== doos stack ------[—8P
apace = {
| program code
i 0KB

Time 2

84KB
unallocated, available
for heap expansion
M=y --3---- heap ----- £
program code
—--beoo- stack ----t--- 8P
gpace = {
program code
0KB
Time 1
M T T 84KB
heap full, expanding
into $$HEAP
program code
B AR stack ----- L8P
gpece = ﬂ
---y---- heap ----g---
program code
0KB

Time 3

Figure 2-4. Memory arrangement of a program task-built
with EXTSCT=$$HEAP:n optlon.

The stack and the psect $$HEAP share the same memory ares. The Task Builder splits the
program code into two sections with space for $$EEAP allocated between the code sections. At
Time 0, the support library has been initialized but no Pascal statements have been executed.
As time progresses, the heap and ‘M’ grow toward 64KB (32K) and the value of space decreases
as the stack grows downward. At Time 3 (should the program run that long), memory available
for heap expansion is exhausted. The heap then expands into the stack area, further reducing
the value of space.

2-35

2-36

M= 84KB M= 64KB
program code program code

| -4 stack ------- lgp

unallocated, available
space =J for stack and
space = $SHUEAP heap expansion

I e heap ----- £--

program code program code
0KB 0KB
Time 0 Time 1

Figure 3-5. Memory arrangement of a program task-built
with $$SHEAP set to its maximum.

The size of $$HEAP is set to include all remaining memory not allocated to the program code,
(See text below for the way to do this.) In this situation, space returns the amount of $$HEAP
space available for use by the program. At Time 0, the support library has been initialised but
no Pascal statements have been executed. Note that unlike the two previous figures, $$HEAP
contains both the stack and heap, which grow toward each other and ideally never meet. If
space is called at Time 0, the value it returns is equal to the sise of $$HEAP. At Time I, the
amount of $$HEAP remaining and the value of space, being identical, both decrease by the
same amount as stack and heap space is allocated. As time progresses, memory available for
the stack and heap continues to be used and disposed of until the program ends or until $$HEAP
is exhausted and the program aborts.

To use the space function to the greatest advantage, set the size of
$$HEAP to the total amount of unallocated memory. As Figure 2-5,
Time 1, shows, the stack and heap share the same block of memory.
With this arrangement the stack begins at the high end of $$HEAP and

grows down| the heep bewias at the Jow end of $$HEAP and grows up:
Here the space function measures the amount of unallocated memory i

$$HELAP, providing a true reflection of the amount of memory available
to the program.

To set the length of $$EEAP to its maximum value, follow these five
steps. (The program used in this short tutorial is ENTRY.PAS.)

1. Compile the program normally.

Once it has compiled, task-build it with no options to produce
a load map file. The first file name specifies the name of the
map file. For ENTRY.PAS, the command is:

>TEB EETRY/FP/CP,EETRY=EETRY,LB:[1,1]PASLIB/LB

Examine the map file (ENTRY.MAP) for the program’s max-
imum task address limit (in other words, the length of the
task). The “task address limits” line is near the beginning of
the map file and looks like this:

Task address limits: 000000 137673

The second number, 137673 above, is the value you need.
This number is in octal bytes.

Subtract the maximum task address limit from the total
amount of memory available to a program (1777005 bytes).
Remember, the subtraction is performed in octal. The result
is the value you enter on the EITSCT option in the second and
final task-build. In the example the result is 400055, which
can be rounded off to 40000;.

Run the Task Builder to build the program a second time.
This step creates the desired executable task arranged in the
same layout as Figure 2-5. The command line for the second
build is:

>TEB

TEB>EETRY/FP/CP, EETRY=ESTRY,LB: [1,1]PASLIB/LB
TEB>/

Enter optioms:

TEB>EXTSCT=$$HEAP : 40000

TER>//

(This step is optional.) Check the second map file for a task
size somewhere near 32700 words and a maximum task ad-
dress limit somewhere near 1777005 bytes. If the figures yon
see are reasonably close to these figures (within 1005 bytes),
you have correctly set the length of $$HEAP to the amount of
unallocated memory. The task is now ready to be executed.

Be aware of the fact that the space function does not account for the
fragmentation of the heap as a result of calls to mew and dispose and
the opening and closing of files; Unused portions between the low and
high end of the heap are treated as if they are allocated.

See the example under “Example: Function NewOK?" for use of space.

For additional information on the EXTSCT option refer to “The Task
Builder” section in this guide.

2-37

Function ‘P$inew’ and
Procedure ‘P$dispose’

Example: Function
‘NewOK'’

The function p$inew and procedure pédispose are entry points for
the standard procedures new and dispose. P$imew allocates a specific
sized block of memory, and p$dispose deallocates a specific block. As
a comparison, the standard procedures sew and dispose determine the
size of the block to allocate or deallocate from the length of the data

type.

A cache system is an example of a sitnation in which you might use
péinew and p$dispose procedures. The program needs to use as much
memory as is available for data storage before it writes the data to a
file.

Defined in the support library, these two routines must be declared
external to the program, as shown:

functior P$inew(blocksize: argtype): functype; extermal;
procedure P$dispose(pointer, blocksize: argtype); external;
where

blocksize is the size of the memory block to be allocated or desllo-
cated, in bytes,

pointer is the address of block to deallocate.
argtype is the data type describing size and pointer.

functype is the data type of the function’s return value. The returned
value is the address of the block. If there is not enough con-
tiguous memory available to satisfy the request, a value of 0
is returned for numeric data types, nil for pointer types. The
most common types used with p$inew and p$dispose are the
standard type integer and a user-defined type unsigned, in
the range 0..65535.

For an example showing the use of p$inew and pédispose see the code
for procedure Few0I, below.

The boolean function BewOE, provided below as an external, uses the
three routines previously described functions to determine whether a
block of memory can be allocated, leaving a specified amount of stack
space. We recommend that you reserve 2004 to 10005 bytes of stack
space for parameter and local variable storage and for error processing.
The amount of memory you reserve depends on the parameter and local
variable requirements of the procedures being called by the program.
For instance, if the program calls numerous procedures, each containing
8 large number of parameters and local variables, the amount of mem-
ory to reserve would be greater than for a program that uses smaller
procedures,

NOTE

If & program that uses BewlE aborts with & “stack overflow”
error, the amount of reserved memory is probably not large
enough for the amount of stack space required for parame-
ters and local variables. To alleviate this error, increase the
amount of memory you are reserving for the stack.

In addition to showing the correct way to use the three routines, Bew0E
can be incorporated into your programs when you need to determine if
a request for memory will fail.

Hew0E, which could be stored in NEWOK.PAS, returns a trune value
if the block can be allocated, £alse if the block cannot be allocated.
The first argument to Bew0E is the size, in bytes, of the memory to be
allocated. Use the size function to determine the size of a Pascal data
type. (The size function is described in the Language Specification.)
The second argument is the amount of stack space in bytes that you
want to remain unallocated, if the block is allocated.

First, the function allocates the desired block of memory with the call
to p$inew. If p$inew returns a zero, this means that there was not
enough memory available to allocate a block of that size, and Bew0E
returns false. However, just because the block was allocated does
not necessarily mean that Hew0E returns true. If the returned value
of space is less than the amount of stack space you have reserved for
variables, etc., BewOK is set to false because memory would be taken
from the reserved block. Of course, the function returns a true value
if the block was safely available. Finally, the same block of memory is
disposed of by p$dispose. (Remember, HawOE only checks to see if &
block of memory could be allocated. To allocate the block, call nee.)

, Example: Routines For Determining Memory Available (NEWOK.PAS)]

{$nomain}

type
Unsigned = 0..65536; { Unsigned integer }

function p$inew(Blocksize: Unsigned): Unsigned;
external; { A1locate a specific sized block of memoxy }

procedure p$dispose(Pointer, Blocksize: Unsigned);
external; { Dispose of a specific sized block of Ba®OXy }

function space: Unsigned;
external; { Determine amount of stack ($$HEAP) space left }

function HBewok(Beserved, Stackspace: Unsigned): booleam; extermal;
{ Check if block of size "Reserved" cam be allocated leaving "Stackspace" }

fanction Hewlk;

vax
P: Unsigned; { Address of block if allocated }

begin { HewOE }

P := p$ineu(Reserved); { Try to allocate block }
if P = 0 then HewOE := false { Fo luck }
else
begin
BewDK := space >= Stackspace; { Check for enough stack left }
p$dispose(P, Reserved); { Deallocate the block }
end;

end; { FewOK }

To show the correct way to set up the critical variables and call Few0E,
the sample program CHECKTEST uses Eew0K to find out how many
moves it can look ahead. For illustrative purposes, the program,
CHECKT.PAS, simulates a real checkers program, making use of a
20,000-word array Dum to produce a larger task size. CHECKT uses
a linked list to store the look-ahead moves a normal checkers program
would make. The program merely illustrates the use of Bew0K to per-
form the look-ahead.

2-40

Example: Program to Play Checkers (CHECKTEST.PAS)

program CheckTest;

const
Reserved = 200; { amoumt of stack space to reserve }

type
Unsigned = 0..65636;
Ptr = “Hode;
Hode = record
Father: Ptr;

{ Pointers imto search tree }

{ Hode i search tree }

{ Father of this mode }

Som: Ptr; { Pointer to best som }

Brothexr: Ptr; { Link to mext brother }

Value: integerx; { Valwe of this board positiom }
Hove: integer; { Bove descriptor to reach mode }
Jumpi, Jump2: integer; { Jumped pieces removed by move }
Hobility: integer; { Hobil and demy }

Attack: integer; { Pin and threat }

Gradient: integer; { Target gradiemt }

Bits: integer; { Scoring bits }

end;
var
41loc: boolean;
P: Ptx;
Hovesize: unsigned;
Fumfoves: unsigned; { number of moves }

Hextmove: node;

Dum: array [1..20000) of imteger; { Dummy array simmlating a lomg program }

‘function HewOE(Reserved, Stackspace: Umsigned): boolean;
external;
{ Check if block of size "Reserved" cam be allocated leaving "Stackspace" }

begin { CheckTest }
Hovesize :2 size(Hode);
writeln(’The size of a move is: ’,Hovesize:1);
new(P);
HumBoves := 1;
repeat
alloc := Hewok(Hovesize,Beserved);
if alloc ther beginm
sew(P".s0m);
P := P*.80m;
Humlloves := Humfioves ¢ 1
end;
antil not alloc;
write(’The number of moves mecessary to f£ill up the heap is: ’);
eriteln(Humioves:1);
end. { CheckTest }

2-41

The compilation process for this program is as follows:
>PAS EEWOE nomain is embedded
>PAS CHECETY
>TEB CHECET/FP/CP,CHECKT=CHECET,FEW0E,LB: [1,1]PASLIB/LB
>TEB
TEB>CHECET/FP/CP,CRECET=CHECET , JEWOE ,LB: (1,1)PASLIB/LB
TEB>/

Enter options:
TEB>EXT3CT=§$HEAP: 37765 value from first TEB map file

TEB>//

>RUF CHECET

The size of a move is: 22

The number of moves necessary to fill up the heap ie: 724

2-42

Storage Allocation

The compiler sssigns storage for variables of pre-declared types as
shown in this table:

Typé Sige (bytes) Alignment (bytes)

Boolean 1 1
Char i 1
Integer 2 2
Real 4 2° ($double off)
Real 8 2% (8doeble on)
Text 2 2

Space for user-defined types is allocated as follows:

Enemeratiom If the type has up to 256 members, it is allocated one

byte aligned on a byte boundary. If it has more than 256 mem-
bers, it is allocated two bytes, aligned on a two-byte boundary.

Subramge Allocated in the same way as the parent type. Note, how-

Pointer
Array

Set

Recoxd

ever, that & range such as 0..255 or —127..127 is stored in two
bytes except inside of a packed structure, where it is stored
in one byte. An unsigned number (0..65535) is stored in two
bytes.

Allocated two bytes, aligned on & two-byte boundary.

Allocated the amount of space needed to hold the number
of elements specified, aligned in the same way as the element
type. The elements are placed in ascending memory locations.

Allocated omne bit for each member of the base type, with
the total size rounded up to the next larger full byte. Bit
allocation begins with the least significant bit of the first byte.
If the size is a single byte, it is aligned on a byte boundary;
otherwise it is aligned on a two-byte boundary. A base type
that is a subrange is expanded to the full range of possible
values before the set is allocated. For example:

type
Color = (Red, Oramge, Yellow, Greem, Blue);
Hot = Red..Yellow;

Colorset @ get of Color;
Hotset = set of Hot;

In this example, Eotset is allocated the same amount of space
as Colorset. A maximum of 256 members is allowed; a base
type of integer, or any integer subrange, has members from
0 to 255.

Each field in the record is allocated space in the same way
as a variable of the same type, in the order specified. The
alignment of the record is the maximum of the alignments of
its fields.

2-43

2-44

Packed Array The number of bits needed to contain each element is
computed. For example, the subrange type 0. .3 requires two
bits to contain a value. If the space required for an element is
less than a word, the element size is increased to the smallest
power of two bits (1, 2, 4, 8, 16) that contains the value.
The array is allocated space to hold the number of elements
specified, where each element is considered to be of the size
just computed. If elements are allocated eight bits or less, the
array is aligned on a byte boundary. If the elements require &
word or more, space is allocated as for & normal array type.

Packed Set The same as unpacked sets, except that the size is not
rounded up to an even byte and the alignment is to a byte

boundary.

Packed Record Each field in the record is allocated exactly the num-
ber of bits required to contain it, except that a field of a simple
type that would span or cross & word boundary is forced to
begin at a word boundary. Fields are allocated in the order

declared, beginning at bit zero (least significant bit).

NOTE

The predefined functions size and bitsize report the
amount of storage allocated to any user-defined structured
type. See the Language Specification for details.

Run-Time Error
Reporting

The Pascal-2 run-time error reporting system iz intended to aimplify
error analysis by reporting run-time errors in terms of source lines and
procedure names. Upon detecting a run-time error, the reporting sys-
tem prints & short description of the error, then traces the execution
history, procedure by procedure, from the point of error back to the
main program. This is called & “walkback,” or “traceback.”

Errors are detected by the hardware or by special checks inserted in
the generated code. After an error is detected, control of the program
then passes to an error routine, which closes all open files, then prints
an error message and stack traceback.

The walkback consiste of the following:

¢ The message header, which includes the task name, type of error,
and program counter at the time of the error. The task name
may be either an installed task name or the terminal port from
which the program was executed with the RUE command. The
two types of run-time errors are “fatal” and “I/O.” Fatal errors
are unrecoverable; I/O errors are recoverable. For details on I/O-
error recovery, see “I/O Error Trapping” later in this section. The
program counter is the location at which the error occurred. If
you utilize the walkback, the program counter is of little use to
you since the location of the error is given as a line number in a
procedure.

e A description of the error. See Appendix B of this section for
a detailed explanation of the error messages. By modifying OP-
ERRO.PAS, you can change the wording of Pascal run-time mes-
sages if you so desire. However, you cannot change the text of
RSX system I/O error messages. See the section on “Customizing
Error Reporting™ for details.

o For I/O errors, the error code and the file name of the file causing
the error, The error code is printed in both decimal and octal. On
RSX, all I/O errors have negative error codes. These error codes
are FCS errors detected by the system and are described in the
RSX 1/0 Operations Reference Manual The file name includes
the device name, file name, extension, and version number but
not the UIC of the file, because it is not available to the support
library.

o The location of the error in terms of line number and procedure
name. The line pumber refers to lines in the overall eource pro-
gram, not statements in individual procedures. (For external pro-
cedures, the line number refers to lines in the external module.) A
special case arises when a run-time error is detected in an external
procedure compiled with mowalkback. In this case, the location of
the error is given as an octal address.

e The reverse sequence of active procedure calls back to the main
program, if the error occurred at a level other than the main pro-

gram.

2-45

Example 1

2-46

The walkback may be dizsabled at compile time; to do this, use the
sowalkback compilation ewitch. When mowalkback js selected, the
message header and the error message are printed but not the walk-
back.

WARNING

Error walkback cannot be used with Instruction & Data (I
& D) space programs available on RSX-11M-PLUS. Normally
(in non-I & D space programs), the walkback routine exam-
ines instructions to find special markers and pointers to data
areas, which contain procedure names and statement loca-
tions. But, in I & D space programs, instructions and dats
are kept separate, and this, coupled with the fact that data
sections can be overlaid, makes it difficult for the walkback
routine to function properly. In some I & D space programs,
the walkback routine reports addresses instead of procedure
names, but in other instances, the walkback procedure can
abort with an odd address error or memory management trap.
You should generally compile all I & D space programs with
the /nowalkback switch to avoid such problems,

This example provides a look at a possible run-time error condition and
the resulting error walkback.

>RUE PACKER

TT0 -- Fatal error at user PC= 23168
Array subscript out of bounds

Error occurred at lime 140 i procedure arrangetree
Last called from linme 326 in procedure switchnodes
Last called from lime 402 im procedure getdep

Last called from lime 579 im program packer

Example 2 A procedure called recursively may have many consecutive activations.
In this case, the number of identical lines is indicated by the note (mn
times) after the location description. Appearing below is the walkback
of a program that looped recursively until the stack overflowed.

>RUB EXTRA

171 -- Fatal error at user PC= 5223
Stack overflow. Try expamdimg $$HEAP

BError occurred at line 124 im preocedure walk

Last called from lime 290 im procedure reanalysis (898 times)
Last called from line 423 im procedure unloadbits

Last called from line 440 im procedure matrixmask

Last called from lime 536 im procedure processleftop

Last called from line 608 ia program extra

Example 3 This example illustrates the walkback produced as a result of an I/O
error that is not trapped by the user. The program is an installed task.

>FHT
File to reformat: LSAT.TIT

FHT -- I/0 erroxr at user PC=2166
Can’t oper file
I/0 error code=2 -28. (346B) im file: DLO:LSAT.TIT;0

Exrror occurred at line 44 in procednre openfile
Last called from line 69 is program format

2-47

Example 4

1/0 Error Trapping

2-48

This example shows the walkback produced as a result of a run-time
error in an external procedure compiled with mowalkback. Note that
if the external procedure is compiled with walkback (the default), the
location of the error is in source terms.

>RUE DIFFS

72 -- Fatal error at uwser PC= 1338
Division by zexe

BExrror occurred at locatiom 1338
Last called from lime 32 im program diffe

Pascal-2 permits you to write programs that trap and detect many
kinds of I/O-related errors that normally would be fatal. Three pre-
defined routines — procedure moioerror and functions ioerror and
iostatus — facilitate this trapping of 1/0 errors. Using these rou-
tines, you have the ability to process I/0 errors with your own code.
You have two options: terminate the program at the occurrence of an
1/0 error (you can print your own diagnostics), or continue execution
in spite of the error. The choice depends on the need.

Since these three routines are predefined in the compiler, they do not
need to be declared in your program. They accept a file variable as
their only parameter, Details are supplied below.

procedure noioerror: Specifies that the calling program will handle
any I/O errors that result from reading or writing to the spec-
ified file. The file must be open before noioerror is called.

function ioerror: Determines the status of the last I/0 operation
that the program performed on the specified file. This
boolear function returns a true value if an I/O error has
occurred, false if the operation was successfal.

function iostatus: Returns the integer error code that describes the
last attempt to access-afile. This function helps your program
determine the cause of the error. Your program can either
bypass the problem and continue processing or terminate so
you can correct the problem.

1/0 error codes can be negative or positive. A negative error
code (negated by the Pascal-2 support library) indicates that
the error is RSX -specific. RSX I/0O error codes are listed in
the RSX I/O Operations Reference Manual A positive error
code indicates that the error was detected by the support
library. Pascal-2 error codes, along with the text of the error
message and a brief explanation of the cause, are listed in
Appendix B of this reference.

If you pass iostatus as a parameter to the external proce-
dure sayerr, sayerr prints the text of the error message cor-
responding to the returned value of 1ostatas (see “Procedure
SayEr” below).

When you call these routines, you are responsible for checking the sta-
tus of each I/O operation, to ensure that it was successful. If you fail to
check the status and an error occurred, the results are unpredictable.

The Pascal-2 support library places information about run-time errors
into registers. Sometimes & program may fail with a run-time error
and the the library encounters another error while trying to report the
first one. In such cases, the error reporting system prints the message
“Multiple errors detected” then the operating system prints a message
“Unexpected trap” and a register dump. For the original error, the PC
address is in register RO and the Pascal error code is in Bi. Registers
3 and B4 contain the PC address and Pascal error code for the second
error. To find the error, you must get your information from the register
dump.

The following program illustrates the use of these procedures. The
program is designed to continue executing despite an I/O error. The
call to noicerror indicates to the run-time system that the program
handles errors detected on the standard file input.

Example: Use of I/O Error Trapping Routines]

program Iotest;

var

I, Times: integer;

begin

Boioerror(input);
for Times := 1 to 4 do

begin

write(’Type am imteger: ’);

read(I);

if Ioerror(imput)

then writeln(’Error detected. Status=’, Iostatus(inpat))
else writeln(’The integer was: ', I: 1);

readln;
vriteln;
end;
end,

If this program is compiled and run, the following results might be
produced. The first entry results in a successful read of the integer I.
The second and third entries result in a Pascal-2 run-time error.

2-49

>RUE IOTEST
Type an integer:
The integer was:

Type anr integer:
Exrror detected.

Type an integerx:
Erroxr detected.

Type an integer:
The integer was:

2-50

1234
1234

123456789

Statuss

See Appendix B for a list of run-time error messages and associsted
error codes. The final entry is successfully read, and the program ends.
(Under normal conditions, the first error would cause the program to
abort.)

i9

integer too large
Pascal-2 error code for invalid integer

FFG
Status=s

(44
7

i9

non-integer characters
Pascal-2 error code for invalid integer

The I/O error-trapping procedures can be used to determine the rea-
eon that a file could not be opened. To use this feature, specify the
fourth parameter on calls to reset and resrite. Specifying this fourth
parameter keeps the reset or rewrite from trapping a normally fatal
“open” error. This allows your program to recover and continue or
terminate under your control

The sample program OPNERR illustrates the use of ioerror and re-
set/rewrite. The program attempts to open a file called TEST.DAT
on the device XXXX:, a fictitious device name. The error is detected by
Ioerror.

program (pmerr;

var
F: text;
Status: integer;

begin
reset(F, ’XIXX:’, ’test.dat’, Status);
if Ioerroxr(F) thez
writela(’I/0 status=’, Iostatus(F));
end.,

When this program is compiled and executed on RSX, it yields the
following output. The value =56 is the RSX I/O error code for “bad
device name.” To print the text of the error message, use the sayerr
procedure, described below,

>RUE OPEERR
I/0 status= =55

Procedure ‘SayEr’

The text of a given I/O error message can be printed if you call the
external procedure sayerz, which is supplied in the Pascal support
library. Sayezz is not pre-declared, so you must declare it when youn
use it, as shown:

procedure SayBrr(status: imteger); extermal;
where status is the error code of the error.

Procedure sayexr takes an RSX I/O error code (a negative number)
and looks in the system file LB: [1,21QI08YH.HSG to print the text of
the error message. Sayexr will only print messages for negative 1/0
error codes in the range —255.. — 1; sayeoxz ignores error codes that lie
outside this range, printing nothing,.

The program listed above can be modified to call sayerxr to print the
text of the error message corresponding to RSX error number =55,
as shown below. The integer function iostatus is the parameter be-
ing passed to sayerr. The parameter takes on the value returned by
iostatus, in this case -55.

program Opmerr;

var
F: text;
Status: integer;

procedere SayErr(Code: integer);
external;

begin
reset(F, ’*IXXX:’, ’test.dat’, Status);
if Icexrox(F) them
begin
writeln(’1/0 status=’, Iostatus(F));
SayErz(Iostatus(F));
end;
end.

When this program is compiled and ran on RSX, it yields these results:

>RUE OPEERR
I/0 statuse -58
Bad device name————— error message printed by sayerr

2-51

Customizing Erros
Reporting

2-52

The flexibility of the Pascal-1 and Pascal-2 run-time systems allow
Pascal-2 run-time organization allows you to not only handle I/0 errors
in your code but to customize the run-time error diagnostics to suit
your needs. Included in the distribution kit are two Pascal source files,
OPERRO.PAS and UERROR.PAS, which let you modify the way in
which errors are reported. The object-file equivalents of these two
procedures are in the Pascal support library. The changes you make
can be used for a one-time debugging run, or they can be permanently
installed in the support library.

OPERRO.PAS contains the entry point P$ERROR, which the support
library's error-handling routine calls to print the message header and
text of the run-time error message. This source file is provided so you
can change the wording of any error message simply by editing the
source,

UERROR.PAS contains the entry point PSUERROR, which is called fol-
lowing PSERROR to print additional information about the error. This
procedure contains three boolean constants set to false in the release
version, each controlling (inhibiting) the printing of a separate set of di-
agnostics. Initially, with the booleans set to false nothing is printed.
But by editing UERROR.PAS and setting one or more constants to
true, you can receive a file dump of the offending file, 8 memory map
of the program, and/or a brief message describing the error. The const
fragment below shows the three constants.

const
DumpHemory = false; { Print a memory map }
DumpFile = false; { Print detailed file dump)
PrintErrorText = false; { Primt text of I/0 errors }

By using UERROR.PAS, you can add your own code to UERROR.PAS
for the printing of more specialized debugging information, and you can
print out the values of critical variables used in the program, To print
variables you must include the program's global variable declarations
in UERROR.PAS. The ability to print critical variables is usefal when
you have a program with many overlays or when the program is too
large to run with the Debugger.

When a run-time error is detected, several steps are taken:

1. Control of the program transfers to the $ERR error-control module,
in the Pascal support library. $ERR collects information about the
error from the library data area.

2. $ERR calls P$ERROR (in OPERRO.PAS) to print the message header
followed by the error message.

3. $ERR then calls P§UERROR (in UERROR. PAS), which does nothing
(by default) but can be modified to print a more detailed error
message, dump the contents of the offending file, and/or print a
memory map of your program.

4. On retwn from PUERROR, the error-control routine $ERE transfers
control to the Post-Mortem Analyzer (PMA), which prints the
error walkback, and the program terminates.

When you use & modified version of one or both of these procedures
as externals, you need not declare them explicitly in the main pro-
gram. After the altered version(s) of these procedures are compiled
(with romain), simply specify the module name(s) on the Task Builder
command line after the program name., The Task Builder substitutes
your version for the version in the support library. This sequence of
commands should be used.

>PAS PROG

>PAS UERROR/BOHAYE

>PAS OPERRO/EOHAIE

>TEB PROG/FP/CP,PROG=PROG,0PERRD,UERROR,LB: [1,1)PASLIB/LB

Another way to override the version in the support libeary is to include

the modified OPERRO.PAS and/or UERROR.PAS as part of the main
program. The {include directive does this easily. (See “Implementa-
tion Notes” in this section for use of ¥{inclede.)

For example:

Yinclude ’operre’;
$include ’uerror’;

When using the {inclunde directive, compile and task-build the main
program as you normally would. The Task Builder resolves the refer-
ences to PYERROR and P$UERROR with the procedures included in the
program. The program PROG, above, would be task-built in this manner
with these commands:

>PAS PROG
>TEKB PROG/FP/CP,PROG=PROG,LB: [1,1]PASLIB/LB

In UERROR.PAS, if the constant PrintExrroxrText is set to true, the
support library procedure sayerr is called and the text of an I/O error
message is printed based on an integer error code. Sayerr is described
in the section on “I/O Error Trapping.”

The constant DumpHemory, if set to true, causes the program to print
& memory dump, or map, showing the program’s use of memory. The
map is printed by the external procedure memmap, a Pascal support li-
brary routine. Although memmap is declared in UERROR.PAS, you can
use it with any Pascal program, independent of UERROR.PAS. Simply
declare it in the program as an external with no parameters. The map
helps you determine the way dynamic memory is being allocated and

2-53

perhaps the reason your program is running out of Mmemory.

LExample: Memory Map Procedure’s - OUTPUT]
>RUE DIAL

TT0 -- Fatal exror at usexr PC= 1276
Attempted referemce throughk HIL pointer

Hemory map:
Staxt End 8ize Descziption
0 - 171 (122)) Low memory
172 - 16567 (7422.) User program code
16670 - 16877 (8.) Global level data

16600 - 35303 (7492.) Pascal support library code
35304 - 53605 (7362.) System library code (SYSLIB.OLB)
53606 - 54011 (132.) Library data ares

54012 - 56677 (1462.) Used

56700 - 66163 (3764.) Stack space available

66164 - 66677 (332.) Stack space used

66700 - 66716 (14.) Active file table

667168 - 66745 (24.) File variable for file: TI:

66746 - 870685 (80.) Recoxd Buffer for file: TI:

67068 - 67116 (24.) File variable for file: TI:

67116 - 67235 (80.) Record Buffer for file: TI:

67236 - 674258 (120.) Used

67426 - 67455 (24.) File variable for file: DBO:REFER,THP;O0
67456 - 67615 (96.) File descriptor block for file: DBO:REFER.THP;0
67618 - 67671 (44.) Free

87672 - 67701 (8.) Used

67702 - T0111i (1368.) Free

70112 - 71337 (682.) Used

71340 - 73677 (1248.) Free
73700 - 177677 (34816.) Available memory mot used by task

Task s5ize=30866. bytes

Error occurred at lime 66 ia program dialphomes

The constant DumpFile can be used to print a detailed dump of the
Pascal and RSX file stractures when an I/O error is detected. When
DumpFile is set to true, the support library module fdump is called to
dump information about the file. Programmers familiar with the struc-
ture of an FCS File Descriptor-Block (FDB) may find this information
useful in diagnosing obscure file problems.

The following file dump is only partially listed because of the length of

the fdump listing. Enough information is provided to give you an idea
of the usefulness of the file dump. Although you wouldn't want the

2-54

file dump printed at each occurrence of a run-time I/O error, in certain
circumstances the file dump may help you diagnoee more obscure exrors.

[Example: Detailed Dump of Pascal and RSX File Structures

>CPR
First file: DISPLA.PAS
Second file: HEUDIS.PAS

CPR -- I/0 erxor at usex PC= 1276

Can’t oper file

I/0 erroxr code® -26. (346B) im file: DRBO:BEUDIS.PAS;O
File informatiom for file variable at: 1016268

Contents of file variable:

Ptx: 0 Pointer te data im file buffer
Lun: 2 Logical Unit Humber
Stat: 248 File status
Current character mot defimed
Text file
Input operatioms permitted
fow: 311028 1/0 vector address

more information about file variable

Contents of File Descriptor Block:

Btyp: 2 Record type
Variable leagth records
Ratt: 2 Becord attributes

Hormsl carrieage comtrol
Records cross block boundaries
Beiz: 132, Becord size

more information about FDB

2-55

Contents of filemams bleck is FDB

Fid:

Foam:

Ftyp:
Fvex:

Dvom:
Unit:

0

0

0
BEWDIS
PAS

DR
18.

File IB

File name
File type
Versior mumbexr

Device mame
Unit numbex

more information about file name block

Error occurred at line 21 im program compare

2-56

Error Termination
Status

Both the Pascal-2 compiler and Pascal programs return a termination
staias when they exit. The Pascal-2 compiler terminates with a “severe
ersor” status if it detects compilation errors. Upon detecting an error
while vuaning, such as “subscript out of bounds," & Pascal program
Aloy tevainates with & “severé error” status. Otherwise, & “successful
rompletion” status is returned.

The termination status can be used by command files or command
procedures on RSX-11M systems and on VAX/VMS. For instance, a
corrnand file that compiles and task-builds a Pascal program can use
ihe compiler termination status to detect any errors and skip the task-
build step. In the same way, command files or the batch processor can
detect Pascal programs that abort.

The program termination status is also returned to tasks that spawn
other tasks. In this case, up to 16 bits of information may be returned.

The Pascal support library contains & routine that may be called from
Pascal programs to set the termination status and stop the program.
To use this feature, declare an external procedure named exitst. This
procedure, defined in the support library, takes an integer argument,
as shown:

procedure Exitst(Status: imteger);
{ procedure declaratiom }
external;

Call the procedure at a point in the program where you want to exit
in case of & severe error, as shown:

begin { program Severe }

.
.

Exitet(4); - ———— {erminate with severe status

.
.
.

end. { program Severe }

A status of 1 means normal termination; any other status means that
an error terminated the program.

2-57

lmp'ementati()ﬂ Notes The features described in this section are extensions of standard Pascal

Moultiple Source Files

2-58

to be used solely with Pascal-2.

To combine multiple Pascal-2 files into a single compilation unit, you
may use multiple input files on the compilation command line, the
Xinclude extended language feature within the program text, or both.

The choice depends on the need. If, for instance, you are preparing
programs for different machines, you can separate machine-dependent
data from your individual programs and use the configuration data in
8 “header” file on the compilation command line.

The ¥include directive allows the inclusion of separate text files within
a program, thus simplifying the calling of external procedures. The
directive is written as:

%¥include ° Iile;namesun'ng’ H

The contents of the file specified by file-name-string are inserted at the
point of the ¥include directive. The string must contain at least the
name of the file; if no file extension is specified, .PAS is assumed. In
addition to the file name and extension, file-name-string can contain
the disk volume number, the UIC and the version number of the file.

The single quotes ('...") enclosing file-name-string are required if a file
version is included as part of the string; otherwise they are optional. In
this way Pascal-2 can distinguish the semicolon immediately preceding
the version number from the semicolon that terminates the directive.
Despite their optional nature, we recommend that you use the single-
quote delimiters on all Xinclude directives, not just when a version
number is included.

%include ’hdr’;
¥include ’(33,16] libdef.pas;7’;

Each included file may itself contain ¥include directives, to a maxi-
mum nesting of seven levels,

The example below illustrates the use of both header files and the
¥include directive.

Assume that the source file CONFIG consists of this:

{ This file contaims configuration data that is }
{ subject to change from installation to installation. }

const
HaxEntries = 10; {entries allowed)}
Debug = false; {if true, make debugging calls}

Assume also that the source file COMDEF consists of this:

{ This file comtaims the defimitioms of some exteramal }
{ procedures, together with the type declarations needed }
{ by the maim program and the external routimes. }

const

BameSize = 24; {size of name field}
type

Dataltem = record {describes a customer}

Bame: packed array [1..BameSize] of char;
Age: O..maxint
end;

procedure ReadData(var ThisItem: Dataltem; {result of read}
var Done: boolean {Ho more items});

external;

procedure UriteData(ThisItem: Dataltem {item to write});
external;

And assume that the source file EXAMPL consists of this:

Y%include ’comdef’;

var
Base: array [1..HaxEmtries] of Dataltem;

Baf: Dataltem;

Counter: 0..HaxEmtries; {count of items im data base}

I: 0. .HaxEntries; {induction var}

Done: boolean; {ut vheE RO BOYE ito-}
begin

Countexr := 0;

repeat

ReadData(Buf, Doze);
if mot Dome them begin
Counter :® Coumter ¢ 1;
Base[Countex] := Buf;
end;
until Doxme;

{ Process data base }

for I := 1 to Counter do
UziteData(Base[I]);
end,

Access to Files and
Records

Local Files Closed on
Procedure Exit

Specifying the Location of
The Compiler's Work Files

2-60

These files are compiled with the command:

>PAS COEFIG,EIARPL

The result is an object module, EXAMPL.OBJ, containing the output
from the compilation of CONFIG, COMDEF, and EXAMPL, concate-
nated in that order. The object module can then be processed through
the Task Builder to produce an executable image.

Any compilation switches apply to all input files.

Pascal-2 only supports the Files-11 software system for accessing files.
Files must be specially formatted volumes associated with disks, DEC-
tapes, or magnetic tapes. For details, see the MCR Operations Manual
Files-11 is incompatible with Record Management Services (RMS).

Although Pascal-2 does not support RMS, an optional RMS interface
allows you to access files and records from within a Pascal program by
calls to standard procedures. The User's Guide for RMS-11 Pascal-2
Interface provides details of the software's use.

Consider a procedure (or function) that opens one or more files local
to that procedure. Assume that the file variable for the file is defined
local to that procedure. When the procedure exits and returns to the
calling routine, all files defined local to that procedure are closed. This
convention is necessary because upon procedure exit all local variables
are deallocated. Once local variables are deallocated, they cannot be
referenced again. Therefore, if a local file variable is deallocated, your
program can no longer access that file, and no other program may
access the file until your program terminates.

To prevent files opened in a procedure from being closed upon proce-
dure exit, define the file variable as a global variable. Since the file
variable is in the global data area, the file remains open and accessible
until the file is explicitly closed or the program terminates.

The Pascal-2 compiler opens several temporary scratch files when it
compiles a program. For large Pascal programs these files can become
quite large (several hundred blocks) and they can be used quite heavily,
The V2.1 compiler attempts to open its scratch files on the logical
device called UK:. If this logical device does not exist, the scratch files
are opened on SY:, the system device.

The Use of ‘'SY:’

Variable Initialization

If you are ranning on & multi-disk system, and the disk you are using
has very little free space, you can assign UE: to some other disk that
has more room. Use the 438 command to do this, as shown below:

>48H DL1:s¥K:

This command associstes the disk DLi: with the logical name ¥E:.
The compiler then opens its scratch files on DL1:.

If your system hes different kinds of disks, you should assign BE: to the
fastest disk on your systemn. This reduces compilation time for large
programs. You can experiment by using the times compilation switch
to see if there is a significant change in compilation times with various
disks on your system.

On RSX systems, the logical device 8Y: defines the device on which
files are opened when no explicit device is given in the file specification.
When you log on to your system, 3Y: is assigned to your default device.
You can modify the device associated with 8Y: by using the 438 (assign)
command.

When a Pascal task is initialized, the Pascal support library determines
the physical device associated with 3Y:. Files opened by the program
are opened on this device by default. This assures that files are opened
on the correct device even if 8Y: is assigned to a different device while
the Pascal task is executing.

The Pascal standard states that variables must be initialized before
they are used. Otherwise, their values are unpredictable. Pascal-2
catches most uninitialized variables but can't possibly flag all of them.
In short, variable initialization is the programmer’s responsibility.

Obvious cases are easily detected, but more complex violations such as
the initialization of I below are not caught by the compiler.

var
I, I: integer;

begin
read(X);
if X <= 0
thes I :# 0——————— variable is initialized here
else I := I 4+ 1; but not here
end.

2-61

Reading MCR Command
Lines

2-62

To process MCR command lines, use the Pascal support library pro-
cedure GHCR. This procedure reads the command line and makes it
available to the program as a line of input. If GECR is not called, the
command line is ignored and input comes from the terminal.

GHCR is declared as an external with no parameters, as shown:
procedure GECR; extermal;

If you wish to process the command line, call GECR &t the beginning
of your program, before any input is read. This call obtains the MCR
command line for your use.

After GHCR is called, check the value of the predefined file variable input
to determine whether 8 command line is present when your Pascal
program is executed. If imput~ (the next available input character)
is a blank when your Pascal program starts, then no command line
is present. If input” is not a blank, then the MCR command line is
present as the first line of input.

The GHCR routine cannot be placed in a resident overlay or a shared
resident library, and it should not be placed in a disk overlay area.
However, it is possible to use the routine by loading it into the root of
a program. For the root segment of a program called TEST, you can
do this with the following TKB command fragment:

.. .test=1b:(1,1]paslib/1b: $gtmcr. . .

The GHCR routine works fine in the program root and doesn't require
much room.

The following sample program, FPRINT.PAS, shows a way to check for
and read a file name specified on an MCR command line. Note that
the name of the program is also part of the command line. After it has
read the file name, the program simply prints the contents of the file.

lExample: Program To Print a Pile’s Contents (FILEPRINT.PAS)]
program FilePrint;

const
FilenameLength=80; { max number of chars im e mame)
var
Filename: packed array [1..FilemameLength] of char;
Ch: char;
I: integer;
procedure GHCE; external; { procedere to get command lime }
begin
GHCR; { make commasd lime available }
if input® <> ? ? them beginm { command 1ime presemt }
repeat { skip over command }
read(Ch);

until (inpat” = ’ ?) or eols;
if not eoln then

repeat { ignore blamks after command }
read(Ch);
until (imput® <> ? ?) or eolam;
end;

if (input® = ’ ’) or eols
then write (’File to primt? ?);
if eoln then readls; { command lime but mo file mame }
readln(Filename) ; { filename from wser or cad lime }
reset(input,Filenams); { open the imput file }
vhile not eof do begim { once per lime }
vhile not eolm do begim { once per char }
read(Ch); write(Ch);
end;
readln; writeln;
end;
end.

Compile and task-build the above program with these steps:

>PAS FPRINT
>TIB

TKB>FPRINT/CP/FP=FPRINT,LB: [1,1]PASLIB/LB
8>/

EFTER OPTIONS:

TEB>TASK=. . .PHT

X8> 7/

>IES_PEY

The TASK option gives a unique name to the task so that, when installed
via the IFS command, the task can be activated with the command PET.

Once installed, the PET task can be invoked in three different ways.
If the RU¥ command is used to execute the task, no command line is

2-63

Executing MCR

Commands from Pascal
Programs

2-64

present, 80 the program will ask the user which file is to be printed.
Or, you can activate the task by typing the name of the task, PEY.
The program checks for the case in which the task is invoked with &
command line, but no file name is given. As in the previous case, the
user is prompted for the name of the file to print. Finally, the program
can be initiated with a command line that also contains the name of
the file to print. The examples below show the different ways to run
PET.

>RU8 FPRIEY
File to primt? X.LST

{ contents of X.LST }

>PHT
File to primt? X.LST

{ contents of X.LST }
>PET 1.L8Y

{ contents of X.LST }

Using the procedure DoCad (Do Command) provided below, users can
execute MCR and other system commands from within Pascal pro-
grams. The procedure provides an easy way to execute any one-line
command as if you had typed the command at a terminal.

To give you an idea of its capabilities, DoCed can perform tasks such
as:

e Run PIP to print, rename, delete, copy, or purge files.

e Run PIP to get a directorylisting of some UIC and write it to a
file. Then open that file iti'a Pascal program and perform some
operation on each file.

e Have the Pascal program create and close 8 command file (say,
TEST.CMD), which can then be passed to the indirect command
file processor with the command €TEST.

e Send a series of commands to allocate s floppy drive, search for
bad blocks, initialize, and mount a floppy.

e Run the Pascal compiler, and, if the compilation containe no errors
(status word=1), run the Task Builder.

¢ Change the system date, create or delete partitions, set terminal
characteristics.

To use DoCad, you must first create the file DOCMD.PAS (next page),
then compile it. Note that the source file contains the $nemain em-
bedded switch. This defines DoCad as an external Pascal procedure.
DoCmd performs three operations: detaches the user's terminal; spawns
the MCR, passing it & command line; and then returns the execution
status of the completed task, Each of these operations is explained in
the following paragraphs.

DoCmd calls the detach procedure to detach the user's terminal so that
the spawned task can access the terminal. Detach, defined in the Pascal
support library, is explained in “Detaching From the Terminal” later
in this guide. The logical name TI: in the spawned task will be the
terminal (71:) of the task that called DoCad.

After detaching from the terminal, the DoCmd procedure initializes the
variables required for the SPAWE system call. DoCad allocates a 8-word
status return block, Sts, of type StatusBlock. The first field of the
return block, ExitStatus, is the termination status of the spawned
task where ‘1’ means a successful completion and ‘4’ means a severe
error aborted the spawned task. The second field, TETH_Code, is the
system abort status that is returned if RSX aborts the task before it
can return a status. The remaining seven words of the block are unused
and reserved for future use, SPAVE, an RSX system directive, initiates
the MCR and executes the desired command. Null parameters are used
in place of optional parameters on the call. See “Calling FORTRAN
Subroutines from Pascal Programs” for information on null parameters.

The UAITFR system directive, also 8 FORTRAN call, waits for event
flag namber 1 to be raised, signalling the completion of the spawned
tukl

Upon return, the SPAVE directive sets the status words.

The code for DOCMD.PAS is:

IExample: Executing System Commands From Within Pascal Programs (DOCMD.PAS) I

program DoCad;

{$nomain} gignifies an external procedure
type
StatusBlock = record { status of offspring }

ExitStatus: integer; { task exzit status }
TETE.Code: integer; { TETE abort code }
Unused: array (2..7] of imteger;

end;

CommandLine = packed array [1..79] of char; { & command lise }
Taskfame = array [1..2] of imteger; { task mame }

var
Fall origim 177777B: imteger; { null parameter for Fortram }

procedure SPAVE(var Task: TaskName; { task mame }
var Group: imteger; { group UIC code }
var Hember: integer; { member UIC code }
var Efan: integex; { EFE to set whem offspring termimates }
var AST: integer; { AST address }
var Status: StatusBlock; { offspring status }
var Parm: integer; { address of status block if AST }
var Cmd: CommandLime; { command to execute }
var Cmdlen: integer; { length of command line }
var Unit: integer; { terminal mmit number }
var Dnam: imteger; { device name Ememonmic }
. var DirectiveStatus: integer { Directive status });
nonpascal; { system routime to spawa a task and pass it a command lime }

procedure WAITFR(var Efn: integer);
nonpascal; { system routime to wait for EFE to be set }

procedore Detach; :
external; { detach from the terminal }

procedure DoCmd(var Cad: CommandLime;
Cmdler: integer;
var Status: inmteger);
external; { procedure to execute a command lime }

2-66

procedure DoCed; required for external modules

vax
Task: Taskiame;
Efn, DSH._Status: integer;
Sts: StatusBlock;

begin
Detach; { detach from the termimal }
Task([i] := 50712B; { Rad50 for "HCR" }
Task[2] := 131574B; { Rad50 for "..." }
Efn := 1; { use event flag }

Sts.TETE_Code := 0;
Ste.ExitStatus :® 0;
SPAVE(Task, Full, Full, Efs, Hull, Sts, Bull, Cmd, Cmdlem, BEull, Bull,
DSE_Status);
if DSW.Status <> 1 them Status :® DS¥W._Status { error }
else begin
VAITFR(Efn); { vait for EFE to be raised }
if Sts.TETH-Code <> O them Status := Stes.TETH.Code
else Status := Sts.ExitStatus;
end;
if Status = 0 theam Statas :=2 1;
end;

DoCad requires three parameters:
DoCed(Cmd, CmdLen, Status);
where

Cmd is a packed array of characters containing the command line
to send to the MCR for execution. The maximum length of
the array is 79 characters,

CmdLen is the length of Cmd, in bytes. This integer must lie in the
range 1..79.

Status is an integer variable for the returned status of Cmd's execu-
tion. Any error-numbering convention can be defined for each
" program. The default convention is as follows:

Status Indication

1 Normal completion of task
2 Non-fatal error, task ran to completion
4 Severe error, task aborted

For users setting their own conventions, the procedure exitst,
defined in the Pascal support library, accepts a single integer
parameter. This procedure is used to terminate a Pascal task
and return a 16-bit status value. If the SPAUE directive is

2-67

rejected, the status word contain the directive status word
(DSW) code.

Compile DOCMD.PAS with the following command. (The momain
compilation switch is embedded in the code.)

>PAS DOCHD

After it is compiled, the DoCadprocedure can be linked with any Pascal
program. T

The sample program, CMDTST.PAS, below, shows you how RSX com-
mand lines might be issued from within & Pascal task. The program
consists of the external procedure DoCad and the main program. Only
one command is executed in this example for simplicity. When the
command is completed, the status word is printed.

Example: Issuing Command Lines From a Pascal Program (CMDTST.PAS)]

program CmdTst;

type
CommandLine = packed array [1..79] of char;

var
Cmd: CommandLine;
Cmdlen, Status: integer;

procedure DoCmd(var Cmd: CommandLine; |
Cmdlen: integer; |
var Status: imteger); '

external;

begin { CmdTst }
vrite(’Command? ’);
readln(Cmd);
Cmdlen := 79;

vhile (Cmd[Cmdlen) = * *) and (Cmdlen > 1) do
Cmdlen := Cmdlen - 1;

DoCmd(Cmd, Cmdlen, Status); { execute the command }
vriteln(’status=’, Status: 1, ’.’);
end. { CadTst }

Compile and execute the program with these commands. The spawned
task is the system TIHE facility.

>PAS CHDTST
>TEB_CNDTST/FP/CP=CHDTST,DOCHED,LB: [1,1] PASLIB/LB
>RU¥ CHDTST

Command? TIKE

14:57:02 29-JUE-1983

status=1,

2-68

Lazy I/0

NOTE

On some RSX systems, the Task Builder may detect an an-
defined symbol, 8EE1%, the FORTRAN library routine that
terminates 8 FORTRAN program. This error has no bearing
on Pascal programs and can be ignored.

Pascal-2 uses an input interface known as “lazy I/O" to handle input
from text files. In order for & program to receive information from
an input file, including from an interactive file system such as your
terminal, the program must be able to determine the current status of
the file. More specifically, it must be able to retrieve current values
of eoln and eof and the current record from the file's buffer variable
(F"). A program must therefore wait for a full line to be entered before
it can deteremine “end of line” (or “end of buffer”) and be able to
interpret the results. The function of lazy I/O is to safely delay any
input operation until the program can process a full line.

When & Pascal program requests an input operation on a text file, the
operation is recorded for later use. The delayed operation is triggered
by any subsequent reference to the file's buffer variable, the eof or the
eoln value. The delay is invisible to the program but you see it by the
way the program is synchronized with interactive input.

You need to be aware of the effect that lazy I/O has on synchronization
of input and output operations. As an example, consider a simple
program that reads its standard file input, which is connected to a
terminal. The program prompts for each line and stops at the end of
the file. The design of the program is dictated by two requirements:

1. For the prompt to be effective, it must appear before the user is
required to type the line.

2. To detect the end of the file correctly, the program must check for
it before reading each line.

To meet both of these requirements, the program must print the prompt
before performing any operation that requires the next line of the file to
be known: checking for “end of file" or reading the line. The following
example shows a typical implementaion of lazy I/O. A Control-Z (~Z)at
the prompt signals an “end of file” on the interactive input file, halting

2-69

the program.

lExample: Use of Lasy I/0

program Interactive;

begin
write(’prompt:’);

prompt appears before an input line is required

vhile not eof do
begin
readln;

.
.

eof check occurs before the line is read

vrite(’prompt:’);
end
end.

Terminal I/0

2-70

process the input line

The RSX terminal driver acts as an intermediary between a Pascal
program and the terminal that is running that program. The terminal
driver is record-oriented, which means it sends a full line of text to the
screen or to the program instead of one character at a time.

For example, when a read statement reads input from a terminal, the
terminal driver reads each character and places it in an internal buffer
until the terminal driver encounters an end of line (a carriage return).
At this point, the terminal driver sends the entire line to the program
and lets the program process the line one character at a time.

The same is true for wxite statements, except that the support library
buffers the characters being sent to the terminal until a writeln sends
the buffer to the terminal driver or until the buffer fills. Then the record
is displayed on the screen. The buffer size can be controlled with the
/buff:n (buffer size) file control switch. See “Single-Character 1/0,”
below.

As mentioned above, the writeln statement instructs the terminal
driver to send the output to the screen. After the terminal driver
prints a line, it positions the cursor over the first character of the line
it just printed. The usual output sequence sent by the RSX terminal
driver is: line feed, data, carriage return. This sequence moves the
cursor to the next line, prints the data and returns the cursor to the
first position of the newly printed line, This method of writing lines to
a terminal is different from other operating systems where the normal
output sequence is data, carriage return, and line feed (print the record,
move to the first character of the line, then move to the next line).

The normal sequence of commands issued by the terminal driver may
not particularly suit special I/O applications such as direct cursor ad-
dressing. Sometimes the line-feed and carriage-return characters are
often not needed or are unwanted. To gain control of the terminal-1/0
command sequence, use the /£tz file control switch (see below). This
feature allows you to override the effects of the terminal driver.

FORTRAN Carriage Controd

Pascal-2 allows your Pascal programs to write text files that follow
the FORTRAN standard output conventions. To do this, specify the
/£in file control switch on the reset or rewrite statement that opens
the file. For interactive I/O, the /£tn switch is used with the standard
file output.

FORTRAN conventions state that the first character of each line of an
ASCII file is nonprintable and is used to control the vertical formatting
of an output file (or terminal screen). Most characters have no useful
meaning in the first position, but some characters significantly affect
the format of the output.

The table below summarizes the most commonly-used vertical format-
ting characters. A complete list of these characters is in the RSX-
11M/M-Plus I/O Drivers Reference Manual

Character Meaning Output Sequence

<space> Normal output Line feed, dats, carriage return

0 Double-space Two line feeds, data, carriage return
i Page eject Form feed, dats, carriage return

+ Overprint Data, carriage return

$ Prompt Line feed, data, remain on same line
<null» No special formatting Data only

The null character (¢hx(0)) can be used to prevent the terminal driver
from adding any special characters to the data you write to the ter-
minal. You have to insert the carriage-control characters yourself,
as shown in the last line of program FTNOUT.PAS, listed below.
(Chr(13) is the carriage-return character, and chr(10) is the line-feed
character.)

This example program shows how to use the vertical formatting char-
acters from a Pascal program. The first character written on each line
is interpreted as the vertical-format control character.

[Example: Program Using FORTRAN Control Charactera1

program Ftalut;

begin
rewrite(output, ’'TI:/ftn?);
writeln(’ Hormal output’);
writeln(’ Hore mormal output’);
writeln(’ODouble space’);
writeln(’1Page eject’);
sriteln(’ Hormal output of a lomg lime’);
writeln(’+0verprinteese’);
writeln(’$Prompt output: ’);
writeln(chr(0), ’Internal format’, chr(13), chr(10));
end.

2-71

Single-Character 1/0

2-72

Running this program produces this output on your terminal:

>LUE_FTHOUT
Bormal outpat
Hore normal ountput

Double space

Page eject
Overprintecve of a long lime
Prompt outpat: Intermal format

>

In the above listing, the “overprint” writels replaces the characters
“Normal output” (from the previous eriteln) with “Overprint**** "
resulting in a different line of text. If you set your terminal to a slow
baud rate, you would actually see the overprinting occur. If you direct
the file to a printer, the overprinted line will contain overstrikes.

The /£tn switch does not solve all terminal I/O problems. The data
is not written to the terminal immediately; the characters are still
buffered until a sriteln is executed. You can overcome this problem
by using the feature that allows single-character I/O (see following).

The /buft:n I/O control switch sets the maximum size of each line of
a text file to n bytes. By setting your terminal's internal line length to
1 with /buff:1, you can write programs that perform single-character
input and output. This feature is useful when you need to do special
output formatting to a video terminal, such as direct cursor addressing
of output on the screen.

To enter single-character mode, specify the /buff:1 switch on the re-
set statement for single-character input and on the revrite statement
for single-character output. In single-character mode, the terminal
driver reads and writes the characters as usual. But since the internal
buffer size is one byte, each new character fills the buffer, causing the
buffer to be emptied. In other words, each character written via vrite
is immediately printed on the screen; each character that you enter is
immediately sent to the program.

No special formatting characters are inserted when you use the write
statement (see “FORTRAN Carriage Control,” above). A writelsm

statement prints a carriage return followed by a line feed, as if the
buffer were empty. You can supply formatting characters by using
the chr function to generate the appropriate characters. For single-
character input, you do not need to type a carriage return after each
character to signify the end of the line.

The following sample program combines both single-character input
and single-character output. The program simply echoes each character
as it is entered.

,Example: Use of Single-Character I/0O

progzram Simgle;
vax
Ch: char;

begin
reset(inpat, ’'TI:/buff:1’);
rewrite(ontpat, ’TI:/buff:1’);
erite(’Type & message: ’);
vhile mot eolm de
begin
read(Ch);
write(Ch);
end;
end.

After compiling and linking this program, run it to get these results:
>RUE SIHGLE

Two other file control switches, when used with /buff:1, enhance the
use of single-character I/0O. The /ral/buff:1 switch combination en-
ables single-character binary input for the reading of control and escape
characters such as Control-C. The /noecho/buff:1 switches temporar-
ily disable the terminal’s character echoing capability. See “I/O Control
Switches” for details.

Since single-character input/output vastly increases system overhead,
this feature should be used with care. Overhead is increased because
the monitor is called for each character read from and written to the
terminal. Several users simultaneously outputting in single-character
mode can significantly reduce the system response time.

2-73

Detaching From The Terminal

Pascal-2's Use Of LUNs

2-74

Pascal-2 programs attach the user's terminal (YI:) on Logical Unit
Number § to prevent input from going to the MCR or elsewhere on
heavily loaded systems. This also enables the Control-O (“0) feature
to prevent the printing of unwanted output.

While attaching the user's terminal is an advantage for interactive Pas-
cal programs, it can be a problem for non-interactive programs because
Pascal-2 programs reserve the terminal for the exclusive use of the task.
This prevents the user from starting multiple tasks from the same ter-
minal. To free the terminal for other uses, you can have the Pascal
program detach from the terminal via an external procedure defined in
the Pascal support library. The sample program below shows how to
call this procedure. .

program Det;
procedure Detach; extermal; ({ defimed im library }
begin { start of maim program }

Detach; { make terminal available }
{ rest of program goes here }

end.

This program calls the support library routine detack to detach from
the terminal as soon as the program starts. The detaching should have
no effect on the performance of the Pascal program. If the program is
very interactive, however, you may get an error message or an MCR
prompt if you respond too quickly to a Pascal request for input.

See “Executing Cormmmands from Pascal Programs” for a use of detach.

It is possible to “patch” the symbol p$ratt, a global variable in the
support library, at task-build time. With this patch, a program never
attaches to the terminal. When you use this patch, you do not need to
use detach. See the “Support Library” section for details.

A logical unit number, or LUN, is a number the Pascal support library
and RSX use to associate a file variable with the physical device storing
the file. The Task Builder allocates six LUNs to a task, by default. Of
those six, the Pascal support library assigns two LUNs for the standard
files input and output. Therefore a typical program can open up to
four files without aborting with the “too many files open” run-time
error.

Normally, you do not need to know how LUNs are assigned in your
program; all file accessing is handled automatically by the Pascal sup-
port library. However, in some special applications, knowledge of LUN
assignments may be important. For instance, if you wish to open a
file using Pascal and then access the file with specialized MACRO sub-
routines, you may need to control the LUN assignment for the file.
Ths same is true if a Pascal program calls FORTRAN subroutines that

perform FORTRAN I/O. In this case you may find it necessary to con-
troi which LUNs are being used by your Pascal program, to prevent
FORTRAN LUN assigments from interferring with Pascal-2's LUN as-

iy winends,

To avoid conflicting LUN assignments, specify the /1un:n I/O control
switch on the reset or rewrite statement that opens the file. If LUN
b is already in use, the error message “LUN already in use” results.
For example, the following statement opens a file on LUN 3:

reset(F, ’sample.dat/lur:3’);

The /1ur:n switch is discussed in the “I/O Control Switches” section
earlier in this guide.

When the program is initialized, the support library assigns LUN §
for interactive input operations and LUN 6 for interactive output op-
erations to the logical device TI: (your terminal). In addition, the
terminal is attached on LUN 5 to reserve the terminal for the exclusive
use of the Pascal program. (See the previous subsection for instructions
on how to detach from the terminal from within a Pascal program.)

As each file is opened with a reset or rewrite, the support library
assigns the next available logical unit number to the file, starting with
LUN 1. The file is accessed via that LUN until the file is closed, at
which time the LUN is available for reassignment. Keeping in mind that
input and output are LUNs 5 and 6, the first file & typical program
opens is assigned to LUN 1, the second file to LUN 2, and so on until
the fifth file, which is assigned to LUN 7. If the default allocation is
used, the fifth file cannot be opened because there are no more LUNs
available for the task to use.

To increase the number of logical units available to a task, use the
UEITS Task Builder option. This is necessary if your program opens
five or more files or if you are linking the Debugger or Profiler with your
program. (The Debugger and the Profiler open five files each. See the
Debugger section for details.) For the UBITS option, 20 is a reasonable
value:

>TEB

TEB>LUNTST/FP/CP=LUNTST,LB: [1,1]PASLIB/LB
TEB>/

Enter Optione:

TEB>U¥IT138=20

TEB>//

Extra units do not increase the size of the task significantly. The max-
imam number of logical units available to & task is 250,

For more information on the support library and a way to “patch”

the standard files input and output to use different LUNs, gee the
“Support Library” section in this guide.

2-75

Using Event Flags

2-76

Tasks use event flags to learn whether a specific I/O operation, or
“event,” has completed. Tasks may set, clear and test event flags with
special system directives. These directives are explained in the RSX-
1IM/11M-PLUS Executive Reference Manual. Users who write pro-
grams that call system services or perform special I/0 operations may
need to know how Pascal-2 uses event flags.

Event flags are commonly used to signal the completion of I/O opers-
tions and as a timer to signal the passage of time. Event flags may be
shared among several executing tasks,

Of the 96 event flags available on the system, user prograis may set,
clear or test event flag numbers (EFNs) 1 through 24 for flags local to
a task, 33 through 56 for flags common to all tasks, and 65 though 96
for flags known to a specific “group” of tasks. The remaining EFNs (25
through 32 and 57 through 64) are reserved for the system. Al event
flag numbers are expressed as decimal integers.

The Pascal support library uses EFN 17 to monitor completion of Pas-
cal I/O operations. Therefore, user programs cannot use event flag
number 17 unless the support library’s EFN is changed. See “Changing
the Support Library's Event Flag” earlier in this guide for information
on how to change the EFN used by the support Library.

To use an event flag, define an integer variable to contain the event flag
number. This variable is used throughout the program in operations
involving the event flag. The example below shows the use of event
flag numbers. Program Delay sets a timer to raise EFN 1 after a
specified interval of time. To set the timer, the program calls the
system service routines HARK, which actually initiates the timer and
associates the event with EFN 1, and WAITFR, which waits a specified
number of seconds for the event flag to be set before returning to the
main program. While waiting, the program could execute code that is

not.dependcnt upon completion of the timed operation.

[Example: Use of Event Flags

program Delay;

type

TimeInterval = (Umused, Ticks, Secomds, Himutes, Hours);

vaxr
Interval: TimeInterval;
HaitTims: integer;
Efn: integer;

{ Time interval umit }
{ How long to wait }
{ Event flag to set }

procedure HARE(var Efs: integer; { Evest flag mumber }
var DelayTime: imteger; { How lomg to wait }
var Unit: TimeInterval { Time umits });
nonpascal; { system procedure to set a timer }

procedure WAITFR(var Efm: imteger);
nonpascal; { system procedure to wait for am eveamt flag }

begin { Delay }

vrite(’How many secomds te wait? ');

readln(VaitTims);
Intexrval := Seconds;
Efan :s 1;

HARK(Efn,VaitTime,Interval);

writeln(’Waiting...?);
UAITFR(Efn);

writeln(’Done waitinmg’);

end. { Delay }

Random Access to ‘Text’
Files

The seek procedure cannot compute the location of a particular record
(line) within a file of type text because the lines are of variable lengths.
The Pascal support library supplies two external procedures, getpos
and setpos, that simulate random access to text files.

These two procedures are not predefined and must be declared in your
program as external. Getpos determines the starting location of the
next line of & file, and setpos sets the file pointer to the specified
starting location of a line within the file. The beginning of each line
of & text file is denoted by a block numbes and a byte offset into that
block. Each block contains 512 bytes. The first line of a file starts
with block 1, offset 0. If you try to access a nonexistent position or a
position in the middle of & line, an I/O error will result.

The block number and byte offset must be values returned by getpos.
You cannot compute the values yourself. When the file is being read,
use gotpos to determine the starting position of the next line and save
that block and offset combination for later use by setpos.

2-77

Procedure ‘GetPos’

Procedure ‘SetPos’

2-78

Bear in mind that this is not “true” random access; you cannot access
individual characters, only individual lines of text. Use your Pascal
program to access characters individually within each line.

Procedure getpos determines the starting position of the next line to
be read from or written to a text file. Getpos requires three parameters,
passed by reference, as shown below:

procedure GetPos(var F: text; var Block, Offset: integer);
external;

where

F is the file variable of type text.

Block is the returned disk block number of the next line in file Fto
be read or written.

Offset is the returned byte offset into Block. Together, Block and
Offset point to the next line to be processed.

You should always call getpos to obtain the location in the file before
you call setpos, so the block and offset values being passed to setpos
are valid. '

The example in the next subsection shows the use of getpos.

Procedure setpos positions the file pointer to a specified block num-
ber and byte offset into that block. Setpos accepts the same three
parameters as getpos, except Block and Offset are passed by value.
The setpos declaration is as follows:

procedure SetPos(var F: text; Block, Offset: integer);
external;

where

F is the file variable of type text.
Block is the block number to which the file pointer is set.

Offset is the byte offset into Block. Together, Block and Offset point
to the new position,

To stress an earlier point, the block number and byte offset must be
values returned by getpos. Do not attempt to compute the values
yourself. Save the returned values for later use.

If an error is detected while setpos tries to position the file, the end-of-
file flag eof is set to true. The ioerxror and iostatus support library
fanctions may help you to determine the reason that the line could not
be accessed. (For details on icerror and iostatus, see “I/O Error
Trapping” in this section.) If a file is positioned to a block and offset

that does not correspond to the first character of a line, the resulte are

unpredictable.

The example below shows & way to use getpos and setpos. Program
feverse reads a text file and saves the position of each line in & linked
list. It then prints the file in reverse line order so that the last line of

the file is printed first and the first line is printed last.

Example: Use of ‘GetPos’ and ‘SetPos’ Procedures

Progzam Beverse;

type
Pointexr = “position;
position =
record
Hext: poimter;
Block: integer;
0ffset: integer;
end;
vax
F: text;
Filename: packed array [1..80] of chax;
P, XI: pointer;

Done: boolean;
procedure GetPos(var F: text;
var Block, Offset: imteger);
external;

procedure SetPos(var F: text;
Block, Offset: integer);
external;

2-79

bagin
vrite(’File mame? *);
readln(Filenams);
reset(F, Filename);
P := nil;

read the file

repeat
new(X);

with X° do GetPos(F, Block, 0ffset);

X" .Bext := P;
P = X;
Done :2 eof(F);
if not Dome them
readln(F);
until Done;

get start of next line

write the file

vhile P <> mril de
with P° de
begin

SetPos(F, Block, 0ffset);

if not eof(F) them

begie

while mot eoln(F) de

begin
erite(F");
get(F);
end;
vriteln;
end;
P :s P Hext;
end;
end,

Unsigned Integer
Conversion

2-80

On the PDP-11, integer variables are stored in 16-bit words. These 16
bit words may be interpreted as signed or unsigned integers. A signed
number, in two's complement notation, represents numbers in the range
—32767..32767. An “unsigned” (also called “extended-range”) number
by definition does not have a sign bit; rather, it uses all 16 bits to
represent an integer in the range 0..65535.

When their values are compared or used in mathematical expressions,
unsigned integers differ greatly from signed integers. As an example,
consider a word in which all 16 bits are set to one. This word has a value
of -1 when interpreted as a signed integer, or a value of 65535 when
interpreted as an unsigned integer. When this word is compared with
some other value, the PDP-11 uses different combinations of instrac-
tions for signed and unsigned comparisons. If this number is multiplied
by two, the result is a value of -2 for signed or 131070 for unsigned. The
latter is an overflow condition because the result does not fit within 16
bits.

The Pascal-2 compiler and support library also differ in their treatment
of signed and unsigned integers. When you define a variable to be of

type integer in your Pascal program, the compiler treats that value as
a signed integer, unless you specify an unsigned integer using a subrange
notation such as:

type
unsigned = 0..65635;

var
L: unsigned;

According to your data declarations, the compiler generates the correct
code to compare, multiply, or divide unsigned numbers. The compiler
can then deal with unsigned integers.

The Pascal support library uses & single routine to print integers. If you
attempt to write out the value of an unsigned integer, you find that the
number is always treated as a-signed integer. This routine interprets
all integers as signed values. If you want to write out the value of an
unsigned integer, use the following procedure in your program instead
of the erite statement. This procedure, Uexite, takes an unsigned
integer and a field width as arguments. The number is printed as a
value in the range 0..65535, right justified in the specified field.

IExample: Procedure for Writing Unsigned Integers J

procedure Uerite(X: mipcd;l
Uidth: integer);

This procedure writes an umsigmed imteger to output.
ge

begia { Usrite }
if (X » 32767) and (Width >= 0) thez
begin
if Pidth > O them
Bidth := Width - 1;
write(X div 10: ¥Width);
I := X mod 10;
gidth :s &;
end;
write(X: Width);
end; { Uwrite }

The PDP-11 floating-point hardware uses signed conversion when it
converts an integer value to a real value. If you wish to convert an
unsigned integer to real, use the following function. This function,
Ufloat, takes an unsigned integer as its argument and returns a real

2-81

value in the range of 0.0 to 65535.0.

[Example: Procedure To Convert Unsigned Integer To Real 1

[an—

function Ufloat(k: uasigned): real; —.

{ This functiom converte am umsigned mumber to a real number. }

var
B: real;

begin { Ufloat }
B :s);
if B < 0.0
thern B := B + 65538.0;
Ufloat := R;
end; { Ufloat }

The trumc and roesd functions convert real numbers to integers.
Since the floating-point hardware assumes a signed conversion, the fol-
lowing function should be used when an unsigned integer result is de-
sired. The function Utrumc takes & real number in the range 0.0 to
65535.0 and converts it to an unsigned integer.

‘@xample: Procedure To Convert Real To Unsigned Integer j
function Utrunc(R: real): umsigmed;

{ This function converts a real number to am unsigned integer. }

begin { Utrumc }
if (R > 65535.0) ox (R < 0.0)
then writeln(’Unsigned number out of ramge’);
if 8 > 32767.0
then R := B - 65538.0;
Utrunc := tranc(h);
end; { Utrunc }

The unsigned round function is very similar to the above unsigned
trunc function.

Multiuser Tasks The multiuser-task feature is available only on RSX-11M-PLUS sys-
tems and on VAX/VMS systems in compatability mode.

A multiuser task is one in which read-only instruction and data pro-
gram sections (psects) are shared among two or more users, saving a
considerable amount of memory if several users run the same task at
the same time. With multiuser tasks, each copy of the task has its own
read/write psects but only the first copy executed contains the shared
read-only code. All other copies of the task reference the read-only
code of the first copy.

2-82

Multiple Buffering

The information presented below is oriented toward multiuser Pascal
tasks. For additional information, read the chapter on multinser tasks
in the RSX-11M/M-PLUS Task Builder Reference Manual,

The creation of & multiugser task is very simple. All you have to do
is apply the /HU switch to the task iraage outpnt file, as shown for
TEST.PAS. (Only one user is required ‘o do this; cthers simply run
the program.)

>TEB TEST/HU/FP/CP,TEST=TESY,LB:[1,1]PASLIB/LB

The Task Builder places the read/write psects in low memory and
places the read-only (shared) psects in the highest available multiple
of 4K words (an APR). The load map shows this layout. When addi-
tional users run the task, the operating system sutomatically handles
the sharing of the read-only code.

One problem you may encounter with multiuser tasks is that less heap
storage may be available becaunse of the way the memory management
hardware on the PDP-11 allocates the task's read-only memory. As
stated earlier, the read-only portion of the task is placed at the high
end of memory. However, the amount of memory used for the read-only
portion of the task is rounded up to use the next lowest APR, at & loas
of heap space., This loss is usually not significant unless & task is very
large or requires a large amount of dynamic storage.

For example, if the read-only code and data required 11K words, it is
be placed in the task in virtual memory addresses from 20K to 32K.
The net result is that 1K of virtual address space is lost. In any case,
the savings of physical memory are significant. In the example above,
11K words of memory are saved when each additional user runs the
program since they each share one copy of the read-only code.

If your program uses overlays, you should read the chapter on multiuser
tasks in the Task Builder reference manual for restrictions concerning
multiuser tasks.

Multiple buffering allows Pascal programs to perform I/O operations
concurrently with program computations. This overlapping of I/O op-
erations with program computations can significantly improve the per-
formance of Pascal tasks, especially those that handle large volumes of
data. A good candidate for multiple buffering is a program that makes
heavy use of I/O and performs many computations. Multiple buffering
must be enabled on your system before you can use this feature (see
below).

Multiple buffering is activated by three file control switches, /mbf:n,

/rak and /ubh. (See “I/O Control Switches” for other details on these

switches.)

/mbf:n (Multiple Buffering) Specifies the number of buffers to use in
accessing the file.

2-83

2-84

N

/rah (Read-Ahead) Reads information from the file before it is ac-
tually needed by the program, allowing program computations
to overlap with file input operations.

/wbk (Write-Behind) Returns control to the program after a srite
or put statement before the data is actually written to the
file, also allowing program computations to overlap with file
output operations,

The trade-offs you must consider in determining the optimum number
of bufers to use with each file are discussed in “Multiple Buffering for
Record I/0” in the RSX-11M I/O Operations Reference Manual.

The task's dynamic memory requirements also must be considered.
Each file buffer requires about 528 bytes of heap storage. To determine
how much heap storage the file buffers will use, multiply the total num-
ber of buffers by 528. Adjust this allotment by increasing or decreasing
the number of buffers to arrive at the optimum number of buffers for
each file,

The following table gives the recommended modes and I/O control

switches to use in accessing random access and sequential files having
multiple buffers.

File Access Modes

File Type Operation Mode Example
Sequential read “read-ahead” reset(F, ’test.dat/mbf:5/rah’);
Sequential write “write-behind” rewrite(F, ’test.dat/mbf:12/wbh’) :

Random access

read/write

“write-behind” reset(F, ’test.dat/seek/mbf:5/ubhk’) :

You can use the memmap procedure in the Pascal support library to see
the effect of multiple buffering. Hemmap displays the contents of the
heap, including file buffers. (See “Customizing Error Reporting” in
this guide for information on the use of memmap.)

If your program uses mulitple buffering and you link it with an FCS
resident library such as FCSRES, you must increase the size of the RSX
file storage region to make room for all the file buffers. (FCS allocates
file buffers from this region.) Use the EXTSCY Task Builder option to
do this. For example:

>TKB

TEIEILID/FP/CP‘IE‘LIO ,LB:[1,1]PASLIB/LB

TEB>/

EFTER OPTIONS:

TEB>LIBE=FCSRES: RO

TEB>EXTSCT=$$FSR1: nnnnn ——— size of the file storage region
TKB>// '

Enabling Multiple Buffering On
Your System

>PIP 8Y:/BV=LB:[1,1]3YSLIB.OLB

>LBR SYSLIB/RP=LB:[1,1]FCSHBF
Hodule "ABSPAD" replaced

Before you can use the multiple buffering feature, you must enable
multiple buffering on your system. It is best that you check to see
whether multiple buffering is available before attempting to enable it
yourself, To enable multiple buffering you must to modify the system
I/O library LB:[1,1]8YSLIB.OLB by replacing certain I/O modules
with the contents of the file FCSMBF.OBJ, in your original RSX sysgen
kit. (Consult the RSX-11M I/O Operations Reference Manual for more
details.)

We recommend that you first make a copy of LB: [1,1]18YSLIB.OLB, up-
date the copy to support multiple buffering, test it, and finally replace
the new version in LB:[1,1].

make copy of SYSLIB.OLB
update to support multiple buffers

Hodule "WIWATD" replaced

other module replacements

The replacement of these modules enables multiple buffering, ANSI
magtape support, and support for large buffers (buffers greater than
512 bytes). The commands below will compress the library to remove
unused space from SYSLIB.

>LBR SYSLIB/CO=SYSLIB
>PIP SYSLIB.OLB/TR
>PIP SYSLIB.OLB/PU

It’s a good idea to create test programs to be sure that everything is
working correctly. In your testing, link your program with the modified
copy of SYSLIB.OLB using the /DL Task Builder option to change
the default system library from LB:[1,1]3YSLIB.OLB to the copy of
SYSLIB.OLB you modified.

>TEB TEST/FP/CP=TEST,SYSLIB.OLB/DL,LB:[1,1]PASLIB/LB

After you have verified that multiple buffering works, update the system
copy of LB: [1,1)SYSLIB.OLB. Once you do this you will be able to use
the multiple buffering facility in your programs without any special
Task Builder commands.

2-85

Resident and Cluster
‘Libraries

Creating a Pascal Resident
Library

2-86

A resident library is a collection of commonly used routines from the
Pascal-2 support library that can be shared among all Pascal tasks. In
the V2.1A release of Pascal-2, a Pascal resident library had to contain
modules from both the Pascal support library and File Control Services
(FCS). V2.1B and later releases allow users to build resident libraries
that do not contain FCS routines. For example, you may want to
place both Pascal support library routines, from LB: [1,1)PASLIB, and
routines for File Control Services (FCS), from LB: [1,1]SYSLIB. OLB,
in a Pascal resident library,

In many cases, s memory-resident overlaid version of & Pascal resident
library can be clustered with a separate FCS resident library. The
“cluster library” function permits a Pascal task to use various libraries
in the group through one task address window. See the RSX-1 1M/M-
PLUS Task Builder Manual for a full explanation of this technique.

A shared resident library has several advantages. First, each Pascal
program does not need to have its own copy of the library modules,
which reduces memory requirements and improves system performance
when several Pascal tasks are executing at the same time. Second, the
size of the task image file is smaller because the code for shared routines
is not included in each Pascal task image. Also, several compiled Pascal
tasks can be stored in less space on your disk. Finally, task-building
time is reduced because the modules in the Pascal resident library are
pre-linked at the time the library is created. The Task Builder resolves
references to library modules directly in the Pascal resident library
instead of searching through the Pascal object module library looking
for modules to include in your task.

Resident and cluster libraries are created with the Task Builder com-
mand file PASRES.CMD that is provided on the Pascal-2 distribution
media. You may need to edit PASRES.CMD to tailor the library to
meet your needs. See the comments in the PASRES.CMD command
file itself and the explanations that follow for guidance.

You create a Pascal resident library with the PASRES command
file. To use PASRES.CMD, first install your Pascal-2 system using
the PASBLD command, making sure that the Pascal support library
LB: [1,11PASLIB.OLB is the current version. Then enter the command:

>@PASRES

The command file asks whether or not you want to build & memory-
resident overlaid version of the Pascal resident library,

If your system supports virtual (PLAS) overlays, select this option
and the resident library is built as two overlays. The total amount of
physical memory required for the library varies between 6K and 8K
words, depending upon your hardware configuration. The advantage
of virtual overlays is that the 6K and 8K words of library code can be
accessed using only 4K words of virtual address space (saving 2K to
4K words.)

If you do not wish to use virtual overlays, PASRES.CMD builds & non-
overlaid resident library. This may be necessary on some RSX sytems
that do not support such configurations. If virtual overlays are mot
gelected, PASRES.CMD builde & library requiring only 4K words of
Memory.

After PASRES.CMD builds your library and associsted symbol table,
you must create & partition and install your resident library file. To do
so, you need to know both the task image size of your library file and
the base address at which the partition is to be loaded. The task size
can be determined by examining PASRES.MAP, which is also created
by PASRES.CMD. The value you obtain from PASRES.MAP is given
in decimal words. You must convert it to octal bytes, rounded up to the
next multiple of 100, For example, a task size of 6464 words converts to
31200 bytes (octal). The base address for the partition is determined
by examining the current partition allocation of your operating system,
using the PAR utility.

In the following partition allocation sample, the three colnmns of num-
bers contain the location of Partition Control Blocks, the base addresses
of the partitions in memory, and the length of those partitions, reading
from left to right.

>PAR
EICOH1 067734 070000 014700 HAIN COH
EXCON2 067670 104700 010200 HAIE COH
LDRPAR 067624 1165100 002600 HAIF TASE
TIPAR 087260 117700 030000 HAYE TASK
DRVPAR 066734 147700 003700 MAIN SYS
066670 147700 002300 SUB DRIVER -DL:
066570 152200 001400 SUB DRIVEE -DX:
SYSPAR 006470 163600 010100 HAIE TASE
FCSRES 066424 163700 032000 HAIE COH
FCPPAR 066360 215700 024200 MAIE SYS
041204 215700 024200 SUB (F11ACP)
GEF 066314 242100 515700 HAIE SYS
042620 242100 020000 SUB (...HCR)

The SET/T0P command is used to reduce the size of the GEN partition
by the amount necessary to install the PASRES library. When dealing
with partitions, all addresses and sizes are divided by 100 (octal), so if
the size needed for your PASRES file is 31200 bytes, you create space
for it by entering:

>SET/T0P=GEB:-312

When you recheck the partition allocation, you see a 31200-byte reduc-
tion in the GEN partition.

ass wves

GEE 006314 242100 464500 HAIN 3YS
042620 242100 020000 SUB (...ECR)

2-87

2-88

The base of the PASRES partition is computed by adding the base
of the GEN partition to its length: 242100 4 464500 = 726600. You
can now create the PASRES partition based at 7266 with a size 312
by entering >SET/HAIE=PASRES:7266:312:COH_to create the following
partition structure:

GEE 006314 242100 464500 HAIF $Y§
042620 242100 020000 SUB (...HCR)
PASEES 043834 726600 031200 HAIN COE

A program designed to use PASRES is compiled in the normal way, but
you should use the library option LIBR when task-building to specify
that PASRES is used in read-only mode. The following example task
builds the program TEST.

>TEB
TEB>TEST/FP/CP=TEST,LB: [1,1]PASLIB/LB
TEB>/

EFTER OPTIONS:

TEB>LIBR=PASRES: RO

10857/

You use the CLSTR option to specify that PASRES and FCSRES are
to be clustered.

>118

TEB>TEST/FP/CP=TEST,LB: [1,1] PASLIB/LB/SFCSJT ,LB: [1,1)PASLIB/LB

TEB>/
ESTER OPTIOES:
TEB>CLSTR=PASRES, FCSRES : RO
8>/

When you use FCSRES, you must allocate space for buffers for all the
files that you intend to open. Otherwise you may get an error status
of =39 when you try to open a file,

If you are using FCSRES, but not PASRES, space is allocated in the
program section $$FSR1 by using the EXTSCT option. In the following
example, a buffer of 2100 bytes is created.

>TEB
TEB>TEST/FP/CP=TEST,LB: [1,1]PASLIB/LB
X8>/

ENTER OPTIONS:

TEB>EXTSCT=$$FSR1 : 2100

¢ 977

When you use PASRES, the ACTFIL option of the Task Builder permits
you to specify the number of files you intend to have open at one time.

>TEB
TIB>TEST/FP/CP, TEST=TEST,LB: [1,1]PASLIB/LB
TEB>/

ENTER OPTIONS:

TEB>ACTFIL=1

TEB>LIBR=PASRES : RO

TEB>//

Including Pascal

Procedures in a Resident
Library

If the value you specify with ACTFIL is greater than one, you must also
use the UBITS option to make more logical unit numbers available to
the task.

PASRES may be similarly clustered with other libraries besides FC-
SRES.

The preceding section applies to a general-purpose resident library cre-
ated from the modules in the Pascal support library. This section you
how to include your own compiled Pascal procedures in a resident li-
brary so that they can be shared among several Pascal tasks or how to
add & new procedure to an existing resident library.

Only Pascal modules compiled as external procedures are allowed in a
resident library because their entry points must be available to the Task
Builder as global symbols. Main programs are not permitted because
they create data areas belonging only to the task that created them,
and these areas may not be shared. You can often remove the main
program body from a program and compile the remaining procedures
as an external module, for placement in a resident library. You can
also convert a main program to a procedure, compile it as an external
procedure and install it in & resident library.

In addition, all data used by procedures in a resident library must
be local data. Where necessary, global variables should be passed as
var parameters to the external procedures. This restriction applies
to external files, including the standard files input and output. In
general, if a file is used explicitly in a procedure in a resident library,
the explicit file must be passed as a var parameter to the procedure.

Despite a few exceptions, a good rule to follow is: always pass the
files input and output to a procedure in a resident library and always
specify the files explicitly on file statements such as eoln(input) or
writeln(output). Every use of eoln and eof must include a file argu-
ment, so the file input must be specified explicitly, as in eof(input)
and eoln(input). This restriction does not apply to the read and
write (and readls and writelm) statements. On these statements,
the files input and oatput can be omitted (implied).

Code placed in a resident library must be compiled with the command
line novalkback switch, to eliminate the use of read/write data areas.
If a resident library did contain read/write data areas, data in the
library could be destroyed by other tasks sharing the data area.

2-89

Building a Resideat Librasy

Placing an Existing Procedure
in a Resident Library

2-90

In general, the steps you take in building a resident library are:

1.

Create the library source file of shareable code and compile it as
an external procedure using the nomain and mowalkback switches,

. Task-build the object library to produce a loader map. The map

file shows you the size of the library task image in words and in
octal bytes, two values needed for the PAR (partition) option in
Step 4.

. Use the table provided later in this section to determine the base

address of the library, based on the size of the task image.

Task-build the object library a second time using the PAR option
and the two values derived from the map listing and the table.

Create a partition on your system for the resident library. Since
only privileged users are permitted to create partitions, we recom-
mend that your system manager do this for you.

Install the library task on the system. After this, the library can
be linked with any program.

To convert a procedure in an existing program into a shared procedure,

you may placed it place it in & resident library of its own or add it to

an existing library.

To trace the steps through an example, let’s assume that several users
intend to run the simple program WRTSUM.PAS hundreds of times a
day. The program calls the Sum procedure to print the sum of 1 and 5.
(The answer is 6.) For greater efficiency, you want to create a shared
resident library rather than have each user keep a copy of the complete
program.

The complete program is:

Example: Use of Shared Procedures I
program Urtsum;

procedure Sum(4,B: imteger);
begin
writeln(’The sem is: °,54B);
end;

begin { main program }
Sem(1,6);
end,

To create the resident library, you must create a separate file to contain
the shared code (in this case the procedure Sum). As described above,
main programs may not be shared. The file SUM.PAS has these con-

tents:

procedure Sum(4,B: imteger);
external;

procedure Sum;
begin
eriteln(’The sem ie: ?,4¢B);
end;

This module is then compiled as an external procedure.

>PAS SUHM/EOHATE/EOWALEBACK

The nomair and mowalkback compilation switches must be used to
compile external procedures for inclusion in resident libraries.

Now build the library. Normally you must run the Task Builder twice.
The first run creates the loader map, which tells you the size of the
library task image in words and in octal bytes. The second run actually
builds the usable library.

The size of the task image is used to determine the base address of
the library. The table on the next page simplifies this for you. The
base address is the virtual address of the library and points to the
highest multiple of 4K-word pages that can contain the library code.
The base address and eize in octal bytes are entered on the PAR option
for the second run. The PAR option sets aside a partition for the library
starting at a specified base address. The amount of memory reserved
by the Task Builder depends on the size of the library. Of course, if
you already know the size of the library, skip the first run and build the
library using the PAR option and the appropriate values. The second
YEB command is discussed on the next page.

2-91

Build the library procedure the first time, using the following command
and options. The PAR option is not used with this build.

>TEB
TEB>SUH/~ED, SUH=SUH,LB: [1,1)PASLIB/LB —— /-HD is required
TEB>/

ESTER OPTIOES:

TEB>STACE=0 3TACE=0 option is required

TEB>// ———————— notice the omission of the PAR option

The Task Builder has created two files: SUM.TSK, the executable li-
brary; and SUM.MAP, the load map showing, among other attributes,
the size of the task image and the task address limits.

The two Task Builder options used in this command are /-ED and
STACE=0. Both are required for building resident libraries. The /-ED
option instructs the Task Builder to omit a task header from the task
image. The STACK=0 option indicates that stack space is unnecessary
for the resident library; a stack, instead, exists in each main task that
shares this library.

Examine SUM.MAP to determine the size of the library task image in
words and in octal bytes. The sixth line of the map file contains the size
of the library in words. The seventh line contains the minimum and
maximum task address limits (in octal) of the library. The minimum
address limit is usually 0; the maximum address limit is the same as
the size of the library in octal bytes (if the minimum address limit is
0). The size in octal bytes is simply the size of the library in decimal
words, doubled and converted to octal.

Example: Memory Map Showing Task Size and Address]
SUH.TSE Hemory allocatios map TEB H40.02 Page 1 19-40G-83

Partition name : GEN

Identification : ¥2.1

Task UIC : [2,56]

Task attridbutes: -HD

Total address windows: 1.

Task image size : 1408, words size of the library in words
Task address limits: 000000 005353

3
.

the rest of the TKB map-

From this map file you determine that the size of the library SUM.TSK
is 1408 words or 5354 octal bytes.

Using the task image size and the table below, determine the base
address of the library. The first column is the size of the task image in
words, which was obtained from the map listing. The second column
is the address limits of the task, in octal bytes. The octal value should
lie within the address limit range corresponding to the task image size.

2-92

The third column is the base address of the resident library for & given
task image size.

Image 5iz2s and Address Limits For Tasks

Tosk fiusge Sive Task Address Limits Base Address

0. - 4095,
4096. - 8191,
8192. - 12287.
12288. - 16383.
16384, - 20479.
20480. - 24575,
24576. - 28671.

28672. - 32767.

000000 - 017777 160000
020000 - 037777 140000
040000 - 057777 120000
060000 - 077777 100000
100000 - 117777 060000
120000 - 137777 040000
140000 - 157777 020000
160000 - 177777 Can't create library

In this instance, with a library 1408 words long, SUM.TSK requires a
base address of 1600005 and is placed in the last active page (APR)
by the Task Builder. The base address and the size in octal bytes
(5354,) are to be entered as PAR parameters for the second task build.
Normally the size in octal bytes does not end on a 64-byte boundary
(ending with two zeroes as in 65003), which the Task Builder requires.
If you enter an odd size, the Task Builder issues the error message,
“Illegal partition/common block specified,” and waits for you to enter
the PAR option again. Here the octal size 5354 should be rounded up
to 5400 and entered on the PAR option, as shown:

>PAR=SUH: 160000: 5400

where SUH is the name of the library, 160000 is the base address (in
octal) and 5400 is the rounded size of the library in octal bytes.

Task-build the resident library a second time to actually create the
useable library. You must specify a file name in the third position on the
command line to create the necessary .STB symbol table file associated
with the library. In this case, SUM.STB defines the locations of the
entry points of the library SUH so the Task Builder can map the library
into the calling program’s virteal address space. Here you must use the
PAR option formatted above to’identify the partition for the library.

>TEB
TEB>SUN/-ED, SUN, SUH=SUH,LB: [1, 1] PASLIB/LB
TEB>/

EFTER OPTIONS:
TEB>STACK=0
TEB>PAR=SUN : 160000 : 5400
B>//

the second build, with PAR

2-93

program Brisum;

procedure Sum(A,B: integer);
external;

begin { main program }

Sum(1,6);
end.

2-94

NOTE

Resident libraries used by Pascal programs should not be built
position-independent; an absolute base address must be spec-
ified. Depending on the size of & main program, a floating
base address can cause the Task Builder to load the resident
library in the next available APR. As a result, there may not
be enough heap space available to the Pascal task to allow it
to expand when new is called. If the main program is executed
and demands a large amount of dynamic memory, it may grow
into the resident library area, resulting in the run-time error
“Memory protection violation.”

Create a partition on your system called SUN. You may wish to ask
your system manager for help. Then install the task using the IHS
command, making it known to the system.

>IE8 SUH

To use this special library, you must edit the original program to remove
the definition for the shared code (the procedure Sum) and substitute in
its place a reference to the external procedure. The resulting program
looks like:

replaces code of procedure Sum

This program is then compiled as any other Pascal program,
>PAS WRTSUH

Now, use the Task Builder to link this compiled Pascal program with
the library you created above.

>TEB
TEB>WRTSUR/FP/CP, URTSUN=WRTSUH,LB: (1, 1) PASLIB/LB
TEB>/

ENTER OPTIOES:

TEB>RESLIB=SUN/RO

TEB>//

Converting an Entire Program
to a Shared Procedure

The Pascal support library PASLIB is listed in the first Task Builder
command line becaunse, even though you are using & resident library,
modules that are not in the resident library (such as $0474) are still be
loaded from PASLIB. The BESLIB option describes the location of the
symbol table for the resident library. You could use the LIBR option if
you build the resident library and its symbol table in the system UFD
(LB: (1,11). The /B0 modifier indicates that the library is mapped as
read-only.

To run the program, give the command:

>BUE WRTSUHE
The sum is: é

The program WRTSUM calls the procedare Sum in the resident library
to print the result. Other users running WRTSUM (or calling Sum) at
the same time would be sharing the code for the procedure Sum

The steps you take to convert an entire program into a shared procedure
are identical to those described _above for a single procedure. Before
you try to convert all the procedures in a program to a resident library,
be sure every procedure you intend to inclede in the library can be
shared (i.e., those that do not create read/write data areas).

This example shows in general the way to convert an existing program
into a shared procedure. The skeletal structure of & program, CH.PAS,
looks like:

program Ch;
{ Global "comst," "type," amd "var" defimitioms }

procedure 4;
{ Definitions local to & }
begin
{ procedure 4 }
end;

begin
{ Hain program }
end.

Since main programs are not permiited in a resident library, the pro-
gram must be converted to a procedure that can be placed in a resi-
dent library. To convert a program to a procedure, change the program
statement to an external procedure definition, and change the ‘end.’
of the main program to ‘ead;’ to show that the program is now an
external procedure. As a8 matter of course, global variables in the main

2-95

2-96

program become local variables in the shared procedure. The code
below has been changed in this way.

procedure Ch(var imput, omtput: text);
external;

procedure Ch;
{ Local "comst," "type," and "var," defimitiomns }

procedere 4;
begin
{ Procedere 4 } —
end; o

begin
{ Procedure Ch }
end;

The procedure is then compiled, task-built and installed as described
earlier. At this point the resident library CE can be linked with other
programs that call it. You now need to create 8 dummy main program
that calls Ch, passing the standard files input and output, as shown
in the file CHMAIN.PAS, below:

program ChHaiw;

procedure Ch(var imput, oautput: text);
external;

begin
Ch(input,output);
end.

CHMAIN calls the procedure Ch to do all of its processing. The task
CHHAIE is relatively small because it contains only the data areas for
the program. If several users run CHHAIN (or call Cb) simultaneously,
each user shares the code (Ck) but retains an autonomous data areas.

Compile this program as you would any other main program. To build
the main program and link it with resident library CH, use the following
command and options,

>TEB
TEB>CHNAIN/FP/CP,CHNATN=CHNATN,LB: [1,1] PASLIB/LB
TEB>/

EFTER OPTIONS:

TEB>RESLIB=CH/RO

%8>//

The RESLIB option instructs the Task Builder to read the user-library
definitions from the symbol table file CH.STB. If CH.STB were located
in LB: [1,1], then the option LIBR=CE:R0 could have been used because
libraries in LB:[1,1] are considered system libraries. The R0 switch
requests read-only access to the resident library.

Read the sections about resident libraries and shared regions in the
RSX-11M/M-PLUS Task Builder Manual before you attempt to create
your own libraries. You may need to make changes to the library pro-
cedures, depending on the size of the library you create. In particular,
you must change the PAR option, which is used to describe the virtual
address of the library, as the library grows in size.

2-97

Compiler
Optimizations

Variable Assignments to
Registers

Assignment of Constants
and Addresses to Registers

Constant Folding

Dead Code Elimination

2-98

The Pascal-2 compiler implements these optimizations:

The compiler permanently assigns up to three floating-point accumuls-
tors and two general registers to commonly used local variables in each
block. The compiler assigns the registers to the variables that are the
most often used. No register is assigned for variables passed to a pro-
cedure as & vax parameter or referenced directly by a procedure local
to the declaring procedure. In addition, this optimization is disabled
for the main program if any external procedures are referenced, since
the compiler cannot determine what variables may be used by such
routines.

The compiler attempts to fill all registers with useful operands during
compilation of a procedure, since operations on registers are faster and
take leas space than the corresponding operation performed in memory.
Once a procedure is compiled, unused registers are filled with constant
operands and addresses if such assignment saves space. This low-level
optimization often results in a saving in execution time as well.

The compiler directly evaluates (folds) simple arithmetic involving con-
stant operands of the types integer, char, real, and boolean. The
generated code contains the result rather than the expression. Set ex-
pressions and relational expressions are not folded.

If statements and case statements are optimized if the selection ex-
pression is constant. In this case only one path of execution is possible,
and the compiler discards others. Knowledge of this optimization can
lead to the writing of conditional code much like that available in some
preprocessors. For example:

if Debugging thenm writeln(SomeUserValue);

No code for this statement is generated if the identifier Debugging is
defined as a constant with the value false.

The debug compilation switch disables this optimization,

a4

Boolean Expression
Optimization

Expression Targeting

Common Subexpression
Elimination

Commeon Branch Tail
Elimination

When appropriate, Pascal-2 uses the minimum number of operations
necessary to compute the final value of operands in boolean expressions,
thereby reducing the cost of evaluating individual boolean expreasions.
This method is known as & “short-circuit” evaluation.

The programmer must be careful ot to assume that all operands
of boolean operators are evaluated or that some may not be evalu-
ated. (This optimization takes advantage of a provision in the Pascal
standard that allows an implementation to evaluate only the neces-
sary operands of a boolean expression.) Also, the order in which the
operands are evaluated is unpredictable.

The debug compilation switch disables this optimizaton.

The compiler can determine from context where a particular expres-
sion result should be computed. For instance, procedure parameters
can often be computed directly on the run-time stack, and at times,
expressions on the right side of the assignment operator can be com-
puted directly into the variable on the left side.

Multiple occurrences of the same expression are detected and simplified.
Such optimization of redundant expressions is needed even though a
programmer can often avoid writing such code by introducing auxiliary
variables. For instance, this example:

writela(Il + 1, I ¢ 1);
may be simplified to:
J:s I+ 1; writeln(J, J);

The simplification avoids the redundant computation. However, re-
dundancy of the sort shown in the first example often leads to a more
readable program. Also, certain classes of redundant expressions can-
not be eliminated in the source program. For instance, array index
calculations involve several underlying operations that are not reflected
in the source code and therefore cannot be simplified by the program-
mer. Pascal-2 eliminates a wide class of common subexpressions, across
statement boundaries as well as within simple expressions.

The debug compilation switch disables this optimization.

In some cases the compiler generates several branches to the same lo-
cation in the object program. At times the compiler can replace redun-
dant instructions preceding one such branch instruction with a branch
to a point in the generated code that executes the same instraction
stream. This low-level optimization executes an extra branch instruc-
tion in order to save some space.

The debug compilation switch disables this optimization.

2-99

Array Index Simplification

2-100

Index expressions of the form (varisble + constant] and [variable —
constant] are partially computed. The addition or subtraction of the
constant operand is folded into the value computed for the base of the
array. This optimization is enabled only if array bounds checking is
disabled and the array is unpacked.

Appendix A:
Compilation Error

Messages

(expected Check parameter list syntax.

')’ expected Check parameter list syntax.

' expected Check parameter list syntax.

%’ expected Check array specification.

’s* expected Check type or vax specification.

':="' expected Check for undefined procedure or missing colon.
'+ expected after procedure body Use semicolons to separate procedure declarations.
’=" expected Check constant or type syntax.

[’ expected Check array index specification.

’]* expected Check array index or set specification.

’]* or °,’ must follow index expression Check array index specification.

A type identifier is not allowed here The compiler encountered a bad structured constant or misplaced
identifier.

Actual parameter type doesn’t match formal parameter type Parameters being passed to proce-
dures must have the same type names as the declared (formal) param-
eters.

Ambiguous switch The specified command-line switch name does not contain enough char-
acters to distinguish it from switches with similar names.

Array exceeds addressable memory

Array subscript out of range

Assignment of file variables not allowed An attempt has been made to assign an expression to a file
variable or one file variable to another.

Assignment operands are of differing or incompatible types Type mismatch — compare left and
right sides of assignment statement for compatibility. Note that pointer
types must point to identical data structures.

Assignment to constants not allowed

Assignment value out of range

Bad adjust offset value in procedure <name>/main program A compiler consistency-check error;
please file a Trouble Report immediately. See Appendix C for more

information.

Bad CASE label Case labels and case gelectors must be of the same type. A colon,
erroneously placed after the keyword otherwise, can also cause this
error,

Bad constant

Bad IN operands The left operand must be of a scalar type; the right operand must be
of a compatible set type.

2-101

Bad ORIGIN value Origin values are restricted to the I/O page (locations 0 to 1000 octal)
or the system ares (28K to 32K).

Bad flle name syntax Check command-line syntax.

Bad parameter element The indicated parameter element was not followed by a Y ora').

Bad type syntax

Badly formed expression Check parentheses and operator placement.

BEGIN expected The statement part of a block must start with begis. Modules with
no main program require the nomain compilation switch.

Binary operator expected Two operands must be separated by an operator. Also check for mis-
matched quotes

Block declarations are incorrectly ordered The relaxed ordering of declarations is an extension to
standard Pascal and may be used only for global declarations.

Block ended incorrectly

Block must begin with LABEL, CONST, TYPE, VAR, PROCEDURE, FUNCTION, or BE-
GIN

Boolean value expected

"Cant assign a real. value to an integer variable (use TRUNC or ROUND)
Can’t pack unstructured or named type

CASE label defined twice

CASE label does not match selection expression type

CASE label must be non-real scalar type

CASE label type does not match tag field type

CASE selection expression must be a non-real scalar type

Code too complex in procedure <name>/main program The named body of code is too complex to
be compiled. Restructure the program to reduce its complexity. See
Appendix C of this section for more information.

Compiler writer error - please contact Oregon Software at (503) 245-2202 This indicates an
internal compiler error — please save all listings and terminal output.

Conflicting switches specified Certain switch combinations cannot be specified together on the com-
piler command line. The object switch conflicts with the macro switch.
The debug switch conflicts with both the profile and errors switches;
the profile switch conflicts with the errors switch.

Declaration terminated incorrectly

Declared labels must be defined in procedure body

DO expected Check for, while or with statement syntax.
END expected

Exponent must lie in range -38..38

Expression type is incompatible with FOR index type For statement index types must be non-real
scalars,

2-102

External procedures/functions must be defined at outermost level External procedures may not
be defined within other procedures.

Extra END following block - Check BEGIN ... END pairing

Extra procedures found after main program body This error occurs when more than one main pro-
gram body (starting with a program statement) appears in the source
file.

Extra statements found after end of program This error occurs when more than one main program
body appeanrs in the source file, or when the nomain compilation switch
is used with a source file that contains & main program body.

Field variable expected for NEW Additional parameters to new must be tag-field constant values that
identify the particular variant record being allocated.

File cannot contain a flle component An element of a file cannot itself contain a file.

File names in RESET/REWRITE are non-standard This error is generated only when the stansdard
compilation switch is enabled.

File variable expected The first parameter to xreset, revrite, get, put, and seek must be &
file variable.

File variable or pointer variable expected The indicated caret (") has been incorrectly placed after
a variable that was neither a pointer nor s file,

Files must be passed as VAR param’eters
FOR-loop control variable can only be a simple non-real scalar variable

FOR-loop control variable must be declared at this level A for statement control variable must
be declared local to the block containing the fox statement.

Format expression must be of type INTEGER Field-width specifications in write or vriteln state-
ments must be integers.

Forward procedure/function body is never deflned

Forward type reference is never resolved The type referenced in a pointer type declaration is not
defined by later declarations.

Function cannot be applied to an operand of this type A standard function has been passed &
parameter of the wrong type (for example, tranc/round can only be
applied to real types).

Function identifier is never assigned a value
Function name expected

Function result must be of scalar or pointer type Functions may not return structured types such
as records and arrays. Use var parameters to do this.

Function result type cannot be duplicated in forward-declared function body The parameter
list and result type are already specified by the forward declaration and
may not be repeated. Instead, simply give the function name.

Identifier cannot be redefined or defined after use at this level The specified identifier is already
defined in the current block and cannot be assigned a new meaning in
the indicated block.

Identifler expected The indicated argument should be a variable, not a constant or expres-
sion,

Illegal character

2-103

L

Nlegal comparison of record, array, flle, or pointer values Pointer types may be compared only for
equality; record, array, and file types may not be compared in any case

except strings.
Illegal function assignment

Dlegal subrange The lower bound of a subrange is required to be leas than or equal to
the apper bound.

Index expression type does not match array declaration
Index must be non-real scalar type

Index variable missing in this FOR statement

Integer label expected

Integer overflow or division by sero

Integers must lie in range -32767..32767

Internal temp error in procedure <name>/main program A compiler consistency-check error: please
file a Trouble Report immediately. See Appendix C for more informa-

tion.

Label cannot be redefined at this level Labels may be redefined within nested procedures, but not at
the same level.

Label defined twice

Label is target of illegal GOTO Branching into if-then-else or case statements is illegal.
Label must be declared in LABEL declaration

Label must be unsigned integer constant

Line too long The maximum input line length is 160 characters.

Listing requested but no file provided Check command-line syntax.

More than two output file specifications Check command-line syntax.

Must assign value before using variable The standard states that variables must be initialized before
they are used.
Hust use VAR parameters with EOEPASCAL directive

The calling sequence for nonpascal procedures and functions accepts only call-by-reference parameters.
Need at least 1 digit after °.* or 'E’ Check for proper real numeric format.
Need at least one value to WRITE
Need at least one variable to READ
No file in fleld Check command-line syntax.
No input file provided Check command-line syntax.
?NO” not allowed on this switch

No strict inclusion of sets allowed The operators ‘¢’ and ‘>’ may not be applied to set operands.
Instead, use ‘<=’ or ‘>=',

Non-standard comment form, please use *{” or ”(*” The comment form ‘/*', **/" is not accepted by
Pascal-2. The PASMAT utility automatically converts non-standard

comments to the standard form.

2-104

Nonsense discovered after program end Extraneous characters are present in the input file after the
proper end of the program.

Octal constant contains an illegal digit Octal constants cannot contain an 8 or a 9.

Octal constants are not standard Pascal. This message is issued only when the standard compilation
switch is specified and the conventional octal form containing ‘B’ is

used.
OF expected Check file or set declaration syntax, or case statement syntax.

Only 15 levels of nesting allowed The compiler's limit for procedure and function nesting has been
exceeded.

Ounly functions can be called from expressions Procedures do not return a value and may not be
called from within expressions.

Operand expected

Operands are of differing or incompatible type

Operator cannot be applied to these operand types Check the indicated expression for proper form
and operand type compatibility. For example, characters may not be
multiplied together.

OTHERWISE/ELSE clauge in CASE not allowed Otherwise is an extension to standard Pascal
This message is issued when the standard compilation switch is spec-
ified.

Out of memory in procedure <name>/main program The named body of code is too large or too com-

plex to be compiled. Restructure the program to reduce its complexity.
See Appendix C of this section for more information.

Output requested but no file provided Check command-line syntax.

Packed array [1..n] of characters expected The file name arguments in reset and revrite must be
stringes.

Parameter list cannot be duplicated in forward-declared procedure/function body The indi-
cated statement should simply give the procedure name and no param-

eters.
Pointer variable expected
Procedure name expected

Procedures cannot be followed by type definition The relaxation of declaration ordering applies
only to global declarations, and to declarations in inner blocks which
precede procedure and function definitions. The indicated declaration
gection is improperly placed.

PROGRAM heading expected This error occurs only if the standard compilation switch is set.
Readln, writeln, eoln, and page must be applied to text file

Reassignment of FOR-loop control variable not allowed The control variable of a for statement
may not be modified inside the body of the foxr statement.

Record identifier expected A with statement must specify a record variable.
Same switch used twice Check command line for duplicate switches.

Set is constructed of incompatible types
Set types must have a base in the range 0..258

2-105

Sets must be non-real scalar type The indicated set definition contains an illegal component type.

Statement ended incorrectly

String constants may not include line separator A closing single quote (') is missing.
String of length sero Strings must contain at least one character.

Tag does not appear in variant record label list The tag field referred to does not exist.

Tag identifier already used in this record Field identifiers within a record are required to be unique
and may not be redefined within that record.

The divisor of a MOD must be greater than sero
THEN expected Check if statement form.

This function was declared as a forward procedure Conflict between declaration and use of function
identifier. Check previous declaration.

This parameter cannot be followed by a format expression A format expression may appear only
in calls to write and ritels.

This procedure was declared as a forward function Conflict between declaration and use of procedure
identifier. Check previous declaration.

This procedure/function name has been previously declared forward A procedure cannot be both
forvard and extermal, or both forward and rompascal,

TO or DOWNTO expected Check for statement syntax.

Too few actual parameters The indicated parameter list does not agree with the procedure or func-
tion parameter definition.

Too many actual parameters The indicated parameter list does not agree with the procedure or func-
tion parameter definition.

Too many errors! The compiler error table holds 50 error messages. Error processing is
terminated. Correct earlier errors and recompile for further checking,

Too many external references in procedure <name>/main program Programs are limited to 256
external procedure references. See Appendix C of this section for more

information.
Too many forward references (only 50 allowed)
Too many identifiers (only 1597 allowed)

Too many keys in procedure <name>/main program The named body of code is too complex to
be compiled. Restructure the program to reduce its complexity. See
Appendix C of this section for more information.

Too many labels in procedure <name>/main program The limit of 280 case labels has been ex-
ceeded in named body of code. Restructure the program to reduce its
complexity. See Appendix C for more information.

Too many nested INCLUDE directives (only 8 allowed)

Too many nodes in procedure <name>/main program The-named body of code is too large to
be compiled. Restructure the program to reduce its complexity. See
Appendix C for more information.

Too many Pascal labels in procedure <name>/main program More than 32 statement labels have
been declared in named body of code. Restructure the program to
reduce its complexity. See Appendix C for more information.

2-106

Too many procedures (only 300 allowed) The number allowed may vary according to size of the
computer used and the version of the Pascal-2 software.

Too many strings or identifiers Restructure the program to reduce its complexity.

Too much object code in procedure <name>/main program The named body of code is too large
or too complex to be compiled. Restructure the program to reduce its
complexity. See Appendiz C for more information.

Two file names in one field Check the command line for missing ‘=’ or *,’,

Travrs build error in main program A compiler consistency-check error; please file a Trouble Report
immediately. See Appendix C for more information.

Travrs walk error in main program A compiler consistency-check error; please file & Trouble Report
immediately. See Appendix C for more information.

Type name expected The first parameter passed to the loophole function must be a type
name,

Unary *+4’ or -’ cannot be applied to set operands
Undefined identifier

Undeleted temps in procedure <name>/main program A compiler consistency-check error; please file
a Trouble Report immediately. See Appendix C for more information.

Unexpected ')’ -~ Check for matching parenthesis
Unexpected ELSE clause — Check preceding IF for extra ’;’

Unknown directive The legal directives are {inclade and ¥page.
Unknown switch Check command line for error.
UNTIL expected Check repeat statement for proper form.

Use ’.’ after main program body The indicated terminator is missing from erd statement.

Use ’;’ to separate declarations In addition to flagging the usual missing-semicolon errors, this message
is issued when an illegal digit for the specified radix is found in the

cross-hatch ‘#' format for constants.

Use ’;’ to separate statements

VAR parameters cannot be passed an expression or packed fleld A var parameter must be the
name of a variable or a component of a data structure. If the parameter
is a component of a data structure (record or array), the structure

may not be packed.
Variable name expected
Variable of type array expected
Variable of type record expected

Variables of this type are not allowed in READ Scalar variables may not be used in either read
or write to a text file. Only predefined types (except boolean) and
strings may be read from a text file.

Variables of this type are not allowed in WRITE Scalar variables may not be used in either read
or write to a text file. Only predefined types (except boolear) and
strings may be read from a text file.

Variant label is undefined

2-107

Appendix B:

Run-Time Error
Messages

2 Array subscript out of bounds An array index is outaide of the limits established for the array in

the type declaration that defines the BITAY.

13 Attempt to read past end of file An input operation was attempted on a file when eof is true.

This is usually due to a logic error in the program and can often be
solved installing checks for eof. This error can be trapped with the
noloerrox procedure.

26 Attempted reference through NIL pointer A pointer variable was improperly used while its

40 Can’t delete flle

10 Can’t open file

41 Can’t rename flle

value was undefined or nil. This error could be the result of a pointer
being disposed of before it is used, or of a value never being assigned
to it. This could also occur if the pointer was created with loophole
or ref. The $nopointercheck switch suppresses this error mesasage,

The specified file cannot be deleted. This error can be trapped with
the noioerror procedure.

The file could not be opened for the reason identifed by the I/O error
code. For input files, this error usually occurs if the file does not exist.
You can trap this error by specifying and checking the fourth parameter
on the reset or rewrite statement used to open the file,

The file could not be renamed for the reason given by the I/O error
code. This error can be trapped with the moioerror procedure.

29 CASE selector matches no label A case selector expression has no matching case label. The

othervise clause can be used to detect this error. The $noxangecheck
switch disables the detection of this error.

25 Compiler/library mismatch The compiler version used to compile the main program does not

match the support library used when the task was built. This error
could occur if a new version of Pascal-2 is installed on your system,
and you attempt to build a task with a module compiled with an older
version of the compiler. The solution here is to recompile all of your
modules. This error could also happen if the compiler or library were
updated independently. You might have to rebuild the compiler for
your system.

30 DISPOSE() of a NIL pointer The pointer value does not point into the heap memory pool. This

4 Division by sero

2-108

error could occur if the pointer is not initialized (via new) or if the
pointer was created with loophole or ref.

Division by zero is not defined.

18

14

15

36

23

31

32

11

24

Double deallocation of dynamic memory The pointer variable points to an area of memory

Error reading file

Error writing flle

EXP() overflow

Fatal initialization error

FIS exception

already available for reuse. Poasibly the pointer was mot initialized, or
it was created with loophole or ref. Also, the heap may have been
corrupted. This can happen if you make assignments nsing uninitial-
ized pointers or if an exteraal procedure is called and the number of
parameters passed to the procedure differs from the procedure defini-

tion.

An I/O error was detected while your program was reading an input
file. The I/O error code describes the exact cause of the error. This
error is most often reported during a read or a get operation. This
error can be trapped with the noioerrer procedure.

An I/O error was detected while your program was writing an output
file. The I/O error code describes the exact cause of the error. This
error is most often reported during & write or pat operation. This
error can be trapped with the noleerrer procedure.

The parameter passed to the exp routine would cause an overflow con-
dition during the calculation of the exp. The maximum valae permitted
is approximately 88.

This error indicates that the Pascal support library could not properly
initialize the program for the reason given. This error usually occurs
when the program is too large.

An FIS floating-point exception was detected. This error will only

happen on machines such as the PDP-11/40, which use the FIS-style
floating-point hardware.

File is not a random access file. Use /SEEK This error is caused by an attempt to use

File is not an input flle

File is not an output file

File name syntax error

File not open

the seek procedure on a file that was not opened with the /seek I/O
control switch. The /seek switch must be used with the reset or
revrite statement that opened the file. This error can also occur if
you attempt to open a sequential device such as a terminal or printer
using /seek.

An input operation was attempted on a file that has not been prepared
for reading by reset. Be sure to use the /seek I/O control switch
when you are opening random access files.

An output operation was attempted on a file that has not been prepared
for writing by reerite.

The file name is not a valid file specification. Check the file specification
for invalid characters or other garbage in the file name. You can trap
this error by specifying the fourth parameter on the reset or revrite
statement used to open the file.,

All files other than input and outpat must be opened with reset or
rewvrite before they can be accessed.

2-109

R

19

38

35

17

37

Floating point format error The program attempted to read a real number from a text file,
where the data in the file is not a valid real number. This error can
be trapped with the moioexrox procedure.

Floating point overflow The result of a floating-point operation is too large to represent as a real
number. The magnitude of the largest real number is approximately
L7E + 38.

Illegal value for integer The program attempted to read an integer value that lies outside the
range —32767..32767. This error can be trapped with the moiocerror
procedure.

LUN already in use This error is caused by the use of the lun:n I/O control switch in a
reset or rewrite where the logical unit number n is already in use.
You can trap this error by specifying the fourth parameter on the reset
or rewrite statement that opens the file,

LOG() of zero or a negative number Logarithms are only defined for positive values.

Memory protection violation The program attempted to reference memory unavailable to the
task, or it attempted to modify a common ares or a resident library
marked as read-only. This error is most often canged by the use of an
vninitialized pointer.

Multiple errors detected. Program aborted. This error occurs when an error is detected
while another error is being processed. Rather than printing & poasibly
infinite list of errors, the support library prints this special error mee-
sage and terminates the program. This error can be caused when the
support library code has been accidentally overwritten.

NEW() of sero length This error usually indicates an internal error in the Pascal support
library. It could also be caused by an incorrect call to the pbinew

function,

No FPP support. Re-Task Build with /FP Al Pascal-2 programs should be task-built with
the /FP Linker switch if your machine supports FPP floating-point
hardware. This switch forces the executive to preserve the contents
of the floating-point registers when the Pascal task checkpoints. This
error is never generated on non-FPP machines, where the /FP switch
is not needed to build Pascal tasks.

Not enough memory. Try making task checkpointable or extend $$HEAP. Your program
is too large. Try overlaying the Pascal support library. If that does
not work, try cutting down the size of the global data ares of your
program. You may need to divide up your program code into overlays.
You might try expanding the program section $$EEAP to fill up all of
memory. This can sometimes solve memory fragmentation problems.

Not enough memory for flle buffer This error is detected when there is no room on the heap to
allocate a record buffer for the file being opened. If you are using the
buff:n, var:n or fix:n I/O control switches, try reducing the record
size. This error could also be the result of 8 memory fragmentation
problem. Try expanding the program section named $$EEAP to fill
up all of memory. It may be necessary to overlay the Pascal support
library or your program. You can trap this error by specifying the
fourth parameter on the reset or revrite statement that opens the
file.

2-110

33

39

23

21

20

a7

12

16

34

Odd address trap

PUT() not at end of file

This error is most often caused by & reference through an uninitialized
pointer. However, other problems could cause this error. Check for the
improper use of overlays or & mismatch between external procedure
definitions and references.

A put operation is valid only at the end of & sequential file. If you wish
to update s record in the middle of & file, yon must use the sask /O
control switch on the reset or rewrite statement that opened the file.
This error can be trapped with the noloerror procedure.

Reserved instruction execution Several problems could cause this esror. Check for the improper

SEEK() to record sero

Set element out of range

use of overlays or & mismatch between external procedure definitions
and references. U this error happens on a statement involving real
numbers, you may have configured your Pascal-2 system incorrectly.

The record numbers for random access files start with record number
1. This error can be trapped with the noioexrror procedure.

The program attempted to reference an element of a set that is outside
the range of values permitted in the eet. The valid range is 0..255.

SQRT() of a negative number The square root of a negative number is undefined.
Stack overflow. Try expanding $$HEAP Several problems could cause this error. The default size

of the stack is 2K words. If you have recursive procedures or procedures
with large amounts of local variables, you may need to increase the
maximurm size of the stack by expanding the size of the program section
$$HEAP using the EEXTSCY option of the Task Builder. You could also
get this error if you are using too much heap space. Close unused files
or dispose of unused memory allocated via new.

Too many files open. Task Build with more UNITS Use the UBITS option in the Task Builder

TRUNC/ROUND overflow

to increase the number of logical unit numbers (LUNs) that the task
can use. The default value is six, but Pascal uses two of these for
terminal I/0. If you are using the Debugger or have more than four
files open, use the UNITS option to increase the number of LUNs to &
higher number such as 20. You can trap this error by specifying the
fourth parameter on the reset or revrite statement that opened the
file.

The result of a trune or round operation is too large to be represented.
Only real numbers in the range —32767.0 to 32768.0 may be converted
to integers with the trunc or round functions.

Unexpected BPT, I0T, EMT, or TRAP instruction _The only time the compiler generates

any of these instructions is when the Pascal Debugger is being used.
Check to be sure that none of your modules have been compiled with
the debug compilation switch. Other problems could cause this error,
such as the improper use of overlays or & mismatch between external
procedure definitions and references.

2-111

= = Unknown Pascal run-time error #num This message indicates that the detected error has no
corresponding error message text. This indicates an internal error in
the support library. Contact Oregon Software or file 8 Trouble Report.

9 Unrecognized file switch An I/O control switch specified on a reset or revrite statement is
unknown to the file system. Check the spelling of your file switches.
You can trap this error by specifying the fourth parameter on the reset
or rewrite statement that opened the file.

28 Variable subrange exceeded The program attempted to assign a value to a variable that is
outside the bounds of the subrange type. This error is often cansed by
uninitialized variables or the improper use of subrange definitions. The
$norangecheck switch disables the detection of this error.

2-112

Appendix C: Compiler
Errors

Overflow Errors

Consistency Checks

Very complex or very large programs may exceed the capacity of the
Pascal-2 compiler. Overflow of this sort is reported directly to the
terminal rather than to the listing or error file. The compiler reports
the type of overflow along with the name of the procedure causing
the problem. Overflow errors also may occur in the main program.
The following list of error messages assumes that a procedure named
HuchTooComplicated has caused an overflow:

Too many keys is procedare HuchTooComplicated

Out of memory im procedure MauchTooComplicated

Too many labels im procedure HuchTooComplicated

Too many modes in procedure HuchTooComplicated

Code too complex im procedere HuchTooComplicated

Too mmch object code im procedure KuchTooComplicated

Too many Pascal labels im procedure HuchTooComplicated

Too many external referemces im procedure HuchTooComplicated

An overflow condition in the main program is reported as:
Too many keys im maim program

If compilation of & program causes one of the above error conditions,
simplify the offending procedure or main program section. Two ways
to do this are to split the routine into several sub-procedures and/or
reduce the number of type definitions.

In addition to the above error messages, consistency checks within the
compiler can trigger one of these errors:

Undeleted temps in main program
Internal temp error im main program
Travrs build error im main program
Travrs walk error im mais program

Bad adjust offset value im main program
nnn consistency checks detected
Compiler writer exror

You should seldom, if ever, see consistency-check errors; they are doc-
umented here for the sake of completeness, If you do see such an error,
please send a Trouble Report to your software vendor immediately.
Along with the Trouble Report, send the smallest possible source pro-
gram that reproduces the error. Programs longer than one page should
be sent on floppy disk or magnetic tape. (You also may call about the
problem, if your support contract covers telephone response, but we
undoubtedly need to have the problem in writing in order to fix it.)

2-113

Appendix D: Default The default file extensions listed here apply to files generated by and/or
H H referenced by Pascal-2 and its utilities. The first column lists the type
Flle EXtens'ons of file. The second column lists the extension.

File Extension
Document .DOC
Executable TSK
Library Symbol Table STB
Listing LST
MACRO-11 Sousce Code .MAC
Object .OBJ
Object Library .OLB
Overlay Description ODL
PROCREF Output .PRF
Profiler Output .PRO
PROSE Input .PRS
Source i PAS
Symbol Map SMP
Symbol Table SYM
Temporary TMP
XREF Output .CRF

2-114

Appendix E: Entry

Points in the Pascal

Support Library
Entry
Point Module Source Description
P$o $INPUT OPINP.MAC Read character from standard file imput
P$1 $DDIV OPDDIV.MAC Double-precision division simulation
P$2 $INPUT OPINP.MAC Read character from file
P33 $DMUL OPDMUL.MAC Double-precision multiplication simulation
P$4 $RDINT OPRDLMAC Read integer from standard file input
P$5 $SDADD OPDADD.MAC Double-precision subtraction simulation
P36 $RDINT OPRDLMAC Read integer from text file
P§7 $DADD OPDADD.MAC Double-precision real addition simulation
P$s SRREAL OPRDR.MAC Read real number from standard file input
P$9 SRREAL OPRDR.MAC Read double-precision real from standard file input
P$10 SRREAL OPRDR.MAC Read real number from text file
P$t1 SRREAD OPRDR.MAC Read double-precision real from text file
P$12 SRDSTR OPRST.MAC Read string from standard file input
P$13 Permanently undefined (unlucky)
P$14 S$RDSTR OPRST.MAC Read string from text file
P$15 Reserved
P$16 SINPUT OPINP.MAC Readlm on standard file input
Ps$17 Reserved
P$18 SINPUT OPINP.MAC Readln from text file
P$§19 Reserved
P§20 SOUTPT OPOUT.MAC Write character to standard file output
P$21 Reserved
P$22 SOUTPT OPOUT.MAC Write character to text file
P§23 Reserved
P$24 SWRINT OPWRIMAC Write integer to standard file output
P§25 Reserved -
P$26 SWRINT OPWRIMAC Write integer to text file
P$27 Reserved
P$28 $WREAL OPWRRMAC Write real number to standard file output
P$29 $WREAL OPWRR.MAC Write double-precision real to standard file output
P$30 SWREAL OPWRR.MAC Write real number to text file
P$31 $WREAL OPWRR.MAC Write double-precision real to text file
P§32 $OUTPT OPOUT.MAC Write string to standard file output
P$33 SINIO OPINIO.MAC Initialize standard files input and output
P$34 SOUTPT OPOUT.MAC Write string to text file
P$35 SIOERR OPIOER.MAC Set user-handling of I/O errors for file (Roioerror)
P$36 SOUTPT OPOUT.MAC ¥ritels to standard file output
P337 SIOERR OPIOER.MAC Status check of last file operation (icerror)
P$38 SOUTPT OPOUT.MAC WUritels to text file
P$39 SIOERR OPIOER.MAC I/O error code of last file operation (1ostatus)
P$40 Reserved

2-115

2-116

Entry

Point Module Source Description

P$41 $SP2ERR OP2ERR.MAC “Stack overflow” error message

P3$42 Reserved

P$43 SP2ERR OP2ERR.MAC “Subscript out of bounds” error message
P$44 . Reserved

P$45 $P2ERR OP2ERR.MAC “Variable subrange exceeded” error message
P846 Reserved

P$47 P2ERR OP2ERR.MAC “Reference through a mil pointer” error message
P$48 Reserved

P3$49 P2ERR OP2ERR.MAC “Case selector” error message

P$§s50 Reserved

P§51 $P2ERR OP2ERR.MAC “Division by zero” error message

P$52 Reserved

P$53 $DELF OPDEL.MAC Delete file

P$54 Reserved

P$55 SRENAM OPREN.MAC Renams file

P56 Reserved

P$57 $CLOSE OPCLOS Close files in specified range

P$58 Reserved

P$59 $DATA OPDATA.MAC Initialize Pascal

P$60 $PUT OPPUT.MAC Put next record

P$61 SINPUT OPINP.MAC Get next record

P§62 31O OPIO.MAC Break file

P$63 S$END OPEND.MAC Program termination

P$64 $OPEN OPOPEN Bewrite file

P365 $SEEK OPSEEK.MAC Seek record in file

P3es $OPEN OPOPEN.MAC BReset file

P$68 S$CLOSE OPCLOS.MAC Close file

P§70 $DYNMM OPDYN.MAC Few memory allocation

P§72 $SDYNMM OPDYN.MAC Dispose memory deallocation

P374 Reserved

P§75 SREG OPREG.MAC Save registers

P$76 Reserved

P§77 $REG OPREG.MAC Restore registers

P$§78 S$ARITH OPINT.MAC Signed integer multiply

P3$79 Reserved

P3$80 $ARITH OPINT.MAC Signed integer divide

P$81 OPPACK OPPACK.PAS Pack

P$82 $ARITH OPINT.MAC Signed integer mod

P3$83 OPPACK OPPACK.PAS Unpack

P$84¢ SFCMP OPFCMP.MAC Floating compare simulation

P$85 $DCMP OPDCMP.MAC Double-precision floating compare simulation
P386 $CNVRT OPCNV.MAC Trusc of real number

P$87 SCNVRT OPCNV.MAC Trunc of double-precision real

P388 $CNVRT OPCNV.MAC Float conversion to real

P$889 $SCNVRT OPCNV.MAC Float conversion to double-precision real
P§%0 $FSQRT OPFSQR.MAC 8qrt of real number

Entry

Point Module Source Description

P$91 $DSQRT OPDSQR.MAC 8qrt of double-precision zeal

P$92 SFTRIG OPFTRG.MAC 8ie of real number

P$93 S$DTRIG OPDTRG.MAC 8ia of double-precision real

P$94 SFTRIG OPFTRG.MAC Coe of real number

P$95 S$DTRIG OPDTRG.MAC Cos of double-precision real

P$96 $FATN OPFATN.MAC Ata (arctangent) of real number
P$97 $DATN OPDATN.MAC Ats of double-precision real

P$98 SFEXP OPFEXP.MAC Exp (exponential) of real number
P$99 SDEXP OPDEXP.MAC Exp of double-precision real

P$100 Reserved

P$101 Reserved

P$102 SFLOG OPFLOG.MAC La (natural logarithm) of real number
P$103 $DLOG OPDLOG.MAC La of double-precision real

P$104 Reserved

P$105 Reserved

P$106 S$FTIME OPFTIM.MAC Time function -real

P$107 SDTIME OPDTIM.MAC Time function — double-precision real
P$108 $CNVRT OPCNV.MAC Round of real number

P$109 $CNVRT OPCNV.MAC Rourd of double-precision zeal
P$110 $WBOOL OPBOOL.MAC ¢#Erite boolean to standard file output
P$111 $FORT OPFORT.MAC Fortran interface .

P$112 $WBOOL OPBOOL.MAC ¥rite boolean to text file

P$113 SERR OPERR.MAC Error reporting

P8114 Reserved

P311% Reserved

P$116 SARITH OPINT.MAC Unsigned integer multiplication simulation
P$117 $FSIM OPFSIM.MAC Real division simulation

P3118 SARITH OPINT.MAC Unsigned integer division simulation
P$119 $FSIM OPFSIM.MAC Real multiplication simulation
P$120 SARITH OPINT.MAC Unsigned integer mod

P$121 $FSIM OPFSIM.MAC BReal subtraction simulation

P$122 Reserved

P$123 $FSIM OPFSIM.MAC Real addition simulation

P3$124 Reserved

P$125 Reserved -

P8126 Reserved o

P$127 $REG OPREG.MAC Check for stack overflow

P$128 Reserved

P3$129 Reserved

P$130 Reserved

P$131 Reserved

P$132 Reserved

P$133 Reserved

P$134 Reserved

P$135 Reserved

2-117

Pascal-2 V2.1/RSX Language Specification

Introduction to
the Language

Specification

Changesin the
Standard

‘For’ Statement Control
Variables

File Declaration

Parameter Compatibility

The Pascal-2 compiler processes the standard Pascal language, de-
scribed by International Standards Organization publication ISO 7185,
published in late 1983, which we call the “standard” hereafter. The
ISO standard is identical to the British standard (BS 6192). The ISO
standard allows two levels of conformance, Level 1 (including confor-
mant array parameters) and Level 0 (not including conformant array
parameters). The American ANSI-IEEE standard is identical to Level
0 of the ISO standard.

Compliance is Level 1: conformant array parameters are included. Pas-
cal-2 includes the extensions detailed in this gnide. This guide includes
data on non-standard language features. This guide is not intended as
a full language document,.

Syntax definitions in this specification use the notation described in
Appendix C, Pascal-2 Syntax.

Because you may not be familiar with all the changes to the Pascal
language from Jensen and Wirth (1978) to the standard as adopted
in 1983, this section outlines those changes and Pascal-2's method of
implementing them.,

Variables that control a for statement must be simple variables, local
to the routine in which the for statement is written. Originally, any
variable could be used.

The standard states that the filee imput and output are antomati-
cally declared as global variables if they are mentioned in the program
heading. Because program headings are optional in Pascal-2, input
and output are declared as global variables in every Pascal-2 program.
Thus, you cannot redefine input or output at the global level In earlier
versions of the language, the actual point of definition was undefined.

The compatibility rules for var parameters are now defined according
to a restrictive rule, which requires the argaument passed to have the
same type as the formal parameter. Although the types must be the
same, the type identifiers may differ. The appearance of a new type
construct creates a new type. Previously, the rules for var parameters
were undefined.

3-1

Procedure and Function
Parameters

3-2

s

The standard has changed the method of declaring procedure and func-
tion parameters. The new syntax provides a way of checking the param-
eters of these procedures and functions, thus reducing the likelihood of
type errors.

The syntax for a parameter list is:

parameter-list = “(" parameter-section
{ “;" parameter-section } “)"

parameter-section = ([“vax” | identifier { “," identifier }
(identifier | conformant-array-schema))
| procedure-heading | function-heading .

A full procedure heading must be provided for any procedure or func-
tion declared as a parameter, and the procedure heading for any pro-
cedure or function passed as an actual parameter must match. For
example:

var
E, L: integer;

procedure P(procedare Q(I, J:imteger));
begin
Q(E, L);

end;

procedure P1(I, J: integer);
begin

vriteln(’test of proc parameters’, I, ;
end;

begin
E := 1;
L := 20;
P(P1);
end.

The program issues the following output:
test of proc parameters 1 20

The standard does not allow a standard fanction to be used as a pa-
rameter for a function or procedure. To pass a standard functjon as
a function or procedure argument, you must define a function that
calls the standard function, then pass the user-defined fanction as the
function or procedure argument.

Conformant Array
Parameters

Normally, & procedure or fanction accepts an array parameter con-
taining & fixed number of elements. The number of elements holding
meaningful information may vary but the size of the array may not.
If you need to pass arrays of different lengths, you have to declare
and pass a general array that is as long as the longest possible array,
and you must track the last element of each. Another approach is to
write a separate procedure to handle each size of array, which is clearly
inefficient.

Use of conformant array parameters eolves this problem. Conformant
array parameters are formal parameters that allow you to write a gen-
eral procedure or function that, at each activation, accepts array pa-
rameters of different size and with different lower and upper bounds.
At activation, the upper and lower bounds of the conformant array pa-
rameter assume the upper and lower bounds of the passed parameter
(the actual parameter).

The syntax for a conformant array parameter is:

conformant-array-parameter-specification =
[“vax” | identifier-list “:" conformant-array-schema .

conformant-array-schema = packed-conformant-array-schema
| unpacked-conformant-array-schema .

packed-conformant-array-schema = “packed array”
“I" index-type-specification “]" “of" type-identifier .

unpacked-conformant-array-schema =
“array” “[” index-type-specification
{ ;" index-type-specification } “]" “of”
(type-identifier | conformant-array-schems) .

index-type-specification = bound-identifier “.." bound-identifier “:"
type-identifier .

3-3

As the EBNF diagrams show, a conformant array schema may be ei-
ther packed or unpacked. An unpacked conformant array may be nested
within itself or within other conformant arrays (either packed or un-
packed); if so, an abbreviated form may be used. In the example below,
Hz is the conformant array parameter being used in Examp. T1, T2 and
13 are data types. The two definitions are equivalent. Notice that the
semicolon in the abbreviated form replaces ‘] of array [in the long
form. -

Example: Full and Abbreviated Forms of Conformant Arrany Parameters 1

procedure Examp(var Hx: array [Lbi..Ubi: Ti] of array [Lb2..Uba: 12| of 13);

or

procedure Examp(var Hx: array [Lbi..Ubi: T1; Lb2..Ub2: T2] of T3);

3-4

An array may be passed as a conformant array parameter if:

¢ the clements have the same types,
® the index types are compatible, and

e the bounds are within the range specified by the parameter decla-
ration.

If two parameters are specified with a single conformant array schema,
the actual parameter passed must have the same type. Also, a value
conformant array may not be passed as a parameter to another proce-
dure or fanction.

The next example demonstrates the use of conformant BITAY parame-
ters. The formal parameter Arr is a conformant array parameter and
takes the values of two different-sized arrays, First and Second. At
the first activation of the function AddArray, the two elements of array
First are added together to reach & sum. The next activation adds
up the four elements of array Second and arrives at a different sum, as
shown in the output following the program listing.

‘[Etample: Use of Conformant Arrays - ']

program Conform;
var
First: array [1..2] of imteger; { tevo-element array }
Second: array [0..3] of integer; { four-element array }
Total: integer;

function AddArray(var Arr: arzay [Lower..Upper: imteger]| of imteger): imteger;

vaxr
I, Sum: integer;
begin
Sum := 0;

for I := Lower to Upper do
Sum := Sum ¢+ Arx[I);
Addhrray := Sum
end;

begin
First(l] := 5; First[2] := 9;
Total :®= AddArray(First); ————————— called with two-element array
writeln(’Total for this array is: ’, Total:5);
Second[0] := 1; Second[i] := -31; Secomd[2] := T7; Secomnd[3] := 15;
Total := AddArray(Secomd) ;- ——————— called with four-element array
writeln(’Total for this arxray ie: ’, Total:5)

end.

Running the program yields:

Total for this array is: 14—————remee gum of elements of array First

Total for this array is: 63 ———————— gum of elements of array Second
For a practical example of the use of conformant array parame-
ters, examine the source code of Pascal-2's Dynamic String Package,
L1STRING, one of the utilities.

Literal Strings A literal string may not extend over more than a single line. Earlier

standards were unclear on this point. The limitation allows better
diagnostics for unterminated strings.

‘Write," ‘Wiriteln’ of
‘Packed Array of Char’

ldentifiers

A write or writelr procedure call applied to a packed array of
char writes only as many characters as the field-width parameter spec-
ifies. If the packed array of char exceeds the field-width, the string
is truncated. The string is right-justified if the specified field width is
longer than the packed array. If no field width is specified, a write or
sriteln writes as many characters as are in the string.

LExample: Truncation of Sring that Exceeds Field Width

program Buff;
var
Buffer: packed array [1..30] of char;
BuffCount: integer;

begin
Buffer:® ’This is a packed array of char’;
writeln(Buffer);
BuffCount := 6;
eriteln(Buffer:BuffCount);
writeln(’cutoff’:3);
grite(’shorter’:10);

end.

When executed, the program yields these results:

Thie is a packed array of char
This 4

cut
shorter note leading blanks

The initial character of an identifier must be an alphabetic character
or a dollar sign. All other characters making up identifiers may be any
combination of digits, letters, dollar signs or underbars. Identifiers may
be of any length; all characters are significant. Lower-case characters
are interpreted in the same way as upper-case characters. For example,
name, Hame, HamE, and HANE are equivalent. See “Syntax Extensions”
for details on the the use of the non-standard dollar sign and underbar
in identifiers.

Alternate Symbol
Representations

The standard now defines alternate representations for symbols that
are unavailable in eome character sets. These symbols are equivalent:

Alternate Symbols

Standard Alternate Symbol Future

— o et e, >

orf @ (‘at’ sign)

(‘t
(
)

The alternate comment delimiters are equivalent to the standard com-
ment delimiters, and 8 comment may open with one type of delimiter
and close with the other. Comments may not be nested.

[Example: Valid and Invalid Comments J

(¢ This is a valid comment }
{ This is (e mot) a valid comment }
{ This { { { is a valid comment. }

Any additional opening comment delimiters that appear after the first
opening comment delimiter and before the closing comment delimiter
are treated as text and have no effect on the comment.

3-7

Implementation
Definitions

Standard Type ‘Integer’

Standard Type ‘Real’

Standard Type ‘Char’

Standard Type 'Text’

‘Set’ Types

3-8

This section provides details and characteristics of implementation-
defined elements of Pascal-2,

The predefined identifier maxint has the value 32767.

The standard type integer has the range (-32767..32767)- An unsigned
(extended-range) integer may be defined with the range 0..65535. See
“Unsigned Integer Conversion” in the Programmer’s Reference.

A real variable has the standard PDP-11 single-precision or double-
precision floating-point structure, with magnitude in the range 1E-
38..1E+438. Single-precision values give approximately 7 decimal digit
precision; extended (double-precision) values give approximately 15-
digit precision. Arithmetic overflow is detected for all real operations,
but underflow is ignored and returns a result of zero.

The standard transcendental routines are accurate to 6 decimal digits
in single precision and to 15 decimal digits in extended precision.

The standard does not define the character set to be nsed internally
to represent char. Pascal-2 uses 8-bit characters, allowing the use
of the extended version of the ASCII character set, rather than 7-
bit characters to represent the standard ASCII character eet, The
most significant bit is “off” unless used with extended character sets.
Ord(char) is in the range 0..255.

Programs that calculate bit or byte offsets into a packed structure
should treat a character as 8 bits, not 7; and storage size is the same
for characters in either packed or unpacked structures.

The standard type text is a file type with components of type char,
Text is implemented as a file of variable-length records containing
ASCII data. If a new file is being created, the maximum record length
is assumed to be 132 characters unless set to some other value by the
var:m switch in the rewrite call. See “I/O Support Extensions” for
details. If the program attempts to generate a record longer than the
maximum length, Pascal-2 breaks up the record as though a writela
had been called.

Pascal-2 limits a set to a maximum of 256 elements. The lower and
upper bounds must lie in the range 0..255, e.g., set of 4..9, The
declaration set of integer is equivalent to the declaration set of
0..255. See “Undetected Errors” for restrictions on the checking of
integer sets.

1/ O Definitions

The following table summarizes the default field widths used when
values are written to & text file: .

Default Field Widths

Value Type Field Width

integer 7
real 13
boolean 5

The floating-point representation of a real number includes the sign
of the number (a space for positive numbers and a ‘~' for negative
numbers), the real number in scientific notation, an upper-case E sig-
nifying exponential notation, the sign of the exponent (‘¢' or ‘='), and
a two-digit exponent., For example, the real number —105.39 prints as
=1.053%00E402,

Boolean values are written in upper case (TRUE, FALSE). In the five-
character default field, the value TRUE is right-justified, with a leading
blank before the ‘T’

The procedure page(F) inserts a form feed (page eject) into the file
specified by the required file argument. Calling page(F) with data in
the file buffer execates exiteln(F), which writes the remainder of the
buffer, and srite(F,chr(12)), which writes the form-feed character.
Calling page(F) with an empty file buffer results in a page eject only.

If associated with the standard input file (the terminal), reset(input)
performs the equivalent of a readln, but otherwise has no effect; in the
same way, revrite(output) prints any incomplete line, but otherwise
has no effect. Reset(output) or rewrite(input) produces an error
message. See “External File Access” for details on the use of the ex-
tended form of reset(imput) or rewrite(output).

3-9

Syntax Extensions

ldentifiers

Program Heading

Declaration Order

3-10

This section describes Pascal-2 extensions to the syntax of standard
Pascal.

In standard Pascal, the first character of an identifier name must be an
alphabetic character, with the remaining characters alphanumeric,

In Pascal-2, the character § (dollar sign) is allowed in an identifier any-
where an alphabetic character is allowed. The character _ (underbar)
is allowed anywhere & numeric character is allowed. For example, the
identifier _ABC is not valid because it begins with an underbar. The
following are legal Pascal-2 identifiers:

system$nams

§8file

this_is_a_long idemtifier
This.._Is_Also.__Legal

In standard Pascal, the program heading is required, and the parame-
ters define the external files to be used:

program Test (imput, outpet, File3);

In Pascal-2, the program heading and parameters are not required. If
present, they are checked for proper syntax. The file parameters are
otherwise be ignored. Input and output are automatically declared file
variables. Every other external file must be specified by an additional
parameter allowed in the standard procedures reset and revrite, See
“External File Access” under “I/O Support Extensions” for details.

Though not required, inclusion of the program name on the program
statement is still a good practice because it names the object module
for main programs and external modules. Further, the program name
is used to name the psect when the owa compilation switch is specified.

The declaration sections label, comst, type, var, procedure, and
functiom may be interleaved as desired at the global level of a program.
Comst and type may be interleaved at other levels. This extension is
useful for source module inclusion and stractured constant definitions
as described below. Any number of declaration sections of each type
may be present. An identifier still must be defined before the identifier
is used in any other way. _

‘%lnclude’ Lexical
Directive

‘%Page’ Lexical Directive

‘External’ and ‘NonPascal’
Directives

A special directive allows separate text files to be included within a
program. The contents of the separate file are inserted into the program
st whatever point the ¥include directive occurs. Included files may
themselves contain ¥include directives, nested to & maximuim of eeven
levels.

The syntax for the ¥inclade directive is:
¥imclude ’file-name-string’ ;

The file-name-string must contain st least the name of the file; if no
file extension is specified, .PAS is assumed. In addition to the file name
and extension, file-nsme-string may contain the disk volume number,
the UIC and the version number of the file.

The single quotes (*...?) enclosing file-name-string are required if a
file version is incladed as part of the string; otherwise they are optional,
The quotes allow the tompiler to distinguish the semicolon immediately
preceding the version number from the semicolon that terminates the

directive.

[Example: File Names In An ‘Include’ Directive]

¥isclude hdr;

%include ’makhdr.pas’;
Yinclede term.doc;
%include ’[2,16]rebld’;
Yinclade ’db0:[15,7]decl’;
¥include ’[5,43]1ib.pas;6’;

See the Programmer Reference for details,

The ¥page directive causes a page break (form feed) to occur in the
listing file immediately following the line on which the ¥page directive
is placed. The ¥page directive itself is printed in the listing file on
the last listed line of the page preceding the page eject. The ending
semicolon is optional.

Similar to the forward standard directive, the external directive dis-
tinguishes & particular Pascal procedure or function that is separate
from the module that invokes it. An external procedure must be de-
clared at the global level. H the body of an external procedure or
function does not appear in a compilation, it is assumed that the body
will be in another object module. If the body of the external procedure
does appear, its name will be made available in the object module for
reference by other modules. References to the external procedure are
resolved at link time,

Limitations of the object module structure require that external names
be distinct within the first six characters. The underbar cannot be

3-11

Structured Constants

3-12

expressed in the object module format and is replaced by & period in
the external name. No type checking is done for parameters of an
external routine.

The nonpascal directive may be used instead of external if the exter-
ual procedure is written in a langnage other than Pascal. Honpascal
generates the Digital standard calling sequence used by FORTRAN and
most MACRO-11 routines. This calling sequence uses register BE as &
pointer to a list of parameters. All parameters are passed by reference,
so only var parameters may be used. (The Pascal calling sequence
places parameters on the stack.) MACRO-11 routines written with the
Pascal-2 PASMAC utility must be declared as external rather than
nonpascal, because PASMAC simulates the Pascal calling sequence.

See also “External Modules” in the Programmer Reference for details.

The syntax for constant definitions is extended to allow you to specify
constants in record and array types. Under the standard, arrays or
records cannot be assigned values in the program’s constant-definition-
part and each element must be assigned a value in the program body
with an assignment statement. The structured-constants language ex-
tension eliminates the need to use assignment statements to asaign
values to constants of type &4rray or record.

The formal syntax for structured constants is:

structured-constant =
structured-type-identifier constant-component-list .

constant-component-list = “(" constant-component { “," constant-
component })",

constant-component = constant | constant-component-lis¢ .

where

structured-type-identifier Is a data type with an array or record struc-
ture. All of the components of that structure must be of sim-
ple types, array types, or record types.

constant-component-list Identifies each constant used as components
between nested levels of parentheses. If an element is another
structured type, a constant type of the same structure may
appear or its elements may be set individually between inner
parentheses.

constant-component Must correspond one to one with the component
of the structured (array or record) type, and each constant-
component must be a constant of the same type as the cor-
responding structure component. An access to the structure
component returns the value of the constant-component. If
the structure component is of a structured type, only the

corresponding constant-component-lis¢ must be provided, de-
clared with the proper syntax.

The following are valid declarations. Note that the data types needed
by the structured constant must be declared before the structured con-
stants.
type
81 = packed array [1..4] of char;
82 = recoxrd
String: 81;
end;

const

ci = 81(a’, 'b*, ’c’, '4’);

€2 = 32(’abcd?);
The structured-type-identifier for individual components need not be
provided.

An optional record field specification, called a variant, may be used
within & structured constant. The following is a valid declaration.

{$nomain}

type
xtype = (a,b,c,d);
81 = packed array [1..4] of char;

82 =
recoxrd
case kx: xtype of
a:
(string: 81);
b:
(i: imteger);
c:
(j: real);
d:
O;
end;
const

Ci = 81(’a’, ’bv’, ’¢’, ’4’);
€2 = 82(a,’abcd’);

C3 = 82(b, 1);

Cé 82(c, 2.47);

C5 = 82(d); —

Variant records may or may not use a tag field, but a tag value must
be provided in the constant-component-list.

Three examples are presented showing several uses of structured con-
stants. The first example illustrates the nesting of parentheses in the
structured constant declarations. The second example compares the
standard's method of declaring record or array constants with the struc-
tured constant method. The third example shows the correct way to
declare multidimensional arrays of constants.

3-13

Nested Parentheses

Standard vs. Structured
Constant Declarations

3-14

The structured constant Yorkers in the following declarations contains
three levels of parentheses: the first for the array structure; the next for
the outer record; the last for the pay information. The fourth constant
in the array, however, for Haxine, contains a structured element that
is set by reference to a constant of the same type with no further inner
parentheses.

[Example: Nested Parentheses j

type
Compensation = (Paid, Unpaid);
Paytype = Recoxd
Title : (Clerk, Indiam, Chief, President);
case Compensatiomn of note each variable and field appears
Paid: (Rate: real);
Unpaid: ();
end;
Employeetable = array(1..4] of record
Hame : packed array[1..10] of char;
Payinfo : Paytype;
end;

const
Conchief = Paytype(Chief, Paid, 6.85);
note redefinition for Maxine
Porkers = Employeetable(
(’Charlie ’, (Clerk, Paid, 3.40)),
(’Sasmel ?, (Indiam, Paid, 5.25)),
(’Edward *, (President, Umpaid)),
(’Haxine ?, Comchief)-————— note condensed form
);

Each new structure must be enclosed in a set of parentheses, as shown
above.

A comparison with the standard method of declaring constants for ar-
rays and records illustrates the efficiency and ease of use of structured
constants. The program used in the comparison, DAYCALC, calcu-
lates the day of the week for any date. The declarations below are
those required to declare two arrays of constants, Honthlame and Day-
0ffset. Note that the type declarations are identical in both cases.
The declaration of other data types, constants and variables have been
omitted.

To conform to the standard, constants in arrays and records must be
declared and assigned values as ehown below. This method requires
many more statements and probably takes longer to execute than the
equivalent structured constants declarations, shown after the standard
example.

Example: Use of Standard Counstant Declarations]

program DayCalc;
type
Honth = (Jan, Feb, Haxr, Apr, Hay, Jum, Jul, Aug, Jep, Oct, How, Dec,
Unknown) ;
Bame = packed array [1..3] of char;
HamsList = array [Honth| of Hame;
DayOffsetList ® packed array [Homtk] of 0..6;

vazx
Honthlame: Bamelist; { Tezt for mame of momth }
Day0ffset: DayOffsetList; { Day mod 7 }

begin { DayCale }

Honth¥ame[Jan| := ’jan’; HonthHame[Fedb] := ’feb’; HomthBames[Har] :® ’mar’;
HonthNams[Apr] := ’apxr’; HonthEame[Hay] := ’may’; Homthlame[Jus] := ’jum’;
HonthBame[Jul] := 'jul’; HonthHeme[Aug] := ’aug’; Homthiams[Sep] := ’sep’;
HonthBame[Oct]| := ’oct’; HonthHame[Nov] := ’nov’; HomthHame[Dec] := ’dec’;
HonthBams[Unknown] := 79?%7;

DayOffset[Jan| := O; DayOffset[Feb] := 3; DayOffset|Hax] :=
Day0ffset(Apr] := 6; DayOffset(Hay] := 1; DayOffset|[Jum] :=
Day0ffset[Jul] := 6; DayOffset(iug] := 2; DayOffset[Sep] :=
DayOffset[Oct] := O; DayOffset[Eov] := 3; DayOffset[De¢|—:=
DayOffset[Unknown] := 0; e

.
’

.
s

.
.

rest of program goes here

With structured constants, your code is shorter and easier to maintain
than with the standard method; however, the program is non-standard

3-15

and is not necessarily portable to other Pascal implementations.

Example: Use of Structured Constants j

program DayCalc;
type
Honth = (Jam, Feb, Har, Apr, Hay, Jum, Jul, bug, Sep, Oct, How, Dec,
Unknown) ;
DayOffsetList = packed array [Momth| of 0..6;
Bame = packed array [1..3] of char;
Bamelist = array [Homth| of Hams;

const
HonthBame = HameList(’jam’, ’feb’, ’max’, ’apr’, ’may’, ’jua’,
'jul’, ‘’aug’, ‘sep®, ’oct’?, 'aow’, ’dec’, 22440 H
DayOffset = DayOffsetList(0, 3, 3, 6, 1, 4,6, 2,5, 0, 3, 65, 0);

rest of declarations and program body goes here

Multidimensional Arrays of Multidimensional arrays of constants, such as the two-dimensional ar-
Constants ray below, may be declared as in the following program. This program
prints the elements of the two-dimensional array Table in the order
they are stored.
LExample: Use of Two-Dimensional Array —.]
program TwoDimensions;
const
HaxElem = 3;
type

CharTable = packed array [1..HaxElem, 1..HaxElem] of char;

const
Table = CharTable((’x’, ’y’, ’g’),
()a’. v, 2¢?),
(lp’.)d”)q’));
var
I, J: integer;

begin { TwoDimensions }
for I := 1 to HaxElem do
for J := 1 to HaxElem do
write(Table(I,J], *»);
writeln;
end, { TwoDimensions }

Running this program yields:

T §y 2 a b c p dgq

3-16

Statement Labels

Default Case Label
(‘Otherwise’)

In standard Pascal, statement labels are limited to the range 0..9999,
whereas Pascal-2 allows the use of labels in the range 0..32767.

A defanlt statement may be included in & case etatement according to
the following syntax:

case-statement = “case” case-index “of” | case-element{ “;" case-
element } |
[“;")] “otherwise” defsult-statement | “;"]] “end” .

The default statement, which immediately follows the otherwise
clause, is executed if no case label matches the value of the case-index.
A special note on otherwise syntax: in contrast to the case label,
which requires & colon, the othexwise clause must not contain a colon
or a compilation error results.—

Example:
cagse 1 of

i: Ch := 2;7;

9: Ch := ?;7;
otherwise Ch :=® ’e¢’;
end;

The list case-element is optional, so the following example is valid.

case I of
otherwise I := 1;
end;

3-17

' / O SUppOft I/O support extensions provide the Pascal-2 programmer with addi-
o tional control of the interface to the operating system.
Extensions 8oy

External File Access The standard procedures reset, for opening an existing file, and
rewrite, for creating a new file, have been extended to accept op-
tional arguments that give Pascal-2 programs the ability to associate
internal file variables with external file or device specifications, The
syntax is as follows:

rewrite(file-variable, device-or-file-name, default-values, file-status);
reset(file-variable, device-or-file-name, default-values, file-status) ;

where

file-variable is a standard Pascal file variable.

device-or-file-name specifies the name of an external file with which
the file variable is to be associated. This parameter, which
may be a device or file name specification, must be a string
type and may be either s literal string or a variable.

default-values is also of a string type, providing default values for any
file fields not provided in the file name, including default file

options.

file-status is an integer variable that is primarily used to return &
special status code if the file cannot be opened; this code
allows a program to recover from an otherwise fatal error. The
fourth parameter also may be used to determine the number
of blocks allocated to a file or to specify the number of blocks
to allocate to a new file. These uses are explained in detail
below.

Commas must separate any optional parameters used; & comma must
be included to mark off an omitted parameter but need not follow the
last included parameter. The following example opens a file for direct
access and skips the file-name parameter, indicating a temporary file.

revrite(Fi, , ’/seek’);

See “Random Access to Data Files” for details on the /seek switch, and
see “I/O Control Switches” in the Programmer Reference for details on
the use of other file switches.

The optional parameters may be used to redirect the standard files
input or output, which by default are file variables associated with

the standard terminal input or output devices, respectively. The next
example redirects output from the terminal to the line printer.

rewrite(output, ’LP:’);

3-18

Normally, an I/O error with reset or rewrite causes the support
library to trap the error, terminate the program, and print an ervor
message and procedure walkback. The fourth parameter may be used
to retwrn control to the program. If the fourth parameter is specified
and an I/O error occurs, the support library sets the value of the fourth
parameter to -1 and returns control to the program.

You maust check the value returned by the fourth parameter and specify
what action to take if an error occurs.

Example: Checking the Reset status parameter

reset(infile, Filenams, ’.lst’, statas); ———— default extension of .LST
i# status ® -1 them UserProcessErrey ———— response needed to error status
else ContinueUserProgram;

Or you may use the predefined functions in the support library to initi-
ate run-{ime diagnostics. These functions check the status of the fourth
parameter and respond accordingly. See “Run-Time Error Reporting”
in the Programmer Reference. Either way, you must check the value
of the fourth parameter each time you use it; otherwise, the program
continues but may act unpredictably.

If the file is successfully opened, the fourth parameter returns the num-
ber of blocks allocated to the file. In addition, the fourth parameter
may be used with resrite to specify the number of blocks to be ini-
tially allocated to the file. When the size of the file is known in advance,
this specification allows efficient space allocation by the operating sys-
tem. If the file does not actually occupy the number of blocks specified,
however, the operating system will truncate the file to the number of
blocks needed. In turm, the value of the fourth parameter may be
checked after a rewrite to be certain that the file was allocated the
number of blocks you wished. If the fourth parameter is absent, the file
size is determined by the operating system and expands dynamically.
Examples:

IExample: Checking the Rewrite Size parameter J

reset(f,’test’,
writeln(size);-

.
.
.

size := 64;
revrite(ountput,

' . pas’, size);

assumes default of .PAS

returns the size of the file in blocks

outstr, ’.lis’, size); ——— file initially allocated 64 blocks

3-19

‘Close’ Procedure

Random Access to Data
Files (‘Seek')

The close predefined procedure indicates that its file parameter is no
longer in use; close will reclaim buffer memory. Further access to the
file is prohibited until reset or xrewrite is used. Files are automati-
cally closed upon program termination, or when they appear in another
reset or revrite; close allows files to be closed manually when it is
necessary to reclaim buffer space before then. In addition, a file vari-
able local to a procedure or function is aatomatically closed when that
function or procedure terminates. See the sample program Alphas in
the next section for implicit uses of close.

Pascal-2 includes the seek predefined procedure to allow direct access
(random access) to data files opened with the /seek file control switch.
The seek procedure requires two parameters: a file variable of the file
to be accessed, declared as a file of char or other file type (but
not of type text); and an integer record number (records in the file
are numbered sequentially beginning with 1). After the seek call, the
specified record is available in the file buffer if it exists; otherwise sof
is set to indicate that the record is not available.

S8eek also enables both reading and writing on the same file for in-place
record updates. Put is required if the file buffer variable is to be written
to the file. Get and put may be mixed with seek for sequential access,
because.the internal record pointer is updated after each get and put.
See the example following for the use of pat and seek.

After the file pointer is positioned by seek, both read and write as
well as get and put may be performed. Read and write transfer data
between the user variable and the file; get and put transfer data be-
tween the file buffer variable and the file. The following sequences may
be used for direct access.

seek(F,I); read(F,V); { read record I imte V }
seek(F,I); write(F,V); { write record I from V }

[Example: Direct (Random) Access Using ‘Seek’ l

program Alphas;
var
C: char;
F: file of char;

begin

revrite(F, ’alpha.txt’);
for C := a? to ’5? de

open F for writing

erite(F, C);
reset(F, ’alpha.txt/seek’);

write letters of the alphabet to F
close and reopen F for sceking

seek(F, 4);

read record containing 'd’

writeln(F-);

write a 'd’ to output
'd' becomes 'z’

F~ := 2g7;

put(F);

write 'z’ to F in place of 'd’

end.

3-20

F closed automatically

String Input (‘Read’ and
‘Readin’)

‘Break’ Procedure

Octal Qutput

Real Number Formatting

As the program shows, the /seek file control switch must be used with
reset or revrite if the seek procedure is to be used to access the file.
See “I/O Control Switches” in the Programmer Reference for details.

At run-time, the character ‘d’ is written to the terminal. After program
termination, the file ALPHA.TXT contains:

abczefghl jkimmopqretuvexys ————— g takes the place of d

3esk does not work on text files: For simulated random access on text
files, you must use the getpos and setpos external procedures. See
“Random Access to ‘Text’ Files” in the Programmer Reference.

A character string is & packed array [1..m] of char. The read and
readls procedures may be used to read variables of string types. Char-
acters are read until the variable is filled. If eoln becomes true, the
remainder of the string is filled with spaces. See “The Dynamic String
Package" in the Utilities Guide for more sophisticated ways to read and
manipulate strings.

For efficiency, Pascal-2 buffers transmitted output data. Break(F)
forces the actual transmission of data from a partially filled buffer of
file F. This can be used with interactive terminals to print the terminal
buffer to the screen. The cursor is positioned at the end of the line.

In an integer write procedure call, a negative field-width specification
will represent characters in octal (base 8).

Example:

erite(I:-5); { Display octal valme of I }

If the second formatting field is negative, a real number is printed in
scientific notation. The number of digits to the right of the decimal
point is the number specified in the second field. (The standard allows
you to specify an integer constant or an integer expression in either
formatting field.)

For example,
wvrite(R:20:-6);

prints B with one digit to the left of the decimal point and five digits
to the right, followed by an upper-case E, a sign character ‘¢' or ‘~' and
two digits signifying the exponent. The entire number is right-justified
in a 20-character field.

If B has the value —367.2, the statement writelsn(’R=’,R:20:-5)
prints:

B= =3.67200E+02
3-21

Low-Level Interface

Boolean Operatoss on
Integer

Nondecimal Integer
Constants

Extended-Range
Arithmetic

3-22

This section describes Pascal-2 extensions that are usefal to Program-
mers needing access to mnchine-dependent characteristics.

The boolean operators and, ox, and mot may be applied to operands of
integer or integer subrange type. The not operator is always applied
first. The operators produce a 16-bit result of integer type.

Nondecimal integer constants may be specified in two forms of notation.
In the preferred form, the nondecimal value is written as shown:

nondecimal-integer-constant = digit-sequence “8" kexadecimal-digit-
sequence . .

where digit-sequence is the radix, or base, of the number, in the range
2..16. The number following the cross-hatch character ‘#' is any num-
ber represented in base digit-sequence notation. The ‘#' symbol is
required regardless of base. For example, the decimal value 255 is writ-
ten 88377 for base 8 and 168FF for base 16. Also, the redundant form
108266 is valid for the decimal value 255.

Pascal-2 supports another form of notation as a special case. Octal
(base 8) motation for integer constants is signified by the suffix “B”
(upper or lower case), so that 377B and 377b are the same value as 255
decimal,

The normal range of integer variables in Pascal-2 is -32767..32767,
but you may also declare integer types in the extended range of
0..65535. A variable with an upper limit greater than 32767 is called
an extended-range or “unsigned” variable. Any integer value may be
assigned to an unsigned variable and is converted to an unsigned value
according to the number's underlying bit pattern, with the “sign” bit of
the signed integer being considered a “significant” bit of the extended-
range integer. If the integer value being assigned is negative, no error
is trapped at run-time, since there is no way for the compiler to tell the
difference between a negative “signed” value and an extended-range
“unsigned” value. The same sort of implicit transformation is true
when an extended value is assigned to an integer variable.

Addition, subtraction, and maultiplication are signed operations and
are performed on extended-range variables in the same way that they
are performed on signed variables. Division and modulo are unsigned
operations only for dividends in the extended range; they do not treat
divisors greater than 32767 as unsigned values. Comparison operations
are signed or unsigned according to variable type.

The following sample program illustrates the way Pascal-2 handles
extended-range numbers. Within the repeat until statement, the

program reads an integer then prints it as an unsigned integer and as a
signed integer. The external procedure Ugrite is provided in the sec-
tion on “Unsigned Integer Conversion” in the Programmer Reference.

Iixample: Signed/Unsigned Inieger Conversion Program]

program BigBumberTest;

type
Unsigned = 0,.85536; —

var
BigHumber: Unsigned;

procedure Uwrite(X: Unsigmed; Width: imteger);
external; { procedure to write am wmsigned integer to oumtput }

begin { BigHumberTest }
repeat
vrite(’Enter am imteger: ’);
readlu(Biglumber) ;
write(’ Unsigned, BIGEUHBER = ’);
uvrite(Biglumber,1); writels; .
vriteln(® Signed, BIGFUMBER = ’, BigHumber:1);
vriteln;
until false { forever };
end. { BigHumberTest }

The program is executed, producing the following results. As men-
tioned earlier, the allowable range of values for the integer BigEumber
is ~32767..32767. The final entry — in fact, any value outside the
range of possible integers — is an invalid value for an integer, halting
the program with a walkback (unless walkback is disabled).

Enter as imteger: -1
Unsigned, BIGHNUHBER = 65535
Signed, BIGEUHBER = -1

Enter am imteger: -32767
Unsigned, BIGEUHBER = 32769
Signed, BIGHUNBER = -32767

Enter am integer: 32767
Unsigned, BIGEUNBER = 32767
Signed, BIGEUKBER = 32767

Enter am integer: -55666
Unsigned, BIGEUHBER = ES981
Signed, BIGEUHBER = -5555

Enter an integexr: 5555
Unsigned, BIGFUEBER = 6556
Signed, BIGEUNBER = 5555

Enter an integer: 65535

3-23

“Origin" Declaration

3-24

—

T2 == I/0 error at user PC= 1333
Illegal value for imteger
I/0 exror code= 19, (23B) im file: TI:

Brror occurred at 1lime 16 ia program bignumbertest

A variable can be declared to have a particular address in the 1/0 page
or system area with the following syntax:

var-declaration = var-element {“,” var-element}“:” type .

var-element = identifier [“origin” constant] .

The constant in the above syntax must have an integer value. A vari-
able 80 specified has the address given by the integer following oxi-
gin. This must be in the system space 0..777B or in the I/O page
160000B. .177777B.

The following example demonstrates the use of origim, plus the vse of
the ref and size functions. See “Ref Function” and “Size and Bitsize
Functions” for more details on those routines. The example controls a
mythical device. The procedure ReadData sets op the device's control
registers and initiates a transfer from the device into the task’s memory.
This example is specific to a machine without memory management
hardware, such as a small RT-11 system,

Example: Use of ‘Origin’ ‘Ref’, ‘Sizse’ and ‘Bit Size’ 1

program Device;
comst

Beady = 200B;
BeadBuffer = {1;

.typs
BufferPointer = “Buffex;

vaxr

{ oxample of device comtrol }

{ ready flag }
{ read date command }

Buffer = packed array [1..100] of char;

StatusRegister origim 177316B: integer;
ControlBegister origis 177314B: integer;
Bufferiddress origim 177312B: Buffer_Pointer;
ByteCount origim 177310B: integer;

Data: Buffer;

procedure ReadData;
begin { ReadData }

{ holds data from device }

BufferAddress := ref(Data); { Address for DHA xfexr }
ByteCount := size(Buffer); { size of buffer }
ControlRegister := ReadBuffer; { staxt tranmsfer }

{ Wait for device to complete tramsfer }
while (StatusBegister amd Ready) = 0 do {wait};

end; { ReadData }
begin { Device }
ReadData;
end. { Device }

‘Ref’ Function

The ref function, with a variable argument of type T, produces a
pointer to that variable with result type “T (pointer to 7). The dispose
routine cannot always detect attempts to dispose of a pointer generated
with this fanction, and you should not try to do so.

See the example under “Origin Declaration” and under “Loophole
Function” for uses of ref.

3-25

‘Size'_and ‘Bitsize’
‘Functions

‘Loophole’ Function

3-26

Two fanctions, size and bitsize, give the programmer information
on the space allocated for values of different types. The functions have
 single argument, a type identifier.

The function size returns the number of bytes that would be allocated
for an object of that type by normal variable allocation. The fanction
bitsize returns the number of bits that would be allocated for an
object of that type as a component of a packed record. This is the
actual number of bits required to hold the value.

For example, suppose you had declared a type Sebrange ® 0..16 and
called the functions size and bitsize, as in the following example
program. The results tell you that two bytes and four bits are allocated
for the argument in question.

program JizeBitsize;

type
Sabrange = 0..15;

begin
vriteln(size(Subrange));
writeln(bitsize(Subrange));
erd.

The program yields these results:

2 2 bytes are allocated
4 4 bits are allocated

These functions are primarily useful when you are interfacing with the
operating system or with hardware functions.

See “Origin Declaration” for another example of size.

The invocation of loophole requires two parameters:
loophole(returned-type, expression-to-convert);

where returned-type is an identifier specifying the data type to be re-
turned by loophole, and expression-to-convert is an expression of a
“compatible” type that is converted to returned-type. In this con-
text two types are considered compatible only if they require the same
amount of storage (see “Storage Allocation” in the Programmer Refer-
ence), or if they are both non-real scalar types.

The result of the 1oophole function is the bit pattern of the second
argument, expressed as a value of the type specified in the first argu-
ment.

The following program illustrates the compatibility rules that govern
the use of loophole. The program coerces a real number to an equiv-
alent two-word array of integers representing the two words used to

store the real value, then coerces the two-word array back into a real
number. The program then coerces an integer in the range 0..4 to a
scalar of type Caz, then coerces the scalar back to an integer. The
loophole(integer,3) is equivalent to the statement I := oxd($S).

Example: Type Coercion Integer to Scalar l

program Coexce;

type

Realequiv = array [0..1] of integex;

Car = (Buick, V¥, Datsum, Chevy, BHE); { scalax typo_}_
var

Re: Bealequiv;

B: real;

$: Car; { scalar }

I: integer;

begis { Coerce }
write(’Enter a Real number: ');
readln(R);
ke := loophole(Realequiv, R); { coerces real imto 2-wd array of imtegere }
writeln(’Re = ’, Re[0]:-8, Re(1]:-8); { 2-wvd array prinmted im octal }
B := loophole(Real, Re); { coerces 2-wd array back to real }
vriteln(’'R = ’, R);
erite(’Enter am integer im ramge 0..4: ’);

readln(I);

8 := loophole(Car, I); { coerces integer to scalar }
vrite(’8 = ?);

case 3 of { writes the scalar valume }

Buick: writeln(’Buick’);
VE: eriteln(’VE’);
Datsun: writeln(’Datsun’);
Chevy: writeln(’Chevy’);
BHE: writeln(’BHE’);
end; { case }
I := loophole(integer, 8); { coerces scalar back to imteger }
eriteln(’I =7, I);
end. { Coerce }

When executed, the program yields these resuits:

Eanter a Real number: 21567.9

Re = 43650 77715 —————— octal representation of real nurber (2 words)
B = 2.1567S0E+04

Enter am integer im range 0..4: 2

S = Datsun

I = 2

The only other method of type coercion is to declare a record with
variants, using the fact that the compiler overlays storage for differ-
ent variants. This method makes the same kind of assumptions as
the loophole function about the compiler's allocation of memory and

3-27

3-28

machine's architecture. However, the loophole fanction has several
advantages over variant records:

e No assumption need be made about field allocation in & variant
record.

e The compiler checks that the different types are the same size.

® The bypassing of type checking rules is clearly marked (the com-
piler flags loophole if the $standard switch is set). Also, if the
code is used with a compiler other than Pascal-2, that compiler
should mark loophole as an error, and appropriate changes can be
made to the code. With variant records, the code might compile
but not work.

The following sample program uses the leophole function to perform
arithmetic on pointers so that a block of the task's memory can be
printed.

program HDump;

type
Hoxd = 0..65536;

procedure DumpHemory(Start, Fimish: Hord);
type
Pointer = “integer;
var
- P: Pointer;

begin { Dump Hemory }
P := loophole(Pointer, Start);
vhile loophole(Word, P) <= Fimish do begim
writeln(loophole(integex, P): -6, ’: *, P~: -8);
P := loophole(Pointer, loophole(Word, P) + 2);
end;

end; { Dump Hemory }

begin { HDump }
DumpHemory(1210B, 1220B);

end. { HDump }

The program yields these results:

1210: e
1212: 101032
1214: 10546
1216: 12748
1220: 177772

Non-Standard
Language Elements

Program Parameters

‘Directives

‘Mod’ of Negative
Numbers

Returning of Structured
Types

Language features described in this section are deviations from stan-
dard Pascal.

According to the standard, parameters supplied in the program header
indicate external files. Further, the input and output files must appear
in the program header if they are used in the program. The input and
output files are always defined at the global level and may not be
redeclared at that level

With Pascal-2, the program header is not required, and any program
parameters are entirely ignored (see “Program Heading” under “Syn-
tax Extensions”). External files are referenced instead by an extended
form of reset and revrite using a second parameter (a string) giving
the external filename (see “External File Access” under “I/O Support
Extensions”).

The standard treats directives such as forward as neither an identifier
nor a reserved word. Pascal-2 treats the directives forwvard, external,
ponpascal as reserved words. An identifier cannot have the same name
as one of these directives.

The standard states that the divisor must be positive and the operator
mod must have a non-negative result. That is,

0<I mod J<J

. The Pascal-2 compiler generates a divide instruction that gives a
negative result if I is negative. The standard result is generated by:

Besult := I mod J;
if Besult < O them Result := Result + J;

Under the standard, functions return simple data types only (e.g., in-
teger, real, char). With Pascal-2, fanctions may return structured
data types such as record, array and set types in addition to simple
types. For example:

function EeySort(Key: EeyType): StructType;

where StructType is the structured data type of the return value of
EeySorxt.

3-29

Additional Predefined
Functions and
Procedures

.Procedure ‘Delete’

Procedure ‘Rename’

3-30

The Pascal-2 system includes predefined functions and procedures, as
allowed by the standard. Most of these are grouped according to func-
tion in other subsections in this specification. This subsection describes
miscellaneous predefined functions and procedures not otherwise de-
scribed.

Because these procedures and functions are known to the compiler, they
need not be declared in the program. The only exception is timestamp,
which is fanctionally similar to the other procedures and functions but
is not yet predefined. Timestamp is not predefined so it must be de-
clared as an external procedure.

The predefined delete procedure allows the deletion of a single file
that is opened in a Pascal program. Delete accepts one argument,
the file variable of the file to be deleted. Invoke the procedure with a
statement similar to the following: :

delete(F);

Internally, this procedure closes and deletes the file specified by the
argument. Your program should not close the file (using close) before
invoking the delete procedure. The run-time error message “can’t
delete file” results if the file cannot be deleted for some reason. See the
example after the discussion of the renams procedure,

The predefined procedure renams allows the renaming of an open file,
from within a Pascal program. Rename accepts two arguments. The
first argument passed to rename must be the file variable of the original
file name. The second argument must be the file name of the new file.
Invoke the procedure with a statement similar to the following.

renams(F, ’newfil.txt’);- renames F to NEWFIL.TXT

or:
FewF := ’newfil.txt;8’;
rensme(F, HewF);-———— renames F to NEWFIL.TXT;8

The second argument may be a constant, a variable, or a literal string.
A version number may be specified. I the version number of the new file
is omitted, rename makes the new file the current version. The second
argument must contain at least one field. If any fields are omitted from
the second argument, the omitted field takes the corresponding value
from the original file name. For example, to change the extension only,
use a statement similar to this:

rename(F, ’.mac’);- file name is the same; .MAC is the new extension

The original file must be open (via reset) before rename may be called
on the file. The renamed file is automatically closed upon completion
of the operation.

The next program illustrates the use of the delete and renams pre-
defined procedures. The program reads & file of weather observations
and weeds out duplicate reports, or “dupes.” The “good” reports are
written to a file, which is later renamed, The file of duplicate reports
is then deleted.

lExample: Use of Predefined Procedures ‘Delete’ and ‘Rename’

program Dupes;

const
Climat_File = ’climat.dat’;

vax
Data_File: text; { file of weather observatioms }
Dupe_File: text; { file of duplicate reports }
Good_File: text; { file of good reports minws duplicates }

procedure Discard_Dupes(var F, G, H: text);

external;

{ Thie procedure sorts F,

saving good reports om
reports on file K. }

begin { Dupes }
reset(Data_File, ’veaxz.dat’

a file of weather observatioms,
file @ and discarding deplicate

);

revrite(Dupe_File, ’dupe.tmp’);
revrite(Good_File, ’good.dat’);
Discard_Dupes(Data_File, Good_File, Dupe_File); { Weed omt the dupes }

renams (Good_File,Climat_File);-

renames GOOD.DAT to CLIMAT.DAT

deleta(Dupe_File);-
end. { Dupes }

Predefined Function
‘Time'

deletes the file of duplicates

The predefined function tims takes no parameters and returns a real
value corresponding to the current time of day. The value time is
represented in hours after midnight, so that 9:30 a.m. is 9.50 and 1:45
p.m. is 13.75. The resolution of time depends on the operating system,
but all operating systems provide a resolution of at least one second.

The value returned could be used in header information. (If you wanted
the date as well as the time, you would use timestamp, described later.)
Or you could call time at the beginning and end of a text-processing
program and write a procedure that calculates the number of lines
processed per minute, based on the difference in value returned. Or,
because it generates a real number, time may be used to “seed” a
pseudo-random number generator. The next example returns uses time
to return the time of day. Chx(7) is the “bell” character.

3-31

Procedure ‘TimeStamp’

H

Example: Use of TimeStamp j

program WriteTime;

var
Ers, Hing: integer;
AwPm: packed array(1..2] of char;

Hing := Bound(time ¢ 60);
Bre := Hins div 60;
Hing := Hins mod 60;
if (Hre < 12) then AwPm := ‘AR’
else if (Hrs = 12) and (Himsg = 0)
ther AmPm := 'H ’ e¢lse AmPm := 'PH’;
write(’At the tome the time will be: ’);
write(((Hrs+i1) mod 12 + 1):2);
write(’:’, Hims div 10:1, Hins mod 10:1, AwPm:3);
writeln(Che(7));

end. { ¥riteTime }
Running the program prints these resulte:

&t the tome the time will be: 11:37 AN < beep>

The timestamp procedure provides a way ¢to obtain the date and time
from within a Pascal program. Date and time are obtained simultane-
ously so that they are consistent, even close to midnight.

Timestamp is included in the Pascal-2 library, but the name s not
pre-declared by the compiler. You must include a definition similar to:

procedure Timestamp(var day, momth, year, { date }
hour, mim, sec: imteger); { time }

external;

3-32

‘program DateTime(output);

var

Day, Honth, Year: Integer;

Hour, Hinnte, Second: Integer;

The next program prints the date and time using timestamp.

{ date data }
{ time data }

procedure Timestamp(var Day, Hoath, Yeaz,
Hour, Hinm, Sec: Integer);

external;

procedure PrintTwo(H: Integer);
begin { Print a number om the output file with twe digits, including
leading zexos if needed. The mumber mmst be 99 orx lees }

write(output, § div 10: 1, § mod 10: 1);
end; { PrintTwo }

begin

Timestamp(Day, Honth, Year, Hour, Himate, Secoad);

{ DateTime }

PrintTwo(Day);
case Honth of

1: write(output,
2: write(output,
write(output,
: write(output,
write(output,
: write(output,
write(output,
vrite(output,
9: write(output,
10: write(output,
11: write(output,
12: write(output,

..

D@ ~N D W

end;

vrite(output, Year:
PrintTwo(Hour);
wvrite(output, ':?);
PrintTwo(Hinute);
write(output, ’:?);
PrintTwo(Second);
vriteln(output);

end.

{ DateTime

'-Jan=’);
)-Feb=?);
'-Hax-’);
’-lpz=?);
’-h’-,);
'-Jun~’);
’-Jul~’);
’-‘us.’);
’-8ep=-’);
'-lct=?);
r-Bov-’);
'-Dec=’);

4,

}

")

.
’

The results of the program are:

16-Jun-1983 14:28:31

{

—_—

date

3-33

E"Of Haﬂdling This section describes the errors defined by the Pascal standard and
Pascal-2's handling of them.

Detected Errors Pascal-2 detects the following errors in all cases:

1. Lr or 8qrt has a negative argument.

2. The integer value returned by truac or round lies outside the range
-magint..maxing,

3. Integer or real division by zero.

4. The result of a real operation cannot be expressed because of lim-
itations in the floating-point format.

5. No label matches the value of the case index in a case statement,

6. The characters being read from a text file do not represent a legal
value for the type of variable being read.

7. An attempt to call get, read, or readla when the file has not been
reset or when eof is true for that file.

8. An attempt to call put, write, vriteln, or page when the file has
not been rewritten or when eof is false for that file.

9. A call to put when the file variable is undefined.

Pascal-2 detects the following errors under these conditions:

1. The value assigned to a variable or value parameter is not within
the declared range of values for that variable. Detected when the
$rangecheck compiler switchis enabled. (Default.) Not detected
when a negative value is assigned to an extended-range variable.
See “Extended-Range Arithmetic” for more details.

2. An index expression for an array access is outside the range of
the corresponding index type. Detected when the $indexcheck
switchis enabled. (Default.)

3. A reference through a pointer with a mil or undefined value. Ref-
erence through a nil pointer is detected when the $pointercheck
switchis enabled. (Default.) Reference through an undefined value
is not detected, although many cases will be detected at compile
time,

4. In a for statement, the initial and final values are not within the
range of the controlled variable when the initial value is assigned
to the controlled variable. Detected when the $rangecheck switchis
enabled. (Default.)

5. The calling of dispose with a nil or undefined parameter. De-
tected if the parameter is mil; detected if the parameter was made

3-34

10.

11,

12,

undefined by a previous dispose. The dispose of an undefined
pointer is sometimes detected.

. The result of the sqz fonction is out of range. Detected if the ar-

gument type is zeal; undetected if the argument type is integezx.

. The result of chx(x) is not within the character set. Detected only

if & value is assigned to & variable or is passed as & parameter.

. The result of euce or pred lies outside the range of the type.

Detected only if the value then is assigned to a variable or is passed
a8 & parameter,

. A mod with the right-hand side less than or equal to zero. Detected

if the value is zero; otherwise not.

Reference to an undefined variable. Undetected in general. How-
ever, many simple cases are detected at compile time.

A return from a function without a value being assigned to the
function. Undetected in general. However, many simple cases are
detected at compile time.

An attempt to call put on a file that was opened with reset. De-
tected except for a file with the /seek file control switch specified
when the file was opened.

Undetected Errors Pascal-2 does not detect the following errors:

1.

A set value assigned to a set variable or value parameter contains
members not in the range of the base type of the set variable.

An access to a field in & variant record that is not selected by the
current value of the tag-field.

A dispose of a variable allocated on the heap while there is an
active reference to that variable as a variable parameter or in a
¥ith statement.

A change in the value of a file variable by a get or put while there
is an active reference to that variable as a variable parameter or
in a with statement.

Accessing of a variable allocated with sew(p, cy,...,cs) 28 an entire
variable, in an assignment or as a parameter.

. Calling of dispose(p) when the value of p~ was created with

neu(p, ¢y, ..., ¢x), or calling of dispose(p, ¢1,...,cs) with a vari-
able created with new and a different set of tag values.

The result of an integer operation is incorrect because of overflow.

The value of a format expression to a write statement is leas than
1. Undetected (used in a language extension).

3-35

Appendix A:
Predefined ldentifiers

Appendix B: Reserved

Words

3-36

False
Maxing
True

Types

Boolean
Char
Integer
Real
Text

Variables

Input
Output

And
Array
Begin
Case
Const
Div

Do
Downto
Else
End
External®
File

For
Forward

Constants Fumctions

Abe
Arctan
Bitaize®
Chr

Cos

Eof
Eoln
Exp
Toerror®
Iostatus®
Ln
Loophole
0Odd
Pred
Ref®
Round
Sin
Size®
Sqr
Sqrt
Suce
Time*

Trunc

Fanction
Goto

If

In

Label

Mod

Nil
Nonpascal®
Not

of

Or

Orgin®
Otherwise®

Procedures

Break®
Close®
Delete®
Dispose
Get

New
Noierror®
Pack
Page

Put

Read
Readln
Rename®
Reset
Rewrite
Seek®
Unpack
Write
Writeln

Packed
Procedure
Program
Record
Repeat
Set

Then

To

Type
Until
Var
With
While

*Items marked with the asterisk are extensions of standard Pascal.

Appendix C: Pascal-2
Syntax

Pascal-2 Syntax Diagrams

program —T{ program beadingjj——c(declarationsj—zw

program heading _("program){ identifier .'

block —_{"declarations Hbeginm—(enw
\ ot}

declarations constﬂﬁ types |) { vars | o
J = B

P"q
abels —(Taber (g} LD

consts —("const identifier }—@—{ constantj—@—)—-b

types (e emBer -S5O

L/

vars —(var identifier }—T(origin H constant ())

constant,

AN < Sl > \1 Dumber Jf A
T

constant identifie

N () :‘character : () 4

e e NS
N

L/
type identifier H () structure component }——)—Q)/

structure component [constant } -
[Pt B -

()

L

structure component 3-37

3-38

number

type — — type identifier |- =

N @ Z ;identiﬁer D—() } -

N constant constant A
- {1)—{ type identiﬁer} /

field list
{variant part |-
(o)
variant part _(wge)T@entLﬁer (+) (of) variant

variant

procedure procedure heading |;)

directive

function

function)-{identifier H(;){block

—O
procedure heading —("procedure)-{ identifier |~ formal para.meteTD—@Tb
VR
function heading ' L/
—{function) iden ifier formal parameter type identifier

directive

conformant array schems
— procedure heading |
{ function heading |—

conformant array schema

of {type l{
\\‘ conformant array schema}f

index type spec —bound identifier H.. -{ bound identifier | : -{ type |-=

variable _Variable identifier | o

(.) feld identifier
rﬂ
D D

(D
(D

3-39

expression —| simple expression (-

L
y

simple expression

<

e@ae@@eég

term actor

simple expression sign -

factor « —{ unsigned constant |— 7 P
- { variable ,L g
— {bound identifier }|— g

N function identifier

M not factor %

(D—{expression] D)

)

o/
(D-{expression |~ -{expression} (]

character string

unsigned constant

3-40

staterment .. () unlabeled statement |-

unlabeled statement

(:=) expression

()
\r/

N procedure identifier

A

iy G) oy

~(if){Boolean expression | then { statement else) statement

)
—

otherwise { statement

" while }-{Boolean expression |{_do){ statement }—

N repeat statement until) Boolean expression }—

N
L/

{with)—(—{ record variable |~~~ do) statement

~goto >—C1 digit } :

\.

-

3-41

Extended Backus-Naug
Form

3-42

The notation used for describing syntax in this guide is a variant of the
Backus-Naur Form (BNF) originally developed to describe the syntax
of Algol 60. This particular variant was proposed by Niklaus Wirth
(“What Can We Do About the Unnecessary Divergence of Notations
for Syntactic Definitions?”, Communications of the ACM, November
1977, vol. 20, number 11).

A “terminal symbol” is a symbol that actually appears in the language
itself. Examples of terminal symbols in Pascal are:

begin + om
Terminal symbols are written in quotes, e.g.: “terminal”.

Some terminal symbols are not easily expressed in this way, and these
may be represented by comments contained in angle brackets <>. For
example:

<any printable character>

A “nonterminal symbol” is used in the description of the language but
does not actually appear in the text of the language. That is, it is used
to talk about the langnage. A nonterminal symbol stands for some
sequence of terminal or nonterminal symbols. Nonterminal symbols
are written without quotes. For example:

identifier, interface-part

A ‘“production” is a rule specifying which terminal and nonterminal
symbols make up another nonterminal symbol. A production is written:

left-hand-side = right-hand-side .

The left-hand-side is a nonterminal symbol; the right-hand-side is some
combination of terminal and nonterminal symbols. A production indi-
cates that the left-hand-side is made up of the symbols on the right-
hand-side. A production is terminated with a period.

Within a right-hand-side, the following operators may occur:

(blank) indicates that the two symbols are concatenated. For
example:

lb‘ - “." Ub" ucn .
indicates that lhs consists of the string abc.

| (vertical bar) indicates that the two symbols are alternatives.
Concatenation is performed before alternation. For example:

Pascal-2 Lexical
Description

Ihs = “ab" | “cd” .

indicates that lhs consists of one of the strings ab, cd.

(] (brackets) indicate that the enclosed symbols are optional.
For example:

lb‘ = u." [“bc"] Ud" .
indicates that lhs consists of one of the strings abed, ad.

{} (braces) indicate that the enclosed symbols are repeated zero
or more times. For example:

Ih, = “‘" {Ub”} “c" .
indicates that lhs consists of eny of ac, abe, abbe, abbbe, ..

() (parentheses) are used for grouping as they are in mathemat-
ica.

We can now use this notation to describe itself as an example. The
productions for letter, digit and character are not given here but are
obvious,

syntax = { production } .

production = nonterminalsymbol “=" expression “.” .

expression = term { “|” term } .

term = factor { factor } .

factor = nonterminal-symbol | terminal-symbol | “(" expression “)"
| “I" expression “|" | “{" expression “}" .

terminalsymbol = “"'" character { character } “*" | <any comment
in angle brackets> .

nonterminaksymbol = letter { letter | digit | “-" } .

This set of productions defines the lexical representation of Pascal-2.
Productions that differ from the standard are marked with an asterisk
(*). The case of any alphabetic character is insignificant except in a
character-string. Lower-case is used in this description.

l.‘ Ic“cr - uan I abn I ucn I ud" l “." I u,fn I usn l uh” Iui”

lujn'uknlulnlu-nlu‘nluonlupn|uqnl ¥
l“l"l“t"'“‘lniu'"'“'"'“!"'“’"l“8"'“‘".

UM

2.digit=“0"|“1"|“2”|“3”|“4"|“5”l“6"|“7”|“8"|“9”.

3-43

3-44

3.* octal digit = “0" | “17 | “a" | 43" | “g" | 457 | “gn | uqn .
‘,‘ bexadecimd-digit = dj"‘ l gt I uph I uet I ugn l Ugh | ugn

5. speciaksymbol = “4" | 4=7 | U™ | i4yn | uan | uen | uyn | upr | |
ug,» l u yn
I “un ' u.n l “,n I u;n ' Uatt I ugn ' u(n I u)n I
Ueyh I Uem" ' Uy g
| “:=" | “.." | word-symbol .

6.° word-symbol = “and” | “array” | “begin” | “case” | “const” |
“div" | “do”
| “downto” | “else” | “end” | “file” | “for” |
“function” | “goto” | “if"
| “18” | “1abel” | “mod” | “nil” | “not” | “og” |
“ox" | “origin" | “otherwise”
| “packed” | “procedure” | “program” | “record”
| “repeat” | “set” | “then”
| “to” | “type” | “until” | “vax” | “shile” |
“eith” .

7.% identifier = letter { letter | digit | “_" }

8. bound-identifier = identifier .

9.* directive = “forvard” | “extersal” | “mompascal” .
10. digit-sequence = digit { digit } .

11.* unsigned-integer = [digit-sequence “8” | hexadecimal-digit-
sequence .

12. unsigned-real = (unsigned-integer “." digit-sequence [“B” scale-
factor |)
| (unsigned-integer “B" scale-factor) .

13.* nondecimal-integer = digit-sequence “8"
(hexadecimal-digit { hexadecimal-digit } | octal
number) .

14.* octal-number = octal-digit { octal-digit } “b" .

15.* unsigned-number = unsigned-integer | unsigned-real | octal
number .

16. scale-factor = signed-integer .
17, sign = “4" | 4",
18. signed-integer = [sign | unsigned-integer;

19. signed-real = [sign | unsigned-real;

Pascal-2 Syntax

20.* signed-number = signed-integer | signed-real | [sign | octal
number .

21. Iabel = unsigned-integer;

Uy

22. character-string = string-element { string-element } “'" .

23. string-element = “??" | <any printable ASCII character> .

24. comment = (“{" | “(e")
<any sequence of characters and ends of lines not
containing “}" or “¢)">

(“}yieem).

25.* lexical-directive = “§include” “’" file-name-string “?" “;" |
uxm.n u;n ,

This set of productions defines the syntax for the language accepted by
the Pascal-2 compiler, including all extensions. This section is to be
interpreted in conjunction with the lexical description of the language.

Productions are based on those in the standard. Where the language

accepted by the Pascal-2 compiler differs from this standard, the pro-
duction is marked with an asterisk (“o").

1.* program = | program-heading] { label-declaration-part
| constant-definition-part | type-definition-part
| variable-declaration-part | routine-declaration } |
body “.” | .

2. program-heading = “program” identifier [“(" program-parameters

ayn | g,
3. program-parameters = identifier { “,” identifier } .

4. block = declarations body .

5.* declarations = [label-declaration-part | | constant-definition-part

]

[type-definition-part | | variable-declaration-part |
{ routine-declaration } .

6. Iabel-declaration-part = “label” label { “,” label } “;" .

7. constant-definition-part = “const” constant-definition { “;"
constant-definition } “;" .

8. constant-definition = identifier “=" constant .

9.* constant = ([sign] (unsigned-number | identifier))
| character-string | structured-constant .

3-45

3-46

10.* structured-constant = structured-type-identifier “s” constant-
component-lis¢ ,

11.* constant-component-list = “(" constant-component {«”
constant-component } “)" .

12.* constant-component = constant | constant-component-lis¢ .

13. type-definition-part = “type” type-definition { “;" type-
definition } “;" .

14. type-definition = identifier “=" type .

15. type = identifier | enumerated-type | subrange-type | set-type
| array-type | record-type | file-type | (“°" | “@"
identifier) .

16. enumerated-type = “(" identifier { “," identifier } “)” .

17. subrange-type = constant “..” constant .

-

18. set-type = | “packed”] “set” “of” type.

19. array-type = [“packed”] “array” “[" type{ un type} u]n Yo gh
type.

20. record-type = | “packed” | “record” field-list [“;"] “end” .

-

21. field-list = (fixed-part [“;” variant-part]) | variant-part .

-

22. fixed-part = record-section { “;" record-section } .
23. record-section = identifier { “,” identifier } “:" type.

24. variant-part = “case” | identifier “:" | identifier “o2” variant {
“;" variant } .

25, variant = constant { “,” constant } “:" “(" [field-list | [“;"]
“)” .

26. file-type = [“packed”) “file” “of" type .
variable-declaration-part =~7‘;u” variable-declaration “;" {
varisble-declaration “;" } ,

27

variable-declaration = var-specification { “," var-specification }
4" type.

28

29. var-specification = identifier [“oxigin" constant | .

30. routine-declaration = (procedure-declaration | function-
declaration) “;" .

31. procedure-declaration = (procedure-heading “;" block)
| (procedure-heading ;" directive) | (procedure-
ident “;" block) .

32. procedure-heading = “procedure” identifier | parameter-list | .
33. procedure-ident = “proceduxre” identifier .

34. function-declaration = (function-heading “;" block)
| (function-heading “;" directive) | (function-
ident “;" block) .

35. function-heading = “function” identifier [parameter-list | “:"
identifier .

36. function-ident = “fanction” identifier .

37. parameter-list = “(" parameter-section { “;” parameter-section }

.

38. parameter-section = (| “vax” | identifier { “,” identifier } “:" (
identifier
| conformant-array-schema)) | procedure-heading |

function-heading .

39. conformant-array-schema = packed-conformant-array-schema
| unpacked-conformant-array-schema .

40. packed-conformant-array-schema = “packed” “array”
“[* index-type-specification “|” “of” type .

41. unpacked-conformant-array-schema = “arxay” “[” index-type-
specification
{ %;" index-type-specification } “]” “of” (type |
conformant-array-schema) .

42. index-type-specification = bound-identifier “..” bound-identifier
4" type.

43. body = compound-statement .
44. statement = [label “;"]
[assignment | procedure-call | compound-statement
| if-statement
| case-statement | while-statement | repeat-
statement
| for-statement | with-statement | goto-statement] .
48. assignment = variable “:s" expression .

46. procedure-call = identifier | arg-list | write-arg-list] .

47. arg-list = “(" expression { “,” expression } “)" .

3-47

3-48

48.

49,

50,

51.

write-arg-list = “(" write-arg { 4," write-arg } “)" .
write-arg = expression [“:” expression [“:" expression 11.

compound-statement = “begin” statement { “;" statement }
“end” ,

if-statement = “if" expression “then” statement [“else” state-
ment | .

52.% case-statement = “case” expression “of” [case-element {“n

53.

54.

55.

56.

57.

58,

59

.

60.

61.

62

-

64

-

65,

66.

67.

case-element } | [“;" |
[“otherwise” statement [“;"]] “emd” .

case-element = constant { “,” constant } “:" statement .
while-statement = “vhile” expression “do" statement .

repeat-statement = “repeat” statement { “;"” statement } “ea-
til" expression .

for-statement = “fox” identifier “:=" expression (“to” |
“downto”) expression

“do" statement .

with-statement = “with" expression { “," expression } “do”
statement .

goto-statement = “goto” label .

expression = simple-expression [relational-operator simple-
expression | .

relational-operator = “<" | 43" | U¢a” | Uym” | 4an | “o>” | “4n” ,
simple-expression = [sign | term { adding-operator term }.

adding-operator = “4" | 4-" | 4gph

- term = factor { multiplying-operator factor } .

multiplying-operator = “s” | “/" | “aiy" | “moq” | “and” .

factor = unsigned-constant | variable | function-call | “not” fac-

tor
| “C" expression “)" | bound-identifier | (“[" | “(.”

)

member-designator { “,” member-designator
gn

u]n ' u.)n))

unsigned-constant = unsigned-number | string | identifier | “ni1"”

function-call = identifier | arg-list] .

68. variable = identifier | variable (“[* | “(.") expression { “,” ex-
pression
(“]” ' “.)") l miable(uh” | u.n)l m]‘able “'"
identifier .

"

69. member-designator = expression | “.." expression] .

3-49

Pascal-2 V2.1/RSX Debugger Guide

Debugging tools help uncover “run-time” errors—errors in a program's
execution—that cannot be caught during compilation. For example,
a procedure may generate an incorrect number of loops or make &
legal but unintended change in the value of & variable. The Pascal-2
Debugger lets you control a program’s execution interactively; you may
suspend execution at particular statements to examine or modify the
values of variables, or you may execute statements one at a time to
trace the actions leading to an incorrect result.

When called, the Pascal-2 Debugger keeps track of all constants, vari-
ables, local procedures and fanctions and all standard and user-defined
data types. The Debugger can show what's happening to data and
allow you to change the data as the program executes. You can display
the original source text of your program for immediate identification of
context, and you can access and debug external procedures and func-
tions called by the main program. (See “Debugging External Modules”
at the end of this guide for details.) The Debugger also traps errors by
halting execution of a program at the point of breakdown and identi-
fying the last statement executed. Taken together, these features allow
you to trouble-shoot a program until you have detected and corrected
ANy errors.

This guide serves as an introduction to the Pascal-2 debugging process
and as a comprehensive resource for operation of the Pascal-2 Debug-
ger. The guide provides:

e An overview of the Pascal-2 debugging environment.
6 Detailed descriptions of the Debugger commands.

e A tutorial that demonstrates the context in which Pascal-2 De-
bugger commands are most frequently used.

o An explanation of how external modules are debugged.

¢ A one-page summary of Debugger commands.

A word of warning before beginning: specifying the debugging option
causes the compiler to include a call to the Debugger before each pro-
cedure and statement, which substantially increases the size of your
program. The object module created by the compiler containe extra
code to locate statements and procedures in your program. Moreover,
introducing the Debugger turns off optimizations that would interfere
with debugging. The compiler normally folds similar statements into
one section of code and optimizes the usage of some variables by keep-
ing their values in registers on the stack temporarily. These optimiza-
tions would keep the Debugger from setting breakpoints in statements

4-1

4-2

and from changing the values of variables while your program was
running—both of which are iinportant debugging facilities. A little
bit of memory is saved during use of the Debugger by disabling the
procedure walkback—this happens automatically when the Debugger
is implemented—but in general, the overhead involved in using the Pas-
cal-2 Debugger is about one word per Pascal statement and about six
words per procedure. Code returns to its normal size once you correct
any problems and recompile your program without a call to the Debug-
ger. (See “Overlays” in this guide regarding what to do if the program
grows too large.)

CAUTION

The Debugger cannot be used on I & D space programs. The
separation of instructions and data generated by such pro-
grams makes it difficalt for the Debugger to properly trace
procedures and statements. (See “Run-Time Error Report-
ing” for more details.)

Including the Pascal-2
Debugger in Your
Program

Identifying Pascal Statements

The debug compilation switch invokes the Pascal-2 Debugger. (See
the User Guide for details on compilation switches.) Using the debug
switch in your compilation command automatically generates a format-
ted listing file, with an .LST extension, in the same directory as the
output file. The Debugger reads this listing file to display the source
lines when statements are identified. The Debugger can use only the
listing file produced by the debug switch.

The debug switch also causes the compiler to create symbol table and
statement map files in the same directory as the output file. The symbol
table file (extension .SYM) describes the constants, types, variables,
and the memory layout of variables. The symbol table file also contains
information about each procedure and function local to the compilation
unit. The statement map file (extension .SMP) contains a map of the
location of the statements and their position in the listing. Both files
are in binary form and are not readily examined by users,

After correcting any syntax errors discovered in & normal compilation
and then compiling the program with debag, you must task build the
resulting object file (and any external procedures or functions that the
program calls) with the Pascal support library. The support library
contains all required Pascal-2 Debugger routines.

For the sample program ROTAT.PAS, the proper compilation and task-
build commands are given as:

>PAS ROTAT/DEBUG

>TEB

TEB>ROTAT/CP/FP=ROTAT,LB: [1,1]PASLIB/LB
TEB>/

Enter Options

TEB>UEITS=20

TEB>//

Remember, the debug switch automatically generates a listing file. As
the example ROTAT.LST shows, & listing file has two columns of num-
bers. The leftmost column lists the line numbers in the source file.
The second column contains the number of each statement in the pro-
gram, beginning with ‘1’ for each procedure or function. These numbers
identify points where you may set breakpoints to interrupt program ex-
ecution. In ROTAT.LST, several lines accessible to the Debugger have
been labeled by procedure name and statement number. As shown,
statements in the main body of the program are considered to be in
the procedure HAIE. All Pascal programs begin executing at BAIE, 1.

You should have a printout of the listing file as reference when you

begin a debugging session, or you may use the L command to list parts
of the program while you are debugging.

4-3

[Example: Listing for Program ROTATE.PAS j

Pascal-2 RBSX V2.1E 9-Feb-86 7:08 AH Site 81-1 Page 1-1 Oregom Software, 6915
SV Hacadam Ave., Portland, Oregom 97219, (503) 245-2202 ROTAT/DEBUG

Line Stmt

[
O W@ W®WND O D W N

i1
12
13
14
16
‘18
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Vo D N e

1
2
3
5
7
8
9
i0
i1
12

program Botat; { rotate am array of numbers }
const Arraylem = 7;

type Index = i..Arraylem; Element = 0..10;
Humbers = array [index] of Element;

vax I: Index; §: Bumbers; Left, Bight: Imndex;
precedure Rotate(First, Last: Index;

var A: Humbers);
var I: Index;

begin
for I := First te Last do
A[(I) := ALY + 1); RBotate,3
A[Last] := A[First]; Rotate 4
vrite(’Rotated ’, first: 1, ’ thrm ’, last: 1, @),
end;
begin { main program } Haim,1

for I := 1 to Arraylem do
begin B(I] :» I, write(I: 2); end;
writeln; write(’Left,Right? ?);
readln(Left, Right);
I := 4,
Rotate(Left, Right, §);
for I := 1 to Arrayler do
write(B{I]: 2);
vriteln —
end.,

¢¢¢ o lines with errors detected e¢ses

ROTAT.PAS is worth studying for a moment because it appears fre-
quently throughout the remainder of this guide. The program prints
an array of seven integers, then prompts you, asking for a starting and
ending point in the array. Once the two input numbers have been en-
tered, the program is supposed to rotate that section of integers to the
left, with the left digit replacing the right. In its current form, the
program compiles without problem, but as is shown in several of the
following sections, its execution encounters numerous run-time errors.

Controlling the
Debugger

Command Syntax

After compiling and task building the program, you can now run it. The
Debugger takes control of the program, enters the command mode, and
prompts with a right brace ‘}’ symbol. (This may print on upper-case-
only terminals as the right bracket ‘]’ character.)

>RUE ROTAT

Pascal Debegger V3.00 -- 29-Hov-1983

Debugging program ROTAT

}

You control the Debugger through single-character commands that gen-
erally take one of two forms, depending on whether or not the command
accepts parameters;

} single-character command
} single-character command (parameter(s))

Debugger commands and their parameters may be typed in either upper
or lower case.

In general, Debugger commands are used for controlling breakpoints,
program execution, program tracking, data, and for displaying infor-
mation about the data being maintained by the Debugger. Debugger
commands can be stored in series and executed at designated locations
within a program. Such locations are known as breakpoints and are
specified by the break command. At any breakpoint, you may enter as
many stored commands as fit on a single line. Any Debugger command
may appear in & stored command, and certain utility commands, de-
scribed later, allow macros to be defined that let you store combined
commands.

As an example of the general use of Debugger commands and the syn-
tax for writing stored commands, look at the following command line.
The line begins with the single-character command B followed by the
parameter BOTATE,3. These direct the Debugger to set a breakpoint at
statement 3 in procedure ROTATE. Next, a stored command is used to in-
struct the Debugger to write (¥) the values of the variables I and A[I].
Stored commands are specified by placing them within angle brackets
(¢...>) after a break command and separating them by semicolons.

} B(ROTATE,3) <¥(D); W(A[I])>

The Debugger accepts any of the single-character commands defined
in the following sections. Numeric parameters in these sections are
indicated by ‘n’, as in the command 8(n). A summary of the Debugger
commands is given in Appendix A at the end of this guide, and the ?
(question mark) command prints a similar list on your terminal screen.

Exiting and Stopping the
Debugger

Selective Debugging

4-6

To exit from the Debugger at the prompt, give the command q (quit), or
type & Control-Z (°2), or type Control-C (“C) twice in a row. A single
Control-C (°C) typed during program execution stops the Debugger,
thus permitting you to break into “infinite loops” in your program.

For certain large programs, you may wish to selectively debug portions
of a program in order to speed up the debugging process or to reduce
the amount of memory overhead created by the Debugger. You can edit
your program to turn off generation of debugging information around
procedures that have already been tested and debugged by using the
embedded directives $nodebug and $debug. To turn off debugging,
place the directive $nodebug before the procedure definition and the
directive $debug after the procedure. $¥odebug and $debug are effec-
tive only when the /debug switch is first specified in the compilation
command line. Otherwise they are ignored by the compiler. (See the
User Guide for further details on embedded directives.)

Breakpoint
Commands

B. B(): Control
Breakpoints

Breakpoint commands allow you to set or remove breakpoints when
your program reaches a certain point in execution or when a speci-

_ fied variable in your program changes value. Breakpoints allow you to

interrupt the program in order to execute other Debugger commands.

A program control breakpoint is identified by two items: a block name
(procedure, function, or HAIE),-and & statement number within that
block. For example, ROTATE,3 identifies the third statement in the
procedure ROTATE. Statements are sequentially numbered within each
block. Statement numbers are listed in the second colomn of the pro-
gram listing produced by the debug switch.

The B(block,stmtnum) command sets a control breakpoint within the
block named block at the statement numbered stmtnum. When the
breakpoint is reached, your program is interrupted before execution
of the named statement, the breakpoint is identified, and the Pascal
source line is displayed. The Debugger then accepts commands.

These may be interactive commands (from your terminal) or stored
commands executed automatically. Any Debugger command may be
stored for execution at a breakpoint. Stored commands are executed
before interactive commands. If the stored commands direct the De-
bugger to resume execution, the program continues without waiting for
an interactive command.

You may interrupt the program at any time with a Control-C (“C). This
command stops the program and identifies the point of interruption as
if you had set a control breakpoint.

NOTE

If you type a Control-C (~C) while the program is awaiting
input for a real or an integer at a read or readln statement,
the Control-C (~C) does not take effect until after yon have
completed the input request.

A run-time error or program termination also causes a control break-
point after the error message or termination status is displayed. You
may set any number of control breakpoints. (The program executes
more slowly if you define many.)

To set breakpoints in external functions and procedures, see “Debug-
ging External Modules” later in this guide.

You may remove a breakpoint in two ways. The B command with
no parameters deletes the breakpoint that most recently stopped the
program, Otherwise, the K command described next may be used. (For
uses of the B command, see the example listed after the C command.)

4-7

K, K(): Killing of The K(block,stmtnum) command deletes the breakpoint specified by
Breakpoints its parameter; the K command with no parameters removes all break.

points. (See the example after the € command.) To remove breakpoints
in external functions and procedures, see “Debugging External Mod-
ules” later in this guide.

P

V, V(): Data Breakpoints The data breakpoint facility (also called the “watched variable” corm.

(Variables) mand) causes an immediate breakpoint when the value of a specified
variable is changed. The V(variable) command sets a data breakpoint,
with variable indicating the variable to be monitored. When the value
of the variable is changed, the Debugger prints both the old and new
values and interrupts program execution for commands, Like control
breakpoints, data breakpoints may have stored commands that are au-
tomatically executed when the breakpoint is triggered. A list of the
stored commands, separated by semicolons, is enclosed in angle brack-
ets after the watched variable command: V(variable)< ... >.

The ¥ command monitors a variable of any type, but only the first 32
bytes of data is watched. You may watch any number of variables. (The
program executes slowly if you set many.) For variables defined locally
to a procedure, the watch command can either be set from within the
procedure or through use of the B command defined later in this guide,

-} B(ROTATE,1)<¥(4[6])> variable watch set within ROTATE
} 6 begin execution

Left,Right? 2 6 input to ROTAT
Breakpoint at ROTATE,i1 begin

} ¢ continue execution

The value of "A[6)" was changed by the statemesnt:
ROTATE,3 A[I) := A[I + 1];

014 value: 6

Bew value: 7

Breakpoint at ROTATE,4 A[Last) := A(Firet];

}

4-8

If & local varisble is being monitored and the associated block is com-
pleted, the Debugger removes the breakpoint and displays a message
that the variable no longer exists,

Breakpoint at BOTATE,1 begia previously set breakpoint
} L lists statements of procedure ROTATE
14 1 begin
16 2 fox I := First to Last do
16 3 A[1] := A[I + 1);
17 4 A(Last) := A[First];
18 § vrite(’Rotated °, firet: 1, ’ thre ’, last: 1, ’=%);
19 end; '
} v(afal) variable watched within BOTATE

} c

The valne of ‘‘A[2]’’ was changed by the statemsnat:

ROTATE,3 A[I] := A[TI ¢ 1];

014 value: 2

Hew valme: 3

Breakpoint at ROTATE,3 A[I] := A[I ¢ 1];

} ¢

Uatch terminated for ‘‘A[2]7’ Value did mot change.

Rotated 2 thru 6= 1 3 4656 3 7 indicates & run-time error

}

This example gives us our first indication of a problem in the program
ROTAT.PAS.The correct rotation for the starting and ending points
(2,8) shouldread 1 3 4 5 6 2 Tnot1 3 4 56 6 3 7. Correction of
the problem is explained in the section “Stepping Through a Debugging
Session” later in this guide.

The ¥ command without parameters removes all data breakpoints. It
is not possible to remove individual data breakpoints.

Execution Control
Commands

G: Go

C, €(): Continue
Execution

4-10

Execution control commands provide the means to monitor and control
the flow of the program. The commands initiate, interrupt, or continue
execuation.

The @ (Go) command begins executing the program at HAIE,1 and
may be used at any point in the program to restart it.

~ See the example after the C command.

The ¢ (Continue) command resumes program execution from the car-
rent breakpoint,

If you set a breakpoint inside a loop, you may use the C(n) command
to let the statement at the breakpoint execute n times. For instance,
you may set a breakpoint at COUNT, 10 inside a loop structure. When
the Debugger stops at that breakpoint, you may give the command
C(8) to let the loop iterate six times before the program stops again at
COUBT, 10, Each breakpoint has its own counter, which is independent
of the counters for other breakpoints.

The € command fanctions like the @ command to begin executing the
program if you are at the start of the program.

If you use the C command after the program has terminated, you re-
ceive an error message telling you to use the 6 command to restart the
program,

| Example: Use of the B, K, D, G and C Commands |
>RUE ROTAT

Pascal Debugger ¥3.00 -- 29-Hov-1983

Debugging program BOTAT

List 8th statement of HAIB, 2 lines

} L(main,8,2)
26 8 I := 4;
27 9 Rotate(Left, Bight, B);

} B(main,9)<¥(’I=’,i);C>

} B(Rotate,3)<H(’In rotate, I=’,i)>

ja

1234567

Left,Right? 2 6 input toc ROTAT

Breakpoint at HAIN,9 Rotate(Left, Right, H);

I= 4

Breakpoint at ROTATE,3 A[I] := A[I ¢ i];

In rotate, Is 2

} D display breakpoints

Breakpoints

ROTATE,3 4[I) := &[I + 1];
<@(’In rotate, I=’,I)>

HATE,9 Rotate(Left, Right, E);
<¥(’1=’,I);C>

} B(1); c(2); w(I)

2

Breakpoint at ROTATE,3 A[I] := A[I ¢ 1];

In rotate, I= 4

4
} E(Rotate,3) kill specified breakpoint
} ¢ continue execution

Rotated 2 thru 62 1 3 4 5§ 6 3 7

indicates run-time error

1D
Breakpoints

HAIE,9 Rotate(Left, Right, U);
<w('I=’,I);0>

D e e
oioiem

display breakpoints

kill all breakpointe

(no breakpoints to display)

quit the Debugger

4-11

S. S(): Step to Next
Statement

P, P(): Proceed to Next

Statement

The 8 (Step) command executes the next statement of the program,
The 3(n) command executes n statements without interruption. If a
statement being “stepped” calls another procedure or fanction, that
new procedure or fanction also is executed one step at a time.

See the example after the P command.

The P (Proceed) command executes the next statement at the current
level of the program. P differs from $ in that P does not single-step
through fanctions and procedures called by the current statement. P
treats an entire nested call as a single statement; thus procedure calls
and function invocations are completed before program control returns
to the Debugger, allowing you to bypass the detailed execution of rou-
tines (e.g., ones already debugged). If the current procedure ends, P
begins single-stepping the procedure that called the current procedure.

The P(n) command is equivalent to repeating the P command n times,
As with the C command, you may not go past the end of the program

with an 8 or & P command. If you do so, you receive an error message
telling you to use @ to restart the program.

Example: Use of the S and P Commands

>RUS ROTAT

Pascal Debugger ¥3.00 -- 29-Hov-1983

Debugging program ROTAT

} B(main,9)

} 6

17234567

Left,Right? 1 §

input to ROTAT

Breakpoint at HAIN,9 Rotate(Left, Right, B);

}s

4-12

at ROTATE,1
at BOTATE,2
at ROTATE,3
at ROTATE,3

at ROTATE,4

begin;

for I := First to Last do
A[I] := A[I + 1];

A1) := A[I ¢ 1);

A[Last]) := A[First);

Botated 1 thre 62 23 456 26 7 further indication of run-time error

}a

1234667

Left,Right? 1 6 inpat to ROTAT
Breakpoint at HAIN,9 Rotate(Left, Bight, H);

) ®

Breakpoint at HAIE,10 for I := i to Arxaylem do

) e

Breakpoint at HAIE,11 write(B[I]:2);

y e

Breakpoint at HAIN,11 write(H[I]:2);

)P

Breakpoint at HAIN,11 write(B(I]:2);

} pCe)

Botated 1 thra 53 2 3 4 6 2 8 7—————— game indication of & problem

}

4-13

Tracking Commands

H, H(): History of
Program Execution

T(): Execution Trace

4-14

Two commands help you track program execution. The B command
lists the statements that have brought you to your present position,
The T command traces program execation through each statement.

The Debugger maintains a list of the last 50 statements executed while
your program was running. With the B command you may review this
execution history. For instance, if the program failed because of an error
during execution (such as division by zero), the B command shows the
steps leading to the statement causing the error. The ¥ command with
no parameters prints a list of the last 10 statements executed. E(n)
prints the last n statements up to 50.

The E command has other important functions as well. See “Execution
Stack Commands” for details and for examples of the command.

The T command accepts a Boolean parameter, either enabling or dis-
abling the tracing of program execution. When tracing is enabled with
the T(TRUE) command, each statement is identified by its block name
and statement number and is displayed before being executed.

A Control-C (°C) interrupts the trace and returns the Debugger to
command mode. You may then turn off traecing with the T(FALSE)
command and continue running your program with the C command.

Example: Use of the T Command
>RUE BOTAY

Pascal Debugger ¥3.00 -- 29-Hov-1983

Debugging program BOTAT

} L(main,9,3)
27 9 Rotate(Left, BRight, H);
28 10 for I :® 1 to Arraylen de
29 i1 write(B(1):2);
} B(main,9) set breakpoint
} g
12345667
Left, Right? 1 3 input to ROTAT
Breakpoint at HAIB,9 Rotate(Left, Right, H);
} T(TRUE)
} g
ROTATE,1 begis tracing output begins
ROTATE,2 for I := First to Last do
BOTATE,3 A[I]) := A[I + 1];
ROTATE,3 A[I] := A[I ¢ 1];
BOTATE,3 A[I] := A[I + 1]);
ROTATE,4 AfLast] := A[First];
ROTATE,6 write(’Rotated ’,first: 1,’ thru ’,last: 1,’=’);
HAIE,10 for I := 1 to Arxraylem do
HAIE,11 vwrite(E{1]:2); .
HATH,11 write(H[I):2); —
HAIE,11 vwrite(E[I]:2);
HAIB,11 write(H[I):2);
HAIN,11 write(E[I):2);
HAYE,11 vwrite(H[I]:2);
HAIE,11 write(E[1]:2);
HAIN,12 writelm
Rotated 1 thru 3= 2 3 2 ¢ 6 6 7——— our run-time error is still evident
} T(FALSE) tracing off

}E
e

17234567

Left,Right? 1 3 input to ROTAT

Rotated 1 thru 32 2324 6 6 7

}

4-15

Data Commands

W(): Write Variable Value

4-16

Debugger data commands allow you to display the current values of
variables and to assign new values to them. The data commands pro-
vide full access to user identifiers and type definitions. The data com-
mands conform to Pascal type compatibility rules.

You use the ¥ command to write the value of a variable (including a
pointer), of a constant, or of a memory location. The format for the ¥
command is:

} ¥(namel,name2, name3, ...)

where name is the name of the variable you want written. As shown,
you may write the value of more than one variable by separating vari-
able names with commes,

The type of variable determines the format of the output. For example,
integers are displayed as signed decimal numbers. Set variables are
displayed in Pascal set notation. Scalar variables are displayed as the
names of the enumerated types they represent.

You may use the Pascal colon notation *:' to alter the way variables are
written. For example, to print the integer variable I as a hexadecimal
number, you use:

} B(1:-1)

—e

Also see the example after Variable Assignment.

Real numbers may be formatted according to the same rules used by
the compiler.

A numeric constant is used as an address if you wish to write the integer
value contained in a memory location. A ‘B’ placed after the number,
as in ¥(27740B), specifies an octal memory location. Memory locations
are displayed as signed integers.

The Debugger may write any complex Pascal data structure, including
records and arrays, except files.

The Debugger displays an array in an orderly fashion that reflects the
array's structure. For each change in the least significant (rightmost)
index of the array, the Debugger writes a space between elements, For
each change in the next least significant (second-from-rightmost) index,
the Debugger starts a new line. And for changes in the nth index, where
n is the number of “places from the right” of the least significant index
and n is greater than 2, the Debugger writes n — 2 blank lines and
indents the first row of the display n — 2 spaces,

[Example: Debugger’s Display of Array’s Structure]

Pascal-2 BSE V2.1E 9-Feb-86 7:08 4E Site 81-1 Page 1-1 Oregoz Software, 6916
S¥ Hacadam Ave., Portland, Oregom 97219, (503) 245-2202 ROTAT/DEBUG

Line Stmt
1 program Hulti; { maltidimensiosal variables }
2
3 var A: array [1..3, 1..3, 1..3] of integerx;
4 I, J, E: integer;
b
6 1 begia
7 2 for I := 1 to 3 do
8 3 for J := 1 te 3 do
9 4 for B :2 1 te 3 do
10] A[1,3,E] := (I ¢ 10 ¢ J) e 10 ¢ K;
11 end.

v99 Bo lines with errors detected ¢ve

>RUF HULTIX

Pascal Debugger V3.00 -~ 29-Eov-1983

Debugging program HULII
}a
Program terminated.

Breakpoint at HAIB,5 A[I,J,E] := (X ¢ 10 ¢ J) ¢ 10 + K;
} 9w

111 112 113

124 122 123

131 132 133

211 212 213
221 222 223
,231 232 233

311 312 313
321 322 323
331 332 333

When you write records, the Debugger lists each field name followed
by the value of that field. The format of each field is determined by
the data type of the field. Complex records, such as those containing
arrays of records, can get messy; you may want to have the listing on
hand to show the definition of the record being printed.

4-17

Variable Assignment

The Debugger command to modify the value of a program variable
is identical in form to & Pascal assignment statement. The left-hand
side of the ‘:=' assignment operator indicates the variable to be modi-
fied. This variable may include array indices, record field selectors, and
pointer accesges. The right-hand side specifies the value to be assigned.
This may be a simple constant or literal value, or another program vari-
able. Standard notation is used for all values, including sets. General
expressions (operators and furetions) are not permitted.

Debugger variable assignments must conform to the Pascal assignment
compatibility rules. All variables accessed in an assighment command
must be available in the current stack context. The E(n) command
may be used to temporarily change context, if DeECessary.

Example: Use of the W Command and Variable Assignment ' I

Pascal-2 BSX V2.1E 9-Feb-88
S¥ Hacadam Ave., Portland, Oregom 972192, (503) 245-2202 COLOBR/DEBUG

Line Stmt

OO NGB DL N

10
11
12
13
i4
156
16
17
18
19
20

> B ae

program Color;

type

7:08 AN Site 81-1 Pege 1-1 Oregor Software, 6916

Color = (Red, Orange, Yellow, Blue, Greem);

var

¢: Color; I: integer;
Colorset: set of Color;

a: array [0..4]
r: record
I: integer;

of Colox;

S: set of Color;
C: packed array [1..4] of char;

end;

begin

for C := Red to Green do Afoxd(C)] := C;
Colorset := [Red, Yellow..Green];
B.Y := 123; B.8 := [Orange, Green]; B.C := ’TEST’;

end.

¢¢¢ Ho lines with errors detected ¢ee

>RUE COLOR

4-18

Pascal Debugger V3.00 ~- 20-Hov-1883
Debugging program COLOR

}
}

@i
o~
B
A4

BED ORANGE YELLOW BLUE GREEH

} (1] := Red; A[4] := Red; H(A)
RED BED YELLOV BLUE RED

} ¥(Coloxset)
{RED, YELLOW. . GREEH]
} Colorset := [Red..Green); W(Colorset)

[RED. .GREEH]

} ¥

I: 123

$: [ORAHGE,GREEH]
C: TEST

} B.I := 321; R.8 := Coloxrset; W(R)
I 321

8: [RED..GREEE]

C: TEST

}

4-19

‘Informational
Commands

D: Display Parameters

L, L(): List Source Lines

4-20

Informational commands show data being maintained by the Debugger.
The D command shows the current breakpoints, user-defined Macros,
and variables being watched. The L command shows selected parts of
the program listing, 50 that you won't have to reprint the listing each
time you revise your program.

The D command displays all breakpoints, user-defined macros, and the
variables being watched; it also shows any commands associated with
each. Breakpoints are set with the B command. Macros are stored
Debugger commands created by the E command and executed by the
X command. The ¥ command is used to set varisble watches. (See the
respective sections for details on these commands.)

See the ROTAT example in “Running the Debugger” and the example
after the C command.

The L command uses the statement numbers in the listing file of your
program to list portions of the source program. The L command al-
lows you to list individual statements, parts of procedures, or entire
procedures.

When a breakpoint is set at a statement with B(), the Debugger prints
only the first line associated with the statement. The History command
B also prints only the first line of the statement. The L command, in
contrast, prints all lines containing the statement.

The L command with no parameters lists the current procedure. You
may list any other procedure by giving the procedure name enclosed in
parentheses. For example, L(HAIE) lists the body of the main program,

The command L{proc, stmé¢num) lists & single statement, where proc is
the name of the procedure and stmtnum is the number of the statement
to print.

You also may list sections of the program starting or ending at a partic-
ular statement by specifying a line count after the statement number.
For example, L(HAIN,1,10) lists the first ten lines of the main program.

The general form of the command is:

} L{proc, stmtnum, count)

where proc and stmtnum describe a statement in the program. A pos-
itive count prints that many lines starting at the statement specified
and moving forward. A negative count causes the Debugger to list
statements up to and including stmétnum. (The listing of source lines
in external functions and procedures requires a elightly different form
of the L command. See “Debugging External Modules” later in this
guide for details.)

} L(Rotate,1,5)

This example lists 5 lines beginning with the first statement of proce-
dure BOTATE:

:m Piyxst to Last de

A[I} := A[I ¢ 1];
A[Last] := A[First];
write(’Rotated ?,first: 1,’ thra ’,last: {,’=?);

14 1 begin
1§ 2 for I
16 3
i7 4
18 5

Utility Commands

M(): Define Macro

This example lists 2 lines leading up to and including the 4th statement
of procedure Botate:

} L(Rotate,4,-2)
18 3 A[1] := A[T ¢ 1];
17 4 A[Last] := A[Firet];

When you list an entire procedure, the Debugger attempts to include
the procedure heading and local variable declarations in the listing.
However, this header information is only used by the Pascal compiler, so
the Debugger has to estimate where the procedure header information
is located in the listing file, As a result, the Debugger may not always
print the complete header information or may sometimes print part of
the preceding procedure.

Long procedures may take some time to print. A single Control-C (~C)
interrupts the listing and returns the Debugger to command mode.

Utility commands allow you to define a series of commands as a macro
to be executed by entering a single command.

The B command saves you some typing when you need to issue repeti-
tive commands. For example, you may need to write the value of several
critical variables at different places in your program. The K feature lets
you combine these commands under one name, then execute this group
of commands by using the X command, explained below. You cannot
pass parameters to macros.

The format for definition of a macro is:

} E(name)<commandl; command2; command3; ...>

where name is any alphanumeric string containing ap to 32 symbols.
The X command uses name to identify the macro. You may place as
many Debugger commands in the angle brackets ‘< >’ as fit on one
command line. You may delete a macro by typing B(name) with no
commands. Available memory is the only limit on the number of macros
you may define. The D command lists macro names and the commands
associated with each name,.

See the example after the X command.

4-21

X(): Execute Macro You may execute the Debugger commands associated with a macro by
,using the X command. The format is:

} X(name)

where name is the name of the macro, The effect of the X command is
to execute the Debugger commands defined by the H command of that
name.

Example: Use of the M and X Commands |
>BUE BOTAT

Pascal Debugger ¥3.00 -- 29-Bov-1983

Debugging program ROTATY

} H(DumpH)<¥€(’The value of B=’,E)> define macro
} B(Rotate,1); @

1234667

Left,Right? 2 6 input to ROTAT
Breakpoint at ROTATE,1 begia

} E(DumpI)<¥(’I=’,I)> define macro

} D

Breakpoints

ROTATE,1 begin
Hacros

DU¥PI ¥(’I=2,1)

DUEPE B(’The value of §=’,§)

)8

Breakpoint at ROTATE,2 for I := First to Last do
}s

Breakpoint at ROTATE,3 A[I] := A[X + 1];

} X(DumpI) execute macro
I= 2

} 8¢4); X(DumpI); X(Dumpl)

Breakpoint at ROTATE,3 A[I] := A[I ¢ 1);
I= ¢

The value of = 13465637

]

4-22

Execution Stack
Commands

H, H(): History of
Program Execution

The execution stack commands allow you to trace down run-time er-
rors by examining the stack. The § command shows at any time a
history of program execution and the current stack of active procedure
and function calls. The § command lists the names of the parameters
and local variables in any procedure in the execution stack. The E
command allows you to change the context of the stack frame from the
current procedure to another g0 you may access variables you otherwise
wouldn't be able to.

The Debugger maintains s list of the last 50 statements executed while
your program was running. With the § command you may review this
execution history. For instance, if the program failed because of an error
during execution (such as division by zero), the § command shows the
steps leading to the statement causing the error. The E command with
no parameters prints a list of the last 10 statements executed. H(n)
prints the last n statements up to 50.

The B command also lists the execution stack. Each time a procedure
or function is called, a new entry is made at the top of the execution
stack. When the procedure exits, that entry is removed from the top
of the stack. The main program is always at the bottom of the stack.
The B command shows the procedures that were called to get from the
main program to the current procedure. E(0) prints just the execution
stack,

In the display, each procedure or function in the execution stack is
identified by a number. This procedure number is used to identify
procedures in the execution stack for the B and E commands described
in following sections. (These are not the statement numbers used to
identify other Debugger commands.)

In the display, the ‘<’ character marks the current procedure. Unless the
E command is used the current procedure is always the top procedure
in the execution stack. The Debugger uses the current procedure to
determine the local variables that can be accessed according to Pascal
scope rules. Procedures marked with the asterisk ‘¢’ character are those
procedures that contain the lexical definition of the current procedure.
The parameters and local variables in the procedures marked by ‘<’ or
‘e’ are the only local variables that you may look at or change directly.
If you wish to look at local variables in other procedures in the execution
stack, you must use the E command.

See the example after the E command.

4-23

N, N(): Names of
Variables

E(): Enter Stack-Frame
Context

4-24

The § command with o parameters lists the names of the parameters
and local variables in the current procedure. If you are in the main
program, the command displays all of the global-level variable names.

B with a numeric parameter lists the names of the local variables in
the procedure so numbered on the execution stack. These numbers are
obtained via the B command, described above.

Note that E lists the names of the local variables and parameters in any
procedure or function on the stack, not merely the ones marked with
the ‘e’. However, you cannot write or change the values of variables
unless they are in procedures or functions marked with the ‘e’

The B command allows access to variables that you otherwise cannot
access from the current procedure.

See the example after the E command.

The Debugger normally enforces Pascal scope rules. If you stop your
program in the middle of a procedure, you may write or modify only
those variables and parameters of the procedures that enclose the car-
rent procedure, as described in the section on the B command.

To look at or change local variables in procedures that are not accessible
to the current procedure, the E command gets around the Pascal scope
rules by temporarily changing the context of the current procedure.

The B command numbers the procedures in the execution stack. The
main program is always 1, and procedures called from the main program
are listed as 2, and 80 on. If you want to examine variables in procedure
5 in the current execution stack, and it is not marked with an ‘¢’ (and
therefore not available to you from where you are), you use E(5) to
temporarily enter the context of that procedure.

The E command affects only debugging commands that follow it on the
same command line. For example, to print the value of the variable I
in the procedure listed as 5, you type:

} B(8); (D)

This command line makes procedure 5 the current procedure. Then,
using the context of procedure 5, the Debugger prints the value of the
variable I. At the end of the command line, the current procedure is
changed back to the top procedure in the execution stack.

Because the B command allows you to list the names of variables in
all the procedures on the execution stack, the following commands are

equivalent:

} B(§); ¥
} 1)

lExample: Use of the H, N, and E Commands

Breakpoint at CHECE,1 begim { start of check }
} H(5) list last 5 statements executed

Program executiom history:

ABALYZEHOVE,9 Vacant[Target] := false;

ABALYZEHOVE,10 if CentralSquares[Target] them
AYALYZEHOVE,14 PossibleHoves :® PossibleHoves<+i;
ABALYZENOVE,16 Check(4); Check(5); Check(-4); Check(-6);
CHECE,1 begin { start of check }

Procedure execution astack

8¢ CHECE,1 begim { start of check }

7¢ ABALYZEHOVE,15 Check(4); Check(5); Check(-4); Check(-5);
6¢ ABALYZE,12 AnalyzeHove(4,I); AnalyzeHove(5,I);

¢ EVALUATEBOARD,4 Analyze;

4 GEEHOVE,16 EvaluateBoard(E-,Turm);

3 HOVEPIECE,9 if HovesAllowed them GenHove(I,J);

2 EXPAED,i11 if Color[Who]=Tura thesm HovePiece(1,1,0,0);

is HAIN,8 Expand(Root,True);

} B local names

DIRECTION SRC DST F

} K7 names in frame 7

DIRECTIOE I SAFE WASEIEG TARGET THRY

} 5(4) names in frame 4

I J B OLDPIECE

} E(7); (1) change context to frame 7, write value
14

} E(@); () change context to frame 4, write value
27

} E(4); H(0)

Procedure execution stack

8 CHECK,1 begimn { start of check }

7 ABALYZEHOVE,15 Check(4); Check(5); Check(-4); Check(-5);
6 AFALYZE,12 AnalyzeHove(4,I); AnalyzeEove(5,I);

6 EVALUATEBOARD,4 Analyze;

4< GEFHOVE,15 EvaluateBoard(E",Turs);

3¢ HOVEPIECE,9 if HovesAllowed ther GenHove(I1,J);

2¢ EXPAED,11 if Color[Phol=Tura them HovePiece(I,1,0,0);

ie HAI¥,8 Expand(Root,True);

4-25

Stepping Thfough a
Debugger Session

4-26

You seldom use only a single Debugger command at any one session, 8o
no single-command example can demonstrate the context in which cer-
tain commands are used nor can it demonstrate all of the ways in which
certain commands relate. Our approach, therefore, is to step through
8 sample program to demonstrate some of the common commands m
a problem/example context.

In previous sections of this guide, several examples of run-time errors
occurring in the execution of ROTAT were demonstrated. Let's begin
this debugging session by compiling, task building and running the
program and taking a closer look at what is going wrong,

>PAS ROTAT/DEBUG

>TEB

TEB>ROTAT/CP/FP=ROTAT,LB: [1,1)PASLIB/LB
TEB>/

Enter Options

TEB>UNITS=20

TEB>//

>RUE RBOTAY

After compiling and building the program, you can now run it. The
Debugger takes control of the program and enters command mode.

>RUE ROTAY

Pascal Debugger ¥3.00 -~ 29-Hov-1983
Debugging program ROTAT

}

When the Debugger has taken control of the program, we instract it
to go (@), then we enter the starting point (2,6).

e

12345667
Left,Right? 2 6

Rotated 2 thra 6= 1 3 4 656 3 7

The problem we noted earlier persists. Our starting number in the
rotation is apparently incremented by 1 each time the program is run.
In this case, the second 3 in our rotated sequence should be 2. With
the

L command, we now list the part of the main program that initializes
the B array. From this, we can choose a location for a breakpoint once
the arvay is initialized.

} L(main,1,6) list 5 lines of main program
21 1 begim { Haim program }

22 2 for I := 1 to Axrayler do
23 3 begin B[I] := I; write(l:2); ead;
24 5 eriteln; write(’Left,Right? ’);
25 7 readln(Left, Right);
} B(main,6) get breakpoint at HAIE,6
} @ begin execution
12345867
Breakpoint at HAIN,8 writels; write(’Left,Right? ’);
} u(E(s]) write value of B[6]
]
(Note the way in which the Debugger counts statements when more
than one is placed on a line, as on line number 24 above. Though not
explicitly listed, the second statement on line 24 is statement number
6 and must be identified as such.)
Examination of the array B at this breakpoint shows the array to be
correct; the change to the value of the variable must be occurring some-
where else. Using the ¥ (watched variable) command, we tell the De-
bugger to stop the program whenever B[6) is changed.
} v(El6]) watch for changes of value of B[6]
} ¢ continue execution
Left,Right? 2 6 input to ROTAT

The value of "E[6]" was changed by the statemsnt:
ROTATE,3 A[I] := A[I ¢+ 1};

01d value: 6

Bee valwe: 7

Breakpoint at ROTATE,4 A[Last] := A[First];

}
This is an expected change based on the algorithm being used in the ro-
tation. Our last number is first incremented by 1 before being replaced
by the first. Therefore, we continue to watch the variable.

} ¢

The value of "E[6]" was changed by the statement:
ROTATE,4 A[Last] := A[First);

01d valune: 7

Hew value: 3 .
Breakpoint at BOTATE,5 write(’Rotated ’,first:i,’ thrm ?,last:1,'=));
} ¥(First,Last) write values of First and Last

2 ¢

} u) write values of array ¥

13458637

} e quit the Debugger

4-27

At BOTATE, 4 the first element is assigned to the last element after the
first element has already been changed. We must introduce temporary
variable to hold the first element value so that it is not destroyed.
We correct the program (adding a “temp” variable, an assignment at
line 14 and another between lines 16 and 17), then recompile with the
/debug switch. Again, we use the L command to inspect the part of
the program we changed.

>RUE ROTAY

Pascal Debugger ¥3.00 -~ 29-Hov-1983

Debugging program ROTAT

} L(ROTATE,1,8) list 6 lines of procedure ROTATE

14 i begin Temp := A[First];
18 3 for I := First to Last deo
16 4 &(1I] := A[X ¢ 1];
17 5 A[Last] := Temp;
18 8 vrite(’Rotated ’,first: 1,’ thre ?,last: 1,'s%);
19 end;
} 6 begin execution
12345867
Left,Right? 2 6 input to ROTAT
Botated 2 thru 6= 1 3 4 66 2 7
} e begin execution
1234567
Left,Right? 3 4 input to ROTAT

Rotated 3 thru 4= 1 2 43 65 6 7
Breakpoint at HAIFN,12 vwritela

Now the program seems to be running correctly, but let's make one
more test before we've satisfied ourselves that the program is running
as we want. Note that the @ command restarts the program even after
it has terminated.

—

} @ begin execution
1234567
Left ,Right? 17 input to ROTAT

TT2 -~ Fatel error at user PC=1424
TT2 -- Fatal error at user PC= 1424 Array subscript out of bouand:

}

The end points of a data subrange are always good places to look for
run-time errors such as “Array subscript out of bounds,” because they
are the values most likely to exceed the predefined limits. We begin

4-28

analyzing this new error by writing the values of variables found in the
line where the error occurred.

} 91 write the value of I
.7

} #(ars)) write the value of 4[8]

Arvay subscript too large

w(alsl)

The limite are 1..7
} e quit the Debugger

Now we can diagnose the error. We see that the limits for the array
subscript of A have been exceeded by one. The fox loop in the ROTATE
procedure is likely to be looping tco many times. We reduce the final
value by 1 (1ast becomes last-1 in line 15) and recompile the program.
When we run the program, we tell the Debugger to list procedure
ROTATE, so that we can more closely follow the section of the program

we changed.

>RUB ROTAT

Pascal Debugger ¥3.00 -~ 29-Bov-13983

Debugging program ROTAT

} L(ROTATE,1,6) list 6 lines of procedure ROTATE

14 1 begin Temp :=A[First];
16 3 for I := First to Last = 1 do
16 4 A(I) := A(I + 1];
17 13 A{Last] := Temp; L
18 6 write(’Rotated ’,first: 1,’ thre ’,last: 1,’=?);
} & begin execution
1234567
Left,Right? 1 7 input to ROTAT
Botated § thru 7= 2 3 4 6 6 7 1
}Q quit the Debugger

The results our program gives are now exactly what they should be.
Once satisfied that the program is correct, we recompile it without
the debug switch to reduce file and memory requirements, to improve
execution speed, and to reinstate the walkback.

4-29

Debugging External
Modules

Differences in the
Commands

4-30

An external module consists of one or more Pascal procedures or fanc-
tions written and compiled independently of the main program that
invokes it. The Debugger's ability to debug external modules allows
you to fully debug an entire program, including externals, and also
allows you to debug external procedures and functions only, in the
context of a main program.

The debugging of external procedures and functions is eimply a matter
of compiling the module with the debug and nomain switches, linking
the module with the main program, and upon execution, supplying the
module name on certain Debugger commands (see below). The debag
compilation creates the necessary symbol table files for the module.
(Remember to compile the main program with the debag switch, too.)
Refer to “External Modules” in the Programmer Reference for rules on
the use of external modules,

As mentioned earlier, external modules cannot be debugged directly;
they must be called from a main program. To debug an external proce-
dure or function itself, create a short main program that simply invokes
the procedure, then exits. Be sure to initialize any variables required
of the call. Then compile the main program using the debug switch
and task build it with the external module.

This section covers only the differences in command syntax and usage;
unless otherwise noted, the Debugger commands work as described in
previous sections.

In general, the major differences are:

e The B, K and L commands accept the module name followed by a
colon (:) as the first argument. These commands allow you to set
and kill breakpoints and list source lines in external procedures and
functions. The revised syntax for these commands are as follows:

} B{module: block, stmtnum)< ... >
} E(module: block ,stmtnum)
} L{module: block,stmtnum, count)

¢ module name module is the name of the source file minus exten-
sion. For example, TEST is the module name for TEST.PAS. Block
is the name of the procedure or function being referenced in mod-
ule. The other arguments are the same as described in earlier
sections.

e When displaying breakpoint and source-line information, the De-
bugger includes the module name along with the procedure name
and line number. The D command, in addition to displaying break-
points, user-defined macros, and variables being watched, shows
you which modale is currently being debugged.

Defaults apply to the carrent module being debugged. To list lines,
set breakpoints or kill breakpoints in any module but the carrent
one, you must specify at least the module name and the procedure
name on the commands,

If you try to list lines or set /kill breakpoints in an external module
not compiled for debugging, the run-time error “can’t open file”
causes the Debugger to abort trying to open the listing and symbol
table files for that module. Of course, if you have old listing and
symbol table files for that module lying around, the Debugger
opens these files even if you did not wish to debug that module.
In this case, if the data files do rot match the source you're using,
your results may not be accurate.

To illustrate the debugging of external modules, we present a single
debugging session im which the above commands are used. In this
example, the main program ROTAT.PAS, presented earlier, calls the
external procedure Rotate contained in XROT.PAS. (In the previous
program, procedure Botate was a local procedure.)

After compiling the main program and external modules and task build-

ing

them, run the program. —

>RUT ROTAT

Pascal Debugger V3.00 -- 29-Hov-1983

Debugging program ROTAT

} L defaults to main program
14 1 begin { maim program }
15 2 for I := 1 to Arraylemr do
16 3 begin E[I] := I; write(I: 2); end;
17 5 writeln; write(’Left,Right? ’);
18 4 readln(Left, Right);
19 8 I:= 4;
20 9 Rotate(Left, Right, H);
21 10 for I := 1 to Arrayler do
22 14 erite(E(I): 2);
23 12 eTriteln
24 end.
} B(HAIE,7)
} B(XROT:ROTATE,5)<€(TEHP)>

Initially, the L command without parameters lists the main program
by default because it is in the current module being debugged. The
first breakpoint command could just as easily be B(ROTAT:HAIE,7).
However, the module name is not necessary because the main program
is the current module. The second breakpoint command shows that

4-31

you must supply the module name for modules other than the current
one. With the 6 command, program execution begins:

}a

123468 7

Breakpoint at BOTAT:HAIB,7 readln(Left, Right);
} o

Left, Right? 1 7 inpu¢ to ROTAT
Breakpoint at IROT:ROTATE,§ 4(Last] := Temp;

i

Note the way the Debugger reports the breakpoints. At this point the
current procedure being debugged is the procedure Botate, in external
module XROT. (The single ‘1’ is the value of Temp when the breakpoint
is reached.) Now the B, K and L commands default to the external
procedure Botate, as shown below for the L command. To lis¢ the lines

in the main program, you must specify the module name, as shown in

the second L command:

L
) “16 1 begin Temp := A[First];
17 3 for I := First to Last-1 do
is 4 A[I] := A[T ¢ 1];
19 5 A[Last] := Temp;
20 6 write(’Rotated ’, first: 1, ’ thra ’, last: 1, ’u’);
21 end;

} L(ROTAT:NAIB)
14 begin { main program }

i
15 2 for I := 1 to Arraylea do
i6 3 begin H[I] := I, write(I: 2); end;
17 § vriteln; write(’Left,Right? ’);
18 7 readln(Left, Right);
19 8 I := 4;
20 9 Rotate(Left, Right, §);
21 10 for I := 1 to Arraylem do
22 11 vrite(B(I]: 2); '
23 12 vriteln
24 end,
} D display current module and breakpoints

Current module: XROT
Breakpoints

IROT:ROTATE,§ A[Last] := Temp;
<U(TEHP)>

ROTAT:HAIN,7 readln(Left, Right);

} B History command

4-32

Progrem executiom history:

XROT:BOTATE, R
XROT:ROTATE,2
XR0OT:ROTATE,3
IROT:ROTATE,4
IROT:ROTATE, 4
IROT:ROTATE, 4
IROT:BOTATE,4
XROT:ROTATE, 4
IROT:ROTAIE, 4
IROT:ROTATE,S

begin Temp := A[First];

begin Temp := A[First]; —_
for I := First to Last-1 de -
+ 1),

A{I) := A[X
A[1I) := A[X
A[X] := A(I
A[X) := &[X
A[1) ;= A[X
a[1] := A[X

Procedure execution stack

3< IROT:ROTATE,5 A[Last]
2¢ Hodule: IROT
i¢ ROTAT:HAIN,9 BRotate(Left, Right, E);

&
+

i1;
11;

+ 11;
+ 1];

+

1];
4[Last] := Temp;

18 Temp;

Execution continues with the ¢ command. The E and B commands
used below demonstrate the rules governing the setting and remov-
ing of breakpoints, Note the erroneous breakpoint command and the
corrected command.

} C— - continue execution
Botated 1 thru 72 2 3 45 6 7 1

Program terminated.

Breakpoint at ROTAT:HAIN,12 writelm

} E(HAIE,T7) kill breakpoint
}a

1234567
Left,Right? 1 7 input to ROTAT

Breakpoint at IROT:ROTATE,5 A[Last] := Temp;

i

} B(MAIE,7) ——— won't work without the module name
Ho such statemsnt in this procedure

B(HAXE,7)

(ROTAT:HAIB,7) that's better

B
¢
tated 1 thre 72 2 3 46 6 7 1

[} quit the Debugger

4-33

Overlays

4-34

The Debugger adds up to 20K words to the size of & program, often
making the task too big to run. If this happens, you must overlay
the Debugger so that it takes less room. The file PAS.ODL overlays
the Debugger modules in the Pascal support library (PASLIB) and the
system I/O library (SYSLIB).

To build a task containing a program and the Debugger, you must
create a short .ODL file that references PAS.ODL. For example, if the

program is called TEST, you should create a file called TEST.ODL
with the following contents:

@LB: [1,1]PA3.0DL
.R00T ROOY-TEST,SYSI10,LIBR,DEBUG2
.BED

A more.complicated example of an .ODL file is shown below. In this
case, a main program, MAIN, calls the modules 4, B, and C. To conserve
space, 4, B, and C overlay each other.

@LB: [1,1]PAS.0DL

USER: .FCTR TEST-(4,B,C)
-RO0T ROOT-USER,SYSIO,LIBR,DEBUG2
.BED

The factor called USER describes the way the modules in the pro-
gram are overlaid. In this example, there is a main program called
TEST.PAS, which is made up of modules 4, B and C.

If the modules were placed in a library called MYLIB, you would create
this .ODL file:

€LB: [1,1]PAS.0DL

HAIE: .FCTR HYLIB/LB:HAYE

A: .FCTR HYLIB/LB:4

B: .FCTR HYLIB/LB:B

C: .FCTR HYLIB/LB:C

USER: JFCTR TEST-(4,B,C) .
.R0OOT IOOT-HAII-USKI,SYSIO,LIBI,DﬂIUG2
.EED

Overlay descriptions may be arbitrarily complex, as long as the lowest-
level factor is called USER.

The use of overlays greatly reduces the overhead required for the Debug-
ger. On RSX systems with FPP floating-point hardware, the overhead
for the Debugger, support library, and system I/0 library is about 11K
words, so you should be able to debug programs with up to 21K words
of code and data.

A Task Builder command file can simplify the use of overlays with the
Debugger. For example, if the .ODL file is called TEST.ODL, create a
file called TEST.CMD with the following contents:

TEST/CP/FP, TEST=TEST/HP
UBITS=20
/1

The command, TEB €TEST, will then task-build the program.

Appendix A: Debugger

Command Summary
B Remove current breakpoint
B(block,stmtnum) Set a control breakpoint
B(block,stmtnum)< ... > Control breakpoint with stored
' ' commands
PDP B(module:block, stmtnum) Set a control breakpoint
in external module
B(module:block,stm¢tnum)< ... > Set external control breakpoint
with stored commands
C Continue program execution
C(n) Continue n times
D Display breakpoints and macros
E(n) Enter context of frame n(1 line only)
G Restart program
H(true/false) Enable execution history
H Display recent history and full
stack
H(nr) Display last n statements executed
K Remove all control breakpoints
K(block,stmtnum) Remove specified breakpoint
K(module:block,stmtnum) Remove specified breakpoint
from external module
L(proc) List source of proc
L(proc,stmtnum) List statement s¢tmtnum in proc
L(proc,stmtnum,x) List x lines beginning with
) statement stmtnum in proc
L(module:proc) List source of external module proc
L(module:proc,stmtnum) List statement s¢tmtnum in external
module proc
L(module:proc,stmtnum,x) List x lines beginning with
statement stmtnum in external proc
M(name)<commands» Define stored command macro
List variable names for current frame
N(n) List variable names for frame n
P Proceed 1 statement at current level
P(n) Proceed n statements
Q Quit Debugger
S Single-step statement
S(n) Single-step n statements
T(true/false) Enable/disable tracing
V(variable) Set data breakpoint
V(variable)< ... > Data breakpoint with stored
commands
w() Write list of values
X(name) Execute named macro command
variable := value Assign value to variable
? Help (display command summary)
“C (Control-C) Immediate breakpoint
"Z (Control-Z) Exit from Debugger

4-35

The Pascal-2 Profiler

4-36

The Pascal-2 Profiler can help you tune Pascal programs by detecting
bottlenecks: small sections of code in which your program spends a
disproportionately large amount of time. The Profiler counts the num-
ber of times each Pascal statement in your program is executed then
prints a summary describing how many times each procedure is called
and what percentage of the total statements executed are found in that
procedure,

To use the Profiler, you should compile your program with the pro-
file switch. (See the Programmer Reference for detailson compilation
switches.) The profile switch causes the Pascal-2 compiler to gen-
erate several auxiliary files. These files, which permit the Profiler to
locate the statements and procedures in your program, are the same
ones generated by the debug switch. The Profiler requires 2K words
of memory in addition to the space required by the program. In addi-
tion, program size increases about 4 words for each statement in the
program. Thus, a program containing 1000 statements requires about
6K words for the Profiler.

After compiling your program you must task-build it with the Profiler,
which is in the Pascal support library. To do this you must use the
multiline form of the TEB command to increase the number of logical
units available to the program (same as for the Debugger). The support
library and Profiler open seven files, so you need at least 7 logical units
to run a program that uses no files. (The system default is usually
6.) Although a smaller number may suffice, we recommend that you
specify 20, to ensure that enough LUNs are available for execution.

The compilation and task-building steps are shown below, using a pro-
gram, CHECKR.PAS, which plays a game of checkers.

>PAS CHECER/PROFILE

>TEB

TEB>CHECER/CP/FP=CHECER,LB: [1,1]PASLIB/LB
TEB>/

Enter Options:

TEB>UEITS=20

TEB>//

Upon execution, the Profiler takes control of the program and opens
the program's auxiliary files created by the Pascal compiler. For large
programs, there may be a short pause while the Profiler scans the
auxiliary files to build internal data structures.

Next, the Profiler prompts for the name of the profile output file. If
you specify a disk file, the default file extension is .PRO. Writing a
profile to the terminal is practical only for a short program.

Compile and task build the program as previously shown, then run it:

>RUE CHECER

profile ¥2.iB -- 6-Feb-1983

Prxofiling module: CHECHER
Profile output file mame? CHECKR— Output goes to CHECKR.PRO

Helcoms te CHECEKERS-————e— Program continues, slowly

The Profiler counts the namber of times each statement is encountered.
This counting of each statement slows down program execution. For
this reason, it may not always be possible to profile programs that
operate in a time-critical environment.

The Profiler generates a performance outline when the program termi-
nates. Termination occars when your program reaches the logical end
of the program or when the program detects a fatal error condition,
A Control-C (~C) interrupts the program and generates a profile at
that point. Entering Control-C (~C) twice aborts the generation of the
profile.

The Profiler listing has the same two columns of numbers as the Debug-
ger listing (one column numbers each line of the source program and
the other gives the statement number of the first statement on each
line), plus an extra column of numbers at the far left of the listing.

This leftmost column lists the number of times the statement on that
line is executed. If more than one statement appears on the line, the
count applies only to the first statement on the line. To obtain an accu-
rate count of each statement in the program, you can run your source
program through the PASMAT formatter supplied with Pascal-2. The
PASMAT ‘8' directive reformats the code so that no more than one
statement appears on each line, (PASMAT is described in the Utilities
Guide.)

If no number is printed in the leftmost column, then that particular
statement was never executed. You can sometimes detect logic errors
in your program by scanning the profile output to find sections of code
or perhaps entire procedures that are never executed.

A summary of the program'’s execution, procedure by procedure, ap-
pears at the end of the profile listing. Procedures are listed in the
order they appear in your source code. Three columns of information
are displayed for each procedure, as follows:

Statements This column lists the number of statements that appear
in the definition of the procedure.

4-37

4-38

Times This column showe how many tiries each procedure is called
Called during program execution.

Statements This column has two figures. The first is the number of

Executedstatements executed in the procclure. For example, a pro-
cedure that contains 10 assignment statements and is called
5 times will show 50 statements exccuted in the statements
executed column. This direct relationship is valid only for
very simple procedures. In most procedures and functions,
loops and other control structures cause the number of “state-
ments executed” to be much larger (or smaller) than you may
expect at first glance. The second figure in this column is
the percentage of statements exccuted in this procedure as
compared to the total number of statements executed in the
program. The total number of procedures and statements
and the total number of statements executed are printed at
the bottom of the procedure execution SUmMIMAary,

The following example profile from CHECKR shows that 2.6 million
statements were executed. (To save space, only the Procedure Exe-
cution Summary and relevant portions of the profile listing are shown
here.) The Profiler listing shows that the program spent most of its
time in only a few procedures. For example, the summary shows that
21 percent of the total statements executed were in the 15-statement
procedure Check. However, Check was culled 71,212 times, so that
percentage does not seem too far out of line. }More interesting is that
almost half a million statements (17.63 percent) were executed in the
procedure Initialize. This number seems excessive becaunse the pro-
cedure does nothing more than initialize variables and tables each time
a board position is analyzed and was only called 1348 times. We may
have a problem here.

PROCEDURE EXECUTION SUEHARY

Procedure nams statemonte times called statemsnte ezecuted
BEVEODE 15 1330 18070 0.69%
IEITIALIZE 17 1348 469668 17.63Y%
SCAR 32 1348 120680 4.62%
CHECE 15 71212 567111 21.75Y%
ABALYZEHOVE 40 25382 516326 19.80%
ABALYZE 38 1348 298566 11.45Y%
UEPACEHODE 54 1348 60660 2.33Y%
PACKEODE 23 1348 22768 0.87%
SCOREGRADIEET 16 1348 250028 9.59%
SCOREBOARD 54 1348 99228 3.80%
EVALUATEBOARD 5 1348 6740 0.26Y
DISPLAYBOARD 22 41 5463 0.21%
EXTRACT i8 716 7328 0.28%
EILL 11 1388 13621 0.52%
PRUEE 3 219 657 0.03%
INIT 165 1 1676 0.08Y%
COHPARE 14 4128 24768 0.96%
IESERT 26 1843 40490 1.55%
DUHPEODE 11 0 0 0.00%
GEFHOVE 18 1273 17822 0.68Y%
GEEJUHP 53 76 438% 0.17%
HOVEPIECE 12 1790 32100 1.23%
EXPAED 17 239 20372 0.78%
POSITIOECURSOR 2 0 0 0.00%
HAKEHOVE 6 308 7371 0.28%
DESCEED 26 197 3592 0.14Y%
FULLEXPAED 45 127 6046 0.23%
READHOVE] 2 12 0.00%
DECODE 12 0 0 0.00%
READFILEUANE 9 0 0 0.00%
GETUSERHOVE 108 i 90 0.00%
HAIN 91 1 2408 0.09Y%

There are 1032 statements im 32 procedeures im this program,.
2607836 statements were executed during the profile.

Because we suspect a problem in the procedure Initialize, we exam-
ine the profile output associated with that procedure. The first column
of numbers is the statement execation count. The second column is
the line number of the statement in the source file, The third column
of numbers is the statement number of the statement. (This statement
number is the same number used by the Debugger.)

4-39

4-40

The Profiler listing for procedure Initialize ia:

1348

1348
74140
74140
74140
74140
74140
74140

1348
1348
1348
1348
1348
1348
1348
1348
1348

i73
174
176
176
177
i78
179
i80
i81
182
183
184
186
186
187
188
189
is0
191
192
193
194

1
2
3
4
6
]
7
8

9
i0
11
i2
i3
14
15
18
17

procedure Imitialisze;
var
I: integer;
begin { start of Imitialize }
for I := = § to 49 do begin
Vacant[I] := false;
Friend[I] := false;
Enemy[I] := false;
FriendEing[I] := false;
EnemyEing[I] := false;
Protected[I] := false;
end;
Pinmed := 0;
Threatened := 0;
Umobil := 0;
Depied := 0;
BlackPieces := 0
FhitePieces := 0
Center := 0;
HoveSystem := 0;
EnemyHaslings := falge;
end; { of Imitialize }

In statements 3 through 8, a for loop is initializing several boolean
arrays of the same type. Each assignment inside the loop is executed
74,140 times — a very inefficient way to initialize these arrays. Instead,
we can modify the program to initialize one array, then assign that array
to the other arrays to be initialized,

The effect of the modification is apparent in this new profile of the
same section of code.

1732
1732
96260

1732
1732
1732
1732
1732
1732
1732
1732
1732
1732
1732
1732
1732
1732

173
174
175
176
177
178
179
180
181
182
183
184
188
186
187
188
189
130
i91
192
193
194

procedure Initialize;
var
I: integer;
begin { start of Imitialize }
—for I := - § to 49 do begia
Vacant(I] := false;
end;
Friend := Vacant;
Enemy := Vacant;
Friendking := Vacant;
EnemyEking := Vacamt;
Protected := Vacast;
Pinned := 0;
Threatened := 0;
Umobil := 0;
Denied := 0;
BlackPieces := 0;
ThitePieces := 0;
Coenter :m 0;
HoveSystem := 0;
EnemyHasKkings := false;
end; { of Initialize }

The result is clear: Instead of six assignments, each of which is executed
74,140 times, we have one assignment executed 95,260 times. (The
execution nambers differ from the sample execution summary because
the CHECKR program uses random numbers to play a different game
each time it is run.) Overall, the Program Execution Summary shows
that the time spent in the Initialize procedure has dropped from 17
percent to 4 percent of the total program. By rewriting six lines, we
have improved performance by 11 percent.

Further, the number of times Statement 3 is executed can be reduced
by the use of a global array initialized only once at the start of the
Program.

Similar optimizing techniques may be applied to other parts of the pro-
gram. The Procedure Execution Summary indicates where the effort
can best be applied—and where it cannot. For example, the program
spent 21 percent of its time in the 15-statement procedure called Check.
The trimming of even one statement from this procedure could signif-
icantly improve performance. On the other hand, one of the larger
procedures in the CHECKR program is Genjump, containing 53 state-
ments. The program, however, spent much less than 1 percent of its
time in this procedure, Even by eliminating this procedure completely,
we would improve program performance by only s trifling amount,

Two warnings: First, a statement count is not identical to “work.”
Complex statements take more time to execute than simple statements
and this time is not measured. Second, the percentages shown in the
statements executed column are percentages of execution counts, not
execution time. For compute-bound programs sach as CHECKR, the
execuation percentage closely approximates the percentage of time spent
in the procedures. I/O-bound programs, however, may spend much of
their execution time opening files or waiting for the disk to transfer
information to memory. In this case, the execution count percentages
may differ significantly from the real amount of time spent in the pro-
cedures.

4-41

Pascal-2 V2.1/RSX Utilities Guide

Introduction to the
Utilities Guide

The Pascal-2 utilities are a collection of programs designed to make life
easier for programmers. Some of the utilities, such as the formatters,
are designed to lessen the tedium in formatting programs and program
documentation. Other utilities, such as the cross-reference programs,
can help analyze code. Still other utilities, such as the MACRO package
or the string-processing package, extend the capabilities of Pascal-2.

Each section of the Utilities Guide describes the particular atility in
detail and inclodes examples of its use. Briefly, the Utilities Guide
contains the following:

Two Program Formatters: PASMAT, a sophisticated formatter with a
number of options; PB, a simple formatter designed to assist, rather
than supplant, your own formatiting of program text.

Two Cross-Reference Programs: XREF, which cross-references the
variables in your program or words in a text file; and PROCREF,
which croge-references the procedures in your program.

Dynamic String Package: STRING.PAS, & set of procedures designed
to help you manipulate character strings.

MACRO Package: PASMAC, which helps to interface MACRO-11 rou-
tines with Pascal-2 programs,

Text Formatter: PROSE, which provides a number of formatting op-
tions for the production of computer-related documentation.

PASMAT: A Pascal-2
Formatter

Overview of
Capabilities

Comments

5-2

PASMAT generates & standard format for Pascal code. PASMAT ac-
cepts standard Pascal and the language extensions in Pascal-2. PAS-
MAT accepts full programs, external procedures, or groups of state-
ments. A syntactically incorrect program causes PASMAT to abort
and to cease formatting the output file,

PASMAT's default formatting requires no control from you. The best
way to find out how the formatting works is to try it and see. In ad-
dition, PASMAT's formatting directives give you considerable control
over the output format when you wish,

PASMAT has these capabilities:

e The program may be converted to uniform case conventions, ander
the control of the user.

e The program is indented to show its logical structure and to fit
into a specified output line length.

© Comment delimiters are changed to braces ({}).

¢ If requested, the underscore character (-) is removed from iden-
tifiers for use at installations that do not support the underscore
character.

e If requested, the first instance of each identifier determines the
appearance of all subsequent instances of the identifier.

¢ All non-printing characters are removed; this feature is usefal after
certain editing bugs.

PASMAT handles comments, statements, and tables in the following
manner:

PASMAT's rules allow you to achieve almost any effect needed in the
display of comments.

e A comment standing alone on a line is left-justified to the current
indention level, so that it is aligned with the statements before
and after it. If it is too long to fit with this alignment, it is right-
Jjustified.

e A comment that begins a line and continues to another line is
passed to the output unaltered, indention unchanged. This type
of comment is assumed to contain text formatted by the author,
80 it is not formatted.

e If a comment covered by one of the above rules does not fit within
the defined output line length, the output line is extended as neces-
sary to accommodate the comment. Once formatting is complete,

Statement Bunching

Tables

& message to the terminal gives the nwmber of times the width is
exceeded and the output line number of the first occurrence.

e A comment embedded within & line is formatted with the rest of
the code on that line, Breaks between words within & comment
may be changed to achieve proper formatting, so nothing that has
& fixed format should be used in such a comment. If & comment
cannot be properly spaced so that the line fits within the out-
put length, that line is extended as necessary. Once formatting
is complete, a message to the terminal gives the number of times
the width is exceeded and the output line number of the first oc-
currence. If no code follows & comment in the input line, then no
code is placed after the comment in the output line.

The normal formatting rule for & case statement places the selected
statements on a separate line from the case labels. The B directive (see
“Formatting Directives”) tells the formatter to place these statements
on the same line as the case labels if the statements fit.

Similarly, the rules for if-then-else, for, vhile, and with place the
controlled statements on separate lines. The B directive tells the for-
matter to place the controlled statement on the same line as the state-
ment header if the statement fits.

Many Pascal programs contain lists of initialization statements or con-
stant declarations that are logically a single action or declaration. You
may want these to be fit into as few lines as possible. The 8 directive
(see below) allows this. If this is used, logical tab stops are set up on
the line, and successive statements or constant declarations are aligned
to these tab stops instead of beginning on new lines.

At least one blank is always placed between statements or comment
declarations, so if tab stops are set up at every character location,

statements are packed on a line.

Structured statements, which normally format on more than one line,
are not affected by this directive.

5-3

Using PASMAT

5-4

Invoke PASMAT with the following command:
>PASHAT output-filesinput-file/optionss"directives"

where

input-file Is the Pascal source file being reformatted. PASMAT ac-
cepts only one input file. The default file extension for both
input and output is .PAS.

output-file Is the reformatted Pascal source file. If output-file is omit-
ted, the ountput file receives the same file name and extension
as the input file and becomes the latest version of that file.

options="directives" Are the settings for formatting directives. The
options switch is optional. It may be abbreviated to o and
may be placed anywhere on the command line. Though the
‘a’ js shown as the switch separator, a colon (:) may also be
used between the optioms switch and the directives. When
specified on the command line, directives must be placed in
quotes as shown. The directives field are scanned as though
the directives were in a Pascal comment at the start of the
8OUrce program,

If the command, PASHAT, is entered on a line by itself, PASMAT
prompts for file names. At the PHT> prompt, enter the remainder of
the command line,

Formatting Directives

Formatting directives may be specified either by an options switch on
the command line or by & special form of the Pascal comment structure.

Formatting directives are of two kinds: switches that turn on with the
plus sign (+) and off with the negative sign (=) (e.g., B¢ and L-); or
numeric directives of the form 7=6. Multiple directives are separated
by commas (e.g., R¢,L-). Blanks are not allowed within a directive.
Case is ignored: B¢ is the same a8 £+ in a directive.

By definition (and by default), certain directives override other direc-
tives, such as the L directive overriding the U and B directives. There-
fore, when turning on a directive, you must turn off any directive that
overrides it. For example, suppose you want all Pascal reserved words
in upper case, In addition to setting B¢, which specifies upper case,
you must also turn off the L directive with L=, See the second example
under “PASMAT Examples.”

The following example shows a program named PROG.PAS being for-
matted with &8 command-line directive that sets the switch B on, & off
and the numeric directives 0 to 72 and T to 5.

>PASHAT PROG/OPTIONS="B+,0=72,T=5,R="

"If used in the program text as part of an embedded Pascal comment,

format directives are placed within square brackeis that, along with
any other comments, are placed within the standard Pascal comment
braces. A compiler directive (e.g., $nomain), if present, must begin any
comment containing 8 PASMAT directive. In this case, the PASMAT
directive may come before or after any other text:

{$compiler-directives text [directives] text}

If no compiler directive is present, the PASMAT directive must begin
the comment:

{[directives] text}

The following embedded directive has the same effect as the command-
line directive shown above,

{[b+,0=72,t=6,r-]}
The PASMAT formatting directives are:

' (Default 4-) Adjusts each identifier so that the first instance
of the identifier determines the appearance of all subsequent
instances of the identifier. This facility standardizes the use
of upper-case and lower-case characters and the underscore
character (.) in program text. This directive overrides the U
directive.

5-5

5-6

(Default B-) Specifies that the statements following a then, or
else, for, with or vhile is placed on the same line if they fit,
The statement following a case label is placed on the same
line if it fits. The result is a shorter output, which may be
easjer to read but which also may be harder to correct.

(Default C-) Converts leading blanks to tabs on output.

(Default F+) Turns formatting on and off. This directive goes
into effect immediately after the comment in which it is placed
and can save carefully hand-formatted portions of a program.

(Default E-) Converts a non-standard else clause in a case

_statement to othexrvise as used in Pascal-2.

(Default L+) Specifies that the case of identifiers and reserved
words be a literal copy of the input. This directive overrides
the U and B directives and is disabled by the P+ directive.

(Default H+) Converts all alternate symbol representations to
the standard form. Otherwise, all symbols are left as they are
in the text. The nonstandard comment brackets /% ... ¢/ are
always converted, either to braces or, in the case of H-, to (#

)

(Default B-) Inserts no new lines into the output unless they
are required to make the lines fit, This directive just indents
the source, keeping the line structure set up by the user. If &
line exceeds the output length, it is broken at the best place
available, but the results may not be what you want. Look
things over carefully after using this option.

(Numeric directive, default 0=78) Specifies the width of the
output line. The maximum value allowed is 132 characters.
If a particular token does not fit in the width specified, the
line is lengthened accordingly, and a message at the end of the
formatting gives the number of times the width is exceeded
and the output line number of the first occurrence.

(Default P-) Sets “portability mode” formatting, which re-
moves underscore characters (-) from identifiers. The first
letter of each identifier, and the first letter following each un-
derscore, is made upper case, while the remaining characters
are in lower case. This directive overrides the L and U direc-
tives. The R directive sets the case of reserved words.

Warning: Pascal-2 considers underscore characters signifi-
cant: User_DoesThis is one identifier and UserDoes.This is
another. Take care when using this directive that you do not
make two different identifiers the same: UserDoesThis and
UserDoesThis.

(Defanlt R-) Specifies that all reserved words are in apper
case. With this off, reserved words are in lower case. The L
directive overrides the B directive. When using B+ you must
also use L~ to turn off the overriding directive. See the second
example under “PASMAT Examples.”

(Numeric directive, default 8=1) Specifies the number of state-
ments per line. The space from the current indention level to
the end of the line is divided into even pieces, and successive
statements are put on the boundaries of successive pieces. A
statement may take more than one piece, in which case the
next statement again goes on the boundary of the next piece.
This is similar to the tabbing of a typewriter.

Any statement requiring more than one line is not affected,
but may cause unexpected results on following statements.
This directive only affecte the constant declaration and state-
- ment portions of the program and is intended for use in ini-
tializing tables. The defsult value of 1 provides normal for-
matting,

(Numeric directive, default T=2) Specifies the amount to “tab”
for each indention level. Statements that continue on succes-

sive lines are additionally indented by half the value of 7.

(Default U-) U+ specifies that identifiers are converted to upper
case; U~ specifies that they are converted to lower case. The
L, P and & directives override this directive. When using U+
you must also use L- to turn off the L directive. Also, make
sure the P directive is off (P-, the default).

5-7

Limitations and Errors paSMAT is Limited in these ways:

5-8

The maximum input line length is 132 characters.
The maximum output line length is 132 characters.

Only syntactically correct statements are formatted. A syntax er-
ror in the code causes the formatting to abort. An error message
gives the input line number on which the error is detected. The
error checking is not perfect, and successful formatting is no guar-
antee that the program compiles.

The number of indention levels handled by PASMAT is limited;
PASMAT aborts if this number is exceeded — a rare circumstance.

If a comment requires more than the maximum output length
(132) to meet the rules given, processing is aborted. This situ-
ation should be even rarer than indention-level problems.

When it aborts, PASMAT attempts to copy the rest of the file.
You should, however, recover a copy of the source file and inspect
the PASMAT-generated copy carefully; we cannot guarantee that
PASMAT recovers all the text for every error condition.

PASMAT Exampies To illustrate the workings of various PASMAT options, the following
example shows how a sample program appears after formatting with

two different eets of options.

{Example: EFACT]

program Efact(output);
{ Compute an approximatiom for E from its Taylor series }

{ The Hth term in the series is 1/(B!) }
var E, serles._term: real; B: imteger;
begis

{ set initial conditions }

E :=1.0; B := 1, SeriesTerm := 1.0;

{ loop to approximate E; quit vhem the series sum stops changing }
repeat

E :» E ¢+ seriesterm;

{ compute next term of series }

B :=§ ¢+ 1; seriesterm :® geriesterm / B;

until E = (E ¢ SeriesTerm);

vriteln(’With ’, mn: 1, ’ terms, value of e is’, e: 18: 15);

end.

First we reformat the program using the standard indention of text
and comments. We use the output directive on the command line to
specify the width of the output line, and we specify a short line width
to illustrate the right-justification of long comments.

The program is formatted with the commands:

>PASHAT EFACT/OPTI0ES="(=86"

5-9

Program text after formatting:

[Example: EFACT - Output

program Efact(output);
{ Compute an approximatiom for E from its Taylor series }

{ The Bth term in the sexries is 1/(E!) }
vax
E, series_term: real;
B: integer;
begin
{ set initial conditions }
E := 1,0;
B := {;

SeriesTerm := 1,0;
{ loop to approximate E; quit wher the series sum stops chamging)
repeat
E :2 E ¢+ geriesterm;
{ compute next term of series }
B:28 + 1,
seriesterm := -seriesterm / §;
until B ® (E + SeriesTarm);
writeln(’Bith ’, m: 1, ’ terms, value of e is’, e: 18: 16);
end.

The second example illustrates embedded PASMAT commands. We
have altered the original program by inserting the text {(a+,L-,8+]}
before the first line. The directive 4+ changes each identifier to match
the appearance of the first use of that identifier. (Notice the variant
forms of series.term and E in the original program.) The directives
L- and B+ together turn off the literal reproduction of the reserved
words and make them upper case. The program is formatted with the
commands:

>PASHAT EFACT

5-10

Program text after formatting:

IExample: EFACT after formatting

{[a+,1-,241}
PROGRAH Efact(ouwtput);
{ Compute an approximatiom for E from its Taylox series }

{ The Hth term in the series is 1/(H!) }
ViR
E, series_term: real;
B: integer;
BEGIE
{ set initial conditioms }
E := 1.0;
B := 1,

series_term := 1.0;
{ loop to approximate E; quit whem the series sum stops chamging }
BEPEAT
E := E + series_term;
{ compute next term of series }
B := 8 ¢+ 1;
geries_term :®= series_term / H;
USTIL E = (E ¢ series_term);
vriteln(’Bith *, B: 1, ’ terms, value of e is’, E: 18: 18);

EED.

5-11

XREF: A Pascal-2
Cross-Reference Lister

Using XREF

5-12

XREF produces a cross-reference listing of the identifiers in a Pascal
program. XREF is helpful when debugging new programs or when
modifying existing ones. The output shows the use of each identifier in
the program, which is beneficial when you're working with medium to
large programs.

Each identifier is listed, along with an entry for each reference to that
identifier. Each entry consists of the line on which the reference oc-
curs, plus an indication of whether the reference is & declaration or
assigniment.

You invoke XREF with the following command:

>XREF output-filesinput-file/switches

where .

input-file Is the Pascal sonrce file being crose-referenced. The input
file has a default extension of .PAS. XREF accepts only one
input file,

output-file Is the cross-reference file. The output file has a default
extension of .CRF. Output-file and the ‘=’ separator are op-
tional If they are omitted, an output file with the same name
as the input file, and having the default extension, is placed
in the default directory.

switches Is one or both of the following command-line switches.

The 1ist switch generates a listing of the input file before the
cross-reference. This listing includes line numbers and a flag
character (c) indicating multiple line comments and strings.
The flag character makes it easier to locate certain bugs that
cannot be easily diagnosed by the compiler.

The width: num switch specifies the page width for the cross-
reference listing, where num is the number of characters
across. The default is 132,

.The s.witches may be abbreviated to one letter. Multiple
switches are separated by a slash '/’

Limitations

The XREF program has two limitations on the size of the programs it
can handle.

e An internal limit exists for the number of distinct identifiers al-
lowed. You may change this number in the XREF source file and
recompile the program.

e The total number of references is limited by the amount of dynamic
storage available.

The XREF program does not perform a complete syntax analysis of
the program, and it may not flag all declarations or assignments.

This example shows the cross-referencing of the program EFACT to
produce the output file EFACT.CRF.

>XREF EFACT/LIST/UIDTE:68

5-13

l Example:

XREF Listing

i prx

2 {
}

[
CWESB NP W

i1
12
13
14
16
i8
17
18
i9
20
21

Cross refe

«I=
IBTEGER

=Qe
O0UTPUY

-R-
REAL

-§=
SERIESTERH

-g-
VRITELE

ond xref

5-14

ogram Efact(output);
Compute am approximatios for E from its Taylor series.
The Hth term in the series is 1/(H!).

var
E, SeriesTerm: real;
B: integex;

begin
{ set initial comditioms }
E := 1.0;
B = 1;
SeriesTerm := 1.0;
repsat { loop to approximate E; quit whem sum stops changing }
B := E ¢ SeriesTerm;
=0 ¢ 1;
SeriesTerm := SeriesTerm / B;
until E = (E + SeriesTerm);
eriteln(’With ’, H: 1, ’ terms, value of e is’, E: 18: 15);
end.

rence: © indicates defimition, = indicates assignment

Te 12= 16= 16 i9 19 20
i¢

8e 13= 17= 17 i8 20

ie

Te i4= 16 18= 18 19

20

8 identifiere 24 total references

PROCREF:
Pascal-2 Procedural
Cross-Reference Lister

PROCREF, based on a procedural cross-reference program published
by Arthur Sale in Pascal News (Number 17, March 1980), is designed
to help programmers sort through the procedures in medium to large
Pascal programs., The program has been modified to allow the use of
multiple input files and ¥include directives and to provide “called by”
data in the listing.

PROCREF provides & quick overview of the procedural organization
of & program, which is beneficial when you're working with medinm
to large programs. The PROCREF utility reads the text of a Pascal
program to produce a compact listing of the procedare headings and
an alphabetized list of procedures with usage information. PROCREF
processes ¥include directives in the same way as the Pascal-2 compiler,
go that all parts of a compilation can be analyzed.

The procedure listing includes each procedure heading, along with its
location in the input file. Procedure headings are indented to show
lexical level. No attempt is made to fit the procedure headings into a
limited line width.

. The cross-reference listing places procedures in alphabetical order. For

each procedure the listing includes:

e The file and line number where its heading starts.

e The file and line number where its body starts, unless it is external
or is a formal procedure parameter and has no body. In such &
case, the note external or formal is printed.

e If the procedure is declared forwaxd or is externally defined, the
listing contains the file and line number where the procedure head-
ing stub starts.

e A list of all procedures immediately called by this procedare.
These are listed in the order in which they occur in the text. A
procedure is listed only once, even if it is called more than once.

e A list of all procedures that call this procedure. Again, the list is

in textual order and only one reference is shown per procedure.

Only the first sixteen characters of a procedure name appear in the
cross-reference listing. Those characters are written exactly as they
appear in the program text.

5-15

Using PROCREF

Limitations

5-16

You invoke PROCREF with the following command:
>PROCREF output-file=input-files/vidthk: num
where

input-files Are the Pascal source files being cross-referenced. The in-
put files have a default extension of .PAS. Multiple input files,
if specified, are separated by commas. Multiple files are con-
catenated.

output-file Is the cross-reference file. The output file has a default
extension of .PRF. The output-file and the ‘=’ separator are
optional. If they are omitted, an output file with the same
name as the last input file, and having the default extension,
is placed in the defanlt directory.

width:nem Specifies the page width for the croas-reference listing,
where num is the number of characters across the page. The
default is 80 characters. The widtk switch is optional and
may be abbreviated to one letter.

The PROCREF program does not completely analyze the syntax of
the program being processed. PROCREF errs in one case: If a field
identifier in a record has the same name as a procedure, and if that field
is referenced without a preceding record variable name, as in a8 with
statement, the field identifier is treated as a reference to the procedure.

Let's assume that we wish to generate a procedure cross-reference for
the following program, LVSPOOL.PAS.

Example: Program Listing For LYSPOOL.PAS

Pascal=2 BSE ¥2.1E 9-Feb-48 7:03 &H S8ite 81-1 Page 1-1 Oregom Software, 6915
SY Hacadam Ave., Portlamd, Orsgra 97219, (6503) 2456-2202 LVSPOOL/LIST

X ~ND T WD

@

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

program LVSpool(impnt, oulpat);
procedure $ScanlV; external;
procedure ReadFoatInfo(i: integer; j: imteger); forwaxd;

procedure LoadFonts;
procedure GetByte;
begin
end;
begin
GetByte;
BeadFontInfo(i, 2);
end;

procedure BeadFontInfo;
begin

LoadFonts;
end;

procedure ShowPage;
begin

ScanL¥;
end;

begin main program
BeadFontInfo(0,1);
ShowPage;

end.

¢¢s Ho lines with errors detected 9¢e¢e¢

We croas-reference the procedures as follows.

>PROCREF LVSPOOL=LVSPOOL/¥:72

The ¥:72 requests that the cross-reference listing not exceed 72 char-
acters in width so that the result may be printed on a terminal.

5-17

The result, placed in the file LVSPOOL.PRF, consists of:

| Example: Output From PROCREF (LVSPOOL.PRF)

Procedural Cross-Referemcer - Versiom 3.0

LVSPOOL/®:72

Line Program/procedure/function heading

LVSPOOL.P4S:

program LVSpool(input, output);
procedure ScanlV; extermal;

i

2

3 procedure ReadFomtInfo(i: integer; j: imteger);
5 procedure LoadFonts;
6
4
9

forvaxd;

procedure GetByte;
procedure ReadFomtIafo;
procedure ShowPage;

Procedural Cross-Referencer - Versiom 3.0

LVSPOOL/¥:72

Cross Refersnce Liating

GetByte
Called by

LoadFonts
Calls
Called by

LVSpool
Calls

BeadFontInfe

Calls
Called by

ScanlV
Called by

ShowPage

Calls
Called by

5-18

Head: LVSPOOL.PAS, 6 Body: LVSPOOL.PAS, 7
LoadFonte

Head: LVSPOOL.PAS, 6 Body: LVSPOOL.PAS, 9
GetByte BeadFontInfo
ReadFontInfe

Head: LVSPOOL.PAS, 1 Body: LVSPOOL.PAS, 24
ReadFontInfe ShowPage

Head: LVSPOOL.PAS, 3 Body: LV3SPOOL.PAS, 1§
Forward, header stub: LVSPOOL.PAS, 14
LoadFonts

LoadFonts LV3pool

Head: LVSPOOL.PAS, 2 external
ShowPage

Head: LVSPOOL.PAS, 19 Body: LVSPOOL.PAS, 20
ScanlLV
LVSpool

L

Dynamic String
Package

The Pascal standard implements character strings in two ways: as & ae-
quence of two or more characters between single-quote marks (a literal
string); or as a packed array of char (a variable string). However,
the standard does not provide adequate {acilities for manipulating char-
acter strings and only allows assignments of one string to another string
and comparisons of two strings of equal length.

Pascal-2's Dynamic String Package extends the meager string-handling
capabilities of standard Pascal, providing the ability to perform sophis-
ticated operations on strings of varying lengths. The string package,
STRING, is & collection of string-processing procedures and functions
that allows Pascal programs to read and write strings, concatenate two
strings, search one string for another, insert one string into another and
delete one string from another, assign the value of ome string to an-
other string and other string operations. The string package is written
in standard Pascal to take advantage of conformant array parameters,
which facilitate the passing of variable-length arrays (strings), and to
provide portability to other Pascal implementations.

To use the string package, declare string variables as packed arrays of
characters with a lower bound of 0 and an upper bound equal to the
maximum length for that particular string, as shown:

var
string-name: packed array [0..max-len] of char;

where string-name is the identifier associated with the string variable
and max-len is the maximum length of the string in bytes. The actual
length of the string is stored in element 0. The characters making up
the string are stored starting at element 1. Max-len must be greater
than 0 and no larger than 255,

The maximum length of a string may be different for each string, de-
pending on the intended use of the string. The string package's use of
conformant array parameters rivakes this possible. Examples:

var
FameString: packed array [0..25] of chax;
SiteHo: packed array {0..7] of char;
Line(fInput: packed array [0..80] of char;

As an alternative, these routines also accept parameters of type packed
array [1..max-len] of char, where max-len is the actual length of
the string. Literal strings are of this type. This means you may pass a
literal string to any of these procedures as long as the formal parameter
is not a var parameter.

5-19

5-20

STRING may be included in program source files in one of two ways:
in the program code, use the ¥include compiler directive; or on the
command line, concatenate STRING.PAS with the rest of the source
files making up the program (“source concatenation”), We recommend
the use of the ¥include directive:

Yisclade ’[1,1]string’;

However, if you concatenate the string package with the source file, the
command to compile program PROG is:

>PAS STRIEG,PROG

Source concatenation may be used only if the main program does not
contain a program statement; otherwise, compilation errors result. Re-
fer to “Multiple Source Files” in the Programmer Reference for more
information on the ¥include directive.

The Procedures and
Functions

In the definitions below, string and target represent string variables
similar to the previous examples. File mus¢ be a variable of type text.
Start and span, of type integer, represent character positions and
character ranges, respectively. Max-len is the upper boundary, or max-
imum length, of the array. Char may be a variable of type char or a
literal string of one character.

The string package contains these procedures and fanctions:

Len{string) An integer function, returns the actual length of string.
String may be s literal string.

Cleax(string) Initializes string to empty.

BeadString(file, string) Reads string from file. The siring is termi-
nated when eoln(file). becomes true, and & readln(file) is
performed. Overflow results in truncation to max-len charac-
ters.

EriteString(file, string) Writes string to file. This procedure does
not accept literal strings as parameters. Use writela to ter-
minate a written string manually.

LeftString(target, string, First) Returns astring and the location
of the first character to the right of the string.

Right3tring(target, string, Last) Returns & string and the loca-
tion of the last character to the left of the string.

Concatenate(target, string) Appends string to target. The result-
ing value is target. String may be a literal string. Overflow
results in truncation to max-len characters.

Search(string, target, start) Searches string for the first occur-
rence of target to the right of position start (characters are
numbered beginning with 1). The Search function returns
the position of the first character in the matching substring,
or the value zero if target does not appear in string. String

. and target may be literal strings.

Insert(target, string, start) Inserts string into target at position
start. Characters are shifted to the right as necessary.
Overflow produces a truncated target of max-len characters.
The insertion is skipped if the start position causes a non-
contignous string. String may be a literal string.

Assign(target, string) Assigns string to target, This procedure is
especially nseful for assigning a literal string to a variable
string (target). To assign one character to a variable string,
use the Asschaxr procedure, below.

Asschar(target, char) Assigns charto target. Char may be a literal
character or a variable name. This procedure is more effi-
cient than procedure Assign for the creation of one-character
strings. (With Assigs, a one-character string must first be
created as input to Assign, which then assigns the character
to a variable string.)

5-21

5-22

Equal(target, string) Determines whether target is element-for-
element identical to string. This boolean function returns
a true value if the two strings are equal, false if the two
strings are different. Target and string may be literal strings,

The start and span parameters in the Delstring and Substring proce-
dures define a substring beginning at position start (between characters
start-1 and start) with a length of abs(span). If span is positive, the
substring is to the right of start; if negative, the substring is to the left.

Delstring(string, start, span) Deletes the substring defined by
start, span from string. (In previous versions of Pascal-2,
this procedure was named delete.)

Substring(target, string, start, span) The substring of string de-
fined by start, span is assigned to target. String may be a
literal string.

The sample program PDLIST.PAS demonstrates the use of the string
package. The program reads a PROSE input file (.PRS extension) of
text-processing commands, or “directives,” searching for all directives
used in the file. (PROSE is described later in this guide.) As each
directive is encountered, PDLIST prints the directive and its location
within the file for future reference.

The first character of a PROSE directive is called the “escape” char-
acter. If the first character of a line of input is an escape character, at
least one directive follows. PDLIST.PAS uses the Beadstring proce-
dure to read a line of text as a string, then calls Search repeatedly to
find each occurrence of the escape character on the current line. When
an escape character is found, the procedure GetDirective is called to
get the next directive, For each directive, the program builds a line of
output (also a string) using the Assign and Concatenate procedures,
and uses Uritestring to write the line to a .DTV (directive) file. In
this example, the escape character is a period, which is the PROSE
default.

PDLIST.PAS, including procedure GetDirective, is provided in full
on the following pages. Sample execution follows the listing,

Example: Use of L1String (PDLIST.POS)

program DirectivelList;
%include ’atxing’; include the string package

const
LineLength = 150; { PROSE default imput line lemgih }

var
Line: packed array [0..LimeLemgth] of char; { strimg for output lime }
Outline: packed array [0..50] of chax; { string for impat lime }
Directive: packed array [0..10] of char; { string for directive }
Hame: packed arzay [1..80] of chax; { input file mame }
Escape: packed array [0..1] of char; { etring for escape character }

Linenum, Index: imteger;
Prosefile, Directivefile: text;

DirectiveFound: boolean; { directive found? }
HoneYet: boolean; { looking for first directive om lime }
Letters: set of char; { Charactexs making up a directive }

procedure GetDirective(I: imteger);
var
Ch: char;

begin { GetDirective }
Clear(Directive); defined in STRING
shile I <= Len(Line) do begin { not end of line yot }
Ch := Line[I]; I := I + 1; . ‘
if Ch in Letters them begin { get next char of directive }
Directive[0) := succ(Directive([0]);
Directive[Len(Directive)] := Ch
end
else I := Len(Line) ¢ 1;
end;
DirectiveFound := Len(Directive) > 0
end; { end GetDirective }

5-23

begin { DirectiveList }
erite(’PROSE FILE: °);
readln(fams);
reset(Prosefile, Hams, ’.prs’);
revrite(Directivefile, ’.dtw’, Hame);

Asschar(Escape, ’.%); defined in STRING
Linenum := 0;
Letters := [’4°,.°2’, ’a’..’s’]; { Any others emd directive }
vhile not eof(Prosefile) do begism
ReadString(Prosefile, Lime); defined in STRING

Linenum :®= Linenum ¢+ 1;
if Line[1] = Escape[i] them begiz { first character is am escape }
Index := 0; BoneVYet := true;
repeat { find all occurremces of escape characters }
Index := search(Lime, Escape, Iadez ¢ 1); defined in STRING
if Index <> O them begim
GetDirective(Index + 1); { get the mext directive }
if DirectiveFound them begin
Assign(Outline, Escape); -——————— defined in STRING
Concatenate(futline, Directive);-————— defined in STRING
if BomeVYet them begis
srite(Directivefile, ’ Lime ’, Limemum: 4,’ N
HoneYet := false
end
else write(Directivefile, ’);
UriteString(Directivefile, Outline);-——— defined in STRING
writeln(Directivefile);
end;
end;
until Index = 0;
end;
end;
end. { DirectiveList }

For this illustration, PDLIST reads the PROSE input file presented in
Appendix A of “PROSE: A Text Formatter,” Example 2. The name
of the input file is PEXAM2.PRS.

Compile, link, and run PDLIST as usual. The program prompts for
the input file:

PROSE FILE: PEXAH2

5-24

Output, the list of directives used in the file, is written to

PEXAM2.DTV, which looks like this:

Line
Line
Line
Line
Line
Line
Line
Line
Line
Line

i
2
3
4
6

8
21
22
23
28

.COHEHEET

. JEPUT
.OPTIOE
.FORH
.HARGIE
.PARAGRAPH
.0PT

JHAR
.PARAGRAPH
.0PT

JHAR

.PAR

5-25

MACRO-11
Procedures With
Pascal-2

Design of MACRO-11
Procedures

Although most programs can be written within the Pascal-2 language,
applications involving interface to the operating system require the use
of MACRO-11 assembly language code. A set of macros provided with
the Pascal-2 system makes this interface easy. You can code a set of
macro calls that look much like a Pascal procedure declaration, and the
PASMAC macro packnge will assign addresses to the parameters and
generate procedure entry and exit code.

Follow these general rules in deciding what to put in 8 MACRO-11
procedure:

e Do the absolute minimum in MACRO-11. If you must use
MACRO-11 code to use a system service, process the result in
Pascal-2 code. (This is not always possible, since some operating
systems require very low-level manipulations.)

e Isolate a common function and make the procedure handle the
most general case of that fanction.

© Pass all data to and from the procedure as parameters. Global
references from MACRO-11 are not recommended for these rea-
sons: the address is hard to find; if the Pascal program changes,
the MACRO program will have to be changed; and global refer-
ences cannot be checked for type compatibility. This guide does
not describe ways to make global references.

Once you have decided on the contents of the procedure, define the
calling sequence as a Pascal external procedure. Then write a functional
description of the procedure. Then actually write the procedure. These
documents will be your implementation guide.

When you have the external definition, use the PASMAC macro pack-
age described below to define parameters and local variables. As long
as the stack is not changed within the procedure, these macros can ac-
cess parameters or local variables directly. For this reason, you should
probably store local temporary values in the local variables rather
than pushing them on the stack. If thoroughly familiar with writing
MACRO-11 code, you can use the stack, but make sure you under-

stand the Pascal-2 run-time structure, described in the Programmer
Reference,

The PASMAC Macro

Package

The PASMAC macro package is provided to simplify the writing of

MACRO-11 procedures to interface with Pascal-2. Using this package,
yon can declare procedures, parameters, and variables, and you can
casily refer to these items within the procedure.

The package consists of the following macros:

The PASMAC package also contains assembly language routines that
define the macros:

Name Arguments Function
proc procname Begins the declaration for the procedure procname.
func funcname Begins the declaration for the function funcname.
result restype The returned value is assigned to result of type
restype.
pazam parmname Declares & parameter named parmname of type
parmtype parmtype.
var varname vartype Declares a local variable named varname of type var-
type.
save <reg0, ... ,regm> Specifies general registers to save on procedure entry.
rsave <ac0, ... ,acn> Specify floating accamulators to save on procedure
entry.
begin Begins the actual procedure code. This macro gen-
erates code to push the variables on the stack and to
save registers.
endpy Ends the code for this procedure, restores registers,

pops variables and parameters from the stack, and
returns to the calling location.

5-27

procedure Exampl(Inpi: integer;
Inp2: real;

The following example demonstrates how these macros may be used in
a procedure definition. Note the correspondence between the Pascal-2
code and the MACRO-11 code.

Pascal-2 procedure definition:

{ first value parameter }
{ second value parameter }

var Outp: integer { variable parameter });

var
Vari: integer;

{ first local variable }

Arri: array [1..3] of imteger; { second local var }

begin

{ begin body of procedmre }

end;

Using PASMAC

5-28

procedure code
{ end of procedure }

The corresponding MACRO-11 code:

declare the procedure
first valwe paramester
gecond value parameter
variable parameter

proc exampl

param inpi,integer
param inp2,real
param outp,address

.
[
.
?
°
&
.
»

var vari,integer; ; first lecal variable
var arri,3¢integer ; Becond local variable
save <r0,ri> ; registers beimg uwsed
rsave <ac0,aci> ; floating accum being used

begin ; begin body of code

procedure code
endpr ; reset everything amd retura

The macros described in the following sections are included in the
file PASMAC.MAC, which also includes definitions of standard data
types. It is assumed that this file will be assembled as a header to any
MACRO-11 code. This would normally be done with a command line
similar to:

>HAC EXTPRO,EXITPRO=PASHAC,EXTPRO

The result of this assembly is an object file (.OBJ) that is task-built in
the same way as any other external module.

MACRO-11 modules assemble with the PASMAC package are refer-
enced from Pascal via the external directive instead of the BROBpas-
cal directive, because PASMAG-simulates the Pascal calling sequence,

(MACRO-11 routines assembled without the PASMAC package can be
referenced via the norpascal directive.) For example:

procedexe ExtProc(Parmi: integer);
external;

For details, see “External Modules” in the Programmer Reference.

The example command line above also generates a listing file (.LST).
Listing of the PASMAC file is disabled with a .BLIST directive at the
start of the file. A compensating .LIST directive is placed at the end
of the file, 20 a program listing is not affected. Defining the tag $LIST
anywhere in your code will enable listing of the PASMAC file,

The macros depend on the existence of & uniform radix throughout the
declaration of a single procedure. This radix may be octal or decimal,
but it must not be changed within & procedure declaration. Also, the
macros use labels of the form Q$xxx and macros of the form $Pxxx for
storing state data. Avoid such forms in your own code.

U

5-29

Procedure Definition
Macros

The ‘Proc’ Macro

5-30

The PASMAC procedure definition macros must be used in the order:

Macro Usage

proc/func Exactly one of these is required

param As many as required (or none)
var - As many as required (or none)
save/rsave FEither or both as needed
begin Required

: User code

endpx Required

A MACRO-11 error is detected if the macro calls are not made in the
required order.

Above references to parameter and variable “types” assume that “type”
identifiers are equivalent to the length of a value of that type. For
example, the identifier integer has the value of 2, the identifier zreal
has the value of 4, and a disk buffer may have the value of 512. The
PASMAC package defines some standard types. See “Type Definitions”
below.

Parameter, variable and function result names are set to offsets relative
to the value of the stack pointer at the end of the begin macro. This
takes into account local variables allocated on the stack, plus the space
used for register saving. You must take into account any additional
values you pushonto the stack._.

Examples:

param parami,integer ; defines parami

BoV parami(sp),x0 ; use parami

The proc macro, used to begin the definition of a procedure, specifies
the name to be used and initializes the symbols that store data about
the procedure. This macro must be the first macro used in a procedure
declaration.

The calling sequence is:
proc procname{, check=i]
where

procname is the name to be used to call the procedure. Only the first
six characters of this name are significant.

The ‘Fun;' Macro

check is an optional parameter specifying stack overflow checking, A
non-zero value (default) requests a stack overflow check. This
check is free (and always done) if more than three registers are
saved, and costs two words in the procedure entry otherwise,
The time for the check is very small, so disabling it is not
recommended.

Ezamples:

proc p,check=0)
OF:
proc p,0

Begins the declaration of a procedure with the external name p and no
stack overflow checking.

proc savetime

Begins the declaration of a procedure with the external name saveti
and stack checking enabled.

The func macro, similar in fanction to the proc macro, also allows
you to specily a name and type for the returned value. In Pascal, the
returned value is specified by assignment to the function name. In
MACRO-11, this assignment is not possible, since the function name is
used for the procedure entry and cannot also point to the appropriate
place on the stack. Any value assigned to the result name defined in
the func macro at exit from the function is returned as the function
value,

The calling sequence is:
fune funcname, resname, restype[, check=i]

where

funcname is the name to be used to call the function. Only the first
six characters are significant.

resname is the name to be used to reference the returned value, Any
" value assigned to this location during execution is returned to
the calling program upon exit from the procedure.

restype is the length of the result value. This is not used in the current
implementation of the macros, but is included for documen-
tation and possible future use.

check is an optional parameter that enables stack checking if non-
zero. See the description under the proc macro.

5-31

The ‘Param’ Macro

5-32

Exzample:
fane curtime,tval,real

Begins the declaration of a fanction with the external name cartim
and stack overflow checking enabled. The result location will be named
tval, of type real. Here real is assumed to have the value 4, which is
the length of a single-precision real value.

The param macro specifies parameters to the current procedure or func-
tion. Each parameter has one paxam macro, in the order declared in the
Pascal procedure declaration. In the Pascal-2 calling sequence, param-
eters are pushed onto the stack in the order in which they are declared,
so the first parameter is at a higher address than the last parameter,
Value parameters have the actual value pushed, and variable parame-
ters have the address of the variable pushed. When these parameters
are declared, the parameter name is set equal to the offset of that pa~
rameter relative to the stack pointer (sp) after the begirz macro has
been called. This value may be used to access the parameter location
relative to the stack pointer.

The calling sequence is:
param paramname, paramtype
where

paramname is the name to be used for accessing the parameter.
Within the body of the procedure, if the stack pointer (sp)
has not changed since the begin macro, value parameters can
be referred to by paramname(sp), and variable parameters
. can be referred to as @paramname(sp).

paramtype is the data type used to determine the space on the stack
used by this parameter.

Examples:
param inmput,integer ; imput: integer
param result,address ; var result: integer

These macros define two parameters. The first is a value parameter
with the name input of type integer and is referred to in the body
of the procedure as input(sp). The second is & variable parameter
with the name result of type integer. Note that the type is defined
only in the comment; the actual value pushed on the stack is of type
address. Within the body of the procedure this is @result (ap).

The ‘Var' Macro

The ‘Save’ Macro

The var macro, similar to the paxam macro, defines a local variable to
be allocated on the stack upon procedure entry. The space for these
variables is allocated automatically by the begin macro, but is not
initialized. Such variables are referenced relative to the stack pointer

(sp)-
The calling sequence is:
vaxr varname, vartype

where

varname is the name to be used for accessing the variable. Within the
body of the procedure, if the stack pointer (sp) has not been
modified since the begim macro, variables can be referred to
by varname(sp).

vartype is the dats type used to determine the space to be allocated

for this variable.
Example:
vax temp, integerx ; temp: imteger;
Var name, 10¢char ; name: array [1..10] of char;

The example defines two local variables. The space for these variables
will be pushed onto the stack by the begin macro. The variable temp
has two bytes allocated and is referred to as temp(sp). The variable
name has ten bytes allocated and is referred to as nams(sp).

The save macro specifies the general registers to be saved on procedure
entry. The Pascal-2 calling conventions require a procedure to save and
restore all registers used within a procedure, so any registers altered
within the procedure should be listed here. If more than three registers
are to be saved, a routine from the Pascal support library is nsed to
save the registers. The stack pointer and program counter (sp and pc)
cannot be saved.

The calling sequence is:

gave <regl, ..., regm>

where <regl, ..., regn> is a list of registers to be saved, enclosed in
angle brackets (<>) and separated by commas. These registers will be
saved on entry and restored on exit, The registers sp and pc cannot
be saved, as they are modified by the action of saving them.
Examples:

save <x0,r1>

Save registers RO and R1 and restore them on exit. The code generated
uses explicit mov instructions to do this.

88V <r0,r1,r2,x3,r4,x5>

Save and restore all available registers. Support routines will be nsed.

5-33

The ‘Rsave’ Macro

The ‘Begin’ Macro

5-34

The rsave macro is useful only for machines with the Floating Point
Processor (FPP) hardware option and serves the same fanction as save
except for the floating-point accumulators. You are required to specify
the FPP mode, either single or double (default is single). Since the
accumulators 4C4 and ACS cannot be moved directly to memory, they
may not be used unless one of the accumulators ACO to AC3 is also used.
Of course, you cannot get data into AC4 or ACE without using one of
the lower accumulators, 80 you should not have any problems meeting
this requirement.

The calling sequence is:

rsave <accuml, ..., accumnd|, double=0]
where
<accurmml, ..., accumn> is & list of accumulators to be saved, en-

closed in angle brackets (¢<>) and separated by commas. These
registers will be saved on procedure entry and restored on pro-
cedure exit,

double is an optional parameter that specifies the saving of two-word
accumulators. If set to 1, specifies that the FPP is in double
mode. The default is zero. The setting does not affect the
setting of the FPP; it simply allows the correct computation
of the space required for the registers.

Examples:
rsave <ac0,acd>

Save accumulators 4CO and AC4 and assume that the FPP is in single
mode,

reave <ac0>,double=1
or:
Isave ac0,1

Save accumulator ACO and assume that the FPP is in double mode.

The begin macro marks the start of the procedure body. This and
the endpr macro are the only ones to actually generate code. When
the begin macro is assembled, all of the data saved up by the previous
macros is used to generate procedure entry code and define all of the
parameter and variable addresses.

The calling sequence is:

begin

The ‘Endps’ Macro

The endpr macro marks the end of the procedure body. Only one endpr
is allowed in each procedure. When the endpr is assembled, registers
are restored, the variables and arguments are popped off the stack,
and control is returned to the calling procedure. The erdpr macro is
designed to generate good code for popping the stack and returning.

The calling sequence is:

endpr

5-35

Type Deﬁﬂltlons In addition to the procedure definition macros described above, the
PASMAC package defines some standard “types” and provides a set of
three macros to simplify the definition of data structures, Each type ia
represented by its length in bytes.

The predefined types are:

Type Length

char
boolean
scalar
integer
pointex
address
real
double

procpax

o QD ol BN B B bt s e

The type procpar is actually a record definition having two fields. This
type is explained below.

The structure definition package consists of three macros:

Name Argument Punction

record typename Begins the definition of a record type typename. The
symbol ¢ypename will be set to the length of the
record at the end of the definition. If the data type
is procpar, the record is a procedure being passed
as a parameter to a MACRO-11 routine.

field name Defines a field in the record. The fields are allo-
size cated in ascending order, and any field with a length
greater than 1 is allocated on a word boundary.
Fields so defined are set equal to the offset of the
field relative to the beginning of the structure.

endrec Ends the definition of a record and assigns the total
length to the typename given in the record macro.

For example, consider the following Pascal record definition:

Prec = raecord
Intf1: integer;
Intf2: integer;
Boolfi: boolean;
Realfi: real;
end;

5-36

The equivalent code using the structure-definition macros is:

recoxd prec ; prec = yecoxd
field intfi, imteger H intfi: integer;
field intf2,imtegex i imtf2: imteger;
field boolfi,boolean : boolfi: boolean;
field <realfi,real H realfi: real;
endrec ; ond;

Later in the procedure, where the definition above occurs, we find:
vax local,prec ; local: prec

And we would refer to field int£2, for example, as

BV local+int£2(sp) ,x0

The type procpar is used in rare cases when you are passing a proce-
dure as a parameter to 8 MACRO-11 routine. The definition is:

record procpar

field pp.proc,address ; address of the procedure
field pp.stat,address ; address of the enclosing static limk
eandrec

This example shows the coding of 8 MACRO-11 procedure for use with
Pascal-2, The procedure chosen for the example is not one that would
normally be coded in MACRO-11, but most such procedures are

5-37

extremely dependent on the operating system. In fact, we begin with
a version of the algorithm as it is coded in Pascal-2;

LExample: PASMAC - Macro-11 I

{$nomain}
procedure CountOnes(E: integer; { sumber to cownt bits im }
var Ones: integer; { number of "ome" bits }
var First: integer { highest "ome" bit });
external;

{ Thie ie a procedure that counts the "ome" bits im am integer amd
returns the number of omes im "Omes" and the highest bit fouad
in "First". If mno bite are set, "First" receives '"-i',

The procedure uses am extension of Pascal-2 that allows the
signed number "B" to be treated as am unsigned mumber "TH".

}

procedure CountOnes;

var
TE: 0..66535; { local unsigned value of § }
Bits: 0..16; { bit count }

begin
First := -1;
Ones :s 0;
Bits := 0;
18 :s B;

while TE <> 0 do begin

if 0dd(TE) them beginm
Ones := Ones + i;
First := Bite;
end;

Bits := Bits + 1;

TB := TH div 2;

end;

end;

This simple procedure counts the number of bits set in an integer,
checking whether the lowest bit is set, incrementing a counter, and
terminating when there are no more bits set. The use of unsigned
integers (TH, in the range 0..65535), avoids the shifting of the sign
bit into the lower-order bits. (Unsigned integers are discussed in the
Programmer Reference and in the Language Specification.) This
procedure (and many others that are often coded in low-level code) can
be coded as a Pascal-2 procedure¢. But in many ways this procedure is
typical of the sort of procedure you may code in MACRO-11:

e It performs a single function with simple internal logic.

e It is a generally useful form of the function, rather than a special
use.

5-38

.title count

we we wWe we wa

-

-e

proc
param
param
param

var

begin
BOV
clr
clr

t8t
beq

1$:
bit

2%:

10$:

e It makes no reference to global variables. All data is passed as

parameters.

The first example gives the most direct translation into MACRO-11,
with all references to variables made directly to memory. It is quite
possible to do the entire function in registers, with some saving in code
and execution time, but for the sake of the example we will not do
this. We change the algorithm elightly to make use of the state of the
condition code at the end of the loop. The use of & conditional branch
at this point shortens execution time slightly at no cost in code size.

This ie a sample procedure that coumte the mumber of bite
set to one im a word "m" and also sets the variable "first"
to the bit number of the highest bit set.

This is used strictly as am example; some values that would
normally be kept im registers are being kept im local variables
or handled directly im memory for demomstratiom purposes.

countones ; procedure counntonee(
n,integer ; a: integer;
ones ,addrese H var ones: imteger;
first,address ; var first: integer);
; var
bits,integer ; bits: imteger; bit couatexr
; begim
8-1,6first(sp) ; first := ~-1;
@ones(sp) ; ones := 0;
bits(sp) ; bite := 0;
n(sp) ; £ B <> 0 ther
10$;
; repeat
#1,n(sp) ; .
2% ; if odd(a) them begim
@ones(sp) ; ones := ones+i;
bits(sp) ,&first(sp)
; first := bits;
; end;
bite(sp) ; bite := bits ¢ 1;
»
n(sp) ; B = R div 2;
1$; until B = 0;
’

This procedure illustrates the use of parameters, local variables, and
the begin and endpr macros. The local variable to hold a is not needed

5-39

as there is no distinction made between signed and unsigned integers at
the MACRO-11 level. The equivalent Pascal-2 code in the comments
should make the MACRO code easy to follow.

In actual practice, local variables would be kept in registers, and the
save and rsave macros would be used to save and restore the registers
used. The following version is an example of this kind of code.

.title count

This simple procedure counts the number of bite
set to one im & word "mn'" and also sets the variable "first"
to the bit number of the highest bit set.

Functionally, this ie the same procedure as "examp", except that
it places local variables in registers whemever possible.

we wa we Wwe we we wa

proc countones ; procedure countomes(
param n,integer ; B: integer;
param ones,address ; var ones: integer;

param first,address H var first: integer);

8RYVO <x0,r1,r2,z3>

begin
BOV n(sp),x0 ; 0 := m;
BOVY g-1,r1 ; £l :® -1; first
clr r2 ; 2 := 0; ones
cle 3 ; 3 := 0; bits
tst 0 ; if 0 <> 0 ther —
beq 10$ H
1$: ; Trepeat
bit 81,r0
beq 2$ i if 0dd(r0) ther begiam
inc r2 R r2 = r241;
BOV r3,rl ; ri := r3;
28§ ; end;
ine 3 H 3 := 3 + 1;
clc ;
rox 0 ; r0 := r0 shift 1;
bne 1$; until r0 = O;
10$: ;
BOV ri,éfirst(ep) ; first :® ri;
BOV r2,@ones(sp) ; ones := r2;
endpx
.end

In the Pascal program that invokes CountOnes, the following reference
is made;

procedure CountOnes(E: integer;
var Ones: imteger;
var First: integer);
external;

5-40

Placing PASMAC into
the System Macro
Library

If you often write Pascal programs that invoke MACRO-11 subroutines
written using the PASMAC macro package, you might find it desirable
to add the PASMAC packnge to your system macro library. This al-
lows MACRO-11 programs to use PASMAC vis the .BCALL assembler
directive rather than by specifying PASMAC.MAC &s & separate input
file in the command line.

When you assemble 8 MACRO-11 subroutine, the assembler searches
the system macro library (LB: [1,1]RSIKAC.SHL) to define macros re-
quested with the .HCALL directive, The system macro library normally
contains definitions of macros that call system services. You can easily
add your own macro definitions to this library.

To add PASMAC to the system macro library, perform these steps:

1. Make a backup copy of your system macro library in case
something goes wrong.
2. Using a text editor, creste a file called P.MAC, which encloses

PASMAC.MAC with a macro definition, as shown below. The
definition creates 8 macro called PASMAC, which contains the
entire contents of the file PASMAC.MAC. The macro defini-
tion redefines the macro PASMAC to be a null macro. This
saves space and time in the assembler. The macro definition
must be in upper case.

.HACRO PASHAC

: contents of PASMAC.MAC
.HACRO PASHAC

.EHDHE
.EEDE PASHAC

We offer two ways to create P.MAC. The first way is to
create the skeleton macro, then insert the contents of PAS-
MAC.MAC at the location shown above. The other possibil-

" ity is to first copy PASMAC.MAC to PMAC and then edit
P.MAC, placing the skeleton macro directives around the con-
tents of PASMAC.MAC,

3 Add the contents of the file PMAC to your system macro
library. The command to use is:

>LBR LB:[1,1)RSXHAC.SHL/IN=P.HAC

PASMAC.MAC is now a part of the system macro library. You can
now use the .HCALL directive to define the PASMAC macros in your

5-41

MACRO-11 routines. This is illustrated below. The routine simply
cleare registers B0 and B1i.

.title test

.mcall pasmac ; Bead the PASHAC macro
pasmac ; Defime PASHAC macro
proc test ; Sample proceduxe

param foo,integer
save <x0,x1>

begin —
cly 0 —
clr £l

endpzr

.end

Now you can assemble the romtine without specifying the PAS-
MAC.MAC source file on the HAC command line.

>HAC TEST=TEST

5-42

PROSE: A Text
Formatter

Computerized text-processing tools such as text editors and formatters
can €232 the tedious preparation and editing of computer-oriented doc-
gineutatioa. Instead of cutting, pasting, and retyping hard copy, you
inzirent the computer to insert changes, reformat and number pages,
thea reprint the document. PROSE, a text-formatting utility program,
alloers yeu to print any document in a variety of formats.

This guide describes the operation of PROSE, providing an overview
of text-formatting procedures for PROSE and a detailed explanation of
PROSE directives. The first-time user of PROSE may read this guide
from beginning to end, using it as a tutorial while producing a first doc-
ument. The more experienced reader may use it as a reference source.
As an aid to both, this guide groups PROSE directives by function
into four sections: controlling input, establishing format, indexing, and
printing. The order of the directives in the guide reflects the order in
which these directives may be applied to a text., The reader should
have some basic knowledge of a text editor.

PROSE requires & small number of easily learned commands. Unlike
some text-formatting programs, which use macro commands, variables,
and other features usually associated with programming languages,
PROSE does not overwhelm the user with complicated syntax. The
text stands out, not the directives. This simplicity allows you to pro-
duce high-quality text with a minimum of effort.

Like many text formatters, PROSE formats text in pages, filling and
justifying lines, placing titles and page numbers as needed. The next
table shows some common features of text formatters that PROSE does
and does not have.

Prose Can And Cannot
Underline Control photo-typesetting machines
Hyphenate words Do graphics

Convert upper-case input Produce multi-column text

to mixed-case ontput
Produce a sorted index Store text and retrieve it later
Print selected pages Use tabs

PROSE may or may not be the tool for s given application.

5-43

PROSE BaSiCS The basic units of any text-formatting system are the word, the line,
and the paragraph. In PROSE, a word is defined as any non-blank
string of characters, with a blank on either side. For the purposes
of formatting, a punctuation character is part of the word next to it.
A line.consists of the number of words that PROSE fills between
margins, PROSE places as many words as possible into each output
line, adding blanks to justify the lines to left and right margins.

Text formatting is largely £illing and Justifying, & process illus-
trated by the next example.*

Input to PROSE:

Eddie went to the ground floor cafeteria and got a sandwich
and contaimer of coffee, them went back te his office to vork om
the vater bill survey. Ho one else was there; the others were still
out om their regular lumch hour.

Why not? he asked himself. It took only tem minutes from start to
finish: eight to find the code, one to decide how to do it, and ome
Hore to type the oxders inte the computer console. Whem ke finished,
the screen told him that the violation number had beer removed.

A fevw minutes later his office door opened. It was his boss. He was
back ten minutes early from his luach houx.

"You’re here," the boss said.

"That’s right," Eddie said.

"Good," the boss said, leaving without bothering to close the
door.

Output from PROSE:

Eddie went to the ground floor cafeteria and got a sandwich and
container of coffee, them went back to his office to work on the water
bill survey. FEo one else was there; the others were 8till omt om
their regular luach hour.

Fhy not? he asked himself. It took only tem mimutes from start to
finish: eight to find the code, ome to decide how to do it, and one
more to type the orders into the computer comsole. When he finished,
the screen told him that the violation number had been removed.

4 few minutes later his office door opened. It was his boss. He
was back ten minutes early from his lunck hour.

"You’re here," the boss said.

"That’s right," Eddie said.

"Good," the boss said, leaving without bothering to close the door.

When the user gives no special instructions, called directives,
PROSE operates in the default mode as shown in the example above.
In the default mode, PROSE automatically fills and justifies output
lines, formatting the output into pages. Directives instruct PROSE
to do anything more sophisticated. If the user doesn't enter certain
directives, PROSE supplies their default forms.

* Text examples in this gnide are excerpted from The Programmer by
Bruce Jackson. Copyright © 1979 by Bruce Jackson. Reprinted by
permission of Doubleday & Company, Inc.

5-44

Structure of Directive
Lines

In general, s directive line has three components: the escape character,
the directive name, and the parameter for its application. Most PROSE
directive lines take one of three forms:

.directive name
.directive name integer
.directive name({ parameter)

The directive escape chaxacter is placed in the first column of an
input line to indicate that at least one directive follows. The period
() is the default escape character because it seems unlikely that any-
one would want to type & period in the first colnmn of a line of text.
The default may be changed with the IEPUT directive (see “Controlling
Input to PROSE").

After the escape character comes the name of the directive that PROSE
is to execute. The directive name may be abbreviated to three letters
(in fact, PROSE only examines the first three). Examples in this guide
show directives typed in upper case, but PROSE accepts both cases.

The directive name may or may not be followed by a parameter. The
BREAE directive, for example, doesn't require a parameter. If a nec-
essary parameter is omitted, PROSE supplies a default value for that
parameter. The defsult values that PROSE uses are listed in & table
of options under each directive.

A parameter may be one of three types:

e Text on the remainder of the directive line.
@ An integer.

@ Any specific options enclosed in parentheses, consisting of other
directive names, integers, or keywords defined by the directive it-
self.

In text-processing systems such as PROSE, a keyword (also called &
descriptor) categorizes or indexes information. Many PROSE directives
use special letters or characters to express the options assigned, as do
the IEPUT or FORK directives, In directives such as RESET(HARGIE),
the keyword is the name of the directive to be changed. The summary
directive table in Appendix A indicates the parameter type that each
directive may take,

5-45

Placement of
Directives

Numeric values used as s parameter or part of a keyword may be either
an explicit positive integer or a relative value. A relative value, specified
by a plus or minus sign before the integer, indicates that the old value
should be increased or decreased by the amount of the integer. For
example, if the left margin is set to 10 and the right margin to 70, you
may use a relative values in the directive

.HARGIE(L+5 B-5)
to squeeze the margins together by 5 characters on each side.

Directive lines are usually separated from lines of text (see the mext
sample file). Several directives may be typed on the same line, provided
that they are separated by the directive escape character, as follows.

-BREAE.SEIP 2.HARGIN(L5 R6E)

Some directives take the remainder of the line as their parameter, 80
no other directives may follow these (e.g., COMMENT directive). The
following sample shows the placement of PROSE commands in an inpat
file.

Input to PROSE:

.COEHEFT This example makes very primitive use of directives,
.COHEEET but it produces exemplary text.

.HARGIE(L10 R60O)
.INDEET 2

Eddie ordered that the tax roll and Yellow Pages tapes be returmed
to storage. A few seconds later the video screem told him they had
beer returmed to their appropriate storage locations.

.BREAK,IEDEET 2

Eddie smiled at the screen. He loved the computers. They would do
exactly what yom told them to do and they would mever lie to you.
Two inhuman characteristics. People who complained about the inhumamity
of computers were right. They didm’t kmow how to care or betray.

.BREAK . IEDEET 2

The next operation was more complicated. He had prepared for
it some time before, and the preparatiom had required many

separate inquiries.

Output from PROSE:

Eddie ordered that the tax roll and Yellow Pages
tapes be returnmed to storage. A few seconds later
the video screen told him they had beem returned
to their appropriate storage locatioms.

Eddie

smiled at the screex. He 1loved the

computers. They wounld do exactly what you told

them to

do and they would never lie to you. Two

inhuman characteristics. People vwho complained

about

the inhumanity of computers were right.

They didn’t know how to care or betray.

The next operation was more complicated. He had
prepared for it some time before, and the prepara-
tion had required many separate inquiries.

5-46

For more sophisticated examples, see “Appendix B: Examples of
PROSE Directives in Text.”

A long directive may extend beyond one line. A continned line is indi-
cated by & continnation character, & plus sign ‘¢’ placed in column
one. The next example shows suggested placement of the continuation
character:

JFOREC [/// L68 // 873 *PAGE’ p ///]
+ [/// 188 // 'PAGE’ p /// 1)

Generally, directives are placed at the beginning of the input file or at
the point in the text where the directive takes effect. Most directives
either control the fanctions of PROSE or eet general format guidelines
for the document. These are placed at the beginning of the text and
their operations are applied throughout, unless temporary changes axe
made. The FORH directive, for example, establishes page format for the
rest of the text, but the number of lines per page may be adjusted by
an option of the PARAGRAPE directive. Directives that apply only to
a particular line, such as IJDENT, BREAK, and COKHEEY in the sample
above, are placed wherever necessary throughout the text.

5-47

Running the PROSE
Program

Header Files

No actual formatting takes place until the input file, containing text and
directive lines, is submitted to PROSE for processing. You create the
input file with your system's text editor. PROSE places the formatted
text in an output file for submission to a printer or for display on a

terminal screen.

To format the input file, invoke PROSE as shown:
C:> prose input-file[/output=output-file]

where

input-file is the PROSE source file(s). Multiple input files are read
and concatenated from left to right.

/output=output-file is the formatted PROSE file. The /output
switch is optional. If it is omitted, an output file, with
the same name as the rightmost input file and the extension
.DOC, is placed in the current directory.

The output file may then be printed.

Certain directives nearly always appear at the head of any input file. If
many documents use these directives in the same form, you may set up
a header file rather than the directives into each document's input file,
Header files also provide an easy way to choose among various forms
or output devices,

As a general practice, we recommend that you set up each PROSE
text without OUTPUT or FORH directives. Instead, keep these directives
in another file that you use as the first input file, or “header file." For
example, the next header file, printer.prs, contains a set of OUTPUT
and FORE directives for the line printer.

.output (lpt 810 e+ u-)
form([t 862 ¢ /// 154 /// 833 7- > pa:1 2 =2 ///])

If this header file is stored in the directory \usr\include, you use this
command to prepare the document for the line printer:

C:> prose \usr\include\printer.prs usrman.prs/output=lastone.doc

5-48

where

printer.prs: is the header file containing general formatting direc-
tives.

usrman.prs: is the input file.
lastone.doc: is the output file,

PROSE prints the output file according to directives in the header file.
See “Page Format” and “Specifying Output Devices” for the fanctions
of the individual directives included in the header file.

Controlling Input to
PROSE

INPUT Directive

The directives in this section control the input to the PROSE program.
Generally, they are placed at the beginning of the input file for & doc-
ument or in & header file to be used for all documents. You may set
and change them aa needed throughout the text.

The IBPUT directive tells PROSE how to interpret certain control char-
acters in the input file and sets the maximum length for input lines.

The next table summarizes the options for its parameter.

Key Letter Meaning Type Default
B Explicit blank character character nul

H Hyphenation character character nul

C Case-shift character character nul

U Underline character character nul

D Directive escape character character .

W Input width namber 150

K Keep nomber next

The options, which may be given in any order, consist of & key letter
followed by & valne. Unless the user specifies both the key letter and
a value, the default value is assigned when PROSE begins processing.
A value in the parameter changes only when a new value is given. No
IHPUT option uses relative values.

B:
:

The explicit blapk character indicates & blank that
PROSE should treat as if it were a character. With the
cross-hatch ‘@’ specified as the explicit blank, the next ex-
ample shows how two words separated by an explicit blank
are never split from one line to the next. PROSE never fills
blanks between the words to justify a line.

.IEPUT(B8)
...eomeone like the imaginary Dr.8Comrad end...

The hyphenatiom character defines hyphenation points
within words. Sometimes a long word causes many blanks to
be inserted to justify the preceding line. PROSE hyphenates
such a word if you have defined the syllable boundaries within
it. Of course, not all the syllable boundaries need be speci-
fied, only those at which you want PROSE to be able to split
a word. For example, if the hyphenation character is the slash
‘', you may type “syncopation” as syn/co/pa/tion. PROSE
inserts a hyphen ‘~' only when the characters on both sides of
the hyphenation point are letters. This restriction allows yon
to type “hyper-active” as hypex-/active, and PROSE splits
the word if necessary, without adding a superfluous hyphen. If
PROSE is forced to insert blanks beyond a certain threshold

5-49

5-50

.IEPUT(C)

set by the OPTIOE directive, PROSE issues an error megsage
on the line that¢ needs hyphenation characters.

To produce mixed-case output from upper-case-only input,
you must specify & cese-shift character in the IEPUT
directive parameter, causing PROSE to automatically shift
all upper-case letters to lower case. To preserve certain
upper-case letters, such as initial capitals for names and sen-
tences, surround the letter or letters with case-shift charac-
ters. PROSE shifts to upper case for all characters between
case-shift characters. “Stuttering” is another way to designate
capitals among upper-case-only input. Since most upper-case
letters are at the beginning of a word (following a blank), you
use two letters to indicate a single capital. Words that already
begin with a double letter produce a single capitalized letter
unless you put two case-shift characters before the word.

Input to Pr: Output From Pr:

““LLAHA 1lams
“°00prs oops
LLLAHA Llama
000PS Oops

The next example demonstrates both ways of producing
mixed-case output from upper-case-only input. The case-shift
character is easier to use for long strings, such as example pro-
grams, that are to be capitalized. Stuttering is easier when
you want to capitalize a single character, such as the first word
of a sentence. You may use both methods in the same text as
shown below.

Input to PROSE:

HHE HAD EIGHTEEF KINUTES, PLUS THE LOCAL COBEECTION. TTYEETY-0EE
HINUTES. AA WORLD OF TIHE OF A COMPUTER. EHE WAS READY WITH HIS

QUESTIOES.

“VHAT IS CODE FOR PROGRAH?Y"
“COHPUTER BAEDIT."

“WHAT IS KNOWE ABOUT COHPUTER BAEDIT?

TTHE SCREEN RAPIDLY FILLED VITE THE DATES AED ANOUBYS OF HIS
AAHERTCAF EEXPRESS THEFTS, SOEE OF EIS RECEET INFORHATION SCAES,
THE REPORTS TO THE NEUSPAPERS IB NEEY YYORE. T

QOutput from PROSE:

He had eighteen minutes, plus the local commection. Twemty-ome
minutes. A world of ¢time om a computer. He was ready with hie
questions.

PHAT IS CODE FOR PROGRARY

COHPUTER BABDIT.

PHAT IS EEOVE ABOUY COHPUTER BAEDITY

The screem rapidly filled with the dates and amounts of his Amsricaa
Express thefta, some of his recent information scams, the reports to
the newspapers im Bew Yoxk.

For conversion of mized-case input to upper-case-only output,
see the OPTIOE directive.

0: Text surrounded by the underlise character are under-
lined. Blanks are not underlined, but explicit blanks are.
D: The directive escape character is placed in the first col-

umn of an input line to flag it as & directive. Use this option
only to define a directive escape character other than the pe-

riod.

¥ The input width ¥ specifies the nnmber of characters to be
read from each input line. Users need to change only the
input width for special jobs.

K: The kesp option explicitly specifies the keep buffer to be used
to store the new input options. By default, PROSE uses the
pumerically next buffer. (See “Changing The Format Con-
trol Directives” for detailed explanation of the use of keep
buffers in PROSE directives.)

OPTION Directive The 0PTIOE directive gathers together miscellaneous options that affect
the filling and justifying PROSE does during text formatting. These
options are summarized in the next table. Key letters are followed by
a switch symbol (+/-) or an integer, as shown in the default column.
For the switch-type options, the plus sign ‘+' means on and the minus
sign ‘=’ means off.

Key Letter Meaning Default
E Print error messages +
J Justification limit 3
1 4 Fill output lines +
L Left justify +
B Right justify +
S Spacing 1
) | Multiple blanks +
P Two blanks after periods +
U Shift to upper case -

) ¢ Keep next

5-51

5-52

As processing begins, PROSE assigns the default value for each option
without a specified value. A parameter value changes only when &
specification is given. No option uses relative values.

.

Error messages appear in the formatted text of the main out-
put files at the approximate location of the errors. Error mes-
sages are suppressed when this option is off (E-).

PROSE inserts blanks as needed to justify the left and right
margins of an output line. The justificatiom limit con-
trols the point at which PROSE attempts to hyphenate &
word. If, for instance, the justification limit is set at 3, then
the hyphenation process is invoked when PROSE has to insert
three blanks between adjacent words on a line. If hyphenation
is not possible, or PROSE is not able to bring the number of
inserted blanks below the limit, an error message i8 printed
for the line(s).

NOTE

Settings for options E and J may be varied according to the
draft you are working on. Setting J to an arbitrarily high
number (e.g., 20) and turning off E helps avoid hyphenation
errors until you are ready to deal with them, usually in the
later stages of document preparation.

Output lines are autoT;aticully filled and justified as described

in the “PROSE Basics” section. If the £i11 option is off,

PROSE prints the input lines as they are, without reformat-
ting to fill the output lines. In effect, a justification break is
done after each input line. Option F- is most usefal for literal
text, such as program examples, where spacing between words
must be exactly as typed.

The left and right justify switches work together to de-
termine the justification to be done. If both options are on,
output lines are justified to both the left and right margins.
If both options are off, the lines are centered between the two
margins. If one is on and the other is off, one margin (ei-
ther left or right) is straight and the other ragged. The next
examples demonstrate the output from the four combinations.

Qutput from .0PTIOE(Le¢ Be)

Eddie did four more operatioms, three of them imvolvimg couwnty and
city payroll checks, all of which were hamdled by the same computer.

Qutput from .0PTI0E(L- B-):

He gave am across-the-board raise of fifty dollars per check to all

teachers im the ghette schools.

He deducted an equivalent amount from

the checks of the city’s highly paid political appointees.

Output from .0PTIOB(L+ B-) :

Then he erased the tapes for outstanding private reeidemtial watexr
bille. People, he decided, shoulda’t have to pay for a drimk of water

or to be able to flush ..

. & toilet.

Output from .0PTION(L- B¢) :

The final operation was ome he hadn’t thought o;:ulicr; it had come
: to him during the night’s work. It vas easy emough with the

U:

informatiorn he mow had.

The spacing option 2 generates double-spaced output; the
spacing option 3 generates triple-spaced output. By default,
text is single-spaced.

If the mmltiple blanks option is on (H+), multiple blanks
in the input file are considered to be significant. That is, if
several blanks are placed between two words in the input file,
at least that many appear in the output file; PROSE may
add blanks during justification. If the option is off, multiple
blanks are treated as a single blank.

The 2 blanks after periods option places at least two
blanks after every period. PROSE does not add blanks before
justifying if two are already present. This makes for consis-
tent spacing in the final copy even if you are not careful about
typing 2 spaces after sentence periods in the original. Three
or more blanks after a period are treated as multiple blanks.

. For output devices that cannot process mixed-case files, the

shift to upper case option shifts all lower-case letters to
upper-case letters. This option is also useful for printing an
entire passage or example, such as a sample program, all in
upper case. For conversion of upper-case-only input to mixed-
case output, see the IFPUT directive,

The keep option explicitly specifies the keep buffer to be used
to store the new options. By default, PROSE uses the numer-
ically next buffer. (Sce “Changing Format Within the Text”
for use.)

5-53

Setting Up the
Document’s Format

Page Format

FORM Directive

This section explains the use of directives to format¢ text. These direc-
tives specify page format, margins, paragraphing conventions, justifi-
cation breaks, and blank or comment lines.

The FORH directive defines the page format, including insertion of titles,
date/time, blank lines, page numbers, and other textual items at the
top or bottom of the page. The FORN directive works with the COUBT,
TITLE, and SUBTITLE directives. The PAGE and PARAGRAPE directives
override the page-break function of the FORE directive.

The FORH directive produces a-variety of page formats, depending upon
the options specified in its parameter. The table below contains the
available FORH options; the following paragaphs explain their use.

Key Char Meaning

Default Field Width

[Define top of page -none-
] Define bottom of page -none—
#n Tab forward or backward to absolute column n ' -none—
S Subtitle its length
T Main title its length
Ln Fill in n lines of running text on the page -none-
/ Print an end of line (by itself, a blank line) -none—
/n Print n ends of lines -none-—
Pr Current page number, fselects the form: 3
Norn Arabic numerals (default) [The field width
L Upper-case letter is expanded if
1 Lower-case letter needed)
R Upper-case Roman numerals
r Lower-case Roman numerals
' Print material within quotation marks as literal text -none-

sSmoaf

24-hour clock as hh.mm.ss (e.g. 15.37.58)

Raw date as yy/ma/dd (e.g. 82/02/13)

Nice date as dd Hmm yy (e.g. 13 Feb 82)

Wall clock as hh:mm PN or hh:mm AN (e.s. 3:37 am)

o O ® e

5-54

If the FORE directive is omitted completely, PROSE uses the default
form:

FORKC [// T 862 E /// LE4 /// 833 '- » pE:1 » -» /7771 1)

The sequence of options within parentheses corresponds to the format
of the page from top to bottom. The FORM directive builds text lines
from left to right, starting in the first printable column unless & tabbing
specification (8n) starts text at a specific column.

FORH directive parameters generally begin and end with the definition
characters for a top-of-page and bottom-of-page. The top-of-page defi-
nition ‘[’ has eeveral uses. You may direct PROSE to send a page eject
to the output device when it reaches the top of a page. Also, you may
request & pause at the top of each page to allow you to change paper
on the printer (see information on the OUTPUT directive in “Printing
the Document”). At the end of the document, PROSE signals one
last page eject and continues to interpret the FORH specification un-
til it reaches another top-of-page. This ensures the execution of any
commands specified for the bottom of the last page, such as a page
number. PROSE increments the page number at the bottom-of-page
character ‘]’. So, if you print the page number both before and after
the bottom-of-page definition, you get different numbers.

To print slightly differing formats for facing pages, specify a format for
each page between a pair of page definition characters. For example,
this form directive prints the page number at the bottom right of odd
numbered pages and at the bottom left of even pages.

JFORH ([// T 862 E /// L568 // 863 'PAGR® P ///]
+ [// T e28 /// Ls6 // 'PAGE’ P /// 1)

Appendix B contains another example of the FORE directive used to
print facing pages.

Page length is determined by the specification for the number of lines.
PROSE breaks pages at the number of lines set by the FORN directive's
Ln specification, unless the PAGE directive or the optional automatic
page eject for the PARAGRAPH directive is used (see “Page Breaks"). If
the Ln specification is. omitted entirely, PROSE supplies the defaunlt
value of 54 lines per page. If the FORH directive parameter contains
a key letter L without a value, no special page formatting is dome.
Page length is infinite, which is useful for working with documents on
terminals, where pages are irrelevant. In this mode, a PAGE directive
with no parameter puts 5 blank lines between sections of text.

Titles, subtitles, page numbers, and (ates are placed in fields at the top
or bottom of the page. Although default values are sufficent for most
sitnations, the field width may be set to a particular value by placing &
colon and the value after the key letter. For example, T:30 prints the
title in a field of 30 characters. Specified field widths are sometimes
useful for truncating long titles. PROSE fills the field from right to
left. The tabbing specification 8n places the field horizontally on the

page.

The FORE argument is re-scanned as each page of output is produced,
so that any change in a title buffer made with the TITLE or SUBTITLE
directive causes the new title or subtitle to be inserted on the next page.
The TITLE directive enters the remainder of the line into the main title
buffer. The FORH directive uses the contents of the title buffer to print
a title on the page as specified. The SUBTITLE directive enters the
remainder of the line into the subtitle buffer, to be used by the FORH
directive to print a subtitle on the page as specified. See examples in
Appendix B.

5-55

PROSE adds a blank line for each */’ mark in the FORE directive. These
blanks are placed uniformly on each page, in the relative position that
they appear in the directive, usually a¢ the top and bottom, between
the body of the text and the title and page number. The alternative /n
allows a shorter expression of numerous blank lines; either form may
be used.

Page numbers are incremented by the page counter and placed on the
page by the Pf option of the FORN directive. The COUBT directive sets
the page counter. The integer in the COUET parameter may be a relative
value; for example, .COUFT +1 increments the page number by one. By
default, the page counter sets the page number to 1,

The 1iteral text option allows you to add such touches as hyphens
surrounding the page number (see default FORE directive) or other text
that must appear exactly as typed. For example, suppose a press release
required the word “more” with parentheses around it at the bottom of
each page. You may use the literal text specification as follows:

.FORNC [T /// L54 /// 828 '(moxe)’ ///])

PROSE users may choose among four styles of dates. The date is placed
on the page in much the same manner as a title.

Page Breaks The PAGE directive signals a page eject when fewer than the specified
number of lines remain on the current page. If no parameter is given,
the PAGE directive does an unconditional page eject. The PARAGRAPE
directive's automatic page ejact includes the page-break function in
the paragraph format for the document. .PAGE 3 and .PAR(P3) are
equivalent, except that .PAGE 3 must be explicitly placed by the user,
while PROSE executes .PARAGRAPH (P3) wherever indicated by the
paragraph flag character.

Margins The MARGIF directive sets the left and right margins for filling and
justifying. The value for left margin indicates the column in which
the line of text begins; the right margin value is the column number
of the last printed character. Thus, subtracting the left margin from
the right margin gives the number of columns for printed text,

The options, which may be given in any order, consist of a key letter
followed by a value. The next table lists the key letter for each option.

Key Letter Meaning Type Default Relative

L Left margin integer 0 yes
B Right margin integer 70 yes
K Keep integer next no

Margins are set before text processing begins. PROSE assigns default
values of LO B70 if no HARGIN directive is used or if the directive is given

5-56

Paragraphs

without a parameter. A value changes only when & new specification is
given. The keep option explicitly epecifies the keep buffer to be used to
store the new margins, By default, PROSE uses the numerically next
buffer,

The IEDEBT directive moves the next line of text to the right of the
page by the given number of spaces. When the directive is used with-
out a parameter, the default value is 5. The UEDEBT directive moves
the next line a certain number of spaces to the left. (The undent is
sometimes known by the name “outdent” or “hanging indent.”) If the
given parameter would undent the text past the leftmost column of
the printed page, the directive undents only to the leftmost printable
column. If no parameter is given, the default undents to the leftmost
printable colamn,

Although you may use any justification break methods to distinguish
between one paragraph and the next, the PARAGRAPE directive provides
& more versatile method of creating paragraphs.

Placed at the beginning of the text, the directive sets the general form of
paragraphs and specifies a paragraph flag charactex. Many PiRA-
GRAPE options take the place of other directives, so the directive is &
powerful tool.

When the paragraph flag character is placed in the first column of a
text line to signal a new paragraph, PROSE takes any of the following
actions that are specified by the parameter.

Key Letter Meaning Type Default
F Paragraph character character nul

1 Automatic indent number 0

/] Automatic undent number O

B Number generator -none—
P Automatic page eject number 0

S Automatic skip number O

 { Keep number next

When it begins processing, PROSE assigns the default value for each
option in the PARAGRAPE directive parameter. If the input file contains
no PARAGRAPE directive, or if an option is not specified, the defaunlt
value is used. No PARAGRAPE option uses relative values.

By manipulating the options in the parameter, you may direct PROSE
to take any of the following actions for paragraphs.

-8 The paragraph flag character invokes a collection of para-
graphing actions when it appears in the first column of an
input line. Note that this character must be set in the first
PABAGRAPE directive, or no other options apply. As the only

5-57

specified option, the paragraph flag character signals a justi-
fication break.

.U The antomatic imdeat or automatic undemt applies to the
first line of the paragraph and moves the line left or right a
given number of spaces. If the number generator is used, the
indent or undent is applied after the number is generated (sce
the example using both options below).

| f The number gemerator produces a new number (or letter)
for each occurrence of the paragraph flag character. PROSE
inserts the number in lieu of the paragraph flag character when
the line is formatted, s0 you must put & space between the
paragraph flag character and the text line, if you want one to
appear in the output. The number generator is initialized to 1
each time new paragraph settings go into effect. Resumption
of an old setting also resumes the old numbering. The number
generator's keyword contains these fields (spaces not allowed):

B numeric-field field-width

The key characters for numeric-field are:

-blank- No numbering
Bora Arabic numerals
L Upper-case letter
1 Lower-case letter
B Upper-case Roman
b4 Lower-case Roman

The field width for the numeric field, expressed as an integer,
is expanded if necessary. If, for example, you want an Arabic
numeral with three spaces left for the numeral, the keyword
is Bn3,

The folowing input and output examples illustrate one style
of numbered, undented paragraph created with the automatic
undent and number generator options. Note that the margin
adjustment places the paragraph number in the leftmost col-
umn of the printed page and that the ampersand (&) has been
specified as the paragraph flag character.

Input to PROSE:

JHARGIN(Li0)

-PARAGRAPE(F& Eni U5)

& Eddie worried about that ome for a while, ther came uwp with
4 very simple answer: he would ask the compaters if they had
any such self-inspectiom imstructioms im their programs. It
vould become part of his regular greeting: HELLO. HO¥ ARE YOU
AED ARE YOU PROGRANNED TO TRAP HE?

N

5-58

QOutput from PROSE:

i Eddie worried about that ome for & while, them ceme wp with a
very eimple amswer: he weald ask the computers if they had
any sach self-inspectiom imstructions im their programs. It
would become part of his regular greeting: HELLO. EOU ARRE
YOU ABD ARE YOU PROGRAEHED 10 TRAP HEY

P The automatic page eject simulates the effect of the PAGE
directive. For instance, the directive .PAR(P4) causes
PROSE to eject a page if fewer than four lines of the para-
graph are left at the bottom of the page. The command is
applied after the antomatic skip.

8: The antomatic skip functions the same as a SEIP directive,
placing a blank line before the first line of the paragraph.
K: The keep option explicitly specifies the keep buffer to be used

to store the new paragraph options. By default, PROSE uses
the numerically next buffer.

Values and options may be changed for particular paragraphs or sec-
tions of the document, as explained in “Changing Format Within the
Text.”

Comments Using the COHEEET directive, you may include information in the source
of & document that is not printed in the formatted copy. As shown in
the examples in Appendix B, PROSE treats the remainder of the line
as a comment and ignores it,

Changing Format To make the fullest use of PROSE, the user must manipulate such

MY options as blank characters, spacing, margins, or page breaks within

Wlth'n the TeXt the text. The BREAE and SEIP directives allow you to interrupt the
established formatting process.

At certain points, you may need to switch formats for specific situa-
tions, such as example programs or blocked quotations. 0PTI0H, HAR-
GIE, and PARAGRAPH settings may change frequently, but the number
of different settings is probably predictable and few. Depending uwpon
the namber, the variety, and the frequency of changes the text requires,
the following techniques may help you to enter new directives or restore
previously used options. —_

5-59

Breaking and Skipping One of the simplest and most frequently used instructions, & justifi-

Lines cation break causes PROSE to stop filling the current output line and
print it without justifying. A line break may be indicated in many ways.
Text may be separated (broken) by one or more blank lines inserted
in the text, by leading blanks typed on an input line (a paragraph in-
dention), or by the BREAE directive. The next example illustrates these
three methods.

Input to PROSE:

"Be’ve got to feed him an estimate that is believable--"
"--but totally inmaccurate," the IBH mam said.

.BREAK

"Right," Barstow said.

.BREAE

"It’s like Battleship," Purvey said, smiling at Barstow

and the IBH man.

"You understand perfectly," the IBH man said, "That’s
exactly what it is."

Output from PROSE:

"We’ve got to feed him an estimate that is believable--"
"--but totally inaccurate," the IBH mam said.
"Right," Barstow said.
"It’s like Battleship," Purvey said, smiling at Barstow and the IBH
BAR,

"You understand perfectly,”" the IBE man said, "That’s exactly what it
is."

With any of these methods, you direct PROSE only to do & justification
break. PROSE does not skip lines or indent unless you explicitly enter
blank lines or indentions in the_input file.

The SEIP directive prints blank lines within the text by skipping a
certain number of output lines. SEIP does not print blank lines at the
top of a page, unless you enter at least one actunal blank line before the
SEIP directive. The default value of the SKIP directive is § lines.

5-60

Keep BufTers The heep buffer is & simple way to change directives that control
input or format. Each time a change in one of these directives is pro-
cessed, PROSE saves the new values in & keep buffer. Ten keep
buffers (0 through 9) are associated with each directive. You may use
a keep parameter to specify the buffer to be used; if no buffer is spec-
ified, the values are saved in the numerically next buffer. To recall &
previously used value, you enter the directive with the number of the
keep buffer as the parameter.

For example, suppose that a double-spaced text has a number of
paragraph-length quotations, which are to be typed as single-spaced
blocks indented ten spaces from each margin. Using the keep option in
the parameters for the INPUT, HARGIH, and PARAGRAPE directives, you
may store the format specifications for each sitnation in two different
keep buffers by entering these directives at the beginning of the inpuat
file:

.OPTIOB(EL $82).HARGIB(EL L10 R70).PARAGRAPH(Ei P& X2 81)
Then you enter these directives for the new format
.OPTIOB(E2 $81).HARGIN(E2 L20 B80).PARAGRAPE(E2 F& I0 80)

before the first blocked paragraph. To resume the standard paragraph
format, you then enter the directive names with the number of the keep
buffer. The input and output files look like this:

Input to PROSE: —_—

LOPTION(E1 S2).HARGIE(Ef L10 RBR70).PARAGRAPH(K1 F& I2 81)
&There was nothing to be dome. He had orce heard & comedian
say,

.OPTION(K2 81) HARGYN(K2 L20 R60).PARAGRAPH(K2 F& IO 80)
If you domn’t like the telephone company,

you know what you cam do? Twe tim came and

a piece of string, that’s what you cam do.

That’s the omly alternative you’ve got.

.OPT 1.HAR 1.PAR 1,.SKIP 1

The people im the audience had laughed. Eddie thought about
it now and decided it wasm’t fummny at all.

Output from PROSE:

There was mothing to be done. He bhad once heard a

comsdien say,

If you dom’t like the telephome companmy,

you kmow what you cam do? Two timn cans

and a plece of string, that’s what you

can do. That’e the omly alternative

you’ve got.
The people in the audience had lasughed. Eddie thought abomt
it now and decided it vase’t fumnmy at all.

5-61

Reset Directive

5-62

To change format for the next single-spaced, blocked paragraph, yow
only need to enter:

.0PT 2 .HAR 2.PAR 2

The example is & little more cumbersome than is necessary for one for-
mat change. Actually, you need only enter .0PT.HAR.PAR to return to
keep buffer 1 in the text shown above. When no parameter is speci-
fied, the values are set to those stored in the numerically previous keep
buffer, since the keep number is automatically incremented whenever
a directive is entered and automatically decremented when that direc-
tive is entered without a parameter. Used in this way, the keep buffers
function as a “stack” for temporary storage of variations from & basic
format.

The RESET directive sets twelve frequently changed directives to their
default values. The next table summarizes the effect of the BESET
directive on each:

Directive Effect

INPUT Default values for all options.

OPTION Default values for all options.

FORM Default values for all options,
causes page eject.

COUNT Sets page counter to 1.

TITLE No titles until reentered.

SUBTITLE No subtitles until reentered.

PAGE Causes a page eject.

INDEX Deletes all accumulated entries.

MARGIN Default values for all options.

PARAGRAPH No paragraphing until directive reentered.

OUTPUT No pause at top of page;

carriage return to do underlining;
causes page eject.

SELECT Discontinues page selection;
all pages to be printed.

The RESET directive may be used three ways:

) Enfering the directive name with no parameter resets the values
of all directives to their defaults:

.RESET
e Using a directive name as a keyword resets the selected directive.

For example, this command resets only the HARGIE and OPTION
directives:

-RESET(HARGIE OPTIOE)

Creating an Index

e Stating the keyword “except” and a directive name in the parame-
ter excludes a selected directive. For example, this directive resets
all directives with the exception of FORE and 0UTPUT:

.BESET(EXCEPT FORE OUTPUT)

New directives may be entered after the BESET directive. The RESET
directive is an easy way to clear & complicated series of format changes

from the keep buffers.

The IEDEX and SORTIEDEX directives provide the information PROSE
needs to create an index for the document. The IEDEX directive is
entered as . IHX to distinguish it from . IEDEBT and takes the remainder
of the line together with the current page number as an index entry.
As the formatted text migrates from page to page in various drafts, the
page numbers in the index are updated.

Index entries accumulated by IFX directives may be sorted alphabeti-
cally or by page number, then printed in a relatively flexible manner.
The SORTINDEX directive allows you to specify the method of sorting
entries and the format for printing the index.

The options for the SORTIEDEX directive, listed in the next table, may
be given in any order.

Key Letter

Meaning Default

S

oo

Sorting option. If this is nnmeric, it is the first 1

significant column for alphabetic sorting. If it is

the letter P, sorting is selected by page number.

Margin (left margin before index line)

Column (in index entry) to insert page number

Left width of page number (field width of number)
- Right width of page number, blanks printed after

NN OO

Printing the
Document

In the absence of a parameter, default values are used.

This section does not anticipate all the possible idiosyncracies of the
processor and its peripherals; it gives you directions for printing all or
part of the document on certain standard devices.

5-63

Specifying Output Devices The output directive defines important aspects of the output device

5-64

to which you send the formatted text. The directive takes the general
form:

.0UTPUT(device, options...) —

One of the following acronyms indicates the outpat device to be used,

AsC ASCII terminals use the backspace for underlining, but are
otherwise the same as the lineprinter (LPT) below. Pauses for
page eject, however, are handled differently (ece the P option
below).

LPT Line printers use overprinting with a carriage return to do
underlining. This is the default output device.

The next table contains the options for each output device. Keyword
type is an integer or a switch.

Key Letter Meaning Default
E Page eject at top of page -
([in FORK description)
P Pause at top of page -
8 Shift output lines to the right 0
L Underlining is available +

These options may be given in any order.

E: The page eject option prints a form feed character for each
time PROSE reads [in the FORE specification.
P The pause option causes PROSE to stop printing and await

operator acknowledgement each time a ‘[’ character is encoun-
tered in the FORH specification. On an ASC terminal, PROSE
sounds the bell and waits for a carriage return to be entered.
For an LPT output device, no action is taken.

S: The shift option shifts all PROSE output to the right by
any number of spaces up to 50. This makes it easy to center
output on a wide printer page.

U: If the destination terminal does not have underlining capabil-
ity and the input file contains underline characters, the un-
derlining available option should be turned off to prevent
PROSE from trying to generate overprinted underlines.

Usually, the OUTPUT directive appears only at the beginning of the input
file or in a header file. However, it must also be used immediately after
a .RESET(OUTPUT) directive.

The LITERAL directive is useful for producing special printer control
characters on some systems. It prints the remainder of the input line

Printing Selected Pages
and Sections

PR—

s & single ontput line, after special processing for upper and lower case,
underlining, and literal blanks. This single line is printed independently

of filling and justifying, or page-formatting processes; it is not counted
as an outpat line.

The SELECT directive prints specified pages of a document. Like the
OUTPUT directive, the SELECT directive is placed before any lines that are
to be printed on the output device, perhaps in a header file. Although
the entire text is formatted, only the selected pages are printed, saving
unnecessary printing time,

The parameter consiste of page numbers separated by spaces. Two
page numbers separated by & colon selects the span of pages, incloding
beginning and ending numbers. As shown below, the plus sign ‘¢’
specifies a second page number relative to the first. The next example
prints pages 3, 5, 10 through 15 inclusive, and 20 through 25 inclusive.
.SELEC®(3 6 10:15 20:45)

By default, all pages are printed.

5-65

Appendix A: Summary

Directive Table

Directive Meaning (action)

Break Parameter Type Default

BREAE Break justification * -none- -none—

COHHEET No action remainder of line -none—

COUBT Set page count numeric .COU 1

FORH Define page format * () .FOR([/2 T 862 E /3 L54
¢+ /3 833 ‘=) PH:1 ‘-7 /4])

IBDEBT Indent next line numeric -none~

IEPUY Specify input options * (..) or numeric .IEP(D.VU150 K+1)

18X Store index entry remainder of line -none—

LITERAL Print literal text remainder of line —pone~

HARGIE Set margins (...) or numeric .HAR(LO R70)

OPTIOE Set options (..) or numeric .0PT(S1 F+ Hé P+ L¢
+ B+ J3 B+ U- E+¢1)

OUTPUT Specify output device () .QUT(LPT, 80 U+)

PAGE Eject to top of page u numeric .P4G &

PARAGRAPH Set paragraphing params (..) or numeric -none—

RESET Reset directive defaults " (.) -none—

SELECT Select pages to print * () -none—

SEIP Skip output lines * numeric ~none—

SORTIBDEX Sort and print index # (..) .80R(S3% L2 B2)

SUBTITLE Set the subtitle remainder of line -pone-

TITLE Set the main title remainder of line -none-

UEDEET Undent next line * numeric -none—

5-66

The directives marked with an asterisk (*) cause a justification break
before they are processed, since they affect the filling and justifying
environment.

The ellipsis (...) indicates that the parameter is enclosed in parenthe-
ses and is described in detail along with the description of the directive
itself,

Appendix B: Examples Example 1.

?nf #&?SE Directives | .. prose:

.0UTPUT (LPT U+ E+)

.COHHEET +¢-cevoccccccscocmmcsamcocorrnnosesocesssesesesasnseas ¢
.COHMEET |BOTE: The header file supplied by Oregor Software |
.COHHEET |contains the output command for the line primter. {
.COHHEBT |Do not use the above command if wsing that headex. |
.COHHEET +-=-=-====ce=sceccwcccccccwcsccoseccscnannscnconccccse +
.FORE ([// &10 Pn 828 Y /// L5O ////]

+ (// 860 Pn 817 8 /// LS5O //// D)

.COHHEET Page numbering starts at 62

.COUET 62

.COHEEET This combination of form amd count directives

.COEHEET duplicates the facing-pages format used ir the

.COEEEET many typeset books.

.COHHEBT

.TITLE The Programmer

.SUBTITLE Chapter Three

JHARGIB(L10 R262)

JIEPUT (H/ U.)

.PARAGRAPE (F& 12)

&Computers, Eddie knew, have no idea where their sources of
information are im the world. They look upom the world as ome great
big fat wire bulging with informstiom and instructioms, a wire with
no beginning, middle, or emd. The world for a computer is merely am
electrical input saying, ‘‘Here’s what you should know,’’ or, ‘‘Here’s
what I want to knmow,’’ or, ‘‘Here’s what you are to do mow,’’ and aam
electrical ountput for them to talk back:

‘‘Here’s what I mmst know to amswer your question,’’ and, ‘‘Here are
your answers.’’ To the computers, all iaterrogators and commandere
speak with the same volce and the same authority; all lietemers have
the same ear.

&lLike guns. It doesn’t matter to a gus who pulls its trigger. Guas
have awesoms power, but they are entirely depemndeat on the hamds that
use them. Horally guns and computere are out of it ell, though they
are regularly the imstruments for people who make things happesn.
&Twice now--first with Betty’s parking ticket and mow with khie
$25,624.34--Eddie had beenm someone who made things happean. It was

a very exciting sen/sa/tion, ome he hadn’t previously experienced.
&He had seen, mot lomg before om the ‘‘Today’’ show, am airline pilot

who talked about hie af/fec/tiom for the 747. He loved it morxe, he said,

than any other aircraft he had ever flown, and he had beem a pilot foxr
teenty-five yeare. The inter/view/er asked him to explaim his
enthusiasm,

5-67

8¢‘I sit there im that little room im the fromt,’’ the pilot eaid, ‘‘a
room just four stories off the ground whem we’re parked, but at the
top of the world whem we’re in flight--and I move litle knobs and
dials. Honme of them takes more tham a few ounces of pressure.

In an instant a machine weigh/ing a hundred toms responds more emoothly
than if I vere moving it myself. It’s like the aircraft becomss am
extension of myself because so little effort is meeded to make it do
vhat I vant, and it does whatever I wamt it to do. It’s very
ex/cit/ing.’?

£‘‘You make it sound almost sexual,’’ the imter/view/er said.

&The pilot frowned. ‘‘I don’t know about that. I never thought about
that.’’ His face brightemed. ‘‘It’s mot sex. It’s better. It’s _real_
power.??

&Eddie sensed that his emtire relatiomship with the computer had
started a radical change. Before, he had beem the machine'’s servant,
bringing it little orders amd loads of informatiom to feed spon. The
questions werem’t his and the answers never mattered to him. He was
merely an intermediary in the affairs of others. How he was having
hie owmn affair.

&ind his own affair required further actiom before the check im his
pocket became anything but a useless piece of paper.

.SEIP 2

£0n his way back te the office Eddie stopped in the moter vehicle
section. Edna was there alone, as usual, talking om the telephone,
also as usual. She was wearing a differemt pink sweater. She held Bp
her hand, the fingers all extended. At first Eddie thought she was
showing off her rings--there were four of them, all different--but
then he understood that she was telling him she would be on the phone
five minutes longer. He waved his hand to indicate ke was im mo harry,
She leaned back im the chair, her pink breasts pointing toward the
corner light fixture.

&Eddie vandered around the office, acting as if he were bored. He
looked at some papers. She was paying no attentiom to him. He stopped
at the drawer where blank drivers’ licenses were kept. He looked over
his shoulder. She was still talking, her back to him. Her left hand
held the telephone and her right hand slowly rubbed the back of her
neck,

&He quickly took from the drawer tem forms, them leaned on the
counter and quietly stamped each of them with the tricolored state
seal required for validation. He put the forms into his jacket pocket
along with the two checks. Now he had only to type out vhatever namss
he vwanted to use and he would have official Hew York certificatiom.

5-68

Output from PROSE:

62 The Prograsmsx

Computers, Eddie knew, have mo idea vwhere their
sources of informatiom are im the world. They look
upon the world as ome great big fat wire bulging
with informatiom and imstructions, a wire with me
beginning, middle, or end. The world for & computer
is merely am electrical inmput saying, ‘‘Here’s what
you should kmow,’’ oz, ‘‘Here’s what I wamt te
know,’’ ox, ‘‘Here’s what yor are te de mow,’’ and
an electrical output for them to talk back: ‘‘Here’s
what I =mmst know to amswer your question,’’ and,
‘‘Here are your amswers.’’ To the computers, all
interrogators amd commanders speak with the same
voice and the same authority; all listemers have the
Sam6 €Aar.

Like guns. It doesn’t matter to a gum who pulls
its trigger. Guns have awesome power, but they are
entirely depemdent om the hands that wuse them.
Horally guns and computers are out of it all, though
they are regularly the instruments for people who
make things happes.

Twice now--first with Betty’s parking ticket anmd
now vwith his $26,624.34--Eddie bhad beem someone who
made things happem. It was a very exciting sensa-
tion, ome he hadn’t previously experiemced.

He had seem, not long before om the ‘‘Today’’
show, an airline pilot whe talked about his affec-
tion for the 747. He loved it more, he said, tham
any other aircraft he had ever flown, and he bhad
been a pilot for twenty-five years. The interviewer
asked him to explain his emthusiasm.

‘‘I sit there im that little room im the fromt,’’
the pilot said, ‘‘a room just four stories off the
ground vhen we’re parked, but at the top of the
world vwhen we’re im flight--and I move litle knobe
and dials. Home of them takes more than a few
ounces of pressure. In am instant & machine weigh-
ing a hundred toms responds more smoothly tham if I
were moving it myself. It’s like the aircraft
bacomes an extemsiom of myself becasuse so little
effort is needed to make it do what I want, and it
does vhatever I want it to do. It’s very excit-
ins_)’

‘‘You make it sound almost sexual,’’ the inter-
viever said.

The pilot frowmed. ¢‘I dom’t kmow abost that. I
never thought about that.’’ His face brightemed.
‘‘It’s not sex. It’s better. It’s real power.’’

Eddie sensed that his emtire relationship with the
computer had started a radical change. Before, he
had beer the machine’s servamt, brimging it 1little

Chapter Three 63

5-69

5-70

orders and 1cads of infoermatiom to feed wpom. The
questions wersm’% hie sad the answers mever mattered
to him,. He wat wacvely am intermediary im the
affairs of others. #ow he w®as havimg hie owm
affair,

And bhis own affalr required further actior before
the check im bhis pocket becams anything bat a
useless pilece of paper.

0n his way back to the office Eddie stopped im the
motor vehicle section. Edna was there alome, as
usual, talking om the telephone, alse as wsual. She
vas vearing a different pink sveater. She held up
her hand, the fingers all extemded. A4t first Eddie
thought she was showing off hex rings--there were
four of them, all different--but thea he understeod
that she was telling him she would be om the phone
five minutes longer. He waved his hand to indicate
he wvas imn no hurry. She leaned back im the chair,
her pink breasts pointing toward the cormer light
fixture.

Eddie vandered around the office, acting as if he
were bored. He looked at soms papers. She was
paying mo attentiom te him. He setopped at the
draver vwhere blank drivers’ licemses were kept. He
looked over his shoulder. She was still talking,
her back to him. Her left hand held the telephome
and her right hand slowly rubbed the back of her
neck.

He quickly took from the drawer tem forms, them
leaned on the counter and quietly stamped eack of
them with the tricolored state seal required for
validation. He put the forms into his jacket pocket
along with the two checks. How he had only to type
out vhatever names he wanted to use and he would
have official Bew York certificatiom.

Example 2.

Input to PROSE:

.COHHEET Output disective is im the header file.

.IEPUT(B8 B/)

.OPTIOE(K1)

.FORH([// 850 ¥ 860 E /// LS50 / 830 ’~ ? PE:1 ’ =2])

JHARGIE(K1 L6 B7O0)

.PARAGRAPE(E1 F& 81)

&Something clicked in amother part of his mind and he lmew ke was about
to becoms a portable computerized superpower.

&The question had beem puszzling him for some time. It had to de with
pro/gram access. If one had a pro/gram--if one knew the para/dig/matic
structure of a set of encoded informatiom--them ome could do mearly
any/thing one wvanted with that informatiom. If it was simply material
stored, thes one could learn everything that was stored; if it was
operational material, thesm one could command the operations., The
problem was, one needed the program to de the work, and the utility
of the programs he had takem with him whem he left Buffalo was
limited.

&The cold water swirled around his leges amnd the ripples moved out from
where his hands paddled the surface. Suddemly it was as if the answers
had typed themselves out o the console screem.

.OPT(E2 U+ 52)

JHAR(K2 L15)

.PARAGRAPE(K2 F& U8 81)

&QUESTION:#8HO¥W DO I FIND OUT WHAY PREOGRAHS EXIST

VHEE I DOB’T EEOW WHAT QUESTIONS T0 ASE?

&AESVER:#8ASK THE COHPUTERS WHAT QUESTIOES THEY CAB

AESWER FOR YOU. IF YOU HAVE THE AESVERS, YOU EEO¥ THE QUESTIOES.
.OPT . HAR.PAR

&He ranm homs through the woods without evem bothering to

dry off. Hosquitoes pecked at his face. He dreesed quickly,

hooked up the van, and sat down at his keyboard. He addressed

IFFI, the central law enforce/memt computer in Baltimore. The
acronym stood for Information®FiledfforéFutureflnvestigations.

He asked IFFI a questiom that translated as, ‘‘What discrete

sets of information have you om hand and what are the access codes
for them?’’ He set the machine for a printout rather tham &

readout on the momitor.

&In seconds the Selectric began typing away. It typed for a loag
time. Office Selectrics cam handle about thirty characters a

second, faster tham any hamse cem go, but the omee built for
information processing went three timss as fast. Hearly

one thousand five-/character units of information a minute, and

the machine seemsd to be typing faster tham he had ever seem it

go before...

5-71

5-72

QOutput from PROSE:

3:36 PH 14 Jum 82

Something clicked im amother part of his mind end he knew he was
about to becoms a portable computerized superpower.

The question had beem puzzling him for some time. It had to do
vith program access. If ome had & program--if one kmew the
paradigmatic structure of a set of emcoded informatiom--them ome
conld do pearly anything ome wanted with that informatiem. If it
vas simply material stored, them ome conld leara everything that
vas stored; if it was operational material, them ome could
command the operations. The problem was, ome meeded the program
to do the work, and the utility of the programs he had takem with
him when he left Buffalo was limited.

The cold water swirled around his legs and the ripples moved out
from vhere his hands paddled the surface. Suddemly it was as if
the answers had typed themselves out om the comsole screem.

QUESTIOE: HO¥ DO I FIED OUY WHAT PROGRANS EXIST WHEE I DOE’Y

EBOP WHAT QUESTIOES TOG ASE?Y

ABSWER: ASE THE COHPUTERS WHAT QUESTIONS THEY CAE AFSUER FOR

YOU. IF YOU HAVE THE ANSVERS, YOU KEO¥ THE QUESTIOES.

He ran home through the woods without evem bothering to dry off.
Hosquitoes pecked at his face. He dressed quickly, hooked ap the
van, and sat dowrs at his keyboard. He addressed IFFI, the
central law enforcemsnt computer im Baltimore. The acromym stood
for Informatiom Filed for Future Investigations. He asked IFFI a
question that translated as, ‘‘What discrete sets of informatiom
have you on hand and what are the access codes for them?’’ He set
the machine for a printout rather tham a readout om the momitor.

In seconds the Selectric begam typing away. It typed for a long
tims. Office Selectrics cam bhandle about thirty characters a
second, faster thar any humam cam go, but the onas built for
information processing went three times as fast: Hearly one
thousand five-character units of informatiom a minute, and the
machine seemed to be typing faster tham he had ever seen it go
before...

Appendix C: Historical
Notes

Most text-formatting programs available today descend from one of
several original programs. Among these is RUNOFF, developed on
the Dartmouth Time-Sharing System in the 1960s. Later, the Call-a-
Computer system provided a RUNOFF version called EDIT RUNOFF
as a text-editor command. In 1972, Michael Huck, working on the
University of Minnesota’s MERITSS system (a CDC 6400 running
the KRONOS operating system), began to develop a version of EDIT
RUNOFF called TYPESET.

TYPESET was intended as & “versatile text information processor com-

monly used to typeset theme papers, term papers, essays, letters, re-

ports, external documentation . . . , and almost any other typewritten
@

text.” In spite of these aspirations, no program can be all things to all
people. TYPESET went through many changes, stablizing eomewhat
in early 1977 at version 5.0, which is written in CDC COMPASS assem-
bly language. John P. Strait developed PROSE, written in Pascal, over
a year's time starting in the spring of 1977. The design was influenced
heavily by TYPESET, making PROSE one of the many descendants
of RUNOFF. *

PROSE, with minor changes, was installed on the Univac 1100 series
computers in early 1980 by Michael S. Ball of the Naval Ocean Systems
Center. At Oregon Software, he converted this version from the Univac
to the PDP-11in July 1980 and to the Motorola MC68000 in the spring
of 1982,

* Michael Huck, Typeset 5.0 Information, © 1977.

5-73

For More Information

We suggest several places to find more information about Pascal and
the environment in which Oregon Software’s products are used. Many
of the books are available from Oregon Software. Prices are subject to
change without notice.

Algorithms + Data Structures = Programs Niklaus Wirth. Prentice-
Hall. A study of programming data structures, beginning with
the fundamental structures such as records, arrays, and sets
and progresaing to those structures that are changed in value
and stracture by program execution. Full-length sample pro-
grams illustrate the stepwise refinements involved in develop-
ing Pascal programs.

Elements of Programming Style Brian Kernighan, P. J. Plauger.
McGraw-Hill. A practical demonstration of the principles of
good programming and the use of common sense, The authors
critique and rewrite programs from various texts on program-
ming.

Introduction to Pascal Rodnay Zaks. SYBEX Inc. A complete tuto-
rial on Pascal designed to be read and understood by everyone.

Oh! Pascal Doug Cooper, Mike Clancy. W. W. Norton. An easy-to-
read Pascal course for the novice programmer.

Oregon Pascal Users Society (OPUS) An organization dedicated to
the sharing of information between Oregon Software and its
customers. Oregon Software is not affiliated with OPUS but
encourages its activities and provides space for an OPUS col-
umn in its Pascal Newsletter. OPUS membership is free.
OPUS is temporarily without a coordinator and address. You
may send inquiries to Oregon Software, C/O OPUS COOR-
DINATOR, and we'll forward your letter to the society.

Pascal Newsletter Oregon Software. Published several times a year,
Oregon Software's Pascal Newsletter contains status reports
on all of our Pascal products, announcements of new versions
of software and new products, and various technical articles.

Pascal Standard, International The international Pascal standard
ISO 7185 is identical to the British standard, which is avail-
able from ANSI, prepaid. Request document BS 6192 and

- write: ANSI, International Department, 1430 Broadway, New
York, NY 10018.

Info-1

info-2

Pascal Newsletter, The Published by the Pascal Users’ Group, The
Pascal Newsletter is available on & subscription basis. Con-

tact:

Pascal Users' Group
2903 Huntington Rd.
Cleveland, Ohio 44120.

Pascal User Manual and Report Second Edition. Kathleen Jensen,
Niklaus Wirth, Springer-Verlag. The first definition of stan-
dard Pascal,

Programming in Pascal Peter Grogono. Addison-Wesley. A good
course in standard Pascal, with lots of sample programs for
experimentation. (Oregon Software supplies one copy to each
new customer.)

Standard Pascal User Reference Manual Doug Cooper. W. W. Nor-
ton. Provides a correct, coraprehensive, and comprehensible
reference for Pascal; an alternative to the ISO standard for
“students and implementors with merely human powers of
understanding.”

Structured Programming O.-J. Dahl, E. W, Dijkstra, C. A. R. Hoare.
Academic Press. Three monographs on methodologies of con-
cept modeling (Dijkstra), data stracturing (Hoare), and struc-
tured, hierarchical programming (Dahl and Hoare).

Systematic Programming: An Introduction Niklaus Wirth. Prentice-
Hall. A description of the technique of constracting and for-
mulating algorithms in a systematic manner, intended as gen-
eral mathematical background rather than as a practical study
of coding,.

Index

Style note: Page numbers in boldface indicate the defining use of the term.

A

active page register (APR), 2-93
/actl:n 1/O control switch, 3-8
alignment, byte boundaries, 2-43
sllocating memory, 2-28
/8loc:n 1O control switch, 3-1
. /apd 1/O control switch, 2-8
example, -6
APR, see active page register
ASCII format, 3-3
assembly language, see PASMAC
ASE command, 2-61

binary input, 2-3

bitsize function, 2-44, 8-36

Blaise Pascal, 1-2

/blk 1/O control switch, 2-3

blocked records, 2-2

boolean operators, 3-22

boundary, alignment of user-defined types, 2-43

breakpoint, 1-19, see also Debugger,breakpoint com-
mands

break procedure, 3-21

/buff:n 1/O control switch, 2-70

buffer size, see /buft:n I/O control switch

/butf:n 1/O control switch, 3.3, 2.72

Bug Reports, see Trouble Reports

C

cache memory, 2-38

case statement, 3-17
example with othervise, 3-17
otherwise clause, 3-17

/cco /O control switch, 3-3

characters, data type, 3-8
echoing of, 2-73

character strings, literal

character strings, 3-5 , see also Dynamic String Packsge

check compilation switch, 1.8
$check embedded switch, 1-12
chr function, 2-72, 3-35
/¢cl:n I/O control switch, 3-1
close procedure, 3-30, 3-30
clustered libruries, see resident libraries
colon notation, 1-6, 1-10
command lines, executing from Pascal program, 2-64
compilation, 1-2, 1-3
errors, 1-3, 2-101, see also error messages
examples, 1.2, 1-13
syntax, 1-4

compiletion switches, 1-4, 1.8, 1-8

check switch, 1.8
debug switch, 1-7, 1-17, 2-99, 4-3
double switch, 1-6, 2-14
errors switch, 1-4, 1.7
1ist ewitch, 1.3, 1.7
Baczo switch, 1-7, 3-18
pain switch, 1-6
no- reverses effect of <awitch®, see <switch>
object switch, 1.7
own switch, 1-6, 3-10
profile switch, 1-7, 1-20, 4-36
stendaxd switch, 1-8
test switch, 1-8
times switch, 1-8
walkback switch, 1.6
puscell switch, 1-6
compiler directives, sec {include
compiler errors, 2-113
consistency checks, 2-118
overflow, 2-113
compiler installation, see Release Notes
compiler optimizations, see optimization
concatenation of source files, §-19
conformant array parameters, 3-3
examples, 3-4
syntax, 3-3
constants, structured, 3-12
COBSTS psect, 2-24
Cooper, Doug, 1-1
/ex 1/O control switch, 3-3
cross-reference utilities, 5-12
cursor, controlling of, 2-2
restoring its position, 2-4
/cuzrsozx 1/O control switch, 2-3
customized error messsages, 2-52

D
debug compilation switch, 1.7, 1-17, 2-15, 2.99, 4-3
$dedbug embedded switch, 1-11
Debugger, 4-1
ussigning values to veriables, 4-13
breakpoint commands, 4-7
breakpoints, 1-19
commend summary, 4-35
dsta commands, 4-16
debug compilation switch, 4-3
debugging external modules, 4-29
example, 1-17
execution control commands, 4-10
execution history, ¢-14, 4-23
information commands, 4-20
initialization of, 2-18
overlaying of, 4-34
stack commands, 4-23

Index-1

summary of commands, 4-3%
tracking commands, 4-14
use of files, 2-75
utility commands, 4-21
declaration sections, interleaving of, 3-10
delete procedure, $-30
example, 3-30
deleting files, see delete procedure, delete procedure
detach procedure, 2-74
DIAGS psect, 2-24
direct access, 3-20
direct cursor addressing, 2-72
dispose procedure, 2-28, 2.33, 3-34
disposing of memory, 2-28
/d1k 1/O control switch, 3-2
DoCed procedure, 2-64
“don’t lock” switch, see /d1k I/O control switch
double compilation switch, 1-6, 2-14, 2-15
$§double embedded switch, 1-10, 2-14
double precision, 1-6, 1-10, 2-14, 2-15
colon notation, 1-6, 1-10
dynamic link, 2-29
Dynamic String Package, 5-19
and ¥include directive, 5-19
capabilities, 5-19
example, §-22
procedures and functions, 5-21
STRING, 5-19
string declaration, 5-19
string examples, 5-19
use of, 5-22

E

EBNF syntax diagrams, 3-4§
notation, 3-42
EFN, see event flags
eis processor switch, 1-8
embedded switches (§), 1-8
$check switch, 1-12
$debug switch, 1-11
$§doudble switch, 1-10, 2-14
examples, 1-8
$indexcheck switch, 1-12
$1ist switch, 1-11
$main switch, 1-10
$no- reverses effect of <switch>, see <switch®
$own switch, 1-10
$pascall switch, 1-10
$pointercheck switch, 1-12
$profile switch, 1-11
$rangecheck switch, 1-12
$stackcheck switch, 1-12
$standard switch, 1-11
$walkback switch, 1-10
entry points, list of, 2-115
support library, 2-18
eof standard function, 2-89
eoln standard function, 2-89
error correction, see Debugger
error handling, 2-52
error messages, compilation, 2-101
compiler, 2-113
customized, 2-52
run-time, 1-22, 2-45, 2-108

Index-2

eFTOF Fecovery, run-time, 3-18
errors, 1-3
compilation, 1-8
compiler, 3-113
fatal, 2-45
/0, 3-48
run-time, 1-33, 2-48, 3-18
run-time detection, 2-53
errors compilation switch, 1-4, 1-5, 1.7
error trapping, I/O errors, 3-48
error walkback, 1-6, 1-10
event flags, 3-76
and waiting, 2-76
a8 timer, 2-76
example usage, 2-77
how to use, 2-76
numbers available for use, 2-76
support library, 2-21
support library's, 2-76
uses of, 2.76
executsble file, 1-2
executing MCR command lines, 2-64
execution history, see Debugger
exitst procedure, 3-57
decleration, 2-57
status values, 2.57
extended-instruction set, 1-8
extended-range integers, sec unsigned integers
extended-range variables, $-22
Extended Backus-Naur Form, see EBNF syntax die-

grams

extended precision, 1-6, 2-14, 2-15
extending files, 2-1
extending program sections, 1-15
extensions, defsult, 2-114

I/0 support, 3-18

language, 3-10

non-standard features, 3-29

syntax, 3-10

to the size of & file, 2-1, 2-6,
external directive, 2.7, 2.8, 3-
external file access, 3-1
external libraries, 3-14

heeder file, 2-14
external modules, 3-7, 3-10, 3-11

and double precision, 2-14

and resident libraries, 2-89

compilation options, see compilation switches

debugging of, 4-29

definition, 2-7

definition example, 2-8

example program, 2-9

external procedures in, 5-26

FORTRAN routines, 2-7, 2-11

global verisble reference, 2-7

identifiers, 2-7

in resident libraries, 2-91

linking errors, 2-13

MACRO routines, 2-7, 2-11

overlaying of, 2-17

Pascal, 2-8

task-building errors, 2-7

$nomain embedded option, see embedded switches

nomain option, see compilation ewitches
/ext 1/O control switch, 3-6

3-27
1

EXTK$ system directive, 2-28
EXTSCT Tusk Builder option, 3-23, 3-37, 3-31

P

file, 1-1
closing upon procedure exit, 2-60
command (Tesk Builder), 4-34
cross-teference, 5-12
default extensions, 2-114
executable, 1-2, 1-14
extending of, 2-1
“header”, 5-19
initial allocation, see 1/O control switch
input, 1-4
library symbol table, 2-93
listing, 1-3, 1-5
load map, 2-92
_map (Task Builder), 2-92
multiple access, 2-4
object, 1-2
output, 1-§
overlay description, 4-34, 2-15
profile, 1-20, 4-36
source, 1-1
statement map, 1-18
symbol, 1-13
Task Builder map, 1-14
PROSE, 5-438
temporary, 2-5
text, 3-8, 3-34
file buffer, 2-2
default size, 2-2
size of, 2-2
File Control Services (FCS), 2-19
file control switches, see 1/O control switches
file control system (FCS), 2-6
file descriptor block (FDB), 2-6, 2-19
file dump, example, 2-54
file extensions, default, 2-114
Files, access to, 2-60
files, renaming of, 3-30
file storage region, 2-84
£18s processor switch, 1-8
/£ixz:n 1/O control switch, 3-6
floating-point numbers, format of, 3-8
outputting of, 3-21
forini procedure, 3-13
formatter, see PASMAT
for statement, 3-34
FORTRAN, and logical unit numbers, 2-3
called from Pascal-2, 2.12
carriage control, 2-3
object library initialization, 2-12
restrictions, 2-13
FORTRAN calle, see nonpascal directive
FORTRAN carriage control, 2-71
example, 2-71
vertical formatting characters, 2-71
forward directive, 2-8
£pp processor switch, 1-3
/£ta 1/O control switch, 2-3, 2-71
function return value, 2-29
structured types, 3-29

G,n

getpos procedure, 3-77, 3-78, 8-21
example, 3-79
parameters, 2-78
get procedure, 2-4, 3-30, 3-34, 3-35
GLBPAT Tesk Builder option, 2-20
GLOBAL psect, 2-24
GHCR procedure, 3-63
Grogono, Peter, 1-1
heap, 3-28, 2-31
fregmentation of, 2-37
$SHEAP psect, 1-15, 2-23, 2-37, 2.31, 2-32
default length, 2-33
getting length to maximum value, 2-36

I/O control switches, 3-1, 3-18
/actl:n switch, 2-6
/alec:n switch, 2-1
/apd switch, 2-6
/blk switch, 3-2
/buff:a switch, 2.3
/cee awitch, 2-2
/cl:n switch, 2-1
/cx switch, 2-2
/cursor switch, 2-2
/d1k switch, 2-2
examples, 2-1
/ext switch, 2.6
/£ix:varn switch, 2-6
/£tn switch, 2.3
/ins switch, 2-6
/lun:n switch, 2.3, 2-75
/mbf :n switch, 2-3
/noblk switch, 2.8
/nocr switch, 2-3
/noecho switch, 2-4, 2-73
/nsp switch, 2-3
/reh switch, 2-3
/ral switch, 2-3, 2-73
/zcu switch, 2-4
/rne switch, 2-4
/ro switch, 2-4
/zst switch, 2-4
/e switch, 2-4
/eeek switch, 2-4
/shr switch, 2-4
/8i:n switch, 2-§

/span switch, 2-5§
/8q switch, 2-6
/temp switch, 2-5
/vax:n switch, 2-6
/wel switch, 2-5
/wbh switch, 2-5
/wbt switch, 2.5
/wxt switch, 2-6

1/O error trapping, 2-48

1/0 functions, 2-69
and standard Pascal, 2-69
lazy 1/0O, 2-69

1/O support exiensions, 3-18

identifiers, extension to standerd, 3-10
paxint, 3-8 _.
valid characters, 3-6

Index-3

#include directive, 2-19, 2-53, 2-58, 3-11, §-19
examples, 2-88, 2-53
syntax, 2-53, 3-11
index, see alphabetize
$indexcheck embedded switch, 1-12, 3-34
initializing the support library, 2-31
initializing variables, 2-61
input file, 1-4
IES command, 2-63, 2-94
/ins 1/O control switch, 3-6
installation, compiler, sce Release Notes
installed tasks, running of, 2-63
integer overflow, 3-38
integers, range of values, 3-22
unsigned, 3-8, 2-80, 3-22
interactive programs, 2-74
ioerxor function, 2-48, 2.78
iostatus function, 2-48, 2-51, 2-78
ISO standard, conformance with, xii
ISO Standard Pascal, 3-1
alternate symbols, 3-7
errors, 3-34
implemnentation definitions, 3-8
Pascal-2 extensions, 3-10
recent changes, 3-1

L

labels, statement, 3-17
language extensions, 3-10
structured constants, 3-12
lazy 1/O, 2-69
libraries, clustered, see resident libraries
resident, see resident libraries
shared, see resident libraries
support, 2-13
system macro, 5-41
list compilation switch, 1-7
example, 1-3
$1ist embedded switch, 1-11
listing, 1-3
file, 1.3
page hesding, 1-4
listing file, 1.5
literal strings, 3-5
load map, Task Builder, 2-92
logical unit numbers (LUNs), 2-3, 2-16, 2-20, 2-21,
2-74, 3-74
assignment of, 2-74
input and output LUNs, 1-14
maximum number of, 2-7§
logical unit numbers (LUNS), T1:, 2-74
logical unit numbers, input and output, 2-18
look-ahead, 2-32
loophole function, 3-26
example, 3-26
LUN, see logical unit numbers (LUNs)
/lun:n 1/O control switch, 3-8, 2-75
lun:n I/O control switch, example, 2-75

Index-4

M

MACRO, called from Pescal-3, 3-11

HACRO assembler command, 1-7

maczo compilation switch, 1-7, 3-18

MACRO routine calls, sec nonpascal directive

MACRO-11, see PASMAC

sain compilation switch, 1-6, 3-91

$uain embedded switch, 1-10

manusl, index, see index

manus) purpose, ix

maximum task address limit, 2-37

mazint identifier, 3-8, 3-34

/mbf:n 1/O control switch, 3-8

memory, typical arrangement, 2-31
typical layout, 2-26

memory allocstion, 2-28
user-defined types, 2-43

memory map, 2-53

memory ussge, monitoring of, 2-31

mod function, §-29, 3-3§

Monitor Console Routine (MCR), 2-62, 2-74
and DoCad, 2-64

monitoring memory usage, 2-31

multiple buffering, 2-3, 2-5, 2-83
enabling of, 2.85

multiple file access, 3-4

multiple input files, 1-4

multiple source files, 2-58

multiueer tasks, 2-33

N, O
HewOK function, 2-31, 3-38
new procedure, 2-28, 2-31, 3-33, 3-35
nil pointer, 1-12
no- reverses effect of <switch>, see <switch>
/noblk I/O control switch, 3-8
/nocz /O control switch, 3-8
/noacho /O control switch, 3-4, 2-73
noioerrox procedure, 2-48
non-standard features, 3-29
program parameters, 3-29
returning of structured types, 3-29
nondecimal notation, 3-3%
nonpascal directive, 2-7, 2-11, 3-11
/nsp 1/O control switch, 3-8
object compilation switch, 1-7
object file, 1-2
octal notation, 3-33
octal output, 3-21
OPERRO.PAS, 2-52
optimization, 2-98
base address calculation, 2-100
boolesn evaluations, 2-99
constant folding, 2-98
dead code elimination, 2-98
expression targeting, 2-99
redundant branching, 2-99
redundant expressions, 2-99
register assignments, 2.93
Oregon Software, 2-113
Trouble Reports, 2-113
organization, see manual, index
origin declaration, 3-34
examples, 3-24

syntax, 3-24
otherwise clause, 3-17
output specifications, 1-5
colon notation, 1-6, 1-10, 2-14
default field widths, 3.9
octal notation, 3-21, 3-23
scientific notation, 3-9, 3-21
overlays, 2-15
co-trees, 2-15
Debugger, 4-34
examples, 2-17
external modules, 2-17
factors (.FTCR directive), 2-17
multiuser tasks, 2-83
overlay description language, 2-18
overlay structures, 2-15
program segments, 3-18
tree, 2-15
o¥n compilation switch, 1-6, 3-10
and GLOBAL psect, 2-24
$own embedded switch, 1-10

P

{page directive, syntax, 3-11

page procedure, 3-9

parameters, conformant array parameters, 3-3
passing of, 2-29
procedure and function, 3-2

PAR Task Builder option, 2-87, 2-91, 2.93

partitions, 2-91, see also Task Builder

Pascal, Blaise, 1-2

pascall compilation switch, 1-6

$pascall embedded switch, 1-10

Pascal programs, calling of FORTRAN routines, 2-74

Pascal standard, see ISO Standard Pascal
PAS command, 1-2, 1-4
PASMAC, 2-11, 3-12, 6-36
and system macro library, §-41
begin macro, 5-34
command line, 5-28
design of MACRO-11 procedures, 5-26
endpr macro, $-38
examples, 5-28, §-37
func macro, 5-31
macro definitions, 5-27
param macro, §-32
placing in system macro library, 5-41
predefined types, 5.36
proc macro, 5-30
purpose of, 5-26
rsave macro, 5-34
eave macro, 5-33
var macro, 5-33
PASMAT, 5-2
command line, 5-4
command line prompt, 5-4
directives, 5-5
displaying comments, 5-2
examples, 1-16, 5-9
limitations, 5-3
options switch, §-4
portability mode, 5-6
statement, 5-3
tables, 5-3

PASRES command file, 2-86
pédispose procedure, 2-31, 3-38
declarztion of, 2-38
example, 3-33
parameters, 2-38
PEDYHL psect, 2-34
p$inew function, 2-31, 3-38
declerstion of, 3-38
example, 2-23
parameters, 2-38
pinew function, p$inee function, 2-31
PMA, 2-24
$pointerchack embedded switch, 1-13, 3-34
pointers, 1-12
nil, 3-34
nil values, 1-12
stack pointer, 5-32
use of, 2-79
Post-Mortem Analyzer (PMA), 2-52
predefined functions and procedures, 3-30
pred function, 3-35
procedure walkback, 1-6, 1-10, 122
processor switches, 1-8
eis, 1-8
tis, 1-8
fPP. 1-8
sim, 1-8
PROCRETF utility, see XREF utility, 5-15, 5-16
command line, §-16
example, 5-186
limitations, §-16
profile compilation switch, 1-7, 4-36
example, 1-20
$profile embedded awitch, 1-11
profile file, 1.20
Profiler, 4-36
example, 1-20
execution requirements, 4-36
output explanation, 4-37
UEITS Task Builder option, 4-36
usage of, 4-36
warnings, ¢-41
program hesading, 3-10
file parameters, 3-10
program sections (“psects”), 3-34
attributes, 2-25
CONSTS psect, 2-24
DIAGS psect, 2-24
extending of, 1-15
GLOBAL psect, 2-24
$$HEAP psect, 1-15, 3-27
P$CODE psect, 2-24
SHIFTS psect, 2-25
TABLES psect, 2-25
PSDYEL psect, 2-24
PROSE, §-22, 5-43
basic text units, 5-44
command line, 5-48
directive format, 5-45
directive summery, 5-66
examples, 5-46, 5-60, §-67
formatting directives, §-54
header files, 5-48
index directives, 5-63
input control directives, 5-49

Index-5

“keep” buffer, 5-61
miscellaneous options, 5-51
output control directives, 5-64
page control directives, 5-55, 5-54, 5.56
page format, §-54
paragraphs, 5-57
parameter valuea, 5-45
reset directive, 5-62
title directives, 5-58
program segments, and overlays, 2-18
psects, see program sections
psect sharing, 2-31
purpose of manual, ix
put procedure, 2-4, 2-6, 3-20, 3-35
/rah IO control switch, 3-8
/ral 1/O control switch, 3-3, 2-73

R

random access, 2-4, 3-20, see also getpos and setpos
procedures
simulated, 2-77, 3-21
$rangecheck embedded switch, 1-12, 3-34
/xcn 1O control switch, 2-4
reading command lines, 2-62
example, 2-63
readln procedure, 3-21, 3-34
read procedure, 3-21, 3-34
read statement, 2-70
real numbers, 2-14
format of, 3-8
outputting of, 3-21
Record Management Services, see files, access to
recursion, 3-46
ref function, 3-28
registers, 2-30
PC addresses, 2-49
saving of, 5-33
rename procedure, 3-30
example, 3-30
renaming files, see renams procedure
reset procedure, 2-1, 2-4, 2.50, 2-75, 3-9, 3-18, 3-30,
3-34
and single-character I/O, 2-72
parameters, 3-13
syntax, 3-13
resident libraries, ACTFIL option, 3-88
advantages of, 2-86
and existing programs, 2-90
and external modules, 2-91
and -HD Task Builder option, 2-92
and PAR Task Builder option, 2-87, 2-91, 2-93
and SET/TOP command, 2-87
base address, 2-91
clustered, 2-88, 3-88
converting & program to, 2-95
creation of, 2-89
LIBR Task Builder option, 2-88
Pascal, 3-86
creation of, 2-86
restrictions, 2-89
table showing size and base address, 2-93
task image size, 2-87, 2-92
tutorial example, 2-90
UNITS option, 2-88

index-6

using PLAS overlays, 3-86
return link, 3-29
rewrite procedure, 3-1, 2-8, 2-4, 2-50, 2-75, 3.9, 3-18
parameters, 3-18
syntax, 3-18
RMS, see Files, access to
/ne I/O control switch, 3-4
/xo 1/O control switch, 3-4
round function, 2-82
/x8t 1/O control switch, 2-4
run-time error messages, 2-49, 2-103
run-time error reporting, customising of, 3-52
OPERRO.PAS, 2-52
UERROR.PAS, 2-52
run-time errors, 1-22, 2-45
error codes, 2-49
procedure walkback, 1-22
recovery from, 3-18
walkback, 2-45
/xw 1/O control switch, 3-4

8

sayerz procedure, 2-48, 2-53
example, 251
scientific notation, 3-9, 3-21
/seek 1/O control switch, 3-4, 2-6, 3-20, 3-35
example, 3-20
seek on text files, examples, 2-79
simulated, 2-77
seek procedure, 2-4, 2.77, 3-20
segments, and overlays, 2-15
SET/T0P command, 2-87
setpos procedure, 2-77, 3-78, 3-21
example, 2-79
parameters, 2-78
sets, 3-8, 3-35, 5.22
shared libraries, see resident libraries
SHIFTS psect, 2-25
/shx 1/O control switch, 3-4
8im processor switch, 1-3, 2-25
single-character 1/O, 2-72
effects on the system, 2-73
example, 2-73
single-character mode, 2-2
single precision, 1-10, 2-14
/8i:n I/O control switch, 2-8
size function, 2-39, 2-44, 3-36
source, 1-1
file, 1-1
program, 1-1
source concatenation, 3-35
source program, 1-1
space function, 2-31, 3-33
data types, 2-32
declaration of, 2-32
example, 2-38
/span 1/0 control switch, 3-8
/8q 1/0O control switch, 3-8
stack, 2-18, 2.31
contents, 2-27
default size, 2-31, 2-33
Stack, overflows, 2-27
stack, reserving space, 2-33
space function, 2-32

stack frame, 2-29
$stackcheck embedded switch, 1-12
stack frame, 2-27, 3-30
stack pointer, 2-27, 5-32
standard, see ISO Standard Pascal
standard compilation switch, 1-8
$standard embedded switch, 1-11
standard Pascal, xii, see also ISO Standard Pasceal
statement labels, 3-17
statement map file, 1-18
storage allocation, 2-43
pre-defined types, 2-43
size and bitsize, 2-44
user-defined types, 2-43
strings, declaration of, 3-21
literal, 3-8
structure, manusal, see organization
structured constants, 3-12
examples, 3-13
multidimensional arrays, 3-16
style notes, xiv
suce function, 3-35
support library, 2-18
data definitions, 2-19
entry points, 2-18, 2-118
error-control module, 2-52
event flag, 2-21
initialization procedure, 2-31
initializing of, 2-18
LIBDEF.PAS, 2-19
library work area, 2-19
LUN assignments, 2-74
switches, 1-6, 1-8, 2-14, see also 1/O control switches,
compilation switches, embedded switches, processor
switches
compilation, 1-5, 1-6
compilation examples, 1-13
embedded (§), 1-8
1/0O control, 2-1
processor, 1-8
SY: system device, 2-60
default, 2-61
symbol file, 1-13
syntax disgrams, Pascal-2, 3-37
syntax extensions, 3-10
system directives, 2-76
system library, replacement of, 2-85
systemn services, 2-76

T
TABLES psect, 2-25
task address limit, 2-37
Task Builder, 1.2, 1-14, 2-31
and external modules, 1-14
and libraries, 1-14
checkpointable tasks, 1-14
command file, 4-34
/CP (checkpointing) switch, 1-2
EXTSCT option, 1-15, 2-23, 2-27, 2-31
/FP (floating-point) switch, 1-2
GLBPAT option, 2-20
~HD option, 2-92
input to, 1-14
LIBR option, 2-38

loed mep, 3-92
LUNs, 3-74
memory map, 1-14
overlays, 2-15
PAR option, 2-91
partitions, 2-91
resident library creation, 3-86
RESLIB option, 2-94
STACK option, 2-92
typical command, 1-14
UHITS option, 1-14, 1-20, 2-16, 2-75
UEITS option with Debugger, 1-15
$$VEX1 peect, 3-19
tesk expansion, and EXTES system directive, 3-33
task extension, prevention of, 2-33
task header, 2-26
Tasks, checkpointable tasks, 2-27
/temp 1/O control switch, 3-8
terminal driver, 2-70
output sequence, 2.70
terminel 1/0O, 2.70
terminetion status, sce exitst procedure, exitst proce-
dure
test compilation switch, 1-8
text files, 3-8
text files, 3-2
tiee function, 3-31
example, 3-31
times compilation switch, 1-3, 2-61
timestamp procedure, 3-33
example, 3-33
parameters, 3-32
traceback, see walkback, walkback, procedure
Trouble Reports, 2-113
trunc function, 2-82
two’s complement srithmetic, 2-80
type checking, suppression (loophola), 3-26
type coersion, see loophole function, loephole func-
tion

U

UERROR.PAS, 2-52
Ufloat procedure, unsigned floating-point conversion,
2-31
UEITS Task Builder option, 1-20, 2-16, 2-75
unsigned integers, 2-32, 3-80, 3-8, 3-22
floating-point conversion, 2-81
outputting of, 2-81
subrange notation, 2-81
utilities, PASMAC, 2-11, 3-12
Utranc function, unsigned truncation, 2-82
Uwrite procedure, unsigned write, 2-81
varisble initialization, 2-61
variable length records, 2-6
variant records, 3-13
/vax:n /O control switch, 3-6
$SVEX1 psect, 2-19
virtual address space, 2-22

Index-7

W, X
/wal 1/O control switch, 3-8
walkback, 3-18

disabling of, 2-4§

examples, 2-46

procedure, 1-6, 1-22, 2-45

psect, 2-24

run-time, 2-48
walkback compilation switch, 1-6, 2-39, 2-91
$walkback embedded switch, 1-10
/ubh 1/O control switch, 3-8
/abt I/O control switch, 3-8
Wirth, Niklaus, 3-42
WK: logical device, 2-60, 2-61
work files, example assignment, 2-61

location of (¥K:), 2-60
writeln procedure, 3-6
wxiteln statement, 2-70
write procedure, 3-6
write statement, 2-70

double-precision values, 1-6
/wxt 1/O control switch, 3-8
XREF, B-12

command line, §-12

example, 5-13

limitations, 5-13

index-8

