DECnet—-RSX

Programmer’s Reference Manual
Order Number: AA-MO9BE-TC

October 1989

This manual describes the DECnet-RSX programming tacilities
and provides reference information on network programming
calls.

Supersession/Update Information: Revised for new covers.

Operating System and Version: RSX-11M V4.5
RSX—-11S V45
RSX—-11M-PLUS V4.3
Micro/RSX V4.3

Software Version: DECnet—11M V4.5
DECnet-11§ V4.5
DECnet-11M-PLUS V4.3
DECnet—-Micro/RSX V4.3

dilgliltlali

AA-MOSSE-TC
Qctober 1989

The information in this documentis subject to change without notice and should notbe construed asa
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes norespon-
sibility for any errors that may appear in this document.

The software described in this docurnent s furnished under a license and may only be used or copied
in accordance with the terms of such license.

No responsibility is assumed for the use or reliabifity of software on equipmentthatis not supplied by
Digital or its affiliated companies.

Copyright © 1982, 1989 by Digital Equipment Corporation
All Rights Reserved.
Printed in U.S.A,

The foliowing are trademarks of Digital Equipment Corporation:

DEC PDP VAX

BECmate P/OS VAXcluster
DECnet Professicnal VAXmate
DECUS Rainbow VMS
DECwriter RSTS VT

DIBOL RSX Work Processor
ERSONED AT

MASSBUS UNIBUS

This manua! was produced by Networks and Communications Publications.

Contents

Preface

1 Introduction

1.1 ~ Imtertask Communication Conventions....................... ... 1-2
1.2 Intertask Communication Concepsoooviiiiiiniiannans 1=-2
1.2.1 Establishing an Active Network Task 1-3
1.2.2 EstablishingaLogicalLink . _........ oo, 1-4
1.2.3 BuildingaConnectBlock ...t 1-6
1.2.3.1 Destination Descriptor.oooivirii i e 1-6
1.2.3.2 Source Descriptor.l PR 1-6
1.2.3.3 Access Control Information.....................oooiiil 1-7
1.2.3.4 Optional Data MessaZesouviirere e e eiiiriaaacas 1-7
1.2.4 Getting Data from the Network DataQueue 1-7
1.2.5 Sending and Receiving Messages ety 1-8
1.2.6 Sending Interrupt MEsSagesovvvunevnnuieainenaaa i 1-8
1.2.7 Checking Completion Status Information 1-9
1.2.8 Terminating ActivityonalogicalLink 1-9
1.2.9 Closing 2 Network Connectionoooiviiinian.. 1-10
1.2.10 Using the Wait Optionooiviiiiiiiiiiiinnneea.. 1-10
1.2.11 Using the AST and WAITNT Options000 1-10
1.2.12 Using the Flow Contwol Optionooo e V.. 1-10
1.3 Summary of Intertask CommunicationCalls.................... 1-11
1.4 DECnet-RSX Remote File Access Operations., 1-14
1.5 DECnet~-RSX Task Control, 1-15

ram

DECnet-RSX MACRO-11 Programming Facilities

2.1 RSX~11 Network Macro FOMMALS coovurvemarnarrracmnsnees 2-1
2.1.1 BUILD TYPEeMACTOS. ..ovoniieineneameaans e 2-2
2.1.2 EXECUTE TYPEMACIOS .. oouvvie e e 2-3
213 STACK Type Macros O 2-4
2.1.4 Macro Format EXamplesooovivmeeaniaiiiianiaaaiaens 25
2.2 Connect Block OpHtions ...o.oiiiiiiiiii e 2-5
2.2.1 Using Connect BIOck OPtionSs. ... oevieni i 2-6
2.2.2 Receiving Connect Block Informationoovveeneres 2-6
2.3 Access Control Informationooent SN 2-7
2.4 Conventions Used in This Chapter..........ccoooieieienaeeen s ..2-8
25 Intertask CoOMMUOECAtION Macrosoovioniiimiiiineens 2-10
2.5.1 Common Argument Definitions ... 2-10
2.5.2 ABTS — AbortaLogicalLink ... 2-12
2.5.3 ACCS$ — Accept Logical Link Connect Request 2-14
2.5.4 CLS$ — End Task Network Operationsccoovveene- - 2-17
255 CONS$ — Request Logical Link Connectionc-+ 2-19
2.5.6 CONB$$ — Build Connect Block (Short)ovvvnnn 2-23
25.7 CONL$$ -— Build Connect Block (Longy ...-.....ooovvvennnns 2-28
2.5.8 DSC$ — Disconnect aLogicalLinkooioeiviinnns 2-34
2,59 GLN$ — Get Local Node Information.ovveeen 2-36
2.5.10 GND3 — Get NetworkData.cooorimnninaiicniinns 2-39
2.5.11 OPNS — Accessthe Networkooooiiiiiioniionrirenens 2-54
2.5.12 REC$ — Rececive Dataoveralogical Linkoovvoven 2-57
2.5.13 REJ$ — Reject Logical Link Connect Request-- 2-59
2.5.14 SND$ — Send DataoveraLogical Linkooneenn 2-61
2.5.15 SPA$ — Specify User ASTROUtINEoo.ovoiviniooreniinns 2-63
2.5.16 XMI$ ~— Send Interrupt MESSageoooommininieoiennen 2-66
2.5.17 MACRO-11 Intertask Communication Programming

EXQAMPIES oeeeoi e enanraraneansaass e san sttt 2-68
2.5.17.1 Trapsmit Example.........oooooooins s 2-69
2.5.17.2 Receive EXample ..o ive oo 2-72

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities

3.1 Building a DECnet-RSX Taskcooviiiiomi e 3-1
3.2 Establishing 2 Network Task ...c..ooeeiinnn s ...3=2
3.3 Examining O Status BIOCKSooiviiniieiiiineeees 3-2
3.4 Using Event FIAgso iomiuanninii e 3-3
3.5 Specifying Connect Block Optionsoovevremerrroen 3-3
3.5.1 Receiving Connect Block lnformation..........ooveeeveereees 3-5

3.6
3.7
3.8
3.8.1
3.8.2
3.8.3
384
3.8.5
3.8.6
3.8.7
3.8.8
3.89
3.8.10
3.8.11
3.8.12
3.8.13
3.8.14
3.8.15
3.8.16
3.8.17
3.8.18
3.8.19

3.8.19.1
3.8.19.2
3.8.20

3.8.20.1
3.8.20.2
3.8.21

3.8.21.1
2.8.21.2
3.9
3.9.1
3.9.2
3.9.3
3.9.4
395
3.95.1
3.9.5.2
3953
3.95.4

Using Access Control Information ..o 3-5
Conventions Used in ThisChapter......................o 3-7
Intertask COMMUAICATIONvvusiviein i ianeiinaannanas 3-9
Common Argument Definitions ...l 310
ABTNT — AbortLogicalLink 3-13
ACCNT — Accept Logical Link Connect Request 3-15
BACC — Build Access Control Information Area (Short)..... 3-17
BACCL — Baild Access Control information Area (Long).... 3-20
BEMTOQ — Build 2 Format @ Destination Descriptor.......... 3-23
BFMT1 — Build a Format 1 Destination Descriptor. 3-25
CLSNT — End Task Network Operations 3-29
CONNT — Request Logical Link Connection 3-31
DSCNT — Disconnecta LogicalLink 3-35
GLNNT — Get Local Node Information...................c00 3-37
GNDNT ~—GetNetwork Data..................ooiiiiiiian., 3-39
OPNNT -— Accessthe Networkocovvvniiniiniaa, 3—49
RECNT — Receive Data overaLogicalLink 3-52
REJNT — Reject Logical Link Connect Reguest 3-54
SNDNT - Send Dataoveralogical Link 3-56
WAITNT — Suspend the Calling Task 3-58
XMINT — Send Interrupt Messageoiviennss 3-59
FORTRAN intertask Communication Programming
EXAMIDIES . i e e e 3-61
Transmit Example oot 362
Receive EXampleovviiriiiii i 3-65
COBOL Intertask Communication Programming
EXAMIPIES ..o ivt et e 3-68
Transmit Exampleoooioiiiiiiiin i, 3-69
Receive Exampleoiiiiiiiiiiiiiiiniiiiaiineaes 3~75
BASIC-PLUS-2 Intertask Communication Programming
EXamples.ooiiiiiiiniieerianr it raiiae i aae e aiaaeas 3-80
Transmit Example. ... e 3-81
Receive Examplecooiiiiiiiiiiiiiiiii i, 3-84
Remote File ACCESS.iiiirivii it 3-87
Opening Files 3-88
Performing File Operationsooiviiiviinieinnnnnnnns 3-88
Performing Record Operations ... 3-89
Closing Files and CompletingCalls 3-89
Setting Task Build Parameters...............ooiiiiiiiianes 3-89
Setting Event Flags 3-89
Setting BufferingLevell 3-90
Setting Maximum Record Size............ ... il 3-90
Setting Buffer Space Allocation ...l 3-91

1Y

W w
- v

: WL g
ool Lbobwobo VvV
Pt et g e \D OO
B R e O

Y b et el
0~ G\

3.9.19
3.9.19.1
3.9.19.2
3.9.20
3.9.20.1
3.9.20.2
3.9.21

3.9.21.1
3.9.21.2
3.10
3.10.1
3.10.2
3.10.3

3.10.4
3.10.5

3.10.6
3.10.7

Using the Task Build Procedure e 3-91

Using ASCII Zero (ASCIZ) Strngscoviiiiniiiirinnnns 3-93
Common Argument Definitions for Remote File Access

001 |1 SN 3-94
ACONFW — Set Access Optionsooveeeeiineiann. 3-96
ATTNFW — Set Extended Autributes ...l 3-98
CLSNFW —CloseaFile................. e 3-104
DELNFW — DeleteaFile...........ooo i 3~105
EXENFW — ExecuteaFilecoooiiiiiiiiaan 3-106
GETNFW — Read aSingle Record00, 3~-107

OPANFW, OPMNFW, OPRNFW, QPUNFW — Open a File
for Appending, Modifying, Reading, Updating Records ... 3-110

PRGNFW — Discardan Opened File........................ 3~114
PUTNFW — WriteaSingleRecord..............oovinnis 3-115
RENNFW — RenameaFile.... ..., 3-118

SPLNFW, SUBNFW, OPWNFW — Create, Write, Printa
File/Create, Write, Execute a File/Create and Open a File

for Writing Recordsoovvevinii ity 3-120
FORTRAN Remote File Access Programming Examples ... 3-124
Append Exammple ... 3~-125
Read/Write Example 3-129
COBOL Remote File Access Programming Examples 3-131
Append Example oo 3-132
Read/Write Example 3-138
BASIC-PLUS-2 Remote File Access Programming
3307111 o) [S R 3-144
. Append Example e 3-145
Read/Write Examplecociiienniiiinniaiiiiianeaanns 3-148
FORTRAN Task Controlo.viinniiiiiiiniiiarnianes 3-151
Waiting fOr REQUESES iorieirrae e iarairararennens 3~151
RSX Remote Task Control Utility i, 3-151
ABONCW — Abort an Executing Task or Cancela
Scheduled Taskocicvuanr it inaamaria e 3-152

BACUSL — Build Account and User 1D lnformauon

CArea long). ..o e 3-155

BACUSR — Buaild Account and User ID information

Area(SBort) ... it e 3-157
RUNNCW -~ Execute an Installed Task in 2 Remote Node.. 3-159
FORTRAN Task Control Programming Example............ 3-164

DLX Ethernet Programming Facilities

4.1 Preparing the SYSIemot it 4-2
4.2 Including Higher-Level Servicesooiiiiiiiniin.nn. 4-2
421 Using DLX RESOUICESoouvtiaiirnarraninnaacaaaaaenes 4-3
4.3 Using DLX to Access the Ethernet ..o oviieniieiiiiecn 4-3
4.3.1 Synchronizing DLX PLOGIams.ccoiiinernineernininennnne 4-4
4.3.2 Using Physical and Multicast Addressing. 4-5
4.3.3 Setting Up the Ethernet Addressoiiiins 4~5
4.3.4 Setting Up 2 Characteristics Buffer.................... R 4-7
435 Processing Ethernet Frames.o, 4-12
4.35.1 Setting Protocol Flagsovvnviiciiiniianininnonn, 4-12
4.3.5.2 Specifying Protocol/Address Pairs 4-13
4.3.5.3 Using Characteristics Blocksooooveni .o, 4-14
4.3.6 Processing IEEE8Q2.3 Framesooivviiiinannniennans 4-14
£.3.6.1 Specifying the Service Classoovieeviiiiini 4-15
4.3.6.2 Defining Service AccessPoints.............oovoiannt 4-16
4.3.6.3 Defining SNAP Protoco! Identifiers 4-16
4.3.6.4 Setting Protocol Flagscoiiiiiiiiiieniiiiainn, 4-17
4.3.65 Specifying Protocol/Address Pairs 4-18
4.3.6.6 Using Characteristics Blocksoooviiiviiian. . 4-18
4.4 DLXQIOS.............. it 4-20
4.4.1 HOXOP —OpenaPort . .oooiiiiiiiiiieiia e 4-21
4.4.2 10.XSC — Set Characteristics S, 4-25
4.4.3 I0.XGC — Get Characteristics coovvvevinninieniinnianns 4-33
4.4.4 I0.XTM — Transmit a MessageonthePort.................. 4-41
4.4.5 I0.XRC — Receive 2 Messageonthe Port.................... 4—47
4.4.6 IOXCL—Closethe POTT........covviiiiniiian s 4-53
447 DLX QIO Programming Examplesooivvinnnn.. 4-55
4.4.7.1 BO2.BEXAMPIE L etinieniir et 4-56
4.4.7.2 Ethermet Example it iiiiiniaans 4-83

DLX Point-to-Point and Multipoint Programming Facilities

5.1 Prerequisites for Tasks Using DLX ... iinnns 5-1
5.2 Writing DLX ProOgrams. ociiriarninianirrat i iiienens 5.2
5.2.1 DLX RESOULCES . ..o teantar e rraeatamae et eeaasesansss 5-3
5.3 8] I) {0 5-3
5.3.1 IOXOP—OpenaCirCuit. ..o vevv e 54
5.3.2 [O.XIN — Initialize the Circuit.t 5-7
5.3.3% [0.XTM — Transmit a Message onthe Ciecuit 5-9
5.3.4 IO XRC — Receive a Messageonthe Circuit 5-11

vii

JO.XHG — Hang Up the Circuit.oevevenrinnn...... 5-14

5.3.5

5.3.6 IOXCL—Closethe Citcuit. ..o i ... 5-16
5.3.7 Programming Examples.................l 5~18
5.3.7.1 TransmitExample.....................co 5-19
5.3.7.2 Receive Exampleo 5-27

6 LAT Programming Facilities

6.1 Components of the LAT Environmentcooevvivnn, ... 6-2
6.1.1 TheLocal POTt it i aee 6-4
6.1.2 TheRemote POITo i i e ees 6-6
6.2 LAT Application Programmingcooeiine.. 6-7
6.2.1 Coordinating Available RESORICESo.ivnvviiviiiininnanes 6-7
6.2.2 Attachingthe Terminal....................o . iiiiiiiiiiiinnens 6-8
6.2.3 Setting the LAT Terminal Characteristics 6-9
6.2.4 Establishing the Connectiono iciiinen, 6-9
6.2.5 Reading and WritingData.................... 6-10
6.2.6 Terminating the Connection.oo et 6-10
6.2.7 Summary e 6-11
6.3 Directives for Programming Application Terminals 6-12
6.3.1 Programming SUg@estions. cvvrrirreriniarininnieins 6-13
6.3.2 I0.ORG — Originate Explicit Connection 6-14
6.3.3 Status Codes for LAT Connectionsovvvvveiiinae... 6-16
6.3.4 LAT Specific Characteristics for SF.GMC 6-16
6.3.4.1 T MAP L i i i 6-17
6.3.4.2 TCQDP ..o, B 6-19
6.3.5 LAT Specific Characteristics for SFSMC 6-19
6.3.5.1 TCMAP L 6-20
6.4 LAT Application Programming Examples...._...._............. 6-22
6.4.1 Explicit Connection Example 6-23
6.4.2 Implicit Connection Example................coo L 6-27

A Disconnect or Reject Reason Codes

B Object Types

viii

I

C Remote File Access Error/Completion Codes
C.1 I/O Status Block Error RETUINS ... ooviiviiiiiiiiiiiiiinenacaevnas C-1
C.2 Data Access Protocol (DAP) Error Messages C-5
Cc.2.1 Maccode Field.o oo e cii it C-5
Ccz22 Miccode Field i i C-7

D MACRO-11 Connect Block Offset and Code Definitions

E Network Error/Completion Codes for FORTRAN, COBOL, and
BASIC-PLUS-2

F Network MACRO--11 Error/Completion Codes

G Values for Ethernet and 802.3 Addressing
G.1 Multicast Addressescoiiiiiiiiiiiiiii e e G-1
G.1.1 Ethernet Protocol TYPESoviiiiniiiiiiiiienaeeianns G-2
G.2 SAP AAAIesses.t e e G-3
G3 SNAP IAentiflers i iuiiiienaiaiaaiananiaaeaamaainaniaians G-4

H DLX Characteristics Status Codes

Figures
1-1 Establishing 2 Logical Linkooiiiiiiiiiiniin st 1-5
2-1 Outgoing CONBSS$ ConnectBlock............ooiviiiiiieieent. 2-27
2-2 Outgoing CONLSS ConnectBlock...............cooiivviinees, 2-33
2-3 Incoming ConnectBlock i 2-53%
6-1 Using a LAT CONNEeCHONooniiiiiniiiiiiiiiiiiaraeieneanas 6-2
6-2 LAT Components for AppLICAtions.oiiiiiiareneennns 6-3
6-3 The LAT Terminal and Local Port.o 6-5

Tables

| I L e L

G\O\&AAWW?’WNNNNNNH
N W BRS re b0R = GN W RN =

0 2909
v LNV S I

9
=Y

H-1

DECnet CommunicationCalls 1-12
Intertask Communication Macrosccvivvivvnnnns 2-10
CONB$$ Connect Block Symbolic Offsets...................... 2-25
CONL$$ Connect Block SymbolicOffsets...................... 2-31
Status Block Contenusafter GNDScoiiiia Lo 2-44
Contents of Incoming Short ConnectBlockc.... 2-46
Contents of Incoming Long CoanectBlock..................... 249
Intertask Commumnication Callsociiiiiienens 3-9
JIncoming Connect Block i, 3-45
Remote File Access Callso.oiiiiiiiiiiiriiiieinanennes 3-87
FORTRANTaskControl Calls,coiviiininns 3-151
The First Four Fields in a Characteristics Block................... 4-8
Characteristics for Ethernet Frame Format 4-14
Characteristics for 802.3 Frame Formatccovvvevvannnnn 4-19
Stepsina LAT Application et eieeaaiae e 6-11
Terminal Driver Directive Usage for LAT Terminals............ 6-12
First Word I/Q Status Block Error Codes. ... e rreeereeean feveans C-1
NSPError Codes ..ot e e e i iraeian Cc—4
DAP Maccode Field Values. i s C-6
DAP Miccade Values for Use with Maccode Values of 2, 10,
- o T S P c-7
DAP Miccode Values for Use with Maccode Values 0, 1, 4, 5,
TR T« U C-14
DAP Miccode vValues for Use with Maccode Value 12. C-25
Status Codes for DLX Characteristics H-1

Preface

The DECnet-RSX Programmer’s Reference Manual exphlains DECnet program-
ming concepts and describes the DECnet—RSX calls for the following program-
ming functions:

® Intertask communication

» Remote file access

8 Task control

* Direct line access (DLX)

The DECnet-RSX software supports intertask communication calls for MACRO-
11, FORTRAN 77, COBOL, and BASIC-PLUS-2 ptogramming; remote file access

calls for FORTRAN 77, COBOL, and BASIC-PLUS-2; task control calls for
FORTRAN 77; and QIO calls for the DLX user interface.

The manual also includes information on writing applications for Local Area
Transport (LAT) application terminals,

Throughout the manual, the term ““DECnet—RSX"’ refers 1o all the software that
vou receive in your DECnet-RSX distribution Kit.

Intended Audience

This manual is for users who write network programs that run on DECnet-11M,
DECnet-11M-PLUS, DECnet-118§, and DECnet-Micro/RSX systems.

xi

Structure of This Manual

The manual is organized as follows:

xii

Chapter 1
Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Appendix A
Appendix B
Appendix C
Appendix D

Appendix E

Appendix F
Appendix G

Appendix H

Provides introductory information about intertask communi-
cation, remote file access, and task control operations.

Describes the DECnet—~RSX MACRO-11 programming facili-
ties for intertask communication macros.

Describes the DECnet-RSX FORTRAN, COBOL, and BASIC~
PLUS-2 programming facilities for intertask communication,
remote file access, and FORTRAN task control.

Describes the DECnet-RSX Direct Line Access (DLX) pro-
gramming facilities and QIO calls for tasks using the Ethernet.

Describes the DECnei-RSX Direct Line Access (DLX) pro-
gramming facilities and QIO calls for tasks using point-to-
point and multipoint lines.

Describes programrming facilities for tasks that use Local Area
Transport (LAT) application terminals.

Contzins the network disconnect or reject reason codes.
Defines the Digitzl object type code values.
Summarizes remote file access error/completion codes.

Contains the MACRO-11 connect block offset and code defi-
nitions.

Contains the FORTRAN, COBOL, and BASIC-FLUS-2 net-
work error/completion codes.

Contains the MACRO-11 network error/completion codes,

Provides information on multicast addresses, protocol types,
and protocol identifiers 1o use with Ethernet applications.

Describes DLX completion codes for characteristics opera-
tions in Ethernet applications.

Associated Documents

The following manuals are part of the DECnet-RSX documentation set:

» DECnet-RSX Network Management Concepts and Procedures
. DECnet-RSX Guide to Network Management Utilities

s DECnet-RSX Guide to User Utilities

® DECnet-RSX Network Generation and Installation Guide

®» DECnet—RSX User's Pocket Guide

®» DECnet-RSX Programmer’s Pocket Guide

» DECnet-RSX Network Marager's Pocket Guide
» DECnet—RSX Release Notes

The RSX-11M documentation set and the appropriate programming language
manuals are also helpful.

For information on LAT, refer to the Local Area Transport (LAT) Network Con-
cepts manual, '

For information on how to use IEEE 802.3 frame format for DLX programs, refer
to the following two standards:

8 Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access
Method and Physical Layer Specifications, ANSI/IEEE $td 802.3—-1985, ISO
Draft International Standard 8802/3.

» Logical Link Control, ANSI/IEEE Sid 802.2-1985, ISO Draft International
Standard 8802/2.

These standards are published by the Institute of Electrical and Electronics Engi-
neers, Inc., and distributed in cooperation with Wiley-Interscience, a division of
John Wiley & Sons, Inc.

Xiii

k- ' oM
i:r«?"

Acronyms

The following acronyms are used in this manuat:

AST Asynchronous system trap

CEX Communications Executive

DLX Direct Line Access Controller

FCS-11 File Control System

MOP Maintenance Operation Protocol RN
NETFOR.OLB DECnet high-level language library o
NETLIB.MLB DECnet MACRO-11 library

NFAR Network File Access Routine

PSW Processor status word

QIO Queued input/output call

Graphic Conventions

Convention Meaning o
Special type This specizl type shows examples of user input (in red) or sys-

tem output (in black).
UPPERCASE Uppercase letters indicate characters to type exactly as

shown. You can type the text in upper- or lowercase. You can
abbreviate uppercase words to the first three or more unique
characters. :

lowercase italics Lowercase italics indicate variables for which you specify or
the system supplies the actual values.

] Square brackets enclose optional data. I the brackets enclose
a vertical list of options, you can specify only one option. Do
not type the brackets when you enter the call.

{} Braces enclose options, from which you must choose one and
only one. Do not type the braces when you enter the call.

() Parenitheses enclose a set of options. You must specify both
or ncither of them. Do not type the parentheses when you
enter the call.

Xiv

Convention
G

PRST2=5

CALL BFMTI1

Meaning

This symbol indicates a key to press. indicates that
you press the CONTROL key and the key represented by x
together.

Ellipses represent an omission. To emphasize the important
information, examples may omit some of the user input or
system output

Al values that appear in this manual are decimal unless otherwise noted.

Certain additional conventions apply in specific chapters. Section 2.4 describes
specific conventions for MACRO-11 calls. Section 3.7 describes specific conven-
tions for FORTRAN, COBOL, and BASIC-PLUS-2 calls.

XV

1

Introduction

DECnet-RSX software extends the RSX operating systems for the PDP-11. With
DECnet-RSX, you can write programs that exchange data with programs on
other DECnet systems in the network that run under RSX or other operating sys-
tems. This manual describes the network programming functions that you can use
with the MACRO-11, FORTRAN 77, COBOL, and BASIC-PLUS--2 languages.

Programs using DECnet-RSX can have tasks running on different nodes that
exchange data using intertask communication, remote file access, or remote task
control,

» Intertask communication. User tasks on different nodes can exchange
messages and data by issuing a series of DECnet communications calls. DEC-
net software lets you perform task-to-task communication, whether or not
both tasks are written in the same programming language or both nodes are
under the same operating system. For example, an RSX FORTRAN 77 pro-
gram ¢an communicate with a VMS BASIC-PLUS-2 program.

= Remote file access. Remote file access programs can access sequential

files for reading, writing, and appending records to remote files. They can
also delete remote files.

Programming remote file access operations on a remote RSX node is similar
to programming local I/O operations. For a remote node under another
operating system, your program’s access is determined by what functions its
source language provides and the remote file system supports.

» Remote task control. A FORTRAN program can control the execution of
installed tasks on remote RSX or IAS DECnet nodes. The program can cause
immediate execution of a remote task, schedule it for later or periodic exe-
cution, abort it, or cancel its scheduling.

1-1

1.1

1.2

You can perform functions on cooperating local and remote nodes or simply at
the local node. For example, a task can issue MACRO-11 DECnet calls to
exchange data with another task on the same node. This lets you debug an RSX
program locally before running it at a remote node.

Intertask Communication Conventions

To refer to a call common to all four languages that DECnet-RSX supports, this
manual uses the call’s first three letters, followed by x. The x represents the part
of the call name that varies by programming language. With MACRO-11, you
replace the x with the $ symbol. With FORTRAN, COBOL, and BASIC-PLUS-2,
you replace the x with the lerters N'T,

In this manual, the term “‘macro’ refers to MACRO-11 calls; the term ‘“‘calt”
refers to FORTRAN, COBOL, and BASIC-PLUS-2 calls.

Exampie:

OPNx (generic representation)

OPN$ (MACRO-11)

OPNNT (FORTRAN, COBOL, or BASIC-PLUS-2)

OPNx is the first DECnet call a task issues for any DECaet session. A session
includes 2ll intertask communication calls issued between the OPNx call and the
CLSx call.

Table 1-1, in Section 1.3, provides an aiphabetical list of the DECnet intertask

communication calls, and describes the function and expected result of each.

Intertask Communication Concepts
This section explains the following basic intertask communication concepts:
= Establishing an active network task
8 Establishing z logical link
» Building a connect block
® Getting data from the network data queue

» Sending and receiving messages

DECnet-RSX Programmer’s Reference Manual

1.2.1

* Sending interrupt messages
= Checking completion status information
®* Terminating activity on 4 logical link

® Closing 2 network connection

Establishing an Active Network Task

Before any task can exchange datz using intestask communication calls, it must be
an active network task. A task is active if it is running and has jssued an open
(OPNx) call. An OPNx call connects the task to the network. It can also establish
the task’s nerwork data queue.

Your task requires Logical Unit Numbers (LUNs) assigned to NS:, the network
pseudodevice driver: a network data queue {mailbox) LUN and 2 LUN for each
logical link.

The network dzta gueue (tmailbox) LUN specifies the queue from which your task
retrieves network messages.

You can define the network data queue LUN by including the value as an argu-
ment to the OPN$/QOPNNT call or you can use the value of the symbol .MBXLU,
You can define the value of MBXLU at task build time; with MACRO-11, you can
also define it at assembly time. The MBXLU definition is referenced enly if you
omit the LUN argument in the call; so define a particular network data queue LUN
in only one place.

To define MBXLU at task build time, issue the following task build option:
GBLDEF=. MBXLU: x '

This instructs the task builder to define all global references to .MBXLU as the
integer value represented by x.

Using MACRO-11, you can choose to define .MBXLU at assembly time. To define
the LUN locally in your source code to a value represented by x, put the following
in each source module:

.MBXLU=x

To define the LUN globally, include this statement in a single source module:

.NBXL==x

introduction - 1-3

The task builder will define references to MBXLU in each source module in your
task to the value of x.

A task can use only one network data queue LUN. In MACRO-11 tasks, you can
specify a network data queue LUN with the following calls: SPA$ (specify a user
AST routine), GND$ (get network data), REJ$ (reject 2 logical link request), CLS$
(end the task’s network operations), and GLN$ {(get local node inforimation). You
must specify the same LUN that you specified in the OPN$ call, or the macro com-
pletes with a privilege error (IE.PRI).

Choose only one of these command techniques for defining MBXLU. However, if
yvou do not define . MBXLU, the task builder returns an undefined reference warn-
ing message. If you run the task and ignore the warning, the operating system
rejects the macro calls (OPNx, SPAS, GNDE, REJ$, CLS$, and GLN$) with a direc-
tive status error indicating an invalid LUN. The task builder causes undefined ref-
erences to default to zero (0). You cannot define MBXLU with a value of 0; Oisan
invalid logical unit number.

Issuing a CLS$ call to terminate network operations fora MACRO-11 task frees all
nerwork logical unit mumbers and aborts the task’s logical links. You can issue the
CLS$ call in any of the three CLS$ formats — CLS{W]$, CLS[W]3$E, and CLS[W]$S.

If a LUN is not assigned to NS:, any network directive is returned with the *“illegal
function code’’ status.

1.2.2 Establishing a Logical Link

1-4

To exchange data, a logical link must exist between two active network tasks. A
logical link is a2 logical path between two cooperating tasks that agree to commu-
nicate. When the link is established, a user task can send and receive messages.
Figure 1-1 illustrates the flowchart process for establishing a logical link.

DECnet-RSX Programmer's Reference Manual

Figure 1-1: Establishing a Logical Link

S NETWORK REJECTS
TARGET TASK REQUEST
INSTALLED?

START TARGET
TASK

15 TARGET
TASK ACTIVE?

TARGET TASK o
ISSUES OPEN CALL
E ¥Es e NETWORK ISSUES
- WITHIN -
THE SPECIFIED REJECT CALL
TIME?
TARGET TASK
ISSUES GET
NETWORK DATA CALL
DOES TASK REJECT
ACCEPT INCOMING ;S;(ﬁ%ﬁ?_
CONNECT?
ACCEPT
TASK IS5UES
ACCEPT CALL
LOGICAL LINK
ESTABLISHED
END
LKG=-1035-87

Introduction : 15

The task requesting the logical link is the source task. The task receiving the
request is the target task. The distinction between source and target task applics
only during the connection sequence. Once the logical link is established, both
tasks have equal access toit.

Tasks at both ends of the link must specify a logical unit number (LUN) for the
link. Each task assigns a link LUN to identify the link to the tasks and network. The
tasks at both ends need not use the same LUN for a link.

1.2.3 Building a Connect Block

Before the source task can issue a request to connect to another task, it must build
a connect block. A connect block contains a destination descriptor, source
descriptor, and optionally, access control information and user-supplied data.

1.2.3.1 Destination Descriptor

The destination descriptor identifies the destination task by task name or object
type number.

When two tasks communicate, they are considered to be two objects. A task can
be set up as a named or numbered object:

= A named object is an instalied user-defined task to which you connect by
specifying 2 name. The object type number for 2 named object is 0.

* A numbered object is an installed user-defined task or DECnet task to which
you connect by specifying an object type number. The object type numbers
for numbered objects range from 1 to 255, with 1 to 127 reserved for DEC-
net tasks and 128 to 255 reserved for user rasks.

For information on defining objects, see the DECnet-RSX Network Management
Concepts and Procedures manual.

1.2.3.2 Source Descriptor

1-6

The source descriptor coniains information that the DECnet software on the
source node supplies. The information includes either

= The source node name 2nd task name of a named object or the source node
name and task object number of a numbered object.

» The source node name and the user name of the person running the task.

The target task can use the source descriptor 1o detérmine whether it wants to
establish communications.

DECnet—RSX Programmer's Reference Manhual

1.2.3.3 Access Control Information

Access control information defines your access rights at the remote node. Each
target system performs access control verification according to its conventions. If
‘the target node is equipped to verify access control information, it does so before
passing the connect request to the target task. For information on access control
verification, see the DECnet-RSX Network Management Concepis and Proce-
dures manual.

1.2.3.4 Optional Data Messages

When the source task issues a connect request, you can include a data message of
up to 16 characters in the connect block. If the connect (CONx) call contains the
location and length of a block of user data, the source node appends that block to
the connect block.

1.2.4 Getting Data from the Network Data Queue

Once 2 task is connected to the network, it has a network data queue. The soft-
ware on the connected task’s node places all incoming connect request messages,
interrupt messages, user disconnect messages, user abort messages, and network
abort messages on the task’s network data queue. To get these messages, the task
issues a get network data {(GNDx) call. A task shouold begin monitoring its network
data queue as soon as the open call completes successfully.

The get network data call ordinarily returns the first message on the queuc ona
first-in, first-out basis. However, the GNDx call has the following options:

= Remove the first message on the queue and place it in the message buffer.

= Remove the first message of a specified type for any logical link and place it
in the message buffer.

®* Remove the first message for a specified logical link regardless of the mes-
sage type and place it in the message buffer.

® Remove the first message of a specified type for 2 specified logical link and
place it in the message buffer.

* Determine the type, length, and associated logical link of any message on the
queue without removing it from the queue. This altows you to assign an
appropriate buffer size in a subsequent GNDx call that performs one of the
four options just listed.

Introduction ' 1-7

1.2.5 Sending and Receiving Messages

Once 2 logical link is established between two tasks, both tasks can send and
receive messages. DECnet distinguishes between data and nondata messages.
Data messages go directly 1o a buffer provided by the receiving task. Nondata
messages go to a task’s network data queue. Nondata messages are unsolicited
high priority messages that inform the receiving task of an event, such as an inter-
rupt or disconnect request.

To send a data message, a task issues a send (SNDx) call. The send call must specify
the LUN that the connect or accept call assigned. It also specifies the location and
length of the data message buffer. A send cali completes when the receiving node
acknowliedges to the sending node that it received a message correctly.

Toreceive a data message, a task issues a receive (RECx) call. The receive call must
specify the LUN that the connect or accept call assigned. It also specifies the loca-
tion and length of the data message buffer. A receive call completes when the data
message is placed in the specified data message buffer. If the data message buffer is
tiot large enough, the receive call completes with a data overrun condition and
the excess data is lost; the I/O status indicates the overrun in such cases. Another
receive call is then required to receive the next data message.

To send 2 high priority nondata rbessage, a task issues an abort (ABTx), disconnect
{DSCx), or interrupt (XMLx) call. To receive a high priority nondata message, a
task issues a get network data (GNDx) call.

1.2.6 Sending Interrupt Messages

1-8

A task can send interrupt messages to another task. Usually an interrupt message
informs the receiving task of some unusuzl event in the sending task. An interrupt
(XMLx) message can be up to 16 bytes long. In the interrupt call, specify the LUN
assigned in the connect or accept call. Also specify the location and length of the
message buffer.

An interrupt call completes when the receiving node acknowledges to the send-
ing node that it received the message. The receiving node software places the
interrupt message on the receiving task’s network data queune. The receiving task
must issue a2 get neiwork data call to remove the message from the queue and
place it in the task’s message buffer.

Atask can have only one interrupt message outstanding on a logical link. Until the

call completes, any subsequent attemnpt to send another interrupt message on that
same link will return an error code in the /O status word.

DECnet-RSX Programmer’s Reference Manual

1.2.7 Checking Completion Status information

Each macro or call can include an argument that specifies the address of a 2-word
status block. The status block returns the status of a completed call. Include this
argument 50 that you can check completion status. You can use the same block
for successive /O requests, but only by one macro or call at a time. If concurrent
I/O requests attempt to use the same status block, unpredictable results occur.

The first status word contains:
T ® A zero if the called macro or subroutine has not completed

% A positive value if the calied macro or subroutine produced the desired
results

* A negative value if the called macro or subroutine did not produce the
desired results

The second status word contains further information about the completion. For
example, in 2 successful data transmission, it returns the number of bytes trans-
P mitted.

1.2.8 Terminating Activity on a Logicat Link
Any task can terminate activity on a logical link at any time by issuing a discon-
nect or abort call:

» A disconnect (D5Cx) call terminates transmissions over the logical link after
all data transmissions and interrupts have been sent.

e, = Anabort (ABTx) call disconnects the logical link inmediately, even if mes-
g sages are queuned for transmission.

The receiving node software places the termination message on the receiving
task’s network data queue. The receiving task must issue a get network data call to
retrieve the message.

Both disconnect and abort calls can specify the location and length of a user data
message of up to 16 bytes for the receiving task.

The disconnect call must specify the logical unit number (LUN) assigned in the

connect or accept call. A disconnect call allows node software 1o complete all

Wi pending transmits for the issuing task before disconnecting the logical link. Dur-
¥ 3} ing this time, the issuing task continues to receive messages. When the last mes-
- sage is transmitted, however, any remaining receive calls complete with an abort

Introduction . 1-9

condition. When the link is disconnected, _the‘[.Ufi is freed. A task can use that
LUN in subsequent connect or accept calls.

The abort call must specify the logical unit number (LUN) assigried in the connect
or accept call. An abort call causes the node software to immediately abort all
pending transmits and receives and disconnect the link. The LUN is freed and 2
task can use that LUN in subsequent connect or accept calls.

1.2.9 Closing a Network Connection

To close a task's network connection, issue a close (CLSx) call. The close call
informs the node software that the task no longer requires network services and
purges the task’s network data queue. Any active LUNs are deactivated and freed
for use if the task subsequently issues an open (OPNx) call.

i
4 k4

If data remains in the terminating task’'s network data queng when the close call is
issued, the task receives any connect requests that remain in its network data
queue if it subsequently issues an open call within a short period of time. Data of
other types, sach as interrupt, disconnect, and 2bort messages, are discarded.

1.2.10 Using the Wait Option S

Many macros and calls aliow you to use the wait option. Including W in a call
(such as GNDW$ or GNDNTW) delays execution of the calling task until the call
completes. The calling task then continues at the instruction immediately follow-
ing the call. Without the wait option, the call executes asynchronously.

in 2 MACRO~11 call for which you specify the wait option, an event flag is man-
datory. If you omit the event flag, the call completes as 2 normal asynchronous
call.

1.2.11 Using the AST and WAITNT Options

An asynchronous system trap (AST) in a MACRO-11 call causes the AST to exe-
cute when the call completes. In FORTRAN, COBOL, and BASIC-PLUS-2, the
WAITNT call instead determines when a call completes.,

1.2.12 Using the Flow Control Option

A network program requires buffer space for temporary message storage. For
example, a program keeps a copy of each message that it sends over the link in
buffer space until the receiver acknowledges the message. A program also holds
buffer space for receiving inbound messages.

1-10 DECnet-RSX Programmer's Reference Manual

1.3

DECnet provides flow control mechanisms that prevent the overflow of available
buffer space. Sending and receiving tasks are synchronized so that a source task
transmits data only if the target task has issued a receive call and has available
buffer space.

With MACRO-~11 tasks, DECnet—RSX also provides a special NOFLOW option
that disables flow control mechanisms. The NOFLOW option can help in attain-
ing a higher level of network performance, but you must use it with caution.
Without flow control, 2 source task can send data whether or not a buffer is avail-
able to receive it. If the target task does not have adequate buffering for the
incoming data, some data segments will be discarded. The software must request
retransmission of each discarded segment, after a timeout. This significantly
degrades network performance. If you choose the NOFLOW option, maintain
adequate buffering at the target task to compensate for the loss of send/receive
synchronization. The communicating programs should be appropriately written.

The NOFLOW option is desirable when:

= Aprogram’s User layer protocol already includes control mechanisms or
acknowledgment-signaling mechanisms.

= The flow of data is predictable, and the program can handle the flow.

NOTE

It is inadvisable to use the NOFLOW option in the ini-
tial stages of developing a network program. Wait
until after you test the communicating programs and
adequately synchronize the dawa flow.

You can set either end of the logical link to FLOW or to NOFLOW contro} inde-
pendently. Set the NOFLOW control option within the CONx and ACCx calls.
Flow control is the default.

Summary of Intertask Communication Calls
Table -1 lists the intertask communrnication calls. The first column of the table

lists the call name. MACRO-11 macro call names have the form nam$ and FOR-
TRAN, COBOL, and BASIC-PLUS-2 call names have the form namNT, where

- nam represents the specific call. The second column defines the function of the

call. The third column describes the resuit of the call’s successful execution.

Introduction 1-11

Table 1-1: DECnet Communication Calls

Call

Function

" Normal Action

ABTS$
ABTNT

ACCS
ACCNT

BACC
BACCL

BEMTO
BFMT1

CLS$
CLSNT

CON$
CONNT

Abort a logical link

Accept a logical
link request

Build access control
information area

Build a format
descriptor block

Cigse the network
connection — end the
task's network
operations

Request a logical
link connection

Transmits a nondata 2bort message over the
logical link. The DECnet software on the
receiving node delivers the abort message to
the receiving task’s network data queue.

Notifies the DECnet software on the target
node that the target task accepts a logical link
request. The DECnet software then sends the
acceptance notification to DECnet software on
the source node. The source node DECnet soft-
ware delivers the accept message 10 the status
block that the source task specified in the
CONS$ or CONNT call.

Builds the access control information for 2
connect block. Use BACC for a short connect
block, and BACCL for a long connect block. A
subsequent CONNT call delivers the contents
of this block to the DECnct software on the tar-
get node. This call does not transmit user data
over a logical link.

Builds a destination descriptor for the connect
block. A format 0 destination descriptor
describes the target task by object code. A for-
mat I destination descriptor describes the tar-
get task by name. This call does not transmit
user data over a logical link. A subsequent
CONNT call delivers the contents of this block
to the DECnet software on the target node.

Sends the close request 10 the DECnet software
on the issuing task’s node. This call does not
transmit user data over 2 logical link.

Sends a high priority nondata connect message
and connect block over a temporary logical
link to the target node’s DECnet software. If
the target task is an active network task, the
connect request is delivered to its network
data queue. The connect block is delivered to a
mailbox as a result of 2 subsequent get network
data call (GND$ or GNDNT).

1-12

DECnet~RSX Programmer’s Reference Manual

,5——\

Table 1-1 {Cont.):

DECnet Communication Calls

Call Function Normal Action
CONBES$ Build a connect biock Builds a connect block that 2 subsequent CON$
(short) <all delivers to the DECnet software on the tar-
get task. This connect block accepts auser ID
of up to 16., password of up to 8., and account
number of up to 16. bytes. This call does not
transmit data.
CONLSS Build a connect block Builds a connect block that a subsequent CON$
(long) call delivers to the DECnet software on the tar-
get task. This connect block accepts a user ID,
password, and account number of up 1o 39,
bytes each. This cail does not transmit data.
DSC$ Disconnect the Transmits 2 nondata disconnect message over
DSCNT logical link the logical link. The DECnet software on the
receiving task’s node delivers the disconnect
message to the task’s network data queue.
GLN$ Get local node data: Delivers local node information to the buffer
GLNNT - node name and that an argument of the call specifies. This call
transmission segment does pot transmit user data over a logical link.
size
GND#$ Get network data from Stores data from the network data queue in the
GNDNT tasks’'s network data location that arguments of the call in the issu-
queue ing task specify. This call does not transmit
user data over 2 logical link.
OPNS$ Open the network Delivers the open request to the DECnet soft-
OPNNT connection — create ware on the issuing task node. This call does
the task’s network not transmit user data over a logical link.
data queue
RECS Request to receive Receives a data message that another task’s
RECNT data over the logical DECnet send call initiated. When the receive
link call compietes, the DECnet software on the
issuing task node sends 2 notification message
to the status block specified in the call. This
call docs not transmit user data over a logical
link.
REJ$ Reject a logical link Sends rejection notification over the tempo-
REJNT request rary logical link from the DECnet software on
the target task’s node to the DECnet software
on the source node. The source node’s DECnet
software delivers the reject notice to the status
block that the source task's CONS or CONNT
call specified.
{continued on next page)
Introduction 1-13

1.4

Table 1-1 (Cont.):

DECnet Communication Calls

Call Function Normal Action

SND$ Request to send 2 data Transmits the data message over the logical

SNDNT message over the link 1o the DECnet software on the receiving
logical link task node. When the receiving DECnet soft-

ware delivers the message to the area specified
in the receiving task’s recejve call, it returns a
completion status message to the sending
DECnet software, which delivers it to the
status block specified in the send call.

SPAS Specify the location Transfers control to the AST routine when 2

' of a user-written nondata message is placed on the task’s net-
asynchronous system work data queve. This call does not transmit
trap (AST) routine vser data over alogical link.

WAITNT Wait for the completion Suspends task execution until completion of a
of any other DECnet previously-issued call thar inciuded a wait
communications call option. This call does not transmit user data

over a logical link.

XMI$ Request to send an Transmits a high priority nondata interrupt

XMINT interrupt message message over the logical link. The DECnet soft-

over the logical link

ware on the receiving node delivers the inter-
rupt message to the receiving task’s network
data queune.

DECnet-RSX Remote File Access Operations

Using DECnet-RSX remote file access facilities, you can write a FORTRAN,
COBOQL, or BASIC-PLUS-2 program that performs the following file access oper-
ations for sequential files only:

® Qpen or create a remote file

» Append records to a remote file

Read and write records to 2 remote file

s (Close, purge, or delete a remote file

DECnet-RSX Programmaer’s Reference Manual

1.5

DECnet-RSX file access facilities have similar features to those of DECnet-RSX
intertask communication facilities.

* The file access facilities are implemented by means of calls to subroutines.

= The task that requests file access is called the source task, and the task that
accepts or rejects the request is called the target task.

= Acceptance of a file access request creates a logical link between the source
anct target tasks. Then the file access process begins.

Incoming file access requests are translated into calls to the file system at the tar-
get node. The resuiting file data is sent back to the accessing task. The accessing
task then reformats the data as the system requires. The DECnet software
establishes the logical link for file access operations; much of the connection pro-
cess is therefore transparent, in contrast to intertask communication. After com-
pleting file access operations, the logical link is disconnected.

Section 3.9 discusses remote file access operations.

DECnet-RSX Task Controtl
DECnet-RSX task control lets you write tasks in FORTRAN that:

s Execute an installed task on a remote node according to a set schedule, using
the RUNNCW call

= Abort an executing task on a remote node, using the ABONCW call
® Cancel a scheduled task on a remote node, using the ABONCW call

Section 3.10 discusses remote task control.

Introduction ‘ 1-16

e T

e e

2

DECnet-RSX MACRO 11 Programming
Facilities

DECnct~RSX provides a library of MACRO- 11 macros to use in network intertask
communication. This chapter:

» Describes the three network macro formats.

= Explains the connect block and access options for your task.

Lists the graphic conventions for this chapter.

= Describes each intertask communication macro call.

2.1 RSX-11 Network Macro Formats

You can use the following formats to code macros:

= BUILD type macro. <Createsa parameter block at assembly time and is

generally used in conjunction with an EXECUTE type macro or a2 DIRS direc-
tive.

» EXECUTE type macro. References the parameter block that a BUILD
type macro created and executes the requested function. An EXECUTE type
macro lets you override parameters that the BUILD type macro specified.

= STACK type macro. Creates a parameter block on the processor stack
and executes the requested function.

Section 2.1.4 has examples of these three macro format types.

2.1.1 BUILD Type Macros

2-2

You use the BUILD type macro at assembly time. This macro creates a parameter
block that contains arguments that describe the network function you requested.
A pre-defined parameter block is especially useful for repetitions of the same net-
work operation. If you omit an optional parameter from this block, the macro
allocates space for it anyway. Later, you can use an EXECUTE type racro to fill in
the argument. If vou plan to use the EXECUTE type macro, however, you must
include all of the BUILD type macro’s trailing arguments.

The format for 2 BUILD type macro is;

label: xxx[W|8 parameter-list{ flag)

where

label is 2 symbolic name associated with the location of the parame-
ter block.

xxx is the name of 2 DECnetr—~RSX macro.

[W] specifies thart this network function will complete synchro-

nously. The issuing task waits vntil the function completes
before continuing. If you omit the W, the call completes asyn-
chronously.

parameter-list is a list of arguments that describe particular features of this
call. Each parameter must be a valid argument for 2 . WORD or
.BYTE MACRO-11 directive, Each call description includes 2
list of the parameters for the call. The number of arguments
specified must not exceed the number specified in an
EXECUTE type macro that will use this parameter block,

flag is a symbolic name that specifies an oprional subfunction of the
network macro.

You can execute a BUILD type macro by issuing an EXECUTE type macro or a
DIR$ macro. A DIRS macro call pushes the address of the network function
parameter block that you created with the BUILD macro on the processor stack
and then issues an EMT 377 for the Executive to execute the macro. You can write
a DIR$ macro as follows:

DIR$ adr.err

DECne1-RSX Programmer’s Reference Manual

where

adr is the address of the parameter block in the format of a source operand
of an MOV instruction.
err is the address of an optional error routine. The C-bit in the processor

status word (PSW) is set whenever an error is encountered.

A DIR$ macro generates less code than a corresponding EXECUTE macro.

2.1.2 EXECUTE Type Macros

The EXECUTE type macro references a network function parameter block that
you create at assembly time with a BUILD type macro. An EXECUTE type macro
ets you enter parameters that override those that vou originally defined with a
BUILD macro.

You must include all trailing arguments in a BUILD type macro that an EXECUTE
type macro references.

Once you redefine or specify new parameters for the call, the EXECUTE macro
automatically executes the function that the call requests. The format for an
EXECUTE type macro is:

xxx{W1$E label] override-parameter-list]] flag)

where
XXX is the name of 2 DECnet—RS$X macro.
e W] specifies that this network function will complete synchro-
L nously. The issuing task waits until the function completes
before continuing. If you omit the W, the call completes asyn-
chronously. '
label represents one of two values:

s The label of the BUILD type macro that supplies parame-
ters for this EXECUTE macro. You can include arguments
immediately following the label to override any parame-
ters previously defined in the BUILD parameter block.

DECnet-RSX MACRO-11 Programming Facilities 2-3

override-
parameter-list

flag

® The label of an area of memory that will contain the
parameters that you are currently specifying. The parame-
ter block is built and the call is executed in the same macro.

is 2 list of one or more arguments to replace parameters that
you previously defined for this call in 4 BUILD type macro.
Each argument in this list must be 2 valid source operand for an
MOV §, label + offset MACRO-11 instruction.

You can override the value of a parameter and assign it a null
value. For example, if an AST is not required, specify the
parameter as 0. ’

is 2 symbolic name that specifies an optional subfunction of the
network macro.

2.1.3 STACK Type Macros

The STACK type macro creates the network function parameter block for the call
on the processor stack and then executes the requested function. You must spec-
ify all required parameters when you issue this macro or it will generate assembly

2-4

CITors.

The format for a STACK type macro is:

xxx{ W8S parameter-list{ flag)
where
xxx is the name of a DECnet-RSX macro.

(W]

parameter-list

Jfiag

specifies that this network function will complete synchro-
nously. The issuing task waits until the function completes
before continuing. If you omit the W, the call completes asyn-
chronously.

is a list of arguments that describe particular features of this
call. Each argument must have the form of a valid MACRO-11
MOV instruction source operand, Each call description
includes a list of the parameters for the call.

is a symbolic name that specifies an optional subfunction of the
network macro.

DECnet-RSX Programmer's Reference Manual

2.1.4 Macro Format Examples

2.2

The following examples demonstrate the three macro types. The first, 2 BUILD
type macro, creates 2 parameter block for the call designated by xex$:

label: xxx[W1$ lun.efn status.ast, <pi,p2,....pm>

The first example of an EXECUTE type macro references the parameter block cre-
ated for label: :

xxx[W]$E label

The second EXECUTE type macro overrides the parameter list arguments p7 and
b2:

xxx{WSE label,,,,, <pl,p2>

The last example, a2 STACK type macro, creates a parameter block on the stack,
and executes the call.

xxx{W}8S #lun tefn #status #ast, <#pl #p2>

Connect Biock Options

As Chapier 1 described, a source task builds 2 connert block before issuing a con-
nect request. This outgoing connect block contains information about the con-
nect request’s target node and task. It can also specify explicit access control
information that gives the source task access to the target node. Before network
software sends the connect block to the target task, it adds information about the
source task or user. If you have an R§X-11M-PLUS or Micro/RSX system with
outgoing proxy enabled, network software also adds proxy information (see
Section 2.3). At the target node, the target task retrieves the incoming connect
block from the network data queue.

Your task can use either long or short connect blocks. Using long connect blocks
lets your task support user IDs, passwords, and accounts of 39. characters each.
Using short connect blocks lets your task support user IDs of up to 16. characters,
passwords of up to 8. characters, and accounts of up to 16. characters.

For greatest flexibility, use long connect blocks when writing a new task. How-
ever, you can continue to use an existing task that uses short connect blocks with-
out modifying the task. If you change an existing task to use long connect blocks,
note the added buffer space requirements. Also note that if the task uses proxy
access, you need not supply values for the access control information fields.

DECnet-RSX MACRO-11 Programming Facilities - 2-5

2.2.1 Using Connect Block Options

The connect block size that you choose affects the following macro calls in your
task:

Macro Connect Block Option

OPN#$ Include the NT.LCB flag to specify a2 fong connect block.

CONBS$$ Use CONBS$ to build a short connect block.

CONL#S Use CONL#$§ to build a long connect block.

CONS Provide the appropriate conaect block length in the conblen argument.
ACCS Use the mail and mailen arguments to reference the appropriately-
GND#$ sized buffer.

REJS

When access verification for your task is on, your node's network software
verifies access rights and removes the access control information before passing
an incoming connect block to your task. For information on enabling verification
for a task, refer to the DECnet-RSX Guide to Network Managenient Utilities.

2.2.2 Receiving Connect Block Information

2-6

You specify the type of connect block you want to receive by including or omit-
ting the long connect block {NT.LCB) flag in the OPN§ (access the nerwork)
macro. If you specify the NT.LCP flag, network software nses long connect block
fields when passing access control information to your task.

In the GND$ macro, which retrieves the connect block from the network data
queue, you specify a buffer to hold the incoming connect block information. The
buffer size that you allocate may or may not equal the size of the incoming con-
nect block, but in writing incoming data to your buffer, network software always
uses the offsets appropriate to the connect block size that your OPN$ macro spec-
ified. You receive all information if the source task sends the same size connect
block that you receive, or if you receive tong connect blocks and the source task
sends a short connect block. However, if you receive short connect blocks and
the source task sends a long connect block, you may lose some information. Net-
work software writes the received information into the appropriate field if the
information fits. Information that does not fit into the receiving field causes 2 data
overrun error and is lost.

You can choose to allocate 2 receiving buffer that is smaller or larger than the
expected connect block. For example, you might allocate a smaller buffer to
exclude all but the initial fields, or allocate 2 larger buffer to receive optional user
data. The GND$ call description describes what happens when the task receives
access control information that is smaller or larger than expected.

DECnhet-RSX Programmer’s Reference Manual

2.3 Access Control Information

An outgoing connect request sends information to the target node in order to gain
access to an account on the target node. You can specify the access control infor-
mation and/or the network software can supply proxy information. Proxy access
is available only with RSX-11M-PLUS or Micro/RSX.

When you supply explicit access control information for the connect request,
you specify a user ID, password, and, optionally, an account number. These iden-
tify the target account on the remote node. You specify the explicit access control
information as arguments to the macro that builds the connect block (CONB$$ or
CONLS$$). When the target system receives the connect request, it grants access
according to what you specified. For information on which access conerol argu-
ments the target system reqoires, refer to user documentation for that system;
DECnet-RSX nodes require the user ID and password. For more information on
explicit access control information, refer to the DECnet—RSX Network Manage-
ment Concepts and Procedures manual.

Proxy access, in contrast, eliminates the need to send passwords across the net-
work. The network managers on both nodes must set up the environment for
using proxy. Once your network manager enables ourgoing proxy, your node
automatically sends proxy information with all outgoing connect requesis. Proxy
information is the user ID under which the source task is executing. If incoming
proxy is enabled on the target node, the system can grant access according 1o the
proxy informarion and source node name. For information on how a target sys-
tem verifies proxy access, refer to the DECret-RSX Guide to Network Manage-
ment Utilities.

if an incoming connect request contains both explicit and proxy access control
informartion, the target system uses the explicit information, and not the proxy
information, to verify access.

DECnet-RSX MACRO-11 Programming Facilties 2-7

2.4 Conventions Used in This Chapter

2-8

The following conventions are used in the macro descriptions and examples in

this chapter:

asterisk *

UPPERCASE

lowercase italic

square brackets| |

braces { }

flags arguments that you must check for information
after the macro completes. For example, the status argu-
ment specifies an array/data item where completion
status information is stored when the macro compietes.

indicates characters to type exactly as shown. You can
type the text in upper- or lowercase.

indicate variables for which you specify or the system
supplies the actual values.

enclose optional darta. If the brackets enclose a vertical
list of options, you can specify only one option. Do not
type the brackets when you code a2 macro.

Examplie:

ABT[W)S lun,[efn).[status],[ast)[, < out.,outien>]

In this macro, the Jun argument is required; a1l other
arguments are optional.

enclose options, from which you must choose one and
only one. Do not type the braces when you code the

macro.

Example:

GND[W18 lun [efn] [status}],|ast],

< mail mlen>
< mail,mlen mask> NT.TYP

,NT_.LON

<, mask> NTLON

In this example, you must inciude one of the four argu-
ment strings enclosed within the braces when you code

GNDSE.

DECnet-RSX Programmer’s Reference Manual

commas and
angle brackets < >

numbers

must be typed as part of the macro format. Even if you
omit an argument, include the comma that delineates its
field unless no other arguments follow.

Example:
Basic format:
ABTIW8 lun [efn],[status].[ast]], < out.outlen >

Saruple macro:

ABTE %, ,status

efn, ast, out, and outien have been omitted. A comma
delineates the field for the missing efr argument; no
comsmas are necessary for the three arguments dropped
at the end of the macro.

are octal uniess followed by a decimal point. If the
assembler default radix has been set to octal, you can
designate a decimal radix by placing 2 decimal point
immediately after 2 number.

Example:
SNDSS #3,#1,#TOSTN, , <#UAUX,#16.>

In this example, 16 is a decimal number.

DECnet-RSX MACRO-11 Programming Facilities ' 2.9

2.5 Intertask Communication Macros

This section contains descriptions and usage guidelines for the intertask commu-
nication calls that Table 2-1 lists. Read the preceding material in this chapter
before using the calls. If you are unfamiliar with intertask communicarion con-
cepis, also read Chapter 1 carefully.

Table 2-1: Intertask Communication Macros

Macro Function

ABTS Abort a logical link

ACC3 Accept alogical link connect requrest

CLSE End a task’s network operations

CONS$ Request a logical Yink conneciion

CONB$$ Build a short connect block for CON§ macro
CONLES Build a long connection block for CON§ macro
DSC#$ Disconnect a logical link

GLN$§ Get local node information

GNDS Get data from network data queue

OPN$ Access the network

REC? Receive data over a logical link

RE}$ Reject logical link connect request

SND$ Send data over z logical link

SPAS Specify a user AST routine

XMI$ Send interrupt message over a logical link

2.5.1 Common Argument Definitions

2-10

This section defines commonly-used arguments for intertask communication

macros.

» label

has the following meanings, depending on the macro type:

BUILD type: label is a symbolic name associated with the location of

the argument block.

DECnet-R8X Programmer’s Reference Manual

EXECUTE type: label can represent one of two values:

The label of the BUILD macro that supplies arguments for the current
EXECUTE macro. You can override any arguments that the BUILD macro
defines by reentering them after Zabel in the EXECUTE macro.

The label of an area of memory that will contain the arguments that you
specify in the current EXECUTE macro.

= staltus

unless noted otherwise, is the address of an optional 2-word status block
that contains completion status information on return from the macro. If
specified, this block will contain the following values when the macro com-
pletes:

Word 0: Byte 0 = Error/completion code
Bytel =0
Word 1: 0

Each macro description lists the error/completion codes for that macro.

s out,outlen
define optional user data to send with certain macros. These are optional
arguments, but are always paired; use both or omit both.

out is the octal stacting address of 2 buffer that contains optional user
clata you can send on some operations.

outlen is the length in decimal bytes of the 1- to 16.-byte message t0
send. .

DECnet-RSX MACRO-11 Programming Facilities 2-11

ABTS

ABTS$
(Abort a Logical Link)

2.5.2 ABT$ — AbortaLogical Link

Use:

Issue ABT$ from either task to abort a logical link. ABT$ immediately aborts all
pending transmits and receives, disconaects the link, and frees the LUN assigned
to the logical link, When you issue ABTS$, you can send 1 to 16. bytes of user data
to the task from which you are disconnecting (see the out,outlen arguments).

Formats:
tabel. ABT[W)$ lun,[efn).[status),[ast]], < out,outlen>>]
ABT[WI3E label [lun],[efn].[status].[ast]], < out,outlen>]

ABT[WI)$S lun,[efn],[status),[ast)], < out,outien>)

Arguments:

label

specifies the location of the argument block. See the definition in Section
2.5.1.

lun

identifies the logical link to abort. If you initiated the connection, enter the
LUN vou used in the CON$ macro. If you accepted the connection, enter the
LUN vou used in the ACC$ macro.

] eﬂ'
specifies an optional event flag number to set when ABTS compiletes.

* status

specifies completion status information on return from ABT$. See the defini-
tion in Section 2.5.1.

2-12 DECnet-RSX Programmer’s Reference Manual

™ ABTS

ast

is the address of an optional user-written AST routine to execute after ABT$
completes.

out.outlen

define optional user data to send. See the definition in Section 2.5.1.

_ Error/Completion Codes:
“ IS.SUC The macro completed successfully.

IE.ABO The specified logical link has already been aborted or discon-
nected.

IE.BAD The optional user data exceeds 16. bytes.

IE_IFC LUN not assigned to NS:.

IE.NLN No logical link bas been established on the specified LUN.

IE.NNT The issuing task is not a2 network task; OPN$ did not execute suc-
cessfully.

IE.SPC Invalid buffer argument; the optional user data buffer (ouf) is ont-
side the user task address space.

ook

DECnet-RSX MACRO-11 Programming Fagcilities 2-13

ACCS

ACCS |
{Accept Logical Link Connect Request)

2.5.3 ACCS — Accept Logical Link Connect Request
Use:

Issue ACC$# from the target task to establish a logical link with the source task.
When you issuc ACC$, vou can send 1 to 16. bytes of user datz to the source task
(see the out,outlen arguments).

Formats:

label. ACC[WS luen [efn),[status) jast], <mail [mailen],
' [out,outlen] > [, NOFLOW]

ACC[WISE label,[lun],|e/n).[status] |ast], <[mail},[mailen],
{out.outlen]>[NOFLOW)

ACC[W]$8S tun [efn),[status),[ast], <mail [mailen],
[out,outlen] > [, NOFLOW)]

Arguments:

label

specifies the location of the argument biock. See the definition in Section
2.5.1.

Tun

assigns the logical link number. Use this LUN to refer to this logical link in
any subsequent REC$, SND$, XMI$, ABT$, or DSC$ macro.

* en
specifies an optional event flag number to set when ACC$ completes.

status

specifies completion status information on return from ACC3E. See the defini-
tion in Section 2.5.1.

2-14 DECnet-RSX Programmer’s Reference Manual

ACCS

ast

is the address of an optional user-written AST routine execute after ACC$
completes.
mail

is the address of the connect block sent by the source task and retrieved by
GNDS$. Specify the same address for this and the GND$ mail argument. The
connect block information is required to establish the connection.

mailen
is the length of the connect block in decimal bytes, The default value is 98.
bytes (N.CBL), the short connect block length, not including optional data.

For a long connect block, specify 178. bytes (M.CBL), the long connect block
length, not including optional data.

out,outlien

define optional user data to send. See the definition in Section 2.5.1.

NOFLOW

disables flow control for incoming messages addressed to the task thar issued
ACC$. Omitting NOFLOW establishes flow control for incoming messages. You
can enable or disabie flow control independently at either end of the link. Use the
NOFLOW option with caution (see Section 1.2.12),

Error/Completion Codes:
IS.suC The macro completed successfully,
IE.ABO The task that requested the connection has aborted or requested
a disconnect before the connection could complete.
IE.ALN A logical link has already been established on the specified LUN.
IE.BAD Either the temporary link address in the connect block sent by

the source task is invalid, or the optional user data buffer length
(outlen) exceeds 16. bytes.

IE.IFC LUN not assigned to NS:.

DECnet-RSX MACRO-11 Programming Facilities 2-15

ACCS$

IE.NNT

IE_RSU

IE.SPC

2-16

The issuing task is not a network iask‘; OPNS$ did not execute suc-
cessfully.

System resources needed for the logical link are not available.
Invalid buffer argument; either the pending connect block (mail)

or the optional user data buffer (oxt) is not word aligned, or one
of them is outside the user task address space.

DECnet-RSX Programmer's Reference Manual

K

I.‘\,_\ CLS$
CLS$
(End Task Network Operations)

2.5.4 CLS$ — End Task Network Operations

Use:

Issue CLS$ from either task to end that rask’s network activity, abort its logical

links, and free its network LUNs. If the CLS$ call occurs when data remains in the
task’s network data queue, network software:

®= Reschedules the task if pending connect requests arrived while the task was
active, The task receives these connect reguests when it restarts. There isa
limit of one retry and a timeout period of approximately 15 seconds.

* Rejects connect requests that arrived while the task was inactive.

Discards interrupt, user disconnect, user abort, or network abort messages.

Formats:
label: CLS[W18 [fun].[efn],istatus][,ast]
CLS[WSE label,jlun).iefn],[status]] ast)

CLS{W}$S [funi,[efn], [status)], ast]

Arguments:

label

specifies the location of the argument block. See the definition in Section
2.5.1,

lun

identifies the logical unit number of the network data queue. Use the same
LUN vou assigned in the OPN$ macro.

» em

specifies an optional event flag number to set when CLS$ completes.

DECnet-RSX MACRO-11 Programming Fagcilities 2-17

CLS$

. status

specifies completion status information on return from CLSS. See the defini-
tion in Section 2.5.1.

ast

is the address of an optional user-written AST routine to execute after CLS$

completes.
Error/Completion Codes:
18.5UC The macro completed successfully.
IE.IFC LUN not assigned to NS:.
1IE.NNT The issuing task is not a network task; OPN#$ did not execute suc-
cessfully.
iE.PRI The nerwork is not accessed on the specified LUN.

2-18 DECnet-RSX Programmer’'s Reference Manual

CONS$

CONS
(Request Logical Link Connection)

2.5.5 CONS — Request Logical Link Connection

Use:
Issue CONS$ from the source task to request a logical link with the target task.
Before issuing CONS$, you must build a connect block (see Section 2.5.6 or 2.5.7)
that CON$ can pass to the target node.
When a remote system receives a connect request, it checks the remote task. 1f the
task is currently installed and inactive, the system automatically loads and acti-
vates it. The target task must issue a GND$ macro call to retrieve the connect
block information. ‘The task evaluates the connect request and cither accepts or
rejects it.
You can send 1 to 16. bytes of user data to the target task and/or receive 1 to 16.
bytes of user data from the target task when it accepts/rejects your conneci
request.
Formats:
label: CON[W18 lun,[efn] [status],|ast], < conbl.[conblen],
[out,outlen) lin inlen] > {,NOFLOW]
CON[WISE {abel [lun) [efn] [status) |ast], <conbl [conbien],
[out, outlen),[in,inlen] > | NOFLOW]
CONIW}SS Iun.[efn) [status).]ast], < conbl,[conblen],
[out,outlen) [in,inlen) > [, NOFLOW]
Arguments:

label

specifies the location of the argument block. See the definition in Section
2.5.1.

DECnet-RSX MACRO-11 Programming Facilities 2-18

CONS

2-20

fun

assigns the logical link nurnber. Use this LUN to refer to this logical link in
any subsequent REC#, SND§, XMIS$, ABTS, or DSC$ macro.

efm

specifies an optional event flag number to set when CON§ completes.

status

is the address of an optional 2-word status block that contains completion
status information on return from CONS. If specified, this block will contain
the following values when CON$ completes:

Word 0: Byte 0

Bytel = 0

It

Word 1: Byte 0 = Contents depend on error completion code in word 0,

Error/completion code (see the list that follows)

byte O (see the list that follows)

0

il

Byte 1

This list shows the error/completion codes that you can receive in word 0,

byte 0 and the corresponding contents of word 1, byte 0:

Error/Completion Code
Word 0, Byte 0

IS.8UC
Connection accepted

IS.DAO
Connection accepted with data overrun

1E.DAO
Connection rejected by user with data overrun

1E.URJ
Connection rejected by user

JIE.NRJ
Connection rejected by DECnet

All other cases

DECnet—-RSX Programmer’s Reference Manual

Word 1, Byte 0

Received byte count
{0 if no data is received)

Received byte count
{0 if no dara is received)

Received byte count
(0 if no data is received)

Received byte count
{0 if no dara is received)

Reason for rejection
{refer to Appendix A)

o

CONS

ast

is the address of an optional user-written AST routine to exccute after CON$
completes,

conbl

is the address of the connect block built using CONL$$ or CONBS$S. This
block must start on an even byte (word) boundary.

conblen

is the length of the connect block in decimal bytes. If you omit this value, the
CON$ macro uses the short connect block length, 72, bytes (N.RQL). To use
a long connect block, specify the long connect block length, 152. (M.RQL).

out.outlen
define optional user data to send. Sce the definition in Section 2.5.1.
ininlen

define the buffer to receive optional user data from the target task. These are
paired optional arguments; use both or omit both. If you omit these argu-
ments and the target task sends user data, a daia overrun status code (IS.DAO
or IE.DAO) will be returned.

*in is the octal address of the buffer.
inlen is the buffer length in decimal bytes (1 to 16.).

Flag:

NOFLOW

disabtes flow control for this end of the link. Omitting NOFLOW establishes flow
control at this end of the link. You can choose to enable or disable flow control

independently at each end of the link, Use the NOFLOW option with caution (see
Section 1.2.12),

DEChet-RSX MACRO-11 Programming Facilities 2-21

CONS

Erraor/Completion Codes:

IS.SUC The macro completed successfully.

IS.DAO The macro completed successfully; the target task accepted the
connection. However, the target task sent back some optional
user data when it accepted the connect request, which was lost.

IE.ALN A logical link has already been established on the specified LUN.

IE.BAD Either the optional user data buffer exceeds 16. byzes, or the field
length count in the connect block is too large.

IE.DAO The connection was rejected and some optional user data sent
from the target task when it rejected your connect request was
lost.

IE.IFC LUN not assigned to NS:.

IE.NNT The issuing task is not a network task; OPN$ did not execute suc-
cessfully.

1E.NRJ The network rejected the connection (see the reject reason codes
in Appendix A).

IE.PRI The local node is shutting down. No logical link can be estab-
lished.

IE.RSU Systemn resources needed for the logical link are not available.

1E.SPC Invalid buffer argument; either the connect block (conbl) is not
word aligned, or the optional user data buffers (in or out) are out-
side the user task address space.

IE.UR} The remote user task rejected the connection.

2-22

DECnet-RSX Programmer's Reference Manua!

wo
P

CONBS$

CONBS$$
(Bulld Connect Block (Short))

2.5.6 CONBS$$ — Build Connect Block (Short)

Use:

Issue CONB#$# from the source task to build 2 72_-byte connect block. The CON$
macro call passes this outgoing connect block to the target task. The connect
block contains the target node name, destination descriptor, and, optionally,
explicit access control information. The target task can use this information to
determine whether t0 accept (ACCS) or reject (REJ$) the connect request.

To include explicit access control information, include the rgid, pass, and,
optionally, @ccno arguments in the macro. You can omit the explicit access con-
trol information if you already included it in an alias node name or if you use
proxy access. The target system verifies access control information according to
its system conventions. If the target node uses and has enabled access verifica-
tion, it performs verification before passing the connect request to the target task.

For more information on access control verification, refer to the DECnef-R5SX
Network Management Concepis and Procedures manual. For more information
on aliases, refer to the DECnet—RSX Guide to User Utilities or the DECnet-RSX

Network Management Concepts and Procedures manual, For more information

on proxy access, refer to the DECnet—RSX Guide to Network Management Utili-
ties.

Format:

CONB$$ [nodel [oby].[fmt, < descrip > ,|rqid).| < pass>][.accno]
Arguments:

node

is the name of the target node. The name must have 1 to 6 alphanumeric charac-
ters, including at least 1 alphabetic character.

The obj, fmt, and descrip arguments comprise the destination descriptor. You
must specify this information in order to access the task,

DECnet-RSX MACRO-11 Programming Facilities 2-23

CONBS$S

2-24

obj

is the target task’s object type. The object type for 2 named object is 0. The object
type for 2 numbered object is in the range 1 to 127. for a DECnet task or 128. to
255. for a user task. Refer to Appendix B for a list of object type codes.

Privileged users can define their own object types; for information, refer to the
DECneit-RSX Network Management Concepis and Procedures manual.

fmit

is the descriptor format type. To connect to a2 named object, specify 0 for the
descriptor format type and specify the descrip argument, To connect to 2 num-
bered object, specify 1 and omit the descrip argument.

descrip

is the target task name (1 to 16. ASCII characters) Specify this argument only if
you specified O for the fmt argument.

The rgid, pass, and accno arguments comprise explicit access control informa-
tion that specifies an account on the remote node.

rgid

is the user ID (1 1o 16. ASCII characters).

bass

is 2 1 to 8.-byte password. To enter an ASCII (a2s opposed te binary) password,
precede each character of the password with an apostrophe (’) and separate the
characters with commas. For example, enter the password PAS as 'P,’AS.

accno

is your account number at the remote node or process (1 to 16. ASCII characters).

NOTE

During task execution, you can dynamically supply
or madify values for the connect block ficids, using
the offsets in Table 2-2, You must use this method to
supply non-ASCII data for a field that normally
requires ASCII data.

You can also choose not to issue CONB$$ and
instead allocate 2 72. byte block of storage. Issue the
CRBDF$ call to define the offsets, with which you
fill in the connect block.

DECnet-RSX Programmer’s Reference Manual

i‘-"“:

CONBS$$

Remember that a successful connect request requires
that the connect block coniin certain fields,
whether you enter the values as argumestts to the
CONB$$ macro or dynamically during task execu-
tion.

Connect Block:

Table 2-2 describes the connect block’s symbolic offsets. Figure 2-1 is an exam-
ple of a 72.-byte connect block.

Table 2-2: CONBS$$ Connect Block Symbolic Cffsets

Symbolic Length
Otfset In Bytes Contents
DESTINATION DESCRIPTOR
N.RND* 6. Remote node name with trailing blanks
s i N.RFM 1. Destination descriptor format type: 0 or 1
N.ROT 1, Destination object type: 0-255,
Descriptor Field for Format 0
18. Not used
Descriptor Fields for Format I
N.RDEC* 2. Destination task name length (equal to or
less than 16. bytes)
N.RDE* 16. Destination task name
ACCESS CONTROL INFORMATION
N.RIDC* 2, User ID length (equal zo or less than 16. bytes)
N.RID* 16. User ID
N.RPSC* 2. Password length (equal to or less than 8. bytes)
N.RPS* 8. Password
N.RACC* 2. Account nurnber length (equal to or less than 16. bytes)
N.RAC* 16. Accouni number
N.RQL = 72.

These symbolic offsets are guaranteed to be even (word aligned).

DECnet-RSX MACR -11 Programming Facilities 2-25

CONBSS

Figure 2-1 illustrates the connect block that the following call builds:

CONE$$ TACOMA,O,1,<RECVR>,BLOGGS,<'P,'A, 'S

The connect block contains the following values:

Field

Destination node

Object type

Descriptor format type
Destination task name length
Destination task name

User ID length

User ID

Password length

Password

Vaiue
TACOMA, an RSX node
0 (narmned object)

1

RECVR
6
BLOGGS

3

PAS

The account number length and account number ace omitted because RSX target

systems do not require them.

The call supplies explicit access control information. It could omit that informa-
tion when an alizs node name contains the user ID and password, or tO use proxy
access. The access control fields in the figure would then be empty. The offsets

are in octal notation.

2-26

DECnet-RSX Programmer’s Reference Manuai

Y CONBS$

Figure 2-1: Qutgoing CONBS$S Connect Block

DESTINATION ol T] o N.RND
el B
DESCRIPTOR APM
NROT 7lol1]l 6 NRFM
5. | 10 N.RDEC
el'nf 12 N.RDE
=
=
ACCESS 6. | 32 N.RIDC
: vls| 3¢ N.RID
CONTROL 1°
SVG
INFORMATION
3, | 54 N.RPSC
Ale| 56 N.RPS
p
66 N.RACC
70 N.RAC

110 N.RQL (72} _«ko-1028-87

DECnet-RSX MACRO-11 Programming fFacilities 2-27

CONLSS

CONL$S
(Build Connect Block (Long))

2.5,7 CONLS$$ ~ Build Connect Block (Long)

Use:

2-28

Issue CONLS$ $ from the source task to build a 152 .-byte connect block. The CON$
macro call passes this outgoing connect block to the targer task. The connect
block contzins the node name, destination descriptor, and, optionally, explicit
access control information. The target task can use this information to determine
whether to accept (ACC#) or reject (REJ$) the connect request.

To specify explicit access control information, you call the following associated
mMacros:

= CNID#$$ lets you specify a user ID
® (CNPS$E lets you specify a password
* CNACH#S$ lets you specify an account number

To omit one or mote of the access control fields, simply omit calling the macro.
You need not issue a separate MCALL directive for each; the MCALL directive
for CONL$$ calls CONL$$ and the three associated macros. You can omit the
access control information if you already included it in an alias node name or if
you use proxy access. The target system verifies access control information
according to its system conventions. If the target node uses and has enabled
access verificarion, it performs verification before passing the connect request to
the target task.

For more information on access control verification, refer to the DECnret-RSX
Network Management Concepis and Procedures manual. For more information
on aliases, refer to the DECnet-RSX Guide to User Utilities or the DECnet-RSX
Network Management Concepts and Procedures manual. For more information
on proxy access, refer 1o the DECnet-RSX Guide to Network Management Utili-
ties.

DECnet—RSX Programmer’'s Reference Manuat

CONLS$

Format:
CONLSS [node),[obf].[fmt, < descrip >
CNID$$ {rgid)
CNPS$8 [<pass>]

CNACS$ [@ceno]

Arguments for CONLSS:
node

is the name of the target node. The name maust have 1 1o 6 alphagumeric charac-
ters, including at least 1 alphabetic character.

The obj, fmt, and descrip arguments comprise the destination descriptor. You
must specify this information in order to access the target task.

s obj
is the target task’s object type. The object type for 2 named object is 0. The object
type for 2 numbered object is in the range of 1 to 127. for a DECnet task or 128. to
255. for a user task. Refer 10 Appendix B for a list of object type codes.

Privileged users can define their own object types; for information, refer to the
DECnet-RSX Network Management Concepts and Procedures manual.

fme

is the descriptor format type. To connect to 2 named object, specify 0 for the
descriptor format type and specify the descrip argument. To connect to a num-
bered object, specify 1 and omit the descrip argument.

descrip

is the target task name (1 to 16. ASCII characters). Specify this argument only if
you specified 0 for the fmt argument.

DECnet-RSX MACRO-11 Programming Facilities 2-29

CONLSS

Argument for CNID$$:
rgid

is the user ID (1 to 39. ASCH characters).

Argument for CNPS$$:

pass

is a 1 to 39.-byte password. To enter an ASCII (as opposed to binary) password,
precede each character of the password with an apostrophe (') and separate the
characters with commas. For example, enter the password RADIO as
'RA,'D,TO.

Argument for CNACSS:

Qaccno

is your account number 2t the remote node or process (1 1o 39, ASCII characters).

NOTE

You can choose to create the entire connect block or
specify any of the CONL$$, CNID$$, CNPS$$, or
CNACS$$ arguments dynamically during task execu-
tion. In addition, to specify non-ASCII data for an
argument that normally requires ASCII data, you
must do so dynamically. You can also modify any
connect block field this way.

To create the connect block dynamically, reserve a
152.-byte block of storage, which equals the M RQL
length (see Table 2-3); to specify any connect block
field dynamically, leave the argument blank in the
macro call. Issue the CRBDF$ call to define the con-
nect block symbolic offsets listed in Table 2-3. Dur-
ing task execution, use these offsets 1o specify or
modify the connect block information.

A successful connect request (CON$) requires all of
the necessary connect block fieids, whether you put
them in the macro arguments or enter them dynami-
cally during task execution.

2-30 DECnet-RSX Programmer’s Reference Manual

CONLSS$

Connect Block:

Table 2-3 lists the connect block symbolic offsets. Figure 2-2 illustrates a sample
connect block.

Table 2-3: CONL$$ Connect Block Symbolic Offsets

Symbolic Length Contents
Offset in Bytes
DESTINATION DESCRIPTOR
M.RND* 6. Remote node name with trailing blanks
M.RFM 1. Destination descriptor format type: Gor 1
M.ROT 1. Destination object type: 0-255.
Descriptor Field for Format 0
18. Notused
Descriptor Fields for Format 1

< M.RDEC* 2. Destination task name length
e (equal to or Iess than 16. bytes)

M.RDE* 16. Destination task name
EXPLICIT ACCESS CONTROL INFORMATION

M.RIDC® 2. User ID length {equal to or less than 39. bytes)
M.RID* 39. UserID
Notused

M.RPSC* 2. Password length {¢qual to or less than 39. bytes)
M.RPS* 39. Password

1. Not used
M.RACC" 2 Account number length (equal to or less than 39. bytes)
M.RAC* 39. Account number

1. Not used
M.RQL = 152.

* These symbolic offsets are guaranteed 10 be even (word aligned).

DECnet-ASX MACRO-11 Programming Fagcilities 2-31

CONLS$

Figure 2-2 illustrates the connect block that the following call builds:

CONL$$ GROTON,D,1,<RECEIVER~

CNIDS$ EDGAR :

CNPS$$ <'R,'4,'D,'I,'0,'5,'T,'A,'T,'1, 0, N~
CNACSS

The connect block contains the following values:

Field Value

Destinzation node GROTON, an RSX node
Object type 0 (named object)
Descriptor format type 1

Destination task name length 8

Task name RECEIVER

User D length 5

User ID EDGAR

Password length 12

Password RADIOSTATION

‘The account number length and account number are omitted because RSX target
systems do not require account numbers.

The calf supplies explicit access control information. If, instead, you have defined

the access control information in an alias node name, or if you use proxy, the
access control information fields in the figure would be empty. The offsets are in
octal notation.

2-32 DECnet-RSX Programmet’s Heterence Manual

Figure 2-2: Outgoing CONLS$ Connect Block

CONLSS

DESTINATION RlG 0
TVO
DESCRIPTOR w0
M.ROT 7][0 8
8. 10
‘E|'R 12
—To
o
o
ACCESS =] 32
ole]| 34
CONTROL ate
-
INFORMATION A
ToT104
alai 106
o
s|'o
AT
T
"
T 7186
160
.

M.RND

M.RFM
M.RDEC
M.RDE

M.RIDC
MRID

M.RPSC
M.RPS

M.RACC
M.RAC

230 M.RQL (152)

LKG-1032-87

DECnet—-RSX MACRO—11 Programming Facilities

2-33

DSC$

DSCS

(Disconnect a Logical Link)

2.5.8 DSC$ — Disconnect a Logical Link

Use:

Issue DSC$ from either task to disconnect the logical link and free the logical unit
number, Uniike ABT$ (Section 2.5.2), DSC$ causes all pending transmits to com-
plete before disconnecting the link, While these transmits are completing, the
task continues to receive messages. When the last transmir has completed, ¢ach
pending receive is aborted with an IE.ABO status code in the 1/0 status block.
With DSC$, you can send 1 to 16. bytes of user data to the task from which you
are disconnecting (see the out,outlen arguments).

Formats:

label: DSC[W$ lun,[efn],[status],|ast][, < out,outlen>]

DSC[WISE label[lun) |efn].[status),|ast)], < out,outlen> |

DSC[W18S lun,[efn).]status).|ast)], < out,outlen>]

Arguments:

2-34

label

specifies the location of the argument block. See the definition in Section
2.5.1.

lun

identifies the logical link to disconnect. If you initiated the connection,
enter the LUN you used in the CON$ macro. If you accepted the connection,
enter the LUN you used in the ACC$ macro.

efn

specifies an optional event flag number 10 set when DSC$ completes.

stalus

specifies completion status information on return from DSC$. See the defini-
tion in Section 2.5.1.

DECnet—-RSX Programmer's Aeference Manua)

M

DSCS

ast

is the address of an optional user-written AST routine to execute after DSC$
completes.

out,outlen

define optional user data to send. See the definition in Section 2.5.1.

EnorlCompletiori Codes:

I8.8UC The macro completed successfully.

1IE.ABO The specified logical link has already been aborted or discon-
nected.

IE.BAD The optional user data exceeds 16. bytes.

IE.IFC LUN not assigned to NS:.

IE.NLN No logical link has been established on the specified LUN.

IE.NNT The issuing task is not a network task; OPN$ did not execute suc-
cessfully. :

IE.PRI The network is not accessed on the specified LUN.

IE.SPC Invalid buffer argument; the optional user data buffer (ou?) is out-

side the user task address space.

DECnet-RSX MACRO-11 Programming Facilities 2-35

GLN$

GLNS$
(Get Local Node Information)

2.5.9 Gl_.Ns — Get Local Node information

Use:

Issue GLNS$ from either task to place the name and default NSP segment size of the
local node in a specified buffer.

Getting the local node name can be helpful if two tasks on the same node use the
network interface t0 communicate. Each task can issue GLNS and use the
returned local node name as the destination in a connect request. A task thar dis-
plays the local node name can also use GLNS.

The default NSP segment size tells you how NSP segments data transmitted on a
logical link. By knowing the defaul: NSP segment size, you can adjust the length
of message blocks to transmit for most efficient use of transmit buffers (large data
buffers).

Formats:
label GLN[W8[lun] [efn],[status) jast}, < buf,buflen>
GLN[WI]8E label [lun)lefn),[status].[ast], < buf buflen >

GLN[W)8S [lun).[efn][status]),[ast], <bufbufien> |

Arguments:
label
specifies the location of the argument block. See the definition in Section
2.5.1.
* efn

specifies an optional event flag number to set when GLN$ completes.

2-36 DECnet-RSX Programmer’s Reference Manual

GLNS

* status

is the address of an optional 2-word starus block that contains completion
status information on return from GLNS$. If status is specified, the contents
of word 1 depend on the error/completion code returned in word 0, byte 0
(word 0, byte 1 is always 0).

Contents in Word 0, Byte 0 Contents of Word 1
P IS.5UC (1) or IE.DAO (-13) Number of bytes transferred to the user
“ . o buffer

IE.xxx (excluding IE.DAO, 0

xxx refers to IENNT,
IE.PRI, IE.SPC)

ast

is the address of an optional user-written AST routine to execute after GLN$
completes.

'm”‘ " buf

is the address of the buffer to contain the received data. This buffer must
start on an even byte (word) boundary.
buflen

is the length of the buffer to contain the received data. The buffer length
determines the data returned, as follows.

Length Returned Data

Gbytes Local node name, left justified and in ASCIL. Names with fewer
than 6 bytes are padded with spaces.

8 bytes Local node name, defaulit NSP segment size.
10 bytes Local node name, default NSP segment size, node number.
The first six bytes contain the local node name. The next two byies contain

the default segment size. The last two bytes contain the local node number
in the lower 10 bits and the local area number in the higher 6 bits.

DECnet-RSX MACRO-11 Programming Facilities 2-37

GLNS

Error/Completion Codes:

18.5UC The macro completéd successfully.

IE.DAO Data overrun. The network dara was longer than the specified
buffer. As much data as fits into the buffer is transferred to it; any
remaining data is lost.

IE.IFC LUN not assigned to NS:.

IE.NNT The issuing task is not 2 network task; OPN$ did not execute suc-
cessfully.

IE.PR1 The network is not accessed on the specified LUN.

IE.SPC Invalid buffer argument; the buffer specified to receive network

2-38

data (buf) is outside the user task address space.

DECnet-RSX Programmer's Reference Manual

GND$

GND$
{Get Network Data)

2.5.10 GND$ — Get Network Data

Use:

Issue GND$ from either task to get data from that task’s network data queue and
store it in 2 mail buffer. You specify the buffer in the mail and mien parameters.
The status block identifies what type of message the call retrieved. The status
block identifies one of the following unsolicited message types in word 0, byte 1:

Connect request NT.CON
Interrupt message NT.INT

User disconnect notice NT.DSC
User abort notice NT.ABT
Network abort notice NT.ABO

You can use the SPA$ macro (Section 2.5.15) to get a count of data items in the
network data queue. If the queue is empty, GND$ completes with an error
(IE.NDA), even if ycu use the GND[W] form.

If GNDS$ retrieves a connect reguest, it writes the accompanying connect block
information 1o the mail buffer. You can use a long or short connect block,
depending on the length of the user IDs, passwords, and accounts you expect to
receive. For information about the incoming connect biock, see the “Connect
Block'' section of this call description.

Formats:

label: GND[W)$ [lun][efn)],[status],[as],

< mail,mien>

< mail,milen,mask> NT.TYP
,NT.LON

<, mask> NT LON

DECnet—ASX MACRO-11 Programming Facilities 2-39

GNDS$

GND|[W]$E label,[lun],[efn],[#mtus],[ast]',

< mail,mlen>

< mail,mlenmask> NT.TYP
,NT.LON

<, mask> NT.LON

GND[W]$S [lun].jefn],[status},[ast],

<mail,mlen>

< maii,mlen.mask> NT.TYP
NT.LON

<, mask> NT.LON

Arguments:

label

specifies the location of the argument block. See the definition in Section
2.5.1.

lun

identifies the logical unit number assigned to the network data gueue. Use
the LUN that you specified in OPNS§.

* e-m
specifies an optional event flag number to set when GND#$ compietes.
* status

is the address of an optional 2-word status block that contains completion o
status information on return from GND$. Refer to Table 2—4 for 2 summary el
of the status block contents after GNDS$.

ast

is the address of an optional user-written AST routine to execute after GND$
compietes. '

2-40 DECnet-RSX Programmer's Reference Manual

GND$

mail mlen

define the task mail buffer to receive the network data or connect block on
return from GND$. You must specify these arguments unless you use the
NT.TYP and NT.LON flags. Refer to Table 2—5 for a list of the short connect
block contents and to ‘Table 2-6 for a list of the long connect block contents.

* mail

is the octal address of the buffer, which must start on an even byte (word)
boundary.

mlen

is the length of the buffer in decimal bytes. The incoming data is wtitten to
the buffer according to the offsets of the connect block type that you speci-
fied in the OPNS$ call.

You can allocate a2 mail buffer that is equal to, smaller than, or larger than the
expected connect block and optional data. To receive an entire connect
block, allocate space according to the connect block type that you specified

in the OPN$ macro call:
Short connect block 98. bytes (N.CBL)
Long connect block 178. bytes (M.CBL)

You can add space for optional data:

Optional data Up to 16. bytes
Optional data length field 2. bytes

Network software writes the retrieved information to the buffer field by
field, according to the offsets of the specified connect block type. If the mail
buffer and the incoming connect block are different sizes, the following
results occur.

DECnet-RSX MACRO-11 Programming Facilities 241

GND$

2-42

Mail Buffer Size Result

You altocate a buffer that is iarger No error occurs.

than the incoming connect block.

You aliocate a buffer that is smaller Connect block dzta is written field by
than a full connect biock. field into the buffer until no more fits. A

data overrun (IS.DAQ) completion status
resuits, even if all the received data fits

into the buffer.
You allocate a buffer for receivinga ¥ the incoming data fics according to the
short connect block and instead short connect block offsets, vou get ajl
receive a jong connect block. the data, but a data overrun (IS.DAQO)

completion status results.

If the data in any incoming field exceeds
the size of the analogous receiving field,
the data in thar field is lost. The length
value for the ficld becomes 0, and a data
overrun (IS.DAO) completion status
results.

mask

specifies the data type to select from the network data queue. Normally,
GND3$ returns items from the network data queue on a first-in, first-out
basis. However, mask lets you select the first item on the queue that matches
a specific message type and/or LUN. Enter one of the following combina-
tions for the mask argument.

Message Type Logical Unit Number

{Byte 0) (Byte 1)

NT.CON (connect request) 0 (Selects the first LUN of message type NT.CON)
NT.INT (inrerrupt) 0 or LUN

NT.DSC {user disconnect) 0or LUN

NT.ABT (user abort) Qor LUN

NT.ABOQ (network abort) Oor LUN

0 (Selects any message LUN

rype on the specified LUN).

DECnet-RSX Programmer’s Reference Manual

GND$

For example, to select the first disconnect message (NT.DSC) on LUN 3 from
the network data queue, code the mask argament as 3*256. + NT.DSC.

Specifying 0 in byte 1 returns the first message of the type specified in byte
Q, regardless of LUN,

Flags:

NT.TYP

indicates 2 mask argument requesting a specific message type and/or LUN.
Always use NT.TYP when specifying mask with mail and mien,

If you use NT.TYP in a BUILD type GND$, you must also use it in any subsequent
EXECUTE type GNDS$,

NT.LON

supports dynamic assignment of mail buffer space. Specifying NT.LON with
GND$ returns information about the first message in the network data queue
without removing the message from the queue or placing it in the mail buffer.
With NT.LON, the status block returns the message type in word 8, byte 1 and the
message length in word 1, byte 0. You cannot use ma#l, mien, and NT.TYP with
NT.LON.

If you use NT.LON in a BUILD type GND#$, you must also us¢ it in any subsequent
EXECUTE type GND$.

DECnet-RSX MACRO-11 Programming Facilities ' 2-43

GNDS$

Table 2-4: Status Block Contents After GND$

if GNDS completes successfully with NT.LON omitted:

Status Word 0 Status Word 1
Byte 0 Byte 1 Byte 0 Byte 1
IS.8UC NT.CON Number of bytes in Access verification (1} and
or Connect connect block. privileged code:
IS.DAC request VS.NPV = Requesting user is
or nonprivileged.
IE.DAO VS5.PRV = Requesting user is
privileged.
VZ.NVD = Verification was
not done. (2)
VE.FAI = Verification failed.
(3)
Is.sUC NT.INT Number of bytes LUN over which the inter-
or Interrupt (1-16)in optional rupt message was received.
IE.DAO message message. If 0, no
message was received.
NT.DSC Number of bytes LUN over which the user dis-
User {1-16) in optional CONNECH MEssage was
disconniect message. If 0, no received.
message was received.
NT.ABT Number of bytes LUN over which the network
User (1-16) in oprtional abort message was received.
abort message. If 0, no
message was received.
Is.sUC NT.ABO Reason for network LUN over which the notice
or Network abort {See codes in was received. o
IE.DAO abort Appendix A). g
If GNDS completes successfully with NT.LON specified:
Status Word 0 Status Word 1
Byte 0 Byte 1 Byte 0 Byte 1
IS.SUC NT .sexx Number of bytes in 0
or (type of first item in network
1IE.DAO first item data quene.
in gqueue)

2-44 DECnet-RSX Programmer's Reference Manual

GNDS

Table 2-4 (Cont.): Status Bliock Contents After GNDS

If GND$ completes with an error other than 1E.DAC {~13):

Status Word ¢ Status Word 1
Byte 0 Byte 1 Byte 0 Byte 1
IE. xxx 0 0 0

1. If access verification is enabled, the Network Verification Prograra at the target node
evaluates access contro] information in the connect request before passing the request
to the target task’s network data queue.

2. The verification task was not installed on the target node, it was set to OFF with the
NCP SET EXECUTOR VERIFICATION command, or the proper access control file was
not available.

3. The account is not in the system account file, the password does not match the one in
the file, or the object is set to inspect.

/m\ Error/Compietion Codes:

IS.5UC The macro completed successfully.

IS.DAO The macro completed successfully, but some returned optional
data was lost.

IE.DAO Datz overrun. The network data was longer than the mail buffer,
As much data as will fit into the mail buffer is transferred to it; any
remaining data is lost.

IE.IFC LUN not assigned to NS:.

[ENDA There is no data in the network data gueue to return.

TIE.NNT The issuing task is not a network task; OPN$ did not execute suc-
cessfully.

IE.PR} The network is not accessed on the specified LUN.

IE.SPC Invalid buffer argument; the buffer assigned to receive nerwork
data (mail) is not word aligned or is outside the user task address
space.

DECnet-RSX MACRO~11 Programming Facilities 2-45

GND$

Connect Block:

This section includes Table 2-5, which lists the contents of the short connect
block, and Table 2—6, which lists the contents of the long connect block. It also
includes Figure 2-3, an example of an incoming connect short block.

The source descriptor differs according to the source system type. If the source is
an RSX system

e and the connect request does not include proxy information, you receive a
Format 1 source desriptor containing the ASCII source task name.

= and the connect request includes proxy information, you receive a Format 2
source descriptor containing the proxy information.

The access control information that GND$ returns differs according to whether
access verification is set to ON or OFF for the task.

Table 2-5: Contents of incoming Short Connect Block

Lengthin
Symbolic Decimat
Offset Bytes Contents
N.CTL* 2. Temporary togical link address (required by the network;
do not modify)
N.SEGZ* 2. NSP segment size (used by NSP to send message data to
source)}
DESTINATION DESCRIPTOR
{20.byte total)
N.DFM 1. Destination descriptor format type: 0,1
N.DOT 1. Destination object type: 0-255.
Descriptor Field for Format 0
18. Notused

* These symbolic offsets are guaranteed to be even (word aligned).

2-46 DECnet-RSX Programmer’s Reference Manual

GND$

Table 2-5 (Cont.): Contents of incoming Short Connect Block

Lengthin

Symbolic Decimal

Ofiset Bytes Contents
Descriptor Fields for Format 1
N.DDEC* 2. Destination task name length (equal

$0 o¢ less than 16. bytes)

N.DDE* 16. Destination task name
SOURCE DESCRIPTOR
{26.-byte total)

N.SND* 6. Source node name (name of node requesting the connec-
tion; ASCII, with trailing blanks)

N.SFM 1. Source descriptor format type (format O, 1, or 2)

N.SOT 1. Source object type (object type of task or process request-

ing the connection: 1-255. for format 0, or 0 for format 1)
Descriptor Field for Format 0

18. Notused
Descriptor Fields for Format 1

N.SDEC* 2. Source descriptor length (equal to or
less than 16. bytes)

N.SDE* 16. Source descriptor (ASCII)
Descriptor Fields for Format 2

N.SGRP* 2. . Binary UIC group identifier
N.SMEM* 2. Binary UIC member identifier

N.SDRC* 2. Source descriptor length (equal to or
' less than 12. bytes)

N.SDR* 12. Source descriptor

*

These symbolic offsets are guarznteed to be even (word zligned).

(continued on next page})

DECnet-RSX MACRO-11 Programming Facilities 2-47

GND$

Table 2-5 (Cont.): Contents of incoming Short Connect Block

Lengthin
Symbolic Decimal
Oftset Bytes Contents

ACCESS CONTROL INFORMATION
{46.-byte total)

If no verification is performed
N.CIDC* 2. User ID length (equal ro or less than

16. bytes)

N.CID* 16. UseriD

N.CPSC* 2. Password length (equal to or less than
8. bytes)

N.CPS* 8. Password

N.CACC* 2. Account number length (equal to or
less than 16. bytes)

N.CAC* 16. Account number

If verification is per formed

N.CDEV 2. Default device name
N.CUNI 1. Default device unit number

1. Not used

N.CUIC 2. Log-in UIC from account file
N.CDDS 11. Default directory string (0 if no
default string)
29. Notused

N.CBL = 98. (not including optional data)

OPTIONAL DATA
{18.-byte total)

N.CDAC”* 2. Length of optional user data (equal to or less than 16.
bytes; 0 if no optional data)

N.CDA* 16. Optional user data sent by source task (0 to 16. bytes)

* These symbolic offsets are guaranteed to be even (word aligned),

2-48 DECnet-RSX Programmer's Reference Manual

GNDS

Table 2-6: Contents of Incoming Long Connect Block
Lengthin

Symboiic Decimal

Offset Bytes Contents

M.CTL* 2. Temporary logical link address (required by the network;
do not modify)

M.SEGZ* 2, NSP segment size (used by NSP to send message data 10
source)
DESTINATION DESCRIPTOR
{20.-byte total)

M.DFM 1. Destination descriptor format type: 0,1

M.DOT 1. Destination object type: 0-255.
Descriptor Field for Format 0

18. Notused
Descriptor Fields for Format 1
M.DDEC* 2. Destination task name length (equal
to or Jess than 16. bytes)

M.DDE* i16. Destination task name
SOURCE DESCRIPTOR
(26.-byte total)

M.SND* 5. Source node name (name of node requesting the connec-
tion; ASCI, with trailing blanks)

M.SFM 1. Source descriptor format type (must be either format 6 or
format 1)

M.SOT 1.

Source object type (object type of task or process request-
ing the connection: 1-255. for format 8, or 0 for format 1)

Descriptor Field for Format 0
18. Notused
Descriptor Fields for Format 1

M.SDEC* 2. Source descriptor length (equal to or
less than 16. bytes)

M.SDE* 16. Source descriptor (ASCII)

* These symbolic offsets are guaranteed to be even (word aligned).

{continued on next page)

DECnet-RSX MACRO- 11 Programming Facilities 2-49

GND$

Table 2-6 (Cont.):

Contents of Incomning Long Connect Block

Symbolic
Offset

Lengthin
Decimal
Bytes

Contents

Descriptor Fields for Format 2
N.SGRP* 2. Binary UIC group
N.SMEM* 2. Binary UIC member

N.SDRC* 2. Source descriptor length (equal 1o or
less than 12. bytes)

N.SDR* 12. Source descriptor

ACCESS CONTROL INFORMATION
{126.-byte total)

If no verification is performed

M.CIDC* 2. User ID length (equal to or less than
39. bytes plus 1 byte for an even byte
count)

M.CID* 39. UserID

1. Not yused

M.CPSC* 2. Password length {equal to or less than
39. bytes plus 1 byte for an even byte
count)

M.CPS* 39. Password

1. Not used

M.CACC” 2. Accournt number Jength (equal to or
less than 39, bytes plus 1 byte foran
even byte count})

M.CAC* 39. Account number
1. Not used
If verification is performed
M.CDEV 2, Default device name
M.CUNI 1. Default device unit number

1. Not used

* These symbolic offsets are guaranteed to be even (word aligned).

2-50

DECnet-RSX Programmer's Reference Manuai

GND$

Table 2-6: (Cont.) Contents of iIncoming Long Conneci Block

Length in
Symbolic Decimat
Cffset Bytes Ceontents
M.CUIC 2. Log-inUIC fromaccount file
M.CDDS 11, Default ditectory string (0 if no
default string)

109, Not used
M.CBL = 178. (notincluding optional data)

OPTIONAL DATA
(18.-byte 1otal)

M.CDAC" 2. Length of optional user data (equal to or less than 16.
- bytes; 0 if no optional data)

M.CDA*® 16. ‘Optional user dzta sent by source task (0 to 16. bytes)

»

These symbolic offsets are guaranteed to be even (word aligned).

Figure 2-3 is an example of an incoming connect block. The figure shows the
connect block that the following macro created in the source task:

CONB$E TACOMA,0,1,<RECVR~,BLOGGS,<'P,'A,"'S»

The connect block contains the following values:

Fieid Value
Destination descriptor format type 1

Destination object type 0 (named object)
Destination task name length 5

Destination task name RECVR

Source node name TACOMA
Source descriptor format type 1

Source object type 0 (named object)
Source descriptor length 6

DECnet-RSX MACRO-11 Programming Facilities 2-51

GND$

Field - Value

Source descriptor SENDR
User ID length 6

User ID | BLOGGS
Password length 3
Password PAS

The account number length and account number are omitted because RSX nodes
do not require account nurmbers.

Because the call supplied explicit access control information (user ID and pass-
word), the incoming connect block contains that information. If outgoing proxy
is enabled on the source node, the source descriptor contains the proxy informa-
tion and the source descriptor type is format 2. If verification is on at the target
node, the password is cleared out before the target task receives the connect
block. All byte counts and values are in decimal notation.

This figure illustrates a short connect block. A long connect block has the same
fields, but the access control information fields are longer, and the symbolic off-
set names are prefixed with M. instead of N,

2-52 DECnet-RSX Programmer’s Reference Manual

GNDS$

Figure 2-3: Incoming Connect Biock

0 N.CTL {not used by user)
s20. | 2 NSEGZ

N.DOT5[c]] 4 N.DFM
DESTINATION s | 6 N.DDEC

elnl 10 NDDE
DESCRIPTOR e

SOURCE 17| 30 N.SND

DESCRIPTOR

olx|d]®
HEGIE

N.SOT 37 36 N.SFM
5. | 40 NSDEC
T

42 N.SDE

s. | 62 N.CIDC
1]e] 684 N.CID

G

3, | 104 N.CPSC
«te] 106 N.CPS

116 N.CACC
120 N.CAC

~b'd

LKG-1033-87

DECnet-RSX MACRO-11 Programming Facilities 2-53

OPN$

OPN$
(Access the Network)

2.5.11 OPN$ — Access the Network

Use:

Issue OPN#$ to establish the task as an active network task and create the task’s
network data queue. Issue OPN$ before issuing any other intertask communica-
tion Macro,

Formats:
label: OPN[W]$ [lun).]efn].[status] [ast)(, < lnks{ lrp]{, NT.LCB]>}
OPN[WISE label [lun),(efn],[status),|ast][, < tinks,irp][,NT.LCB]>]

OPN[W1$S {lunl.[efn),[status],|ast][, < links[irp][,NT.LCB]>]

Arguments:

label

specifies the location of the argument block. See the definition in Section
2.5.1.

lun

assigns a logical unit number to the task’s network data queue. You can omit
this argument if you have already assigned the LUN to NS: by defining the
symbol MBXLU in the user program or in 2 GBLDEF option at task build
time (Section 1.2.1). Use this LUN in any subsequent GND$, SPA$, GLN$,
REJ$, or CLS8 macro.

* e

specifies an optional event flag number to set when OPN$ completes.

* status

specifies completion status information on return from OPN§. See the defi-
nition in Section 2.5.1,

2-54 DECnet-RSX Programmer’s Reference Manual

OPNS$S

ast

is the address of an optional user-written AST routine to execute after OPN$
compietes.

links

specifies the maximum number of simultaneous, active logical knks within
the task. When the number of active links equals the finks value (255. maxi-
mum), the network rejects any incoming connect request. A value of O sets
no limit 25 long as network resources are available. Zero is also the default,

To prevent access to your task, specify a links value of 1 and code the rou-
tine that processes the GND$ macro to reject all incoming connect requests.
You can still use CON$ to establish outgoing links.

Irp

specifies the link recovery period. The link recovery period is the number of
minutes that elapses from the time of a physical link failure antil the network
aborts the associated logical link. The Irp must be in the range of 0 through
32767(decimal).

When specifying an Irp value, remember that unless your task includes
checkpoint capabilities, it is locked in memory until the link recovery period
clapses if it has outstanding I/O when the link fails. This can cause serious
delays for other system users who need to access the occupied arez of mem-

ory.
Flag:
o specifies that the task transmits and receives long connect blocks that sup-

port 39.-character user IDs, passwords, and accounts. If a connect request
for your task arrives with a short connect block, nerwork software copies
the information in each field to the corresponding field in the long format
before passing it to your task. The NT.LCB valueis 1.

”
4

DECnet-RSX MACRO-11 Programming Facilities 2-55

oP

2-56

N$

Error/Completion Codes:

I$.SUC

IE.IFC

IE.PRI

IE.RSU

The macro completed successfully.

LUN not assigned to NS:.

The network is being dismmounted, or the user task has already
accessed the network.

System resources needed for the network data queue are not

available.

DEChet-RS8X Programmer’s Aeference Manual

N

A

W
A
f

RECS

RECS

(Receive Data over a Logical Link)
2.5.12 REC$ — Receive Data over a Logical Link

Use:

Issue REC$ from either task to receive message data over an established logical
link and store it in a specified buffer.

Formats:
label: REC[W]S lun [efn) |status),[ast], < buf,buflen>
REC[W]$E label [lun),[efn),[status),[ast]], < buf,bufien > |

REC[w]$8 tun [efn),[status),[ast], < buf buflen >

Arguments:

label

specifies the location of the argument block. See the definition in Section
2.5.1.

lun

specifies the logical link over which to receive data. If you initiated the con-
nection, enter the LUN you used in the CON$ macro. If you accepted the
connection, enter the LUN you used in the ACC$ macro.

* e-m
specifies an optional event flag number to set when REC$ completes.
* status

specifies completion status information on return from REC$. See the defini-
tion in Section 2.5.1, but note this exception:

Word 1: Contains number of bytes received.

DECnet-RSX MACRO-11 Programiming Facilities 2-57

RECS

ast

is the address of an optional user-written AST routine to execute after REC$
completes.

* buf
is the address of the buffer to contain the received message data.
buflen

is the length of the receive buffer in bytes (8128. maximum).

ErroriCompletion Codes:
15.5UC The macro completed successfully.
IE.ABO The logical link was disconnected during I/O operations.
IE.DAO Data overrun. More message data was transmitied than

requested. As much data as will fit into the receive buffer is trans-
ferred to it; any remaining data is lost.

IE.IFC LUN not assigned to NS:.

IE.NLN No logical link has been established on the specified LUN.

IE.NNT The issuing task is not a network task; OPN$ did not execute suc-
cessfully.

IE.SPC Invalid buffer argument; either the data buffer (bxf) is outside the
user task address space, or the buffer length (bujlen) exceeds
8128, bytes.

2-58 DECnet-RSX Programmer’s Reference Manual

REJS$

REJ$
(Reject Logical Link Connect Request)

2.5.13 REJS$ — Reject Logical Link Connect Request

Use:

Issue REJ$ from the target task to reject a logical link connect request. When you
issue REJ$, you can send 1 to 16. bytes of user data to the requesting task (see the
out,outlen arguments).

Formats:
iabel: REJ[W1$ [lun),[efn].[status),|ast], < mail,[mailen][out outlen] >
REJ[WISE label [lun},[efn].[status}[ast]), <mail [mailen]|,out ,outlen]>

REJ[W]$S [fun].[efn),[status] [ast), < mail[mailer]],out, outien]) >

Arguments:

label

specifies the location of the argument block. Sce the definition in Section
2.5.1.

lun

identifies the logical unit number of the network data queue. Use the same
LUN you assigned in the OPN$ macro.

[] eﬁ’
specifies an optional event flag number to set when REJ$ completes.,

status

specifies completion status information on return from REJ$. See the defini-
tion in Section 2.5.1.

DECnet-RSX MACRO-11 Programming Facilities 2-59

REJS

ast

is the address of an optional user-written AST routine to execute after REJ$
compietes.

mail
is the address of the connect block sent by the source task and retrieved by

GND$. Specify the same address for this and the GND$ ma:l argument. Con-
nect block information is required to reject the connection. '

mailen

is the length of the connect block in decimal bytes. The defauit value is 98.
bytes (N.CBL), the short connect block length, not including optional data.
For a long connect block, specify 178. bytes (M.CBL), the long connect block
length, not including optional data.

aut.outien

define optional user data to send. See the definition in Section 2.5.1.

Error/Completion Codes:
IS.5UC The macro completed successfully,
1E.ABO The task that requested the connection has aborted or requested

a disconnect before the rejection could complete.

IE.BAD Either the temporary link address in the connect block is not
valid, or the optional user data buffer exceeds 16. bytes.

IE.IFC LUN not assigned to NS:. s

IENNT The issuing task is not a network task; OPN#$ did not execute suc-
cessfully.

1E.PRI The network is not 2ccessed on the specified LUN.

IE.SPC Invalid buffer argument; either the connect block (mail) or the

optional user data buffer (ouf) is outside the user task address
space, or the connect block is not word aligned.

2-60 DECnet-RSX Programmer’s Reference Manual

SND$

SND$
(Send Data over a Logical Link)

2.5.14 SND$ — Send Data over a Logical Link

Use:

Issue SND$ from either task to send message data over an established logical link.
This macro completes when the other task has actually received the data.

Formats:
label: SND{W}$ lun.lefn) [status],|ast], < buf,buflen>
SND{W1SE label [lun)lefn).[status).[ast]], <buf buflen >

SND[W]$S lun [efn),[status),[ast], < buf.buflen>

Arguments:

label

specifies the location of the argument block. See the definition in Section
2.5.1.

lun

identifies the logical link over which to send the data. If you initiated the
connection, enter the LUN you used in the CON$ macro. If you accepted the
connection, enter the LUN you used in the ACC$ macro.

» ej‘rz

specifies an optional event flag number to set when SND$ completes.

status

specifies completion status information on return from SND$. See the defini-
tion in Section 2.5.1, but note this exception:

Word 1: Contains number of bytes sent.

DECnet-RSX MACRO-11 Programming Facilities 2-61

SND$

ast

is the address of an optional user-written AST routine to executé after SND$
completes.

buf

is the address of the buffer containing the daia to send.

buflen

is the length in bytes (8128, maximum) of the data to send.

Error/Compietion Codes:

IS.5UC The macro completed successfully.

IE.ABO The logical link was disconnected during I/O operations.

IE.IFC LUN not assigned to NS:.

IE.NLN No logical link has been established on the specified LUN.

IE.NNT The issuing task is not a2 network task; OPN$ did not execute suc-
cessfully.

IE.SPC Invalid buffer argument; either the message data buffer (buf) is

outside the user task address space, or the buffer length (buflen)
exceeds 8128. bytes.

2-62 DECnet-RSX Programmer’s Reference Manual

SPAS

SPAS
(Specify User AST Routine)

2.5.15 SPAS — Specify User AST Routine

Use:

Issue SPA$ from either task to specify 2 user-written AST routine. The AST rou-
tine will execute whenever network data arrives in the network data gueue.

Issuing SPA$ affects only the data items that subsequently arrive in the queue.
However, SPAS returns 2 count of all data items in the queue to word 1 of its
status block, including those that preceded the macro.

Formats:
label: SPA[W]$ [lun],[efn],[status).[ast], < addr>
SPA[WISE label,[lun),[efn],[status),[ast][, < addr>]

SPA{W]SS [lun] [efn) [status),]ast), <addr>

Arguments:

iabel

specifies the location of the argument block. See the definition in Section
2.5.1.

iun

identifies the logical unit number of the network data queune. Use the same
LUN you assigned in the OPN$ macro.

» ej"z
specifies an optional event flag number t0 set when SPA$ completes.

* status

specifics completion status information on return from SPAS$. See the defini-
tion in Section 2.5.1, but note this exception:

Word 1: Contains number of items in network data queue.

DECnet-RSX MACRO-11 Programming Facilities 2-63

SPAS

ast

is the address of an optional user-written AST routine 10 execute after SPAS
completes (sec the SPA$ programming note that follows).

addr

is the address of a user-wrirten AST routine. This argument is required for
executing an AST routine.

You can change the specified AST routine during task execution by specify-
ing 2 different starting address or eliminate it by zeroing the starting address.
When you change the AST during execution, the AST that executes does not
push extra information onto the stack, as a normal completion AST daes.
Therefore, you nced not remove anything from the stack.

Error/Completion Codes:
I8.5UC The macro completed successfully.
IE.IFC LUN not assigned to NS:.
IE.NNT The issuing task is not a network task; OPN#$ did not execute Ry
successfully.
[E.PRI The network is not accessed on the specified LUN.

The following example demonstrates how an application can process ali net-
work data at the AST level by using the SPAS completion AST to simulate the
network data AST.

264 DECnet-RSX Programmer's Reference Manual

MAIN CODE
OPNgS .

SPASS ... #CHMPAST,<SPAAST-

i+

SPAS

; Set up 8SPAAST as the AST entry

H

for network data

; CMPAST - The entry point for completlon of the actual SPA directive

;
; SPAAST - The entry point for each arrival of netwerk dats

.
i

.EMABLE 1SB
CMBAST: MOV (3P}+,I0SB
MoV RO, -(SP}

MOV #10SB,RO

CFR #I3.89¢C, (RO}

BNE 20%
MOV 2(ROY,R0
BEQ 20%
BR 108

SPAAST: MOV RO,~{8P)
MOV #1,R0

10%: GNDNES ,,,,,#GNDSB
BCS 208
CMPB #15,8UC,CNDSB
BNE 20%
S0B RO,10%

208: Mov (5P) ,R0
ASTXSS
.DSABL 1SB

- ws e

WE ey My e we

W MR M OWE WE Ma ME W

. NE

Save the SPAS I/0 status block address
Save RO
Get the I/0 status eddress

Was the directive successful?

If NE, no - just exit from AST

Else, copy current number of ASTs queued
If EQ, nothing queued, exit from AST
Else, Join common code

Save RO

Set the network data queue count to one
Get the network data item

If 05, directive faijed

Was the directive successful ?

If NE, no - exit from AST

... do some processing ...
Continue untll

Restore RO
Exit from AST

DECnet-RSX MAGRO-11 Programming Facilities

2-65

XMI$

XMi$
(Send Interrupt Message)

2.5.16 XMI$ — Send Interrupt Message

Use:
Issue ¥MI$ from cither task to send an interrupt message over an established logi-
cal link. XMI$ places the message on the target task's network data queue. The
target task must issue GND$ to retrieve the message before you can issue another PR

XMI$ on the same logical link. Note that XMI$ may complete before the target e
task issues 2 GND3$ to retrieve the interrupt message.

Formats:
labet: XMI[W18 lun lefn] [status),jast], <intintien >

XMIWISE label [lun),lefn) [status) fast]f, < int,intlen >

<P

XMI[W]8S lun fefnl[status] jast], <intintlen> T

Arguments:

label

specifies the location of the argument block. See the definition in Section
2.5.1.

lun

specifies the logical link over which to send the interrupt message. If you ini- o

Y

tiated the connection, enter the LUN you used in the CON$ macro. If you
accepted the connection, enter the LUN you used in the ACC$ macro.

* e_ﬁl
specifies an optional event flag number to set when XMI$ completes.
status

specifies completion status information on return from XMI$. See the defini-
tion in Section 2.5.1, but note this exception:

Word 1: Contains number of bytes sent in message.

2-66 DECnet-RSX Programmer’s Reference Manual

XMIS

ast

is the address of an optional user-written AST routine to execute after XMI$
completes.

int

is the address of the buffer that contains the 1- to 16.-byte interrupt message
to send.

intlen

is the length in decimal bytes of the message to send

Error/Completion Codes:

I8.8UC The interrupt message has been transmitted successfully. This
code does not ensure that GND3$ retrieved the message.

1IE.ABO The logical link was disconnected during I/O operations.

1E.BAD The interrupt message exceeds 16. bytes.

IE.IFC LUN not assigned to NS:.

IE.NLN No logical link has been established on the specified LUN.

IE.NNT The issuing task is not a network task; OPN$ did not execute suc-
cessfully.

IE.SPC Inﬂra!id buffer argument; the interrupt message buffer {(inf) is out-

side the user task address space.

IE.WLK An interrupt message was transmitted before a previous interrupt
message had been received by the target task.

DECnet-RSX MACRO-11 Programming Facilities 2-67

2.5.17 MACRO-11 Intertask Communication Programming Examples

The following MACRO-11 programs are cooperating programs to run on differ-
ent nodes in the network. The transmitting program, SEN10, sends messages to
the receiving program, REC10.

These programming examples are included in your tape or disk kit.

2-68 DECnet-RSX Programmer's Reference Manual

25.17.1 Transmit Example

The SEN10 program transmits an interrupt message and 10 data messages to the
cooperating REC10 program.

.TITLE SEN10

Copyright (C)} 1983, 1985, 1986, 1987 by
Digital Egquipment Corporation, Maynard, Mass.

This seftware is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This scftware or any other
copies thereof may not be provided or othervise made available to any
other person. No title to and ownership ¢f the software is hereby
transferred.

The information in this software is subject to change without notice

and should not be construed as a commitment by Digital Eguipment
Corporation,

Digital assumes no responsibility for the use or reliability of its
software on eguipment which is not supplied by Digital.

This program prompts a user for the text of a message to transmit to
the remote receiving task REC10, It sends that message as an interrupt
nessage and sends 10 data messages with the format "This is message n"
ro REC1D.

To assemble, use the following command string:

MAC SEN10,SEN1Q/-SP=IN:[100,10IRETLIB/ML,IN:{200,200]18ENLD
Te task build, use the following command string:

TKB SEN1Q,SEN10/-SP=SEN19Q,IN:{130,10)NETLIB/LE

Note: The IN: device must be the DECnet distribution device
after the PREGEN (if any) has been performed.

e A WE Wa WA NS WE e g md NA WG e W4 N NS e WE WE R Na N W WE TR Ve % WA Bp N N RS NS e vE Ve

ARXFARKRETEARE R RN AR XA AN R R AR Ak kv R kAR R A AR bRk A ek bk

MCALL OPNW$S,CONWSS,SNDW$S,CONBSS,ALUNSC,QIOWSC
-MCALL EXITS$S,MRKTSC,WISESC,CLEFSC,SETFS$C,Q108C
MCALL DSCW$S,.XMIWSS,ASTXES

Data area

IR

r
MESN: LASCII /This is message / Message to transmit

-

NUM: JASCIE /0/ Message number

KN=,~-MESN

PRMPT: .ASCII /MSG:/ ; Prompt for interrupt message
.EVEN

IO0STN: .BLEKW 2 ; Completion status for network

BUFF: .BLKB 16. ; Interrupt message buffer .

IOSTB: .BLKW 2 ; Completion status for buffer

CNT: .WCRD 0 H

Number of c¢hars in interrupt message

DECnet~-RSX MACRO-11 Programming Fagilities 2-69

ERRCNT:
I0S8B:

CONBL:

-

START:

OKl:

LOCP:

-

TN

+ e

ERRS:
ERR4:
ERR3:
ERR2:

HWORD
BLEW

{EVEN
CONBSS

CODE

.EVEN
CLR
CLEFSC

MOVE
ALUNSC
ALUNSC
OPNWSS
TSTR
BGT
JMP
CONWSS
TSTB
BLE
QIOSC

TST
BLT
Hov
SNDWSS
TSTB
BLE
INCB
S0OB

WTSESC

D5CW5SS
EXITSS

Terminal AST

RMAST: MOV

MOV
TMIWSS

TSTB
BLE
SETFS$C

ASTXSS
Error
INC
INC

INC
INC

2-70

0
1

ERRCNT

#60, NUM
1,N8

2,N8
#1,#1,#I08TN
IQSTH

OK1l

ERR1

IQSTN
ERR2

" e

" TACOMA,Q,1,<REC10> H

e e We W WS g mg he e

#2,#2,#10STN, ,<#CONBL> ;

Error count
1/0 status

Connect request block

Initialize error count to zero

Clear event flag used to make sure

Interrupt message accepted prior
to exit

Initialize message num to zerc

Assign LUN 1 for network data queue

Assign LUN 2 for logical link
Create the network data gueue
Test far errors

Create logical link to *REC1O™
Test for errors

IC.RPR,S,,,10STB, TRMAST, <BUFF,16., ,PRMPT, 4> ; Accept

SDSW

ERR3

#10.,R0
#2,42,#108TN,
IOSTHN

‘ERR4&

NUM
R0, LOCF

5

BZ,#2,#108TN

routine

(sp)+,ICSB
1OSTB+2,CNT
$2,%#3,#108TN,

IOSTN
ERRE
5

ERRCNT
ERRCNT
ERRCNT
ERRCNT

’
.
12
.
’

, <§MESN , #NN>

e we

,<$BUFF, CNT>

“y Wy wa

P TR

interrupt message from terwminal
{use AST)[16 char max]
Test for errors

Set logp counter to 10
; Send message
Test for errors

Update message number
Leop if more to send

Make sure terminal message was
entered before exiting

Disconnect network

Exit

Pop stack

Obtain number of characters
; Transmit intergupt message
{Note use of EF 3 instead of
EF 2 - avoid competition)
Test for errors

Set event flag to indicate that
interrupt message sent
AST exit

handling - a sample debugging techrique

Determine
which
error
occurred

DECnet~RSX Programmer’s Reference Manual

ERR1: INC

LI TR TS

MOV
MOV
MOV
MOV
I0T

.END

ERRCNT
ERRCNT ,R1
SDSW,R2
10STN,R3
IOSTN+2 ,R4

START

LR TR T T

Rl contains the error number

R2 contains the Directive Status Word
R3 contains the first /0 status word
R4 contains the 2nd I/0 status word
Abort ~ dump the registers

DECnet-RSX MACRO-11 Programming Facilities 2-71

2.5.17.2 Receive Example

ma A MR MR WE WE WA WA WR WA s N mg WE %h HE Mp e s ME wE NS WG W e Wd ME SE RS VE RE W e

EYR Y

BUFl: .BLKB 25.

Each time REC10 receives a message from the cooperating program SEN10, it dis-
plays THIS 1S MESSAGE # on TI.. This is followed by the actual message, which
arrives as an interrupt message.

STITLE RECL0
Copyright {C} 1883, 1985, 1986, 1987 by
pigital Equipment Corporaticon, Maynard, Mass.
This software is furnished under a license and may be used and copied
enly in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.
The information in this software is subject to change without notice
and should not be construed as 4 commitment by Digital Equipment
Corpeoration.
Digital assumes no responsibility for the use or reliability of its
software on sguipment which is not supplied by Digital.

This example receives short messages from the sender task "SND1O,"
prints the messages on TI:, disconnects, and exits gracefully.
To assemble, use the following command string:
MAC REC10,REC10/-SP=IN;:;{130,10INETLIB/ML,IN:[200,200}REC10
To task build, use the following command string:
TKEB REC10,REC1D/-SP=REC10,IN:[130,10INETLIR/LE
Note: The IN: device must be the DECret distribution device
after the PREGEN {if any) has been performed.

MCALL OPNWS$S,SPAWSS,RECWSS, GNDWSS, ACCWSS , CLSWSS,NETDFS
.MCALL CIOWSS,ALUNSC,CLEFS$C,WISESC,SETFSC,ASTXS$S,EXITSS
RETDFS

Data area

Buffer for user messages

.EVEN

BUF2: .BLKB N.CBL ; Buffer for network messages
I0ST: .BLKW 2 : Completion status for netwoark
10ST1l: .BLKW 2 ; Comp. stat. for Get Net Data
108T2: .BLKW 2 : Comp. stat. for Accept Connect
I0SB: LBLKW 1 : 1/0 status
ERRCNT: .WORD 0 ; Errgr count
CNT: LHORD O : User message char count
CNTB: .BLKB 2 ; Interrupt message char count
FLAG: +WORD 0 s Disconnect flag
.EVEN
2-72 DECnet-RSX Programmer's Reference Manhual

Code

TART: CLR ERRCNT ; Initialize error count to zero
clefSc 10, Clear event flag used to make
sure connect has occurred
Assign LUN 1 for network data queue
Assign LUN 2 for logical link
Create the network data gueue
Test for errors

~e P e

ALUNSC 1,NMS
ALUNSC 2,NS
OBNWSS #1,#1,4I0ST
TSTB 108T

-t wp Wy ww we WA W

BLE ERR]1 :

SEAWSS #1,#1,#I08T,#CMPAST,<#NETAST> ; Specify AST handling

TSTB I0ST : Test for errors

BLE ERR2

WTSESC 10. : Wait to make sure connect occurred

LOOP: RECWSS #2,%2,#108T,,<#BUF1,#25.>; Receive up to 25 chars

TSTE 1Q8T : Test for errors
BLE ERR3
MOV IOST+2,CNT ; Obtain character count

QIOWSS #IC.WLB,#5, #5,,,,<#BUF1,CNT #40>; Type message on terminal
TST FLAG Has Gisconnect occurred?

BEQ LOOP No, post ancther receive

CLSWSS #1,#1,%108T2 Close network

TSTB I0ST2 Test for errors

£y

LR TR

BLE ERRS
EXIT3S ; Program exit
BR LOCP

; Error handling - a sample debugging technigque

ERRGE: INC ERRCNT

ERRS: INC ERRCNT

ERR4: INC ERRCNT

ERR3: INC ERRCNT

BRR2: INC ERRCHT

ERR1: INC ERRCNT
MOV ERRCNT,R1 : Rl = Error number
MOV $DSW,R2 : R2 = Directive Status Word
MoV I108T,R3 1 R = I/0 status block (lst word)
MOV 10ST+2,R4 : R4 = I/0 status block {2nd werd)
10T : abort - dump registers

AST handling for data in network data queue

LT TR Y]

CMPAST: MOV (SP)+,10SB : Save SPAS 1I/0 status block addr
MoV RO,-{8P} 1 Save RO
MOV 1088,R0 ; Get 1/0 status block address
CMPB #15.5UC, {(RO) + Successful?
BEQ OKA
IMP QuT _
OKA: MoV 2{RO),R0 ; Get current network data count
BNE OKB
JMP ouT
OXB: BR GET
NETAST: MOV RO,-{5P) : Save RO
MOV $1,R0 : Set necwork data count to 1
GET: GNDWSS #1,#1,#I0ST1,,<#BUFZ2,#N.CBL> ; Get network data
BCS cuUT : Carry bit set - error
CMPB #18.8UC,I08TL s Successful?
BNE OUT
CMPB #NT.CON, ICST1+1 ; Check if ceonnect request

DECnet-RSX MACRO-11 Programming Facilities 2-73

NEXT:

. OUT:

RIS S

LT T

2-74

BNE

ACCWSS
TSTB
BLE
SETFSC

BR
CMPB
BNE
MOV
BR

CMPE
BEQ
JMP
MOVE
QIOWSS

NOP
DEC
BEQ-
JMP
MOV
ASTXS$S

.END

OTHER

#2,42,%10872, ,<#BUF2>
I0STZ2

ERR4

10.

NEXT
#NT.DSC,IOST1+1
OTHR2

#1,FLAG

NEXT

#NT,INT,IOST1+1
CKC

ERR6
IQSTi+2,CNTB

#10.WLB,#5,%#3, , , ,<#BUFZ,CNTB,#40> ; Type interrupt message

RO

ouT

GET
{Sp)+ RO

START

; Accept connection
Test for errors

.

Set event flag to indicate
connect occurred

~ e

Check if disconnect request

-

Set disconnect flag
Go back to main routine

-y we

s+ Check if interrupt message

; Not a expected command
; Obtain character count

;: (Note use of EF 3
; instead of EF 5)

: Check if more data

Restore RO
AST exit

DECnet-RSX Programmer’s Reference Manual

3

FORTRAN, COBOL, and BASIC-PLUS-2
Programming Facilities

DECnet-RSX has three types of network subroutines:
= Intertask communication calls

®» Remote file access calls

s FORTRAN task control calls

This chapter lists the calls that perform these subroutines in alphabetical order.
The description for each call includes its use, formats, argument definitions, and
error/completion codes. All references to FORTRAN pertain to both FORTRAN
IV and FORTRAN 77. All references to BASIC pertain to BASIC-PLUS-2. Before
issuing these catls, read Chapter 1.

Building a DECnet-RSX Task

When a FORTRAN, COBOL, or BASIC task uses any DECnet—-RSX facility, that
task must be linked to the library [1,1] NETFOR.OLB. For example, 2 COBOL task
named FILES can be buiit under RSX~11M with the following task builder com-
mand string:

FILES,FILES=FILES,1B:[1,1INETFOR/LB,LB: [1,1]C0BLIB/LE

/

TASK=FILES

PAR=GEN
ACTFIL=2

i
3-1

3.2

3.3

3-2

You need not assign logical unit numbers (LUNs) for calls to the network (NS:) at

task build time or in your program. The OPNNT[W}, CONNT{W],and ACCNT[W]
calls assign the LUNs to the network at run time. Assigning 2 LUN to the network
at task build time or in your program will not have an adverse effect on the execu-
tion of the program. Be sure that the LUNs you specify in these three calls are used
only for network activity while assigned to NS:.

Establishing a Network Task

The first DECnet call yon issue must be an open call. To access the network, issue
one of the following open c¢alls:

OPNNT Establishes your task as an active network task and creates a
network data queue for it.

OPNNTW Performs the same function as OPNNT, but suspends further
task execution until the call completes.

After opening the task to the network, you can establish a logical link by issuing
calls described in this chapter.

To terminate network operations for a task, issue one of the following closing
calls:

CLSNT Terminates a task's network activity, aborts its established
logical links, and frees all its network logical unit numbers.

CLSNTW Performs the same function as CLSNT, but suspends further
task execution until the call completes.

Examining I/O Status Blocks

All calls in this chapter let you include 2n argument that specifies the address of a
status block. This address contains completion status information when the call
completes.

The status block address is recommended but optional for intertask communica-
tion and task controtl calls. It is required for remote file access calis.

Status blocks are either 1- ar 2-element integer arrays/strings. The BACC, BACCL,
BFMTO, and BFMT1 calls use one-element arrays/strings. In these arrays/strings, 2
return of -1 indicates that you supplied valid arguments; 0 indicates invalid argu-
ments. '

DECnet-RSX Programmer’s Reference Manual

L

3.4

Other calls use 2-element arrays/strings. In these arrays/strings, the first status
word contains an error/completion code for the call, as follows:

= A positive value indicates that the call executed successfully.
®= A negative value indicates that the call did not execute properly.
s A null value (0) indicates the call has not yet completed.:

Examine the value of the returned error/completion code to determine why a call
failed. Appendix E gives a complete list of error/completion codes for intertask
calls and task control calls.

The contents of the second status word differ according to the call you issue. Each
call therefore defines the contents of the second status word.

Using Event Flags

The network file access rourines (NFARs) require the exclusive use of two event
flags. The default event flags are 17 (TREF) and 18 (.RCEF). You can choose to
override these defaults by issuing the following commands in the task builder
command file:

GEBLDEF=.TREF:value
GBLDEF=.RCEF:value

The value variable is a decimal integer from 1 to 64. (33. through 64. are global
flags).

Specifying Connect Block Options

As Chapter 1 described, z source task builds a connect block before issuing a con-
nect request. This outgoing connect block contains information about the con-
nect request’s targer node and task. It can also specify explicit access control
information that gives the source task access to an account on the target node.
Before network software sends the connect block to the targer task, it adds infor-

" mationt about the source task or user. If you have an RSX-11M-PLUS or Micro/

RSX system with outgoing proxy cnabled, network software also adds proxy
information (see Section 3.6). At the target node, the target task retrieves the
incoming connect block from the network data queue.

Your task can use either long or short connect blocks. Using long connect blocks
lets your task support user IDs, passwords, and accounts of 39. characters ¢ach.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-3

Using short connect blocks lets your task support userIDs of up to 16. characters,
passwords of up to 8. characters, and accounts of up to 16, characters.

For greatest flexibility, use long connect blocks when writing a new task. How-
€Vver, you can continue to use an existing task that uses short connect blocks with-
out modifying the task. If you change an existing task to use long connect blocks,
note the added buffer space requirements. Also note that if the task uses proxy
access, you need not supply values for the access control information fields,

The connect block size that you choose affects the following intertask communi-
cation calls:

Call Connect Biock Option

OPNNT Include the mbxfig argument to specify a long connect block.

BACC Call BACC to build a short connect block.

BACCL Call BACCL to build a long connect block.

CONNT Specify the size appropriate to your connect block type in the 2gtbik
argument.

ACCNT © Use the mailbuf argument to reference the appropriately-sized buffer.

GNDNT

REJ$

The connect block size also affects the following FORTRAN task control calls:

Call _ Connect Block Option

ABONCW Specify the appropriate length for the passwd zréument.
RUNCW

BACUSR Calt BACUSR fora éhort account and user ID information area.
BACUSL Call BACUSL for a long account and user ID information area.

When access verification for your task is on, your node’s network software
verifies access rights and removes the access control information before passing
an incoming connect block to your task. For information on enabling verification
for a task, refer to the DECnet-RSX Guide to Network Management Utilities.

DECnet-RSX Programmer’s Reference Manual

foor
g

3.5.1 Receiving Connect Block Information

3.6

You specify the task’s connect block type by including or ‘omitting the mbxfig
(mailbox flag) argument to the OPNNT (access the network) call. If you specify
the mbxfig argument, network software uses long connect blocks when passing
access control information 10 your task.

If the source and targer tasks use the same connect block size, incoming connect
block fields map directly to receiving fields. Communicating tasks need not use
the same connect block size, however. In the GNDNT call, which retrieves the
connect block from the network data queue, you specify a buffer to hold the
retrieved information. The buffer that you allocate may of may not equal the
incoming connect block, but in writing incoming data to your buffer, network
sofrware always uses the offsets appropriate to the connect block size that your
OPNNT call specified.

You receive all information if the source task sends the same size connect block
that you receive, or if you receive long connect blocks and the source task sends a
short connect block. However, if you receive short connect blocks and the source
task sends a long connect block, you may lose some information. Network soft-
ware writes the received information into the appropriate field if the information
fits. Information that does not fit into the receiving field causes a data oveérrun
error and is lost.

You can choose to allocate a receiving buffer that is smaller or larger than the
expected connect block. For example, you might allocate 2 smaller buffer to
exclude all but the injtial fields, or allocate a larger buffer to receive optional user
daza. The GNDNT call description describes what happens when the task receives
access control information that is smaller or larger than expected.

Using Access Control Information

An outgoing connect request sends the target node information in order to gain
access to the target node. You can specify the access control information and/or
the network software can supply proxy information. Proxy access is available
only with R§X-1 IM-PLUS or Micro/RSX.

When you supply explicit access control information for the connect request,
you specify 2 user ID, password, and, optionally, an account number. These iden-
tify the target account on the remote node. You specify the explicit access control
information by calling BACC or BACCL. These calls build the connect block's
access control information area. When the target system receives the connect

FORTRAN, COBOL, and BASIC-PLUS~2 Programming Facilities 3-5

3-6

request, it grants access according to what you specified. For information on
which access control arguments the target system requires, refer to user docu-
mentation for that system; DECnet-RSX nodes require the user ID and password.
For more information on explicit access control information, refer ro the
DECnet—RSX Network Management Concepts and Procedures manual.

You can supply access conirol information with intertask communication calls,
and remote file access calls.

= Intertask communication calls. A source task supplies access control
information in the BACC or BACCL call.

= Remote file access calls. A source task supplies access control information
in the ident argument,

You can also define an alias node name that includes explicit access control infor-
mation. An alias node name is a user-assigned logical name for a network node.
When a source task user defines an alias node name, the task can omit the access
control infermation; access control information associated with the alias is used
automatically. The DECnet-RSX Network Management Concepts and Proce-
dures manual has more information on creating and using alias node names.

Proxy access, in contrast, eliminates the need to send passwords across the net-
work. The network managers on both nodes must set up the environment for
using proxy. Once your network manager enables outgoing proxy, your node
autormatically sends proxy information with all outgoing connect requests. Proxy
information is the user ID under which the source task is executing. If incoming
proxy is enabled on the target node, the system grants access according to the

-proxy information and source node name. For information on how a target sys-

tem verifies proxy access, refer to the DECnet-RSX Guide to Network Manage-
ment Ltilities.

If an incoming connect request contains both types of access control information,

the target system uses the explicit information, and not the proxy information, to
verify access.

DECnet-RSX Programmer’s Reference Manual

3.7 Conventions Used in This Chapter

The following notation conventions are used in the call and argument descrip-
tions and examples for intertask communication, remote file access, and task con-
trol calls in this chapier:

asterisk * flags arguments relating to arrays/character strings that
you must check for information after the call completes.
For example, the status argument spectifies an array/data
item that stores completion status information when the

call completes.
UPPERCASE indicates characters to type exactly as shown.
lowercase italics indicate variables for which yvou specify or the system

supplies the actual values.

commas, periods, must be typed where shown as part of the call format.

parentheses () Even if you omit an argument, include the comma that
delineates its field unless no other arguments follow.
FORTRAN Example:

Basic call format:

CALL BACC ([stazus).igtblk [usersz, usery,
[passwdsz passwd]],accrosz,accnol)

Sample call:
CALL BACC (,igthik,,passwdsz,passwd}

A‘\,\ The example omits arguments for status, usersz, user,
L accnosz, and accno. Commas delineate the fields for the
o first three missing arguments, but are unnecessary for
the two arguments dropped at the end of the call,

numbers represent octal numbers in calls and exampies unless fol-
lowed by a decimal point.
Example:
A 1-10 72.-element character siring

square brackets {] enclose optional data. You must specify any argument

not enclosed by brackets. Do not type the brackets
when you code a call.

FORTRAN, COBOL, and BASIC~-PLUS-2 Programming Facilities 3-7

In COBOL and BASIC, you can omit an optional argu-
ment only if you also omit all trailing arguments. How-
ever, you can enter O for an optional argument that you
warnt to omit, but that has trailing arguments you want
to include.

COBOL Example:
Basic call format:

CALL “CONNT" USING lun,[status],igtbik,
[outsize,outmessage),
[frsize inmessage].

This call includes three categorics of optional data:

u status

is optional but cannot be omitted because it is fol-
lowed by a required argument, £gfbik. You can enter
0 for status 10 prevent the return of status informa-
tion for the call.

= oulsizeoutmessage

are paired optional arguments that you can omit
only if you also omit the trailing arguments, énsize
and inmessage. To omit outsize and outmessage,
but include the arguments that follow, enter null
arguments (Q) for outsize and outmessage.

» insize,inmessage

are paired optional arguments that you can omit
without specifying null values since there are no
trailing arguments.

Sample call:
CALL CONNT® USING lur,status,tgtblk,0,0,insize,inmessage.

This call specifies stetus and insize inmessage, while
omitting outsize outmessage by specifying null values
for these optional arguments.

DECnet-RSX Programmer’s Reference Manuai

3.8 Intertask Communication

This section conrains descriptions and usage guidelines for the intertask commu-
nication calls that Table 3—1 lists alphabetically.

Read the preceding material in this chapter before using these calls. If you are
enfamiliar with network intertask communication concepts, also read Chapter 1
carefully.

Table 3-1: Intertask Communication Calls

Call Funection

ABTNT Abort a logical link

ACCNT Accept a logical link connect reques.t

BACC Build access control information arez (short)
BACCL Build access control information area (long)
BFMTO Build a format 0 destination descriptor
BFMT1 Build 2 fofmat 1 destjnation descripror
CLSNT End a task’s network operations

CONNT Request a Jogical link connection

DSCNT Disconnect a logical link

GLNNT Ger local node information

GNDNT Get data from network data queue

OPNNT Access the network

RECNT Receive datz over 2 logical link

REJNT Reject logical link connect request

SNDNT Send data over a logical link

WAITNT Suspend the calling task

XMINT Send interrupt message over a logical link

FORTRAN, COBOL, and BASIC~-PLUS-2 Programming Facilities 39

3.8.1

3-10

Each call description includes the format for each language. The generic formats

for each language are:

FORTRAN:

COBOL:

BASIC:

CALL xxxxx (arguments)
CALL “xxxxex” USING arguments.

CALL xxxxx BY REF (arguments)

Common Argument Definitions

This section defines the common arguments for intertask communication calls. A
up defines arguments common to all languages and three individual
groups define arguments specific to FORTRAN, COBOL, and BASIC-PLUS-2.

general gro

GENERAL

* oulsize

define optional user data 1o send with certain calls. These are paired

,outmessage

optional arguments; use both or omit both.

outsize specifies the length in bytes/characters of the optional user
data you can send on some operations. k must be an integer
variable or constant.

outmessage specifies the array/string containing the user data to send.

EXCEPTION

You cannot omit outsize,oumessaée in the CONNT
call in COBOL and BASIC unless you also omit the
insize,inmessage arguments. To include
insize,inmessage without specifying
oulsize outmessage, enter a null value (0) for both
outsize and outmessage. (See the example under the
discussion of square brackets in Section 3.7.)

This is a 1- to 16.-clement byte array for FORTRAN ora 1-to
16.-efement numeric data item/character string for COBOL

or BASIC.

DECnet-RSX Programmer’s Reference Manual

FORTRAN
» References to integers imply single-precision integer values.

= status

specifies an array containing completion status information on return from
the call. If specified, this 2-element single-precision integer array contains
the following values when the call completes:

status(l) returns an error/completion code. Refer to the descriptions
of individual cails for a list of the possible codes.

starus(2) returns a directive error code if status(1) returns a value of
—40. Otherwise, status(2) contains 0.

. igtblk

specifies an array where the BACC or BACCL call builds the explicit access
controt information area and the BFMTO or BFMT1 call builds the destina-
tion descriptor. A short connect block requires 72. bytes; a long connect
block requires 152. bytes. The array must start on an even byte (word)
boundary. A CONNT call passes this array to the target task.

COBOL

s For a COBOL task using the DECnet interface, logical unit number 1isa
reserved number and should never be assigned fora luz.

= status

specifies an elementary numeric data item containing completion status
information on return from the call. If specified, this elementary numeric
data item contains the following values when the call completes:

status(l) returns an error/completion code. Refer to the descriptions
of individual calls for a list of the possible codes.

Status(2) returns a directive error code if status(1) returns a value of
—40. Otherwise, status(2) contzins 0.

You cannot omit status if there are trailing arguments, but you can specify 0
for status to prevent the return of status information. See the discussion of
square brackets in Section 3.7 for more information on omitting optional
arguments.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 311

tgthbik

specifies a numeric data item that specifies the area where the BACC or
BACCL call builds the explicit access control information area and the
BFMTO or BFMT1 call builds the destination descriptor. A short connect
block requires 72. bytes; a long connect block requires 152. bytes. A CONNT
call passes the explicit access control and destination descriptor information
to the target task.

BASIC~-PLUS-2

status%()

specifies an array containing completion status information on return from
the call. If specified, this 2-element integer array contains the following
values when the call completes:

status%(0) returns 2n error/completion code. Refer to the descriptions
of individual calls for a list of the possible codes.

status%(1) teturns a directive error code if status%(0) returns 2 value of
-40. Otherwise, status% (1) contains 0.

You cannot omit status if there are trailing argnments, but you can specify 0
for status to prevent the return of status information. See the discussion of
square brackets in Section 3.7 for more information on omitting optional
arguments.

1gtblk$

specifies a character string that specifies the area where the BACC or BACCL
<all builds the explicit access control information and the BFMTO or BEMT1
call builds the destination descriptor. A CONNT call passes this string to the
target task. A short connect block requires 72. bytes; 2 long connect block

requires 152, bytes. To allocate space for 71gtblk$, use the STRING function:

£2tbIES=STRINGS({152,0)

DECnet-RSX Programmer's Reference Manual

Ty ABTNT
~ ABTNT
(Abort Logical Link)

3.8.2 ABTNT — Abort Logical Link

Use:
" Call ABTNT from either task to abort a logical link. ABTNT immediately aborts all
e pending transmits and receives, disconnects the link, and frees the LUNassigned
e to the logicat link. When you call ABTNT, you can send 1 to 16. bytes/characters

of user data to the task from which you are disconnecting (sec the owutsize,
outmessage arguments).

Formats:
FORTRAN: CALL ABTNT[W] (!un,jstatus){,outsize,outmessagel)

COBOL: CALL “ABTNT[W)] " USING lun [status]i,outsize outmessage].

BASIC: CALL ABTNT[W] BY REF (fun%,[status%()}
[,outsize% outmessage$])

Arguments:

lun

identifies the logical link to abort. This value must be an integer variable or
constant. If you initiated the connection, enter the LUN you used in the
CONNT call. If you accepted the connection, enter the LUN you used in the
ACCNT call.

* Sstatus

specifies completion status information on return from ABTNT. See the defi-
nition for your language in Section 3.8.1.

outsize,outmessage

define optional user data to send. See the definition in Section 3.8.1.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-13

ABTNT

Error/Completion Codes:
1 The call completed successfully.
-2 No logical link has been established on the specified LUN.
-9 The rask is not a2 nerwork task; OPNNT did not execute successfully.
-13 You are using an invalid buffer; the opt_ional outmessage buffer is out-

side the user task address space.

-40 A directive error has occurred. Directive error codes are defined in the
RSX~1IM/M-PLUS Executive Reference Manual.

3-14 DECnet-RSX Programmer’s Reference Manual

ACCNT

ACCNT
(Accept Logical Link Connect Request)

3.8.3 ACCNT — Accept Logical Link Connect Request

Use:

Call ACCNT from the target task to establish a logical link with the source task.
When vou call ACCNT, you can send 1 to 16. bytes/characters of user data to the
source task (see the outsize, outmessage arguments).

Formats:
FORTRAN: CALL ACCNT[W|{lun,[status],mailbuf [outsize outmessagey)

COBOL: CALL “ACCNT[WY)'' USING lun,[status),mailbuf
[.outsize outmessage)

BASIC: CALL ACCNT[W] BY REF (lun% [status%()],mailbufs
[,outsize% outmessage$y)

Arguments:

lun

assigns the logical link number. This value must be an integer variable or
constant. Use this LUN when referring ro this logical link in any succeeding
RECNT, SNDNT, XMINT, ABTNT, or DSCNT call.

status

specifies completion status information on return from ACCNT. See the defi-
nition for your language in Section 3.8.1.

mailbuf

specifies a 1- to n-¢lement array/string that contains the connect block. In
FORTRAN, this array must start on an even byte (word) boundary. For more
information, see Table 3-2 and the description of mailbuf under GNDNT
(Secticn 3.8.12).

oulsize,outmessage

define optional user dara to send. See the definition in Section 3.8.1.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-15

ACCNT

Error/Completion Codes:

1 " The call completed successfully.
-1 System resources needed for the logical link are unavailable.
-3 The task that requested the connection has aborted or requested a dis-

connect before the connection could complete.

-5 The temporary link address in the mail buffer is not valid.

-8 A logical link has already been established on the specified LUN.

-9 The task is not 2 nerwork task; OPNNT did not execute successfully.

-13 You are using an invalid buffer; the mailbuf or outmessage buffer is out-
side the user task address space, or {for FORTRAN)} mailbufis not word
aligned.

~4Q A directive error has occurred. Directive error codes are defined in the

RSX-11IM/M-PLUS Executive Reference Manual.

3-16 DECnet-RSX Programmer’s Reference Manual

o

b
]

BACC

BACC
(Build Access Control Information Area (Short))

3.8.4 BACC — Build Access Control information Area (Short)

Use:

Call BACC from the source task to build an area for explicit access control infor-
mation for the outgoing connect block. BACC supports 16.-character user IDs,
8.-character passwords, and 16.-character accounts. '

Explicit access contiro! information arguments define your access rights at the
remote node or process. The target system verifies access control information
according to its system conventions. If the target node is equipped to verify the
information, it docs $0 before passing the CONNT call to the target task. For more
information on access control verification, refer to the DECnet-RSX Network
Management Concepts and Procedures manual.

If you have defined an alias node that includes the explicit access control informa-
tion, or if you use proxy access, you need not call BACC.

Formats:

'FORTRAN: CALL BACC ([status),1gtblk [usersz,user],
[passwdsz,passwdl|,accnosz,accnol)

COBOL: CALL “BACC” USING [status),igtbik Jusersz,user],
[passwdsz passwd][,accnosz,accno].
BASIC: CALL BACC BY REF ([status%],tgtblk$ jusersz% user$),

[passwdsz% passwd$][,accnosz% ,accno$])

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-17

BACC

Arguments:

®

status

specifies an integer variable containing completion status information on
return from BACC. On return, the variable is set to —1 if the BACC call com-
pleted successfully or to 0 if there was an invalid BACC argument.

In COBOL and BASIC, you cannot omit status, but you can specify 0 for
status 1o prevent the return of status information. See the discussion of
square brackets in Section 3.7 for more information on omitting goptional
arguments.

* igtblk

specifies an acray/string in which to build the explicit access control infor-
mation area. See the definition for your language in Section 3.8.1.

usersz, user

specify the user ID. These are paired optional arguments; use both or omit
both (FORTRAN) or enter O for both (COBOL and BASIC). For information
on omitting arguments in COBOL and BASIC, refer to the discussion of
opticnal arguments {(square brackets) in Section 3.7.

usersz specifies the user ID length in bytes/characters. This field is an
integer variable or constant.

wuser specifies the 1- to 16.-element array/string containing the user
ID.
passwdsz.passwd

specify the password that determines your access at the remote node. These
are paired optional arguments; usc both or omit both (FORTRAN]) or enter O
for both (COBOL and BASIC}. For information on omitting arguments in
COBOL 2nd BASIC, refer to the discussion of optional arguments (square
brackets) in Section 3.7.

passwdsz specifies the password length in bytes/characters. This field is
an integer variable or constant,

passwd specifies 2 1- to 8.-element array/string containing the pass-
word.

3-18 DECnet-RSX Programmer's Reference Manuat

BACC

ACCNOSZ,Accno

specify the account number. These are paired optional arguments; use both
or omit both.

aCCNOST specifies the account number length in bytes/characters. Do
not use this argument for RSX target systerns. This fieldisan
integer variable or constant.

aceno specifies a 1- to 16.-element array/string containing the
account number.
Connect Block Offsets:
Length
in Decimal
Bytes/Characters Destination Descriptor
AT 26. Built by BFMTO or BFMT]1 call
R Access Control
2. User ID length
(16. bytes/characters or less)
16. User ID
2. Password length

(8. bytes/characters or less)
~ Password

Account number length
(16. bytes/characters or less)

16. Account number

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-19

BACCL

BACCL ‘
(Build Access Control Information Area {(Long))

3.8.5 BACCL — Build Access Cantrol information Area {Long)

Use:

Call BACCL from the source task to build an area for explicit access control infor-
mation for the outgoing connect block. BACCL supporis 39.-character user IDs,
passwords, and accounts.

The explicit access control information arguments define an account at the
remote node. The target system verifies access control informatijon according to
its system conventions. If the target node is equipped to verify the information, it
does so before passing the CONNT call to the target task.

if you have defined an alias node name that includes the access control informa-
tion, or if you use proxy access, you need not call BACCL. For more information
on access control verification, refer to the DECnel-RSX Network Management
Concepts and Procedures manual. For more information on using aliases, refer to
the DECnet~-RSX Guide to User Utilities or the DECnel—-RSX Network Manage-
ment Concepts and Procedures manual. For more information on proxy access,
refer to the DECnet—RSX Guide to Network Management Utilities,

Formats:

3-20

FORTRAN: CALL BACCL ([sttus),igtblk, [usersz,user],
(passwdsz passwdl|,accnosz.accnol)

COBOL.: CALL “BACCL’”’ USING [status},igtbik,[usersz,user],
[passwdsz, passwd][,accnosz. accnol.

BASIC: CALL BACCL BY REF ([status%),tgtblkS$ [usersz% user$},
[passwdsz% passwd$)f ,accnosz% accnol))

DECnet-RSX Programmer’s Reference Manual

BACCL

Arguments:

L]

status

specifies an integer variable containing completion status information on
return from BACCL. On return, the variable is set to —1 if the BACCL call
completed successfully or to 0 if there was an invalid BACCL argument.

In COBOL and BASIC, you cannot omit status, but you can specify 0 for
status 1o prevent the return of status information. See the discussion of
square brackets in Section 3.7 for more information on omitting optional
arguments.

tgtbik

specifies an array/string in which to build the explicit access control infor-
mation area. See the definition for your language in Section 3.8.1.

usersz user

specify the user ID. These are paired optional arguments; use both or omit
both (FORTRAN) or enter 0 for both (COBOL and BASIC). For information
on omitting arguments in COBOL and BASIC, refer to the discussion of
optional arguments (square brackets) in Section 3.7.

usersz specifies the user ID length in bytes/characters. This field is an
integer variable or constant. '

user specifies the 1- to 39.-element array/string containing the user
ID.
passwdsz passwd

specify the password that determines your access at the remote node. These
are paired optional arguments; use both or omit both (FORTRAN) or enter 0
for both (COBOL and BASIC). For information on omitting arguments in
COBOL and BASIC, refer to the discussion of optional arguments (square
brackets) in Section 3.7.

Dbasswdsz specifies the password length in bytes/characters. This field is
an integer variable or constant.

Dasswd specifies a 1- to 39.-element array/string containing the pass-
word.

FCRTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-21

BACCL

aACCNOSZ ACCNO
specify the account number. These are paired optional arguments; use both
of omit both. :
acenosz specifies the 2ccount number length in bytes/characters. Do
not use this argument for RSX target systems. This fieldisan
integer variable or constant.
accno specifies a 1- to 39 .-element array/string containing the
account number.
Connect Block Offsets:
Length
in Decimal
Bytes/Characters Destination Descriptor
26. Built by BFMTO or BFMT 1 call
Access Controt
2. User ID length
(39. bytes/characters or less)
39. UserID
2. Password length
(39. bytes/characters or Jess)
39. Password
2. Account number length
(39. bytes/characters or less)
39. Account number

3-22

DECnet-RSX Programmer’s Reference Manual

A

Py BFMTO

BFMTO
(Build a Format 0 Destination Descriptor)

3.8.6 BFMTO — Build a Format 0 Destination Descriptor

Use:

Call BFMTO from the source task to build a format 0 destination descriptor for the
connect block. Use a format 0 descriptor to connect only to a target task that re-
quires specification of an object type.

Object types group DECnet programs according to function and are identified
throughout the network by object type codes (see Appendix B). For example, the
TLK server task, LSN, has an cbject type code 016 (decimal). Any other program
that provides the same function on another DECnet system also has object type
code 016 (decimal), regardless of its name.,

Formats:

FORTRAN: CALL BFMTO ([status],tgtbik ndsz, ndname,objtype)

COBOL: CALL “BFMTO" USING [statusl.igtbik ndsz, ndname objtype.
BASIC: CALL BFMTO BY REF ([status%).tgtblk$ ndsz% ndname$,
objtype%s) |
Arguments:
* status

specifies an integer variable containing completion status information on
return from BEMTO. On feturn, the variable is set 1o .TRUE. (for FORTRAN)
or to -1 (for COBOL and BASIC) if the BFMTO call completed successfully. It
is set to .FALSE. (for FORTRAN) or to 0 (for COBOL and BASIC) if there was
an invalid BFMTO argument.

In COBOL and BASIC, you cannot omit status, but you can specify 0 for
Status to prevent the return of status information. See the discussion of

square brackets in Section 3.7 for more information on omitting optional
Arguments.

FORTRAN, COBOL., and BASIC-PLUS-2 Programming Facilities : 3-23

BFMTO

* Igthik

specifies an array/string in which to build the destination descriptor. See the
definition for your language in Section 3.8.1.

ndsz

specifies the node name length in bytes/characters. This field mustbe an
integer variable or constant.

ndname

specifies a 1- to 6-element array/string containing the name of the target

node.

objftype

is the target task’s object type. The objtyp argument is an integer variable or
constant. The object type for a named object is 0. The object typ¢ for a num-
bered object is in the range 1 to 127. for a DECnet task or 128. to 255. fora
user task. Refer to Appendix B for a list of object type codes.

Privileged users can define their own object types. For more information,
refer to the DECnet—RSX Network Management Concepts and Procedures

manual,
Connect Block Offsets:
Length
in Decimal
Bytes/Characters Destination Descriptor
6. Destination node name with trziling blanks
1. Descriptor format type (0 for BEMTO)
1. Destination object type {1 to 255.)
Descriptor Field for Format 0
18. Not used
Access Control
46, Built by BACC or BACCL call

3-24

DECnet-RSX Programmer's Reference Manual

RS

BFMT1

BFMT1
(Build a Format 1 Destination Descriptor)

3.8.7 BFMT1 — Build a Format 1 Destination Descriptor

Use:
Call BFMT1 from the source task to buiid a format 1 destination descriptor for the
outgoing connect block. Use a format 1 descriptor to connect only to a target task
that requires specification of a task name.
Formats:
FORTRAN: CALL BFMT ([status),igtblk ndsz.ndname,
objtype,namesz name)
COBOL: CALL “BFMT1"’ USING [status],tgtblke ndsz ndname,
ilype,namesz. name.
o objyp
Lk BASIC: CALL BFMT1 BY REF ([status%},igtblk$,ndsz% ndnames,
objtype% . namesz% name$)
Arguments:

* status

specifies an integer variable containing completion status information on
return from BFMT1. On return, the varizble is set to . TRUE. (for FORTRAN)
or to ~1 (for COBOL 2nd BASIC) if the BFMT1 call completed successfully. it

is set to .FALSE. (for FORTRAN) or to 0 (for COBOL and BASIC) if there was
an invalid BFMT 1 argument.

In COBOL and BASIC, you cannot omit status, but you can specify 0 for
status to prevent the return of status information. See the discussion of
square brackets in Section 3.7 for more information on omitting optional
arguments.

* tgtbik

specifies an array/string in which to build the destination descriptor. See the
definition for your language in Section 3.8.1.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-25

BFMT1

ndsz

specifies the node name length in bytes/characters. This ficld must be an
integer variabie or constant.

ndname

specifies the 1- to 6-clement array/string that contains the name of the target
node.

objtype
specifies the object type of the target task. For BEMT1, objtype must be 0.

namesz

specifies the length of the program name in bytes/characters. This field must
be an integer variable or constant.

name

specifies 2 1- to 6-clement array/string containing the name of the target pro-
gram.

Connect Block Offsets:
Length
in Decimal
Bytes/Characters Destination Descriptor
6. Destination node name with trailing blanks
Descriptor format type {1 for BFMT1)
1. Descriptor object type (0 for BEMT1)
Descriptor Fields for Format 1
2. Destination program name length
{16, bytes/characters or less)
16. Destination program name
Access Control
46. Built by BACC or BACCI call
3-26 DECnet-RSX Programmer’s Reference Manual

BFMT1
Examples:

The following language-specific examples show the code for a BFMTI1 call,
including the declaration statements.

FORTRAN Example:

INTEGER*2 IOST{2),NDSIZ,0BITY,PRSIZ
Py BYTE NDNAM(6) ,PRONAM(5)
R BYTE CONBLK{120)

DATA NDNAM/'T','aA",'C','0', M7, "AY/
DATA PRGNAM/'R','E,'C',"W','RY/

QBJTY=0

NDSIZ=6
PRSIZ=5

CALL B¥MTL (10ST,CONBLK,NDSIZ,NDNAM,OBIJTY,PRSIZ,PRGHAM)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Fagilities 327

BFMT1

COBOL Example:

WORKING-STORAGE SECTION.

01 STORE-STUFF.

03 NODNAM PIC X(6) VALUE "TACCMAY.
03 TSKNAM PIC X(§) VALUE "RECVR".
03 STAT PIC X999 USAGE COMP.

03 CONBLK PIC X(120).

03 NLENG PIC 9 USAGE COMP.

03 TLENG PIC 9 USAGE COMP.

03 DUMMY PIC X {2).

PROCEDURE DIVISICN

L e I T T T BT I Y
BUILD A FCRMAT 1 CONNECT BLOCK. *
FRREFRRREERRENHERERIN IR RN EE A%
MCVE & TO NLENG.
MOVE 5 TO TLENG.
CALL BFMT1 USING
STAT
CONBLK
NLENG
NODNAM
DUMMY
TLENG
TSKNAM.

BASIC-PLUS-2 Example:

40 CONBLK$=STRING(120%,0%)

\ NDWAM.LENZ=6%

N, TSKNAM,LEN%=5%
%\ NDNAM$="TACOMA"
A, TSKNAM$="RECVR®

\ CALL BFMT1 BY REF (STAT%,CONBLKS,NDNAM.LEN%,
NDNAMS ,DUMMYZ, TSKNAM. LEN%,
TSKNAMS)

3-28 ‘ DECnet-RSX Programmer’s Reference Manual

CLSNT

CLSNT
(End Task Network Operations)

3.8.8 CLSNT — End Task Network Operations

Use:

Call CLSNT from either task to end that task’s network activity, abort all of its log-

ical links, and free all its network LUNs. If the CLSNT call occurs when data

remains in the task’s network data queue, network software:

= Reschedules the task if pending connect requests arrived while the task was
active. The task receives these connect requests when it restarts. There is 2
limit of one retry.

= Rejects connect requests that arrived while the task was inactive.

= Discards interrupt, user disconnect, user abort, or network abort messages.

Formats:

FORTRAN: CALL CLSNT[W] {(status)]

COBOL: CALL “*CLSNT[W]’ USING [status].

BASIC: CALL CLSNT{W] BY REF j(status%{()))
Arguments:

¥ status

specifies completion status information on return from CLSNT. See the defi-
nition for your language in Section 3.8.1.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-29

CLSNT

Error/Completion Codes:

1 The call completed successfully.
-9 The task is not a network task; OPNNT did not execute success-
fuily.
-10 The network is not accessed on this LUN.
—-40 A dﬁective error has occurred. Directive error codes are defined in

the RSX—1IM/M-PLUS Executive Reference Manual,

.3-30 DECnet~-RSX Programmer's Reference Manual

CONNT

CONNT
(Request Logical Link Connection)

3.8.9 CONNT — Request Logical Link Connection

Use:

Call CONNT from the source task to request a logical link with the target task.
Before calling CONNT, you must build a connect block. To build the connect
block’s zccess control area, you call BACC or BACCL; to build its destination de-
scriptor, you call BFMTO or BFMT1.

When a remote system receives 2 connect request, it checks the remote task. if the
task is currendly installed and inactive, the system automaticaily loads and acti-
vates it before passing the connect block to the task. After retrieving the connect
request with a GNDNT call, the task either accepts (ACCNT) or rejects (REJNT)
the request. You can send 1 to 16. bytes/characters of user data to and/of receive
1 to 16, bytes/characters of user data from the remote task when it 2ccepts/rejects
your connect reguest

Formats:

FORTRAN: CALL CONNY[W{iun,[status),tgtblk [outsize outmessagel,
[insize,inmessage))

COBOL: CALL “CONNT[W]” USING lun,[status),igtbik,
[outsize outmessage),
[insize,inmessage].

VI BASIC: CALL CONNT[W)] BY REF (lun% [status%()).igtbiks,
' [owutsize% ,outmessage$),
[insize% ,inmessages))

Arguments:

lun

assigns the logical link number. This value musi be an integer variable or
constant. Use this LUN when referring to this logical link in any subsequent
RECNT, SNDNT, XMINT, ABTNT, or DSCNT call.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-31

CONNT

* status

specifies an array/data item containing completion status information on
return from CONNT. In COBOL and BASIC, you cannot omit staius, but you
can specify 0 for status to prevent the return of status information. See¢ the
discussion of square brackets in Section 3.7 for more information on omit-
ting optional arguments. If specified, this 2-element integer array/data item
contains the following values when the call completes:

» The first status word — status%{0) (BASIC) or status(1) (FORTRAN,
COBOL) — contains an error/completion code, as shown in the list that
follows.

s The contents of the second status word—status % (1) (BASIC) or
status(2) (FORTRAN, COBOL) — depend on the error/completion code
in the first status word, as shown in the list that follows,

These are the error/completion codes you can receive in the first status word
and the corresponding contents of byte 0 in the second status word. Byte 1 of
the second statrus word is always 0.

Error/Completion Code Contents of Byte 0
First Status Word Second Status Word
Connection accepted Received byte count
Connection accepted with data Received byte count
overrun

Connection rejected by user with Received byte count
data overrun

Connection rejected by DECnet Reason for rejection (see Appendix A)
Connection rejected by user Received byte count
Directive error Directive error code
All other cases 0

igtblke

specifies an array/string containing the explicit access control information
area and destination descriptor. See the definition for your language in Sec-
tion 3.8.1.

3-32 DECnet-RSX Programmer's Reference Manual

CONNT

outsize outmessage

define optional user data to send. See the definition in Section 3.8.1 but note
the exception.

insize inmessage

define user data you can receive from the targey task. These are paired
optional arguments; use both or omit both.

insize

specifies the length in bytes/characters of the user data to
receive. It must be an integer variable or constant.

* inmessage specifies the array/string that stores the user data sent by

the target task. This is a 1- to 16.-element byte array for
FORTRAN or a 1- t0 16.-element character string for
COBOL or BASIC.

Errar/Completion Codes:

1

2

=12

The call completed successfully.

The call completed successfully; the connection was accepted, but
some returned optional data sent to the target task when you
called CONNT was lost.

System resources needed for the logical link are unavailabie.

The connection was rejected and some optional data was lost (the
data sent to the target task when you called CONNT).

Either an optional user data buffer exceeds 16. bytes/characters, or
the field length count in the coanect block is too large.

The connection was rejected by the network (see the reject reason
codes in Appendix A).

A logical link has already been established on the specified LUN.

The task is not 2 network task; OPNNT did not execute succeess-
fully.

The connection was rejected by the remote user task.

FORTRAN, COBOL,, and BASIC-PLUS~-2 Programming Facilities 3-33

CONNT

-13

-40

You are using an invalid buffer; the fgtbik, inmessage, or
outmessage buffer is outside the user task address space or {for
FORTRAN) igtblk is not word aligned.

A directi;s'e error has occurred. Directive error codes are defined in
the RSX--11M/M—-PLUS Executive Reference Manual.

DECnet-RSX Programmer’s Reference Manual

DSCNT

DSCNT
(Disconnect a Logical Link)

3.8.10 DSCNT — Disconnect a Logical Link

Use:

Call DSCNT from either task 10 disconnect the logical link 2nd free the logical unit
number. This call lets all pending transmits compleie. While they are completing,
the task continues to receive messages. When the last transmit has completed, the
task aborts 21l pending receives and disconnects the link. The I/O status block
gives an abort status for ¢ach aborted receive.

When you czll DSCNT, you can send 1 10 16. bytes/characters of user data to the
target task {see the ouisize outmessage argaments).

Formats:
FORTRAN: CALL DSCNT[W) (lun,[status)| outsize outmessage])
COBOL: CALL “DSCNT[W]" USING Iun,[status]{ ,outsize outmessage].

BASIC: CALL DSCNT{W] BY REF (fun % [status%()},
[outsize% .outmessage$])

Arguments:

lun

specifies the logical link to disconnect. It must be an integer variable or con-
stant. If you initiated the connection, enter the LUN you used in the CONNT
call. If you accepred the connection, enter the LUN you nsed in the ACCNT
call.

* Status
specifies completion status information on return from DSCNT. See the defi-
nition for your language in Section 3.8.1.

outsize Outmessage

define optional user data to send. S¢e the definition in Section 3.8.1.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 335

DSCNT

Error/Completion Codes:
1 The call completed successfully.
~2 No logical link has been established on the specified LUN.
-5 The optional user data exceeds 16. bytes/characters. |
-9 The task is not a network task; OPNNT did not execute successfully.
-10 The network is not accessed on this LUN.
~13 You are using an invalid buffer; the outmessage buffer is outside the
user task address space. '
—40 A directive error has occurred. Directive error codes are defined in the

RSX-11M/M-PLUS Executive Reference Manual.

3-36 ' DECnet-RSX Programmer’s Reference Manual

GLNNT

GLNNT
(Get L.ocal Node Information)

3.8.11 GLNNT — Get Local Node information

Use:

Issue GLN$ from either task to place the name and default NSP segment size of the
local node in a specified buifer.

Getting the local node name can be helpful if two tasks on the same node use the
network interface 10 communicate. Each task can issue GLNS and use the
returned local node name as the destination in a conaect request. You can also use
GLN$ in a task that displays the local node name.

The default NSP segment size rells you how NSP seginents data transmitted on a
logical link. By knowing the default NSP segment size, you czn adjust the length

of message blocks to transmit for most efficient use of transmit buffers (large data
buffers).

Formats:

FORTRAN: CALL GLNNTIW] ([status},buflen, buf)

COBOL: CALL “GLNNT[WY]"* USING |status),bufler,buf.

BASIC: CALL GLNNT[W) BY REF ([status%()},buflen% buf¥)
Arguments:

* status

specifies completion status information on return from GLNNT. See the defi-
nition for your language in Section 3.8.1,

bufien

specifies an array/string containing the received data length. If you specify 6
bytes/characters, only the local node name is returned. If you specify 8.
bytes/characters, both the node name and the default NSP segment size are
returned. This value must be an integer variable or constant.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-37

GLNNT

* buf

specifies the array/string containing the received data. In FORTRAN, the
buffer must start on an even byte (word) boundary. On return from the call,
the data is stored as follows:

Length
in Bytes/
Characters Contents/Meaning

6

Local node name in ASCII (Jeft justified and filled with
spaces if the name is less than 6 bytes/characters)

Default NSP segment size

Error/Completion Codes:

1

-4

~10

-13

3-38

The call completed successfully.

Data overrun. The network data was longer than the specified buffer. As
much data as fits into the buffer is transferred to it; any remaining data is
lost.

The task is not 2 network task; OPNNT did not execute successfully.
The network is not accessed on this LUN.

You are using an invalid buffer; the buffer specified to receive network
data is outside the user task address space, or (for FORTRAN) it is not

word aligned.

A directive error has occurred. Directive error codes are defined in the
RSX~-11M/M-PLUS Executive Reference Manual.

DECnet-RS8X Programmer’s Reference Manual

GNDNT

GNDNT
(Get Network Data)

3.8.12 GNDNT — Get Network Data

Use:

Call GNDNT from cither task to get dara from that task’s network data qucue and
store it in the specified mail buffer (see maflbuf). On completion, the variable
specified by the fype argument contains 2 code that indicates what type of mes-
sage GNDNT retrieved. The code indicates one of the following unsolicited mes-
sage types:

Connect request type code 1
Interrupt message type code 2
User disconnect notice type code 3
User abort notice type code 4
Network abort notice type code 5

Onily one GNDNT request can be outstanding. If you issue a2 GNDNT while
another GNDNT is outstanding, your request completes with error code —14.

If GNDNT retrieves a connect request, it writes the accompanying connect block
information to the mail buffer. You can use a long or short connect block depend-
ing on the length of the user IDs, passwords, and accounts you €xpect to receive.
For information about the incoming connect block, se¢ the ‘“Connect Block™ sec-
tion of this call description.

Formats:

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facitities

FORTRAN: CALL GNDNT{W] ([status],type,[mailsz],[mailbuf],
{ltonly).[immed][.typmsk])

COBOL: CALL “GNDNT[W]'’ USING [status].type mailsz,maitbuf,
[itonly) [immed]| typmsk].
BASIC: CALL GNDNT[W] BY REF ([status%()),type% mailsz%,
‘ mailbuf¥ [ltonly%),[immed%]
[typmsk%])

GNDNT

Arguments:

* status

specifies a 2-element integer array/dara item that contains completion status
information on return from GNDNT. In COBOL and BASIC, you cannot omit
status, but you can set its value to 0 to prevent the return of status informa-
tion. See the discussion of square brackets in Section 3.7 for more informa-
tion on omitting optional arguments. If specified, this 2-¢lement integer
array/data item contains the following values when the call completes:

= The first status word — status %(0) (BASIC) or status(1) FORTRAN,
COBOL) — contains an error/completion code, as shown in Status

Table A.

= The contents of the second status word — status%(1) (BASIC) or
status(2) (FORTRAN, COBOL) — depend on the error/completion code
in the first status word, as shown in Status Table A.

Status Table A shows the error/completion codes you can receive in the first
status word and the corresponding contents of byte O in the second status
word. Byte 1 of the second status word is always 0.

Status Table A

First Status Word Second Status Word
GNDNT completes —40 Directive error code
with an error -n (other than —40) 0
GNDNT completes +n The low-order byte contains
successfully and the number of bytes/charac-
the ltonly flag is ters in the first nerwork data
-1 {.TRUE. item in the gueuve,
GNDNT completes +n Depends on the data message

successfully and
the litoniy flag is 0
(-FALSE.):

type. For ecach messzage type,
Status Table B lists the con-
tents of the second status
word.

DECnet-RSX Programmer's Reference Manual

GNDNT

Status Table B shows the contents of the second status word for each type of
message successfully retrieved by GNDNT.

Status Table B

Type Message

Code Type Low-Order Byte High-Order Byte
1 Connect Number of Access verification® and
request bytes/characters in privilege code:
the connect block. 1 = Nonprivileged requesting
user.

2 = Privileged requesting user.
0 = No verification done.*
-1 = Verification failed.***

2 Interrupt Number of LUN on which the notice was
message bytes/characters in received.
the message. Zero
indicates that no

message was
received.
3 User
disconnect
4 User
disconnect
5 Network Reason for network LUN on which the notice was
abort abort. Refer to received.
Appendix A for
information on the
codes.

If access verification is enabled, the Network Verification Program evaluates
the access control information in the connect request before passing the incoming
request to the task’s network data queue,

** The verification task was not installed on the target node, or it was set to OFF
with the NCP SET EXECUTOR VERIFICATION command, or the proper access con-
trol file was not available.

*** Either the account is not in the system 2ccount file or the password does not
match the one in the file.

FORTRAN, COBOL, and BASIC~PLUS-2 Programming Facilities 3-41

GNDNT

* type

specifies an integer variable indicating a data message type code on return
from GNDNT. The code indicates the type of data message GNDNT placed
in the mail buffer. Status Table B lists the codes and tells what message types
they represent.

mailsz

specifies the size of the task’s mail buffer in bytes/characters. In FORTRAN,
you can omit this integer variable or constani if you specify ltonly as .TRUE.
In COBOL and BASIC, you can set it to 0 if you specify lfonly as —1. Other-
wise, mailsz must be a value greater than 0.

The incoming data is written to the buffer according to the offsets appropri-
ate 10 the connect block type that you specified in the OPNNT call.

You can allocate a mail buffer that is equal to, smaller than, or larger than the
expected connect block and optional data. To receive an entire connect
block, allocate space according to the N.CBL or M.CBL length:

Short connect block 98. bytes (N.CBL)
Long connect block 178. bytes (M.CBL)

You can add space for optional data:

Optional data - Up 10 16. bytes
Optional data leangth field 2. bytes

Network software writes the retrieved information to the buffer field by
field, according to the offsets of the specified connect block type. If the mail
buffer and the incoming connect block are different sizes, the following

results occur.
Mail Buffer Size Result
You allocate 2 buffer that is No €rror occurs.

Iarge than the incoming
connect block.

You allocate 2 buffer that is Connect block data is written field by field
smailler than a full connect block into the buffer until no more fits. A data
(15.DAO) completion status results.

3-42 DECnet-RSX Programmer’s Reference Manual

GNDNT

Mail Buffer Size Result

You allocate a buffer for re- If the incoming data fits according to the
ceiving a short connect block short connect block offsets, you get all the
and instead receive a long data, but a data overrun (IS.DAQ) comple-
connect block. tion status results.

¥ the data in any incoming field exceeds
the size of the analogous receiving field,
the data in that field is lost. The length
value for the ficld becomes 0, and a data
overrun (IS, DAOQ) completion status
results,

* mailbuf

specifies a l- to n-element array/string containing the network data on return
from GNDNT (see Table 3—2). In FORTRAN, this array must start on an even
byte (word) boundary; you can omit it if you specify tonly as ”TRUE. In
COBOL and BASIC, you can set it to 0 if you specify itonly as -1.

ST itonly

specifies dynamic assignment of mail buffer space. When you specify litonly
as .TRUE. (FORTRAN) or —1 (COBOL and BASIC), the Zype variable returns
the type code of the first message in the network data queue, and the low-
order byte of the second status word returns its length. The message is not
removed from the gueue or placed in the mail buffer.

If you specify the typmsk argument, you must specify ltonly as 0 in COBOL

and BASIC; in FORTRAN, you must omit {foniy or specify it as .FALSE. In

COBOL and BASIC, you can omit ltonly only if you omit all trailing argu-
Pt ments. For information on omitting arguments in COBOL and BASIC, refer
T to the discussion of square brackets in Section 3.7.

immed

specifies GNDNT action based on data in the network data queue.

FORTRAN, COBOL, and BASIC~-PLUS~2 Programming Facilities 3-43

GNDNT

Data in
Network
Value of immed Queue? GNDNT Action
.TRUE. (FORTRAN) Yes Completes normally
or—1(COBOLand
BASIC)
No Completes with error code -6
(no data in queue)
.FALSE. (FORTRAN) Yes Completes normally
- or 0 (COBOL and
BASIC) or omitted
No Does not complete until there is data
in the queue

You cannot omit immed in COBOL or BASIC unless you also omit all trailing
arguments. For information on omitting arguments in COBOL and BASIC,
refer to the discussion of square brackets in Section 3.7.

typmsk

specifies the data type to select from the network dara queue. Normally,
GNDNT returns items from the network data queue on a first-in, first-out
basis. However, fypmsk lets you select the first item on the queue that
matches a specific message type and/or LUN. You specify an integer variable
or constant, as follows: ' '

Message Type Logical Unit Number

(Byte 0) {Byte 1)

1 <Connect request 0 (Selects the first LUN to request a M
connection.) -

2 Interrup! message 0 or LUN

3 User disconnect OorLUN

4 Userabort Oor LUN

5 Network abort 0 or LUN

0 Selects any message type LUN

on the specified LUN

For exampie, to select the first interrupt message (type 2) on LUN 3 from the
network data queue, you use a variable for the #ypmsk argument, declare it
2s an integer, and assign it a value. You code the argament as (3*256.) + 2.

3-44 DECnet-RSX Programmer’s Reference Manual

-, GNDNT

Specifying 0 in byte 1 returns the first message of the type specified in byte
0, regardless of the LUN.

With typresk, you must also include mailsz and mailbuf. In COBOL and
BASIC, you must also specify ifonly as 0. In FORTRAN, you can omit ltonly
or specify it as .FALSE,

Connect Block:

| Table 3-2 lists the contents of an incoming connect block. The access control

fields differ according to the connect block size that you specified in the OPNNT
call.

The source descriptor differs according to the source system type. If the source is
an RSX system

* and the source node did not send proxy information, you receive 2 Format 1

source descriptor containing the ASCII source task name.
* and the source node sent proxy information, you receive a Format 2 source
descriptor containing the proxy information.

Table 3-2: Incoming Connect Block

Lengthin
Decimal Bytes/
Characters Contents
2. Temporary logical link address
(required by the network; do not modify)
2. ' NSP segment size
(used by NSP to send message data to source)
DESTINATION DESCRIPTOR
{20.-byte/character total)
1. Destination descriptor format type
0 for BFMTO, or 1 for BFMT1)
Descriptor Field for Format 0
18. Not used

{continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-45

GNDNT

Table 3-2 (Cont.): Incoming Com_'pect Block

Length in
Decimal Bytes/
Characters Contents
Descriptor Fields for Format 1
2. Destination program name length
(equal to or less than 16. bytes/characters)
16. Destination program name
SOURCE DESCRIPTOR
(26.-byte/character total)
6. Source node name
(name of node requesting the connection; ASCII,
with trailing blanks
1. Source descriptor format type
(format 0, 1, or 2)
1. Source object type
(object type of program requesting connection:
1-255 for format O, or 0 for format 1 or 2)
Descriptor Field for Format 0
18. Not used
Descriptor Fields for Format I
2. Source descriptor length
{equal to or less than 16. bytes/characters)
16. Source descriptor
Descriptor Fields for Format 2
2. Binary UIC group identifier
2, Binary UIC member identifier
2. Source descriptor length
(12. bytes or less)
12. Source descriptor

3-45

DECnet-RSX Programmer's Reference Manual

GNDNT

Table 3-2 (Cont.): Incoming Connect Block

Lengthin
Decimal Bytes/
Characters Contents
ACCESS CONTROL
{46.-byte/character total)
If no verification performed
P :
B \ 2. Source program user JD length
(equal to or less than 16. bytes/characters for a short connect
block or 40. characters for a long connect block)
16.0r - Source program user ID, short connect biock
39. + Source program user D, long connect block
1. Not used
2. Source program password length
(16. bytes/characters or less for a short connect block or 49. char-
acters or less for a long connect block)
8 or Source program password, short connect block
39. + Source program password, long connect bloc
1. Not used ‘
2. Account nummber length
(16. bytes/characters or less for a short connect block or 40. char-
acters or less for 2 long connect block)
16. or Account number, short connect block
39, + Account number, iong connect block
1. ' Not used
If verification performed
2, Default device name for destination program
1. Default device unit number
1. Not used
2. Log-in UIC from account file
used for destination program
11. Default directory string
{0 if no default string)
29. Not used

{continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-47

GNDNT

Tabie 3-2 (Cont.): Incoming Connect Block

Lengthin
Decimal Bytes/
Characters Contents
CPTIONAL DATA
(18.-byte/character total)
2. Length of optional user data
(16. byres/characters or less; 0 if no optional data)
16. Optional user data sent by source program
{0 to 16. bytes/characters)
Error/Completion Codes:

1

~-10

-13

~14

—40

The call completed successfully.

The cali completed successfully, but some returned optional data was
lost. '

Data overrun. The network data was longer than the mail buffer. As
much data as fits into the mail buffer is transferred to it; any remaining
data is lost.

There is no data in the network data queue to return.

The task is not a network task; either OPNNT did not execute success-
fully, or CLSNT was issued with this GNDNT pending.

The nerwork is not accessed on this LUN.

You are using an invaiid buffer; the mail buffer is outside the user task
address space, or (for FORTRAN) it is not word aligned.

A GNDNT is already pending.

A directive error has occurred. Directive error codes are defined in the
RSX-11M/M-PLUS Executive Reference Manual.

DECnet-RSX Programmer’s Reference Manual

“-._.;/‘

OPNNTY

OPNNT
(Access the Network)

3.8.13 OPNNT — Access the Network

Use:

Call

OPNNT 1o establish the task as an active network task and create the task's

nerwork data queue. Call OPNNT before any other network subroutine.

Formats:

FORTRAN: CALL OPNNT{[W)] ([lun)],[status],[mstat),[count],[lrp}{,mbxfig])

COBOL: CALL “OPNNT[WY" USING [fun),[status) jmstat},

[count),[irp][,mbxflg].

BASIC: CALL OPNNT[W] BY REF (jfun%],[status%()).imstat% ()},

[count]{irp %[mbxilg]

Arguments:

lun

specifies a logical unit number for the task’s network data queue. This value
maust be an integer variable or constant. You can omit this argument if you
have already assigned the LUN to NS: by using the GBLDEF option of
.MBXLU at task build time (Section 1.2.1). When you omit lun in COBOL or
BASIC, you must also omit all trailing arguments. For information on omit-
ting arguments in COBOL and BASIC, refer to the discussion of square
brackets in Section 3.7.

status

specifies completion status information on return from OPNNT. See the def-
inition for your language in Section 3.8.1.

FORTRAN, COBOL, and BASIC-PLUS--2 Programming Facilities 3-49

OPNNT

-

msitat

specifies a 3-element integer array (or elementary numeric data item for
COBOL) to contain current status information for the task’s nerwork data
queuc. When specified (+), the mstqt array/data item is updated whenever
data arrives or is retrieved by GNDNT. Do not use this array/data item for
other purposes while the task is active on the network.

Yalues retutned in this array/data item are:

mstat(l) Number of items in the network data queue

mstat(2) Data type of the first data itemn:

1 - Connect request
2 ~ Interrupt message
3 - User disconnect
4 — User abort

5 — Nerwork abort

mstai(3) Length of first data itern

count

specifies the maximum number of simultaneously active connections the
task accepts. When the number of active logical links equals the count value,
the network rejects any incoming connect request. This integer variable or
constant must not exceed 255 (decimal). A value of 0 (which is aiso the
default) sets no limit as long as network resocurces are available,

To prevent access to your task, specify a count value of 1 so that GNDNT
rejects all incoming connect requests. You can still establish outgoing links
by using CONNT.

rp

specifies the link recovery period. The link recovery period is the number of
minutes that elapses from the time of a physical link failure until the associ-
ated logical link is irrecoverable. This integer variable or constant must be in
the range of 0 through 32767 (decimal).

When specifying an Irp value, remember that your task is locked in memory

until the link recovery period has elapsed if the task has outstanding 1/0

when the link fails. This can cause serious delays for other system users who

need to access the occupied area of memory. ‘ Bl

DECnet-RSX Programmer’s Reference Manual

OPNNT

mbxflg

specifies that the task has a mail buffer that supports sending and receiving
long connect blocks. For a task that uses long connect blocks, set the mbxfig
value to an integer variable or constant with the value 1. For a task that uses
short connect blocks, omit the argument.

Error/Completion Codes:
1 The call completed successfully.
-1 System resources needed for the network data queue are not available.
-10 The network is being dismounted, or the user task has already accessed

the network.

—40 A directive error has occurred. Directive error codes are defined in the
RSX-1IM/M-PLUS Executive Reference Manual.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities -3-51

RECNT

RECNT
(Receive Data over a Logical Link)

3.8.14 RECNT — Receive Data over a Logical Link

Use:

Call RECNT from either task to receive data over an established logical link and
store it in a specified buffer.

Formats:

FORTRAN: CALL RECNT[W) (lun,[status), insize indata)

COBOL.: CALL “RECNT{W1" USING lun,[status),insize indata.
BASIC: CALL RECNT[W] BY REF ({un% ,[status%()] insize% indata$)
Arguments:
lun

specifies the logical unit nummber for the logical link over which to receive
data. It must be an integer variable or constant. ¥f you initiated the connec-
tion, enter the LUN you used in the CONNT call. If you accepted the connec-
1ion, enter the LUN you used in the ACCNT call.

* status

specifies completion status information on return from RECNT. See the defi-
nition for your language in Section 3.8.1 but note this addition: If a positive
value or -4 (data overrun) is returned in the first status word, the second
status word contains the number of bytes/characters of data received.

insize

specifies the receive data buffer length in bytes/characters. This integer vari-
able or constant can be 2 maximum of 8128 (decimal).

* indata

specifies the array/string containing the received message data.

3-52 DECnet-RSX Programmer’s Reference Manual

RECNT

Error/Compietion Codes:
1 The call completed successfully.

-2 No logical link has been established on the specified LUN.

-3 The logical link was disconnecied during I/O operations.

-4 Data overrun. More message data was transmitted than requested. As
much data as fits into the receive buffer is transferred to it; any remain-
ing data is lost.

-9 The task is not a network task; OPNNT did not execute successfully.

-13 You are using an invalid buffer; either the indata array/string is outside
the user task address space, or the buffer size (insize) exceeds 8128.
bytes/characters.

—40 A directive error has occurred. Directive error codes are defined in the

T, RSX~11M/M~-PLUS Executive Reference Manual.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-53

REJNT

REJNT
(Reject Logical Link Connect Request)

3.8.15 REJNT — Reject Logical Link Connect Request

Use:

Call REJNT from the target task to reject 2 logical link connect request. With

REJNT, you can send 1 to 16. bytes/characters of user data to the requesting task

(see the outsize, outmessage arguments).
Formats:

FORTRAN: CALL REJNT[W] {[status],mailbuf] outsize outmessage))

COBOL: CALL “REINT[W]* USING [status),mailbuf,|outsize, outmessage).

BASIC: CALL REJNT[W] BY REF {[status%()}, mailbufs,

[outsize% ,outmessage$)) .

Arguments:

* status

specifies completion status information on return from REJNT. See the defi-
nition for your language in Section 3.8.1.

mailbuf

specifies the 1- to n-element array/string containing information necessary ST
to reject the connect request. In FORTRAN, this array must start on an even T
byte {word} boundary. GNDNT refers to this same array/string.

oulsize,outmessage

define optional user data to send. Seec the definition in Section 3.8.1.

3-54 DECnet-RSX Programmer’s Reference Manual

REJNT

Error/Completion Codes:

1

-10

-13

~40

The call completed successfully.

The task that requested the connection has aborted or has requested 2
disconnect before the connection could complete.

Either the temporary link address in the mail buffer is not valid, or the
optional user data buffer exceeds 16. bytes/characters.

The task is not a4 network task; OPNNT did not execute successfully.
The network is not accessed on this LUN.

You are using an invalid buffer; the mailbuf or outmessage array/string
is outside the user task address space, or (for FORTRAN) the mailbuf

array is not word aligned.

A directive error has occurred. Directive error codes are defined in the
RSX-11M/M-PLUS Executive Reference Manual.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-55

SNDNT
(Send Data over a Logical Link)

3.8.16 SNDNT — Send Data over a Logical Link

Use:

Call SNDNT from either task to send message data over the Jogical link.

Formats:

FORTRAN: CALL SNDNT[W) (lun,[status],outsize,outdata)

COBOL: . CALL “SNDNT{[W]" USING lun,[status}.outsize outdata.
BASIC: CALL SNDNT[W] BY REF (lun% [status%()], oulsize% outdata$)
Arguments:
un o

specifies the logical unit number for the logical link over which to send data.
This value must be an integer variable or constant. If you initiated the con-
nection, enter the LUN you used in the CONNT call. If you accepted the con-
nection, enter the LUN you vused in the ACNNT call. '

* status

specifies completion status information on return from SNDNT. See the defi-
nition for your language in Section 3.8.1 but note this addition: If 1 is
returned in the first status word, the second status word contains the mm-
ber of bytes/characters of transmitted data.

oulsize

specifies the length in bytes/characters of the data to send. This integer vari-
able or constant can be a maximum of 8128 (decimal).

outdata

specifies a 1- to n-element array/string containing the message data to send.

3-56 DECnet-RSX Programmer’s Reference Manual

TR SNDNT
Error/Completion Codes:
1 The call completed successfully.
-2 No logical link has been established on the specified LUN.
-3 The logical link was disconnected during I/O operations.
-9 The task is not a network task; OPNNT did not execute successfully.
: : -13 You are vsing an invalid buffer; either the outdata array/string is out-
side the user task address space, or the buffer size {outsize) exceeds
8128. bytes/characters.
—40 A directive error has occurred. Directive error codes are defined in the
R3X-11M/M-PLUS Executive Reference Manual.

FORTRAN, COBOL, and BASIC-PLUS~2 Programming Facilities 3-57

WAITNT

WAITNT
(Suspend the Calling Task)

3.8.17 WAITNT — Suspend the Calling Task

Use:

Call WAITNT from any task to suspend thart task’s operation until completion of 2

call specified by one of the associated status blocks.

Formats:

FORTRAN: CALL WAITNT ([index],statusi,... statusn)

COBOL.: CALL “WAITNT" USING [irndex],statusl,... statusn.

BASIC: CALL WAITNT BY REF (jindex%],statusl %(),...,statusn%())
Arguments:

* index

3-58

specifies an integer variable containing the positional number of the status
biock associated with the call that has completed.

In COBOL and BASIC, you cannot omit index, but you can specify 0 for
index to prevent the return of index information. See the discussion of
square brackets in Section 3.7 for more information on omitting optional
arguments.

statusl,... statusn

specify one or more status blocks. WAITNT completes when any one of the
calls associated with a status block ift this list completes.

DECnet-RSX Pragrammer’s Reference Manual

Lol
1‘;"' ;

"'-_:'\Q

XMINT

XMINT
(Send Interrupt Message)

3.8.18 XMINT — Send Interrupt Message

Use:
Call XMINT from either task to send an interrupt message over an established logi-
cal link. This call places the message you send on the targer task’s network data

queue. The target task must issue 2 GNDNT call to retrieve the message before
you can issue another XMINT.

Formats:

FORTRAN: CALL XMINT[W) (Jun,[status),intsize intmsg)

COBOL: CALL “XMINT[W]" USING lun,[status),intsize,intmsg.
BASIC: CALL XMINT{W] BY REF (lun% [status%/()),intsize% intmsg$)
Arguments:
fun

specifies the logical unit number for the logical link over which to send the
interrupt message. This value must be an integer variable or constant. If you
initiated the connection, enter the LUN you used in the CONNT call. If you
accepted the connection, enter the LUN vou used in the ACCNT call.

status

specifies completion status information on return from XMINT. See the defi-
nition for your language in Section 3.8.1.

intsize

specifies the length in bytes/characters of the interrupt message to send. It
must be an integer variable or constant.

intmsg

specifies a 1- to 16.-element array/siring containing the internipt message to
send.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-59

XMINT

Error/Completion Codes:

1 The call completed successfully.

-2 No logical link has been established on the specified LUN.

-3 The logical link was disconnected during 1/0O operations.

-5 The interrupt message exceeds 16. bytes/characters.

-9 Thé task is not 2 network task; OPNNT did not execute successfully.
~11 An interrupt message was transmitted before a pr_cvious interrupt mes-

sage had been received by the remote task.

-13 You are using an invalid array/string; the intmsg array/string is outside
the user task address space.

~40 A directive error has occurred. Directive error codes are defined in the
RSX-1IM/M-PLUS Executive Reference Manual.

3-60 DECnet-RSX Programmer’s Reference Manual

3.8.19 FORTRAN Intertask Communication Programming Examples

The following two programs are examples of FORTRAN intertask communica-
tion, They are cooperating tasks. FTNTRN is a transmit task; FTNREC is 2 receiver
task.

These programming examples are included in your tape or disk kit.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-61

3.8.19.1 Transmit Example

NoNANNODONANNDOANNONNAONNaNONONNOONOaNNONn

Nnaoo

ooNnn

The FTNTRN program accesses the nerwork, connects to FTNREC, transmits
inquiries to FTNREC, and processes responses. When FTNTRN completes send-
ing inquiries, it disconnects the link, stops accessing the network, and exits.

Copyright (C) 1983, 1985, 1986, 1887 by
Digital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without neotice
and should not be construed as a commitment by Digital Equipment
Corporation.

Digital assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by Digital.

FINTRN - Transmit ingquiries to FINREC and process responses
To task build, use the following command string:

FTNTRN,FTNTRN = FTNTRN

LB:{1,1}NETFOR/LE

LB:[1,1]1F4POTS/LE

LB:[1,1]RMSLIB/L3 (if RMS is included)
/

UNITS=10C

ACTFIL=4

EXTTSK=1000 (if RMS is included)
£/

Note: This task uses a long connect block.

INTEGER MLTYP,RECSIZ,SNDSIZ ,MESNUM, XMITS , NDLEN, TSKLEN
INTEGER MBXFLG,NETLUN, LNKLUN, IOST(2) ,MSTAT(3}
BYTE ERRMES (2) , TSKNAM{6) ,NDNAM(E) , DEFNOD(6) , DEFTSK(6)
BYTE CONBLK (152), SNDBUF {50) ,RECBUF {10)
LOGICAL*1 STAT, IMMED
Specify the default ncde and task names
DATA DEFNOD /'R','E','M','N','0','D"/
DATA DEFTSK /'R','E','C",'V','E','R"/

Specify flags for long connect block and immediate mode

DATA MBXFLG, IMMED /1, .TRUE./

DECnet-RSX Programmer's Reference Manual

C LUNs for the network mailbox and the logical link
C
DATA NETLUN,LNKLUN /1,2/
C
¢ Specify transmit count, send buffer size, and receive buffer size
C
DATA XMITS,SNDSIZ,RECSIZ /20,50,10/
C
€ Get the node and task hawmes
[ad
10 TYPE 250 {* ask for node-name
READ{S5,260) (NDNaM{NDLEN),NDLEN=1,£} i* Get the name
DO 20 NDLEN=6,1,-1 '* Loop to find length of name
IF (NDNAM{NDLEN).NE.,' ') GOTO 40!* If not a space, get task-name
20 CONTINUE
DO 30 I=1,6
3aQ NDNAM(I }=DEFNOD{I) t* Default nede name ‘MASTER’
NDLEN=6 1* Length of default name
40 TYPE 270 1* Ask for the task-name
READ{5,260) (TSKNAM{TSKLEN},TSKLEN=1l,6) !* Get it
DO 50 TSKLEN=6,1,-1 t* TSKLEN is length of task-name
18 (TSKNAM{TSKLEN)}.NE.' '} GOTO 70 !* If not space, access netwark
50 CONTINUE
DO &0 I=3,6
60 TSKNAM(I)=DEFTSK(I} t* pafault task name 'RECVER’
TSKLEN=6 t* Length of default name
C
C Access network - MBXFLG indicates that we will use 2 long connect block’
c
70 CALL OPNNTW{NETLUN, IOST.MSTAT, , ,MBXFLG)
IF (10ST(1).NE.1)GOTO 140 1* If failure, just exit
C
C Build a Format 1 connect block
C
CALL BEFMTL1{STAT, CONBLK,NDLEN, NDNAM, , TSKLEN , TSKNAM)
IF (STAT)GOTC 80 1* 1f success, go on
TYPE 200 i* Else, type out a failure
1* notification
GOTO 130 te and exit
C
€ Connect to the task on the remcte node
C
80 CALL CONNTW{LNKLUN, TOST, CONBLK)
IF {108T(1).EQ.1)GOTC 90 '* 1f success, confirm it
TYPE 240, I108T t* Else print status bleock
GOTO 130 '* Deaccess the network
t* and exit
90 TYPE 220 t* print conhect confirmation
t* to network and exit
C
C Send and receive messages to and from the remote node
Cc

Do 120 MESNUM=1,XMITS
{continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-63

C

C First get any error messages sent from the other side in interrupt
C messages

[

IF (MSTAT{1}.EQ.0)GOTO 100 t* If MSTAT{1)=0 no messages
1 * are there
CALL GNDNTW(IOST,MLTYPF,2,ERRMES, , IMMED, 2} !* Get the message

1F {I0ST(1).NE.1)GOTO 100 I=* If we couldn't get the message,
t* just ignore it
: TYPE 210,ERRMES(1) i{* Print out the message
c
C Send the inquiry
[
100 CALL SNDNTW(LNKLUN, ICST, SNDSIZ, SNDBUF)
IF (IOST(1).EQ.1JGOTC 110 !* If success, continue
TYPE 210,MESNUM 1* Otherwise, type ocut an
1* error message
GOTO 120 1* and start a new message
C
C Receive the response from the remote node
C
110 CALL RECNTW (LNKLUN, IOST,RECSIZ, RECBUF)
IF (IOST{1).EQ.1)GOTO 120 !* If success, continue
TYPE 210 ,MESNUM '* Otherwise, type out an
I* error message
12¢ CONTINUE
C
€ Disconnect the link
C
TYPE 230 !* print out disconnect message
CALL DSCNTW(LNKLUN, 108T}
C
C Come here to close the network and exit
C
130 CALL CLSNTW
140 STOP 'End ¢f program execution’
C
C FORMAT Statements
C
200 FORMAT (' Error building connect block'}
210 FORMAT {' Error on inquiry L13)
220 FORMAT {' Link enabled’)
230 FORMAT (' Link disabled'}
240 FORMAT {' Connect fail: IQST = ',2Z1l6)
250 FORMAT {'S$Node-name <REMNGD>: ')
280 FORMAT {6Al)
274 FORMAT ('STask -name <RECVER>: ')

END

3-64 DECnet-RSX Programmer’s Reference Manual

3.8.19.2 Receive Example

The FENREC program receives inquiries from FINTRN. It returns errors to
FTNTRN as interrupt messages, which FTNTRN then displays on the terminal.

Copyright (C) 1983, 1985, 1986, 1587 by
Digital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies therecf may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

Digital assumes no responsibility for the use or reliability of its
software on egquipment which is not supplied by Digital.

FTNREC,.FPTN - Receive inquiries from FTNTRN and send back responses

To task build, use the following command string:

FTNREC,FTNREC = FTNREC

noNnOONONNNONNNNONOANNNOANONNONNNNNGARNO

LB:{1,1}F4POTS/LB
LB:{1,1INETFQR/LB
LB:{1,1IRMSLIB/LE {if RMS is included)
/
UNITS=10
ACTFIL=%
EXTTSK=1000 {if RMS is included)
TASK=RECVER
//
Note: This task uses a long connect block.
INTEGER . NETLUN, LNKLUN , MLTYP, INDEX, NUMBER, NUMMES
INTEGER MBXFLG,RECSIZ,SNDSIZ, INTSIZ
INTEGER MSTAT(3),1087(2),108T1(2),108T2(2)
BYTE RECBUF{50)},SNDDAT{10) ,MLBX{178), INTMES(2)

Specify LUNs for the network and the logical link
DATA NETLUN, LNKLUN /1,2/

Specify sizes for the receive buffer, send buffer, and interrupt buffer
DATA RECS1Z,SNDSIZ, INTSIZ /50,10,2/

Initialize some variables

nanNn anag o0

{continued on next page)

FORTRAN, COBOL, and BASIC-PLUS~2 Programming Facilities 3-65

NUMMES = (O t* Number of messages received
MBXFLG = 1 i{* Use long connect block
C
¢ Access the network - use the leng connect block
C
CALL OPNNTW{METLUN, LQST,MSTAT,, ,MBXFLG)
IF (rosT{1) .EQ. 1) GOTO B
TYDPE *, 'Cannot access the network, status = ', ISTAT
GOTO 100
8 IF (MSTAT(1) .EQ. 0O) GOTO 40 t* If nothing in mailbox,

10 CALL GNDNT(IOST1,MLTYP,178,MLBX)

20 CALL WAITNT({INDEX,IOSTL,IQS5T2}
IF {(INDEX .EQ. 2) GOTO 50

[

C We've received network data

C

IF (I®STi(1} .KE. 1) GOTO 40
IF (MLTYP .GE. 3} GOTO 40

IF (MLTYP .EQ. 2} GOTO 10

Nnnn

CALL

1F {10ST(1l} .NE.

Issue a receive to pick up data

wnNnNO

0 CALL
GOTO

NN
[=

CALL
GOTO

CLSKTW
100

Come here if we receive an inquiry

NUMMES=NUMMES+1

IF (I10ST2(1l) .EQ. 1) GOTO &0

nan wninn
o

INTMES (1) =NUMMES

GOTC 70

ACCNTW({LNKLUN, 10ST ,MLBX)
1) GOTO 19

RECNT{LNKLUN, ICST2,RECSIZ,RECBUF)
10

1* just close and exit
!* Issue Get Network Data

I* Wait for a completion
i* If INDEX=2, a receive

b * has been completed

% 1f GNDNT fajiled, close
i* network and exit

tx 1f MLTYP>=3 the link has
tx been broken

1* If MLTYP=2 we've received
1% an interrupt message
te -~ issue a new GNDNT

We've received a connect reguest - issue an accept

t* 1f failure, issue
1% a new GNDNT

t* Issue a new receive and
% wait for a completion

Come here upan receiving a disconnect or abort

1* Close the network
i and exit

!* Update the message count
te 1f 108T2(1)-1 all's okay

If there was an error, return an interrupt message with message number

1* Send the message number
CALL XMINT{LNKLUN,IOST,INTSIZ,INTMES)

1* Issue a new receive
r

DECnet-RSX Programmer's Reference Manual

Here the user can loock at the data received in RECBUF and respond by
placing the requested information into SNDDAT

Send back the data and issue a new receive
CALL SNDNTW{LNKLUN, LOST,SNDSIZ,SNDDAT)

CALL RECNT{LNKLUN, IOST2,RECSIZ, RECBUF)
GOTO 20 t* wait for a cempletion

SN GON
oo

n

C Exit progran

0

100 STOP 'End of program execution® 1* Halt the program
END L* and exit

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-67

3.8.20 COBOL Intertask Communication Programming Examples

The following two programs are examples of COBOL intertask communication.
They are cooperating tasks. COBTRN is 2 transmit task; COBREC is a receiver
task.

These programming examples are included in your tape or disk kit.

3-68 DECnet-RSX Programmer's Reference Manual

3.8.20.1 Transmit Example

This program sends inquiries to the cooperating COBREC program on 2 remote
node.

Copyright (C) 1983, 1985, 1988, 1987 by
Digital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporatiocn, -

Digital assumes no responsibility for the use or reliability of its
scftware on equipment which is not supplied by Digital.

¥ % % % kN W A % W R kR R R

IDENTIFICATION DIVISION.
. PROGRAM-ID. COBTRN.

AEE R TR R AN AR R E AR R AR E R R AR AL A SRR R Ak Atk kT AR R Rk Rk ko

This is the transmit program of the DECnet intertask
communication example programs for COBOL.

*
*
*
*
To task build, use the following command string: *
*

COBTRN, COBTRN=COBTRN, {1, 1]NETFOR/LB,C81LIB/LE, RMSLIB/LB *
*

/ x*
ACTFIL=4 *
EXTTSK=1000C (if ’RMS is included) *
/7 *
*

%

*

*

&

*

*

*

*

*

x

* UNITS=10
*

*

®

*

* This task illustrates the use of a long connect bleck,
*

L3

EA TR AR AR K A AT R AN A TR A A AR R AR AR AR R AT RN TR AR Rk kR kk Ak k

ENVIRONMENT DIVISION,
CONFIGURATION SECTION.
SQURCE-COMPUTER. PDP-1l.
OBJECT-COMPUTER. PDP-11.
INPUT-QUTPUT SECTION.
FILE-CONTROL.
SELEZCT DUMMY-FILE ASSIGN TO "COBTRN.DUM",

DATA DIVISION.
FILE SECTION.

FD DUMMY-FILE
LABEL. RECORD STANDARD.
01 DUMMY-FILE-REC,

{continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-69

3-70

c2
WORKING-STORAGE SECTION.

FILLER

01 MSGS.

01

0l

03

03

MSG1.
05 FILLER

05 MSGl-STAT1
05 FILLER

05 MSG1-STaT2
MSG2.

05 FILLER

05 MSG2-STATL
05 FILLER
05 MSG2-STAT2

PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

PiIC
PIC

PIC
PIC
PIC

PIic

03 MSG3.

05 FILLER

05 MSG3-ERR1
03 MSG4.

0S FILLER

05 MSGI-NUML
03 MSGS.

05 FILLER

05 MSGS-NUML
ARRAYS.
03 1IOST,

08 IOSTAT QOCCURS 2
03 MSTAT.

03
Q3
k.
03
03
03
03
03
03
03

05 MSTATS OCCURS 3
STORE-STUFP.

MBXFLG
TEN
OPNLUN
RESULT~REC
IN-FILE
NODNAM
TSKNAM
FILLER
STAT
CONBLK
NLENG
TLENG
CONLUN
XMITS
MESNUM
MLTYP
FILLER
MLBXS5Z
ERRMES
DUMMY
IMMED
TYPMSK

PIC
PIC
PIC
BIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIiC
PIiC
PIC
PIC
PIC
PIC
PIC
PIC

X(132).

x(32) VALUE " NETWORK OPEN FAILED,
"108T{1l}) = ".

-99999.

X{11) VALUE ™ 108T{(2) = ".

-9%999,

x(25} VALUE " CONNECT FAIL, IOST(1)
T . W

-99929,

x(11) VALUE " 108T(2) = ",

-993899,

x(20) VALUE " ERRCOR ON INQUIRY # ".

X({2).

%{31) VALUE " ERROR ON INQUIRY DURL
"NG SEND: ".

99,

Xx{34) VALUE " ERROR ON INQUIRY DURI
*NG RECEIVE; ".

835,

TIMES PIC $9992 USAGE COMP.

TIMES PIC S9$999 USAGE COMP.
98 COMP VALUE 1.
99 COMP VALUE 10.
99 COMP VALUE 2.
x(80).

X{6}).

x(6).

X(9).

X.

5999 USAGE COMP.
xX{(72).

-] USAGE COMP.

) USAGE COMP.

99 COMP VALUE 3.
95 COMP VALUE 20,
99.

9.

9.

99 COMP VALUE 2.
X{2).

X{(2).

s COMP VALUE -1.
599999,

DECnet-RSX Programmer's Reference Manual

03 FILLER PIC S.

03 SNDSIZ PIC 99 COMP VALUE 50.

03 SNDBUF PIC X{50)}.

03 RECSIZ PIC 99 COMP VALUE 10.

03 RECBUF PIC X(10).
PROCEDURE DIVISION,
Al00~-START.
AR AR A kTR kR AR R AR AT R KRR AL R ARk AR AR kA XAk L AR R A ARk AA kbt d T
* =
* Input ncde name and receiver task name from *
* terminal. *
* *

AR E R TR AR TR AR kR kR kA ek kR kR Rk kAT ARk kA Ak d ke Ak Akt d

DISPLAY "ENTER NODE-NAME <MASTER>",
ACCEPT IN-FILE.

MOVE IN-FILE TO NODNAM,

DISPLAY "ENTER TASK-NAME <RECVER>".,
ACCEPT IN-FILE,

MOVE IN-FILE TO TSKNAM,

EEARREE R RN E AR EELR A AL TR R AT T R AT A ANk TR Rk Ak k ket kA ¥

* . *
* Access the network. If the access is unsuccessful, *
* print an error message and exit. *
* x

REE A AR AR AL AR TR R L AR A RA A AEEI AR AR AR AR ALk TR A kTR RN r TR etk ko

CALL "OPNNTW® USING
OPNLJIN
I0ST
MSTAT
TEN
0
MEXFLG.
IF IQSTAT (1} = 1
NEXT SENTENCE

ELSE
MOVE IOSTAT (1) TO MSG1~STAT.
MOVE IOSTAT (2} TC MSG1-STAT2
DISPLAY MSGLl
GO COOD-END,

AR AR R E R R AR A AR AT R R AR R KT A AR TR R LR RA AR T RN T A AR AT R R

* *
* Build a FORMAT 1 connect block. 1f the call did *
* not complete successfully, print an error message *
* and deaccess the network, *
* "
x *

R T g T D e L T L T T T Y
MOVE 6 TC NLENG.
MOVE 6 TO TLENG.
CALL "BFMT1" USING
STAT

(continued on next page)

FORTRAN, COBOL., and BASIC-PLUS-2 Programming Facilities 3N

3-72

CONBLK

NLENG

NCDNAM

DUMMY

TLENG

TSKNAM
IF STAT NOT = 0

NEXT SENTENCE
ELSE

DISPLAY "ERROR BUILDING CONNECT BLOCK®™

GC BlOO-CLOSE.

AR AR AR R TN TR T A AR LTXN R T ARtk kb k ke kR A kR X X

»

*
Connect to the task on the remote node. If the *
call completes unsuccessfully, print an error message *
and close the network. Otherwise, print "Link *
enabled™ message. *

*

*

L B B B

AR AR A A AT AR AR kAT AN IR TRR IR RERRA AR ARk b e R ARk A A et hksk den

CALL "CONNTW" USING
CONLUN
I0ST
CONBLK.

IF IOSTAT(1) = 1
NEXT SENTENCE

ELSE
MOVE SPACES TQ RESULT-REC
MOVE IOSTAT(1l) TO MSG2-STAT1
MOVE IOSTAT{2) TO MSG2-STAT2
MOVE MSGZ2 TO RESULT-REC
DISPLAY RESULT-REC
GO Bl00O~-CLOSE.

DISPLAY "LINK ENABLED",

AR A A AT A A AR A A A AR AR AN AR AR AR AR R T A RAAARAR A AR R R

* -
* Send and receive messages from the remote node. *
* If there is something on the network data queue *
* (MSTATS (1) > D), get the message. *
* *
* *

EE 22222 AR 2 R 2R R LA XS iR R R RS LTSS RSS2SR S IS

PERFORM LOOFP VARYING MESNUM FROM 1 BY 1 UNTIL MESNUM = XMITS.

LOOP.,
IF MSTATS(1l) = O
NEXT SENTENCE
ELSE
CALL "GNDNTW" USING
IOST
MLTYP
MLBXSZ
ERRMES
DUMMY

DECnet-RSX Programmer’s Reference Manual

IMMED
TYPMSK

IF IOSTAT(l) =1
NEXT SENTENCE

ELSE
MOVE SPACES TC RESULT-REC
MOVE ERRMES TO MSG3-ERR1
MOVE MSG3 TC RESULT-REC
DISPLAY RESULT-REC.

ARNEEAREAARRARAAERN AR AR AL AR L TN LR A AL AT AR RN IRRAkcedk kX

*
Send a message to the task on the remote node. If *
unsuccessful, print an error message and start the *
next transmission. *
*
*

> N R XN

LAt b 3 La Rt 222 s 22 R sttt sl Sl 2 ST

CALL "SNDNTW® USING
* CONLUN

IOST
SNDSIZ
SNDBUF.

IF IOSTAT(1l} = 1
NEXT SENTENCE

ELSE
MOVE SPACES TO RESULT-REC
MOVE MESNUM TO MSG4-NUM1
MOVE MSG4 TO RESULT-REC
PISPLAY RESULT-REC
GO LOOP.

REEXEE AT R ANE AL ER AR R T Rk k Rk kAR AR ARk rk btk kkr

E

*
Receive a message from the remote node. If *
unsuccessful, print an error message and start *
the next transmission, If successful, simply *
start the next transmission. *

*

»

L B B

EEERR KRR R AR AN R R RN A A AT A AR AT AR T AN AR A AR A REEAERNRRKANRRN

CALL "RECNTW" USING
CONLUN
I08T
RECS1IZ
RECBUF,

IF IQSTAT(1l) = 1
NEXT SENTENCE

ELSE
MOVE SPACES TO RESULT-REC
MOVE MESNUM TO MSGS-NUM1
MOVE MSGS TO RESULT-REC
DISPLAY RESULT-REC.

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-~2 Programming Facilities 3-73

LI SIS IT SNSRI LSS L LSS 2R3 222 L Rl R bRl sl

* . k]
* Deaccess the network. *
* *

AR TR E RN AR A AT AR AR A A AL A AR AR LT RR AR XA AR A AR ARIRAL

BOOOQ-ENDLOOP.
DISPLAY "LINK DISABLED".
CALL "DSCNTW"™ USING

CONLUN

I0ST.
RAEAEREEE AR R R AR AT AL A AR T AR R A ARNER AR AN RR AT RR AR A A A AR A A AR T A AR A AL A LR
* *
* Close the network and exit. *
* *

LA LSS SRS AT Rt st a sttt s

B100-CLOSE.

CALL "CLSNTW",

DISPLAY "END OF EXECUTION™,
COQ0-~-END.

STOP RUN.

3-74 DECnet-RSX Programmer’s Reference Manual

3.8.20.2 Receive Example

The COBREC program receives inquiries from COBTRN. It returns errors to
COBTRN as interrupt messages, which COBTRN then displays on the terminal.

Copyright (C) 1983, 1985, 1986, 1987 by
Digital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
oniy in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

Digital assumes no responsibility for the use or reliability of its
software on eguipment which is not supplied by Digital.

% OE R OF R RN R N R A AN R RN

IDENTIFICATION DIVISION,
PRCGRAM-ID. COBREC.

[E T T RIS RS RS S RSS2 R 2322 22 22222 22 R sttt el b Rl]

This is the receive program of the DECnet intertask
communication example programs for COBQL.

Tc task build, use the following command string:
COBREC, COBREC=COBREC,[1,1]NETFOR/LE,C81LIB/LB, RMSLIB/LB
/

UNITS=10

ACTFIL=¢&

EXTTSK=1000 {if RMS is incliuded)
F¥

*
T
*
*
*
*
*
*
*
*
*
=
. *x
This program illustrates the use of a long connect block. *
x
*

* ok % % % ok % Ok % % ok A % % kW

AR AT R A Ak AR R R AR R TR AN AR AT TR ARA R AT A AR ek A ANk A ke hn

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE~COMPUTER. PDP~l1l.
ORJECT-COMPUTER. PDP-11.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT DUMMY-FILE ASSIGN TO "COBREC.DUM".

DATA DIVISION.
FILE SECTION.
FD DUMMY-FILE
LABEL RECORD STANDARD.
01 DIMMY-FILE-REC.

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-75

3-76

02 FILLER PIC #{132).

WORKING-STORAGE SECTION.

01 ARRAYS.

43 108T.

05 1IOSTAT OCCURS 2 TIMES PIC $9999 USAGE (COMP.
03 MSTAT. .

05 MSTATS OCCURS 3 TIMES PIC S9999 USAGE COMP,
03 108Tl.

05 IOSTAT1 OCCURS 2 TIMES PIC §9999 USAGE COMP.
03 I08T2.

05 [OSTAT2 OCCURS 2 TIMES PIC 59999 USAGE COMP.
0l STORE-STUFF.

03 OPNLUN PIC 99 COMP VALUE 2.
03 MEBXFLG PIC 99 COMP VALUE 1.
03 MLTYP PIC 9 USAGE COMP.

03 MLSIZ PIC 9% COMP VALUE 98.
03 MLBOX PIC %{98).

03 INDX PIC 99 USAGE COMP.
03 ACCLUN PIC 99 COMP VALUE 3.
03 RECSIZ PIC 99 COMP VALUE 50.
03 RECBUF PIC X(50).

03 NUMMES PIC 99 COMP VALUE 0.
03 INTSIZ PIC 9 COMP VALUE 6.
02 INTMES PIC X{(6).

03 SNDSIZ PIC 99 COMP VALUE 10.
03 SNDDAT PIC X(10).

PROCEDURE DIVISION,

AR ARE AR TN AKX R AX A AN A AT ARk r xRk kxRN

* *
* Access the network. If the call completes *
* unsuccessfully, exit. *
* x

ER X R R R E R ENTES T R N RS ST RSS2SR R AR RS R SR RSl

AiQ0-START.
CALL "OPNNTW"™ USING
OPNLUN
I10ST
MSTAT
¢
0
MBXFLG.
IF IOSTAT (1) = 1
NEXT SENTENCE
ELSE
GO Gl00-END.
IF MSTATS (1) = O GO Cl00-CLOSNET.

ITTEI RS STELS SIS R R A 20 R 222 2 22 A L R Rt]l

* *
* Check to see if there is anything on the task's *
* data queue. *
* x

KRR Rk e A RN R Rk A AN A TR E AN A AR AN CR AR AT R AR kTR ARk ko hd

DECnet-RSX Programmer's Reference Manual

BlOO-NETDAT.
CALL "GNDNT" USING
I0ST1
MLTYP
MLEIZ
MLBCX.

e R A TR kA ANk Ak A A AR AR LI R AN AR AN AL

*

* Wait for compietion of a GNDNT or RECNT call. 1If a

* RECNT call completes {INDEX = 2), process a receive.
* If a GNDNT call completes unsuccessfully, close the

* network and exit. If the type of data message in

* the mailbox is not a connect reguest or an interrupt
* message, close the network and exit. If an interrupt
* message is in the mailbox (MLTYP = 2), simply issue

* a new GNDNT.

x -

*

* N RN R R RN

bR A R b a2 s R EERE LRSS AT 10 RS AR RIS 222 2 XS S YT

Bl10-WAIT.
CALL "WAITNT" USING
INDR
I0ST1
10872,

IF INDX = 2 GO D10O~INQREC,

IF IOSTATL (1) NOT = 1 GO Cl0Q-CLOSNET.
IF MLTYP NOT < 3 GO ClO0Q-CLOSNET.

IF MLTYP = 2 GO BlOO-NETDAT.

AR R R AN AR AR R AT T AR AR AN AR AR ARTNREXNKNK

L
* A connect request is in the mailbox. Accept the *
* request to establish a logical link. 1If the call *
* completes unsuccessfully, issue a new GNDNT. *
* *
* *

AEEE AR ER A AL KRR R KA AR R LR AR R TR R AR RN RSRR A AR RN AR AT A ke hdwdk

CALL "ACCNTW"™ USING
ACCLUN
10ST
MLBOX.
IF IOSTAT (1) NOT = 1 GO BlOO-NETDAT.

KREEA AR A AR AR R AR R R R AR AR RS R L kA A ARk E R A AR I AT TR R A RN AR LR

* %*
* Pick up the data from the transmitting task. Issue *
* a new GNDNT and wait for completion. *
* *

AR R AT R R AR LR EA RN R AN AR A RN AR A RN AR R R R AR ARk AR AR AR

CALL "RECNT®™ USING
ACCLUN

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities

3-77

a-78

I08T2

RECSIZ

RECBUF,
GO BlOC-NETDAT.

LER RS LS R st E R Rl TS AT I ISR SRS IS L L LR

* x
* A disconnect or abort was received. Deaccess the *
* network and exit, *
* *

LR R 2l A E s R Rl I Y Y I YL IS I Y T T

Cl100-CLOSNET.
CALL "CLSNTW".
GO GlO0-END.

KA AL RN R AR R A AR A A A Ak A Ak A A A A A AR A AN A A A AR I AR AN REAANRERRNER

*
* An inquiry was received., Increment the message

* count, If the call completed unsuccessfully, send
* an interrupt message containing the message number
* in which the error occurred.

*

x

*» % % » R ¥

A2 S Al AR Al st It 22 s a2 SRR S RS

D100-INQREC.
ADD 1 TO NUMMES,
IF 10STATZ (1) = 1 GO E100-SEND.
MCVE NUMMES TC INTMES,
CALL "XMINT" USING
ACCLUN
I10ST
INTS1Z
INTMES.
GO FlO00-REC.

AR AR AR AR AR R AR AR AR RN AR RN R R ARANRR N AR R R kR

* . *
* $end data to the task. *
* a*

kR AR kA AR AR R R AR R R R RN AN R RN AR AR R AN kR EE

E100~$END.
CALL "SNDNTW" USING

ACCLUN

108T

SNDS1Z

SNDDAT,
LEA RS At 2R et R ARl RS T SR RSS2 2222 222 2 2T]
* *
* Issue a new RECNT and wait for completion, *
* *

AR AR R A R AR R A A A A N A A R A AR R A AR A RN R A AR LA R A AR AR AN RERK

DECnet-RSX Programmer’s Reference Manual

Fl00-REC.
CALL "RECNT" USING
ACCLUN
108T2
RECSIZ
RECBUF .
GO B1lO-WAIT.

G100~END,
DISPLAY "COBREC -- END OF EXECUTION".

STOP RUN,

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities

3-79

3.8.21 BASIC-PLUS-2 Intertask Communication Programming Examples

The following two programs are examples of BASIC-PLUS-2 intertask communi-
cation. They are cooperating tasks. BASTRN is 2 transmit task; BASREC is a

receiver task.

These examples are included in your tzpe or disk kit.

3-80 DECnet-RSX Programmer's Reference Manual

3.8.21.1 Transmit Example

v 1 B bmr bdw g Nem Y Bib fem G S Sum G e Pem s R

[
<o

Pl

20

The following program, BASTRN, accesses the network, connects to BASREC,
transmits inquiries to BASREC, and processes responses from BASREC. When the
program completes sending inquiries, it disconnects the link, stops accessing the
network, and exits.

Copyright (C) 1983, 1985, 1986, 1987 by
bigital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person., No title to and ownership of the software is hereby
transferred.

The information in this softwvare is subject to change without notice
and should not be construed as a commitment by Digital Eguipment
Corporation,

Digital assumes no responsibility for the use or reliability of its
software on eguipment which is not supplied by Digital.

11 ' ity &
tet BASTRN.B2S5 ~ Transmit inquiries to BASREC and 14 &
e process responses 1y g
1 111 &
i1l To task build, edit the task build command file 11 g
t and the ODL file created by the build., ey &
1! trr g
LI >Add the line [~
1 ACTFIL=¢ 1ty &
e to the task build command file. "y o&
T 1Y &
Pt >Append LI
tn ~NETLIB i g
tee to the USER: line of the ODL file. L
et RN
1 >Add the line 11l g
1t NETLIB: .FCTR LB;:[1,1INETFOR/LB 1y &
14 to the ODL file, 1y s
11! Define array constants !!! &
DIM 105T%(1%) ,MSTAT%(2%) 1Define array elements s
ERRMESS=STRINGS(2%,0%) tDefine max string length &
CONBLKS$=STRINGS(72%,0%) 'STRINGS (LENGTH,ASCII VALUE) &
RECBUFS=STRINGS (10%,0%) ! &
SNDBUFS=STRINGS (50%,0%) $
INPUT "Node-name <MASTER>";NDNAMS \ IF NDNAMS$="" THEN &
NDNAMS="MASTER" ELSE IF LEN(NDNAMS)>6% THEN &
PRINT "Node-name too long, please re-enter® &
PRINT \ GOTC 20
{continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-81

30.

40

P A

50

&0

:1¢)

20

iQo0

INPUT "Receive task-name <RECVER>";TSKNAMS \ IF TSKNAMS=""
THEN TSKNAMS="RECVER" ELSE IF LEN(TSKNAM$)>&% THEN
PRINT "Task-name toc long, please re-enter”
PRINT \ GOTQ 30
11! Define constants !!!
IMMEDS=-1% iSet IMMED% to true for GNDNTW
OPNLUN%=1% INetwork OPNNT LUN
CONLUN%=2% ICONNT LUN for the legieal link
XMITSR=20% IThe number of inguiries
! to send to the remote node
SNDSIZ%=50% 1The size of the messages to
! send to the remote node
RECSIZ%=10% IThe size of the messages to
- ! receive
NDNAM . LEN%=LEN { NDNAMS) ILength of the node-name
TSKNAM. LEN%=LEN{TSKNAMS) tLength of the task-name
111" Access the network !t!!
CALL OPNNTW BY REF{OPNLUN%,IOST%(),MSTAT%())
IF 108T%(0%)=1% THEN &0 11f successful, build the
! connect block
ELSE PRINT "Network OPEN failed, IOST=";IOST%{0%);I05T%{1%)
GOTO 160 1open failed. Print the status
! block and exit
111 Build a Format 1 connect block !!!
CALL BFMT1 BY REF(STATS,CONBLKS,NDNAM.LEN% , NDNAMS
, DUMMY% , TSKNAM . LEN% , TSKNAMS }
IF STATY THEN 70 ELSE t1£f success go on
PRINT “Error building connect block”
) lElse type cut an errol message
GOTO 150 ! and exit
11! Connect to the task on the remote node !!!
CALL CONMTW BY REF(CONLUNS%,IOST%(),CONBLKS)
iF IOST%(0%)=1% THEN 8¢ 11f success, tell it
ELSE PRINT "Connect Fail: IOST=";I108T%(0%);",";I08T%(1%)
'Else print status block
GOTO 150 {Else print status block and exi
PRINT "Link enableg”™ IPrint connect confirmaticn
! to hetwork
11t Ssend and receive messages to and from the remcte node !!!
FOR MESNUM%=1% TO XMITS%
11t First get any error messages sent from the other !!!
11t side via interrupt messages !!!
1P MSTATS(0%)=0% THEN 110 'If MSTAT%{0%)=0% no messages
! are there
ELSE CALL GNDNTW BY REF(IOST%(),MLTYP%,2%,ERRMESS
DUMMY% , IMMED%, 2% !Get the message

IF I108T%(0%)<>1% THEN 110 !If we couldn't get message

PO Ll 2B)

RN PN

ool o o L 4]

&
&
&
&
&
t

&

[Al sl o ol ol]

DECnet-RSX Programmer’s Reference Manuat

110

130
140

150

160

! just ignore it
ELSE PRINT "Error on inguiry #";ASCII(LEFT{ERRMESS,1%))
tPrint out the message

t11 Send the ingquiry !!! &
CALL SNDNTW BY REF(CONLUN%,IQST%(),SNDSIZ%,SNDBUFS) &
1F 108T%(0%)=1% THEM 120!1f success continue &
ELSE PRINT "BError on ingquiry during send: “;MESNUM3: &
10tharwise type out an error x
GOTD 130 tmessage and start a nev messSage
'!t Receive the response from the remote node !!! J &
CALL RECNTW BY REF(CONLUN%, IOST%(),RECSIZ%,RECBUFS) &
IF 10ST%(0%)=~1% THEN 130!If success continue &
ELSE PRINT "Error on inquiry during receive: ";MESNUM% &
|0therwise type out an &
! errodr message
NEXT MESNUM% tEnd of loop
tt1 Disconnect the link i1tt &
PRINT "Link disabled”™ iPrint out disconfnect message &
CaLL DSCNTW BY REF{CONLUNS%,IOST%{})
111 Come here to deaccess the network and exit !!! &
CALL CLSNTW
PRINT "End of execution™ &
END

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-83

3.8.21.2 Receive Example

v Brm e A g Ben rm b bw rm Aem em A Sie ew b b sem

BASREC receives inquiries from BASTRN. It returns any errors to BASTRN as
interrupt messages, which BASTRN displays on the terminal,

Copyright (C) 1983, 1985, 1986, 13587 by
Digital Egquipment Corporation, Maynard, Mass,

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person, Neo title to and ownership of the scftware 1is hereby
transferred.

The information in this scftware is subject to change without notice
and should not be construed as a commitment by Digital Egquipment
Corporation.

Digital assumes no responsibility for the use or reliability of its
scftware 6n equipment which is not supplied by Digital.

10 11t RS

e BASREC.B2S - Receive inguiries from BASTRN and 11t &

e send back responses 1y g

He 11! &

111 To task build, edit the task build command file L

tit and the .ODL file created by the build. 11! &

e LS

11t >Add the line 1y s

LS ACTFIL=% ity

(3] to the task build command file, 1t &

[! &

tre >Append 11!

[~NETLIB P &

11 to the USER: line of the ODL file. L I

[N 1o&

v >2dd the line 11t &

it NETLIB: ,FCTR LB:(1,1]NETFOR/LE LI 4

it to the ODL file, 1115

11 Initialize constants (!} &

DIM MSTATS{2%),10ST{1%),I10ST1%(1%), 105T2%(1%) &

AY INTMES$=STRING${2%,0%) Define max length of strings &

\ MLBX$=STRINGS (98%,0%) ISTRINGS (LENGTH,ASCII VALUE) &

\ RECBUFS$=8TRINGS{50%,0%) ! &
\ SNDDATS=STRINGS(10%,0%) !

20 111 More constants !!! &

OPNLUN%=1% INetwork OPNNT LUN &

A\ ACCLUN%=2% tAcent LUN for logical link &

\ RECSIZ%=50% !1Size of data buffer to be &

! received &

\ INTSIZ%=2% 1Size of interrupt data buffer =&

! to send &

3-84 DECnet-RSX Programmer's Reference Manual

\ NUMMES$=0% INumber of messages received &
\ INDEX=0% IReceive completion flag &
\ SNDSIZ%=10% INumber of bytes to send back
30 '11 Access network 11! &
CALL OPNNTW BY REF{OPNLUN%,I0ST3(),MSTAT%()} &
\ iF 10ST%{0%)<>1% THEN 140 !1f failure just exit &
ELSE IF MSTAT$(0%)=0% THEN 90:If nothing on mailbox &
t just clese and exit
40 CALL GNDNT BY REF(1OST1%{),MLTYP%, 98%,MLBXS$) &
tIssue Get Network Data
59 CALL WAITNT BY REF(INDEXS%,IOST1%(),108T2%()) &
IWwait for a completion &
\ 1F INDEX%=2% THEN 100 11f INDEX%=2% then a receive &
1 has been completed
60 111 Network data has been received !!! &
IF 105sTi%(0%}<>1% THEN 90 !If GNDNT failed, just &
! close and exit &
ELSE IF MLTYP%>=3% THEN 90 11f MLTYP%>=3% then link has &
! been broken &
ELSE IF MLTYP%=2% THEN 4C 11f MLTYP%=2% we've received &
! an interrupt message. Just &
! issye a GNDNT
70 11t We've received a connect request - issue an accept ti! &
CALL ACCNTW BY REF{ACCLUNS%,IOST%(),MLBXS) &
\ IF 108T(0%)<>1% THEN 40 11f failure issue a new GNDNT
80 t1! Issue a receive to pick up data !!! &
CALL RECNT BY REF (ACCLUN%, IGST?%(} RECSI1Z2%,RECBUFS) &
\ GOTC 40 1Issue & new GNDNT and &
't wait for the completion
90 11! We come here upon receiving a disconnect or abort [!!} &
CALL CLENTW iDeaccess the network &
\ GOTO 140 1 and exit
100 1t! We come here if we receive an inguiry !!! &
NUMMES%=NUMMES%+1% !Increment the message count &
\ IF 105T2%(0%)=1% THEN 120 !If I0ST2%({0%)=1 all’'s okay
110 11t If there was an error, send back an interrupt message !!! &
Lt with message number 1 &
INTMES$=CHRS$ (NUMMES%) +CHR$(0%) !Send the message number &
\ CALL KMINT BY REF({ACCLUN%,JOSTS%()},INTSIZ$, INTMESS) &
\ GOTR 139 tGo issue a new receive &
1290 11! Here the user can look at the data received in RECBUFS !!! &
11t and respond by replacing the reguested information 11t &
111 inte SNDDATS 1y &
11! Send back the data and issue a RECNT nt &
CALL SNDNTW BY REF(ACCLUNS,IOST$(),SNDSIZ%, SNDDATS)
(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-85

130 CALL RECNT BY REF(ACCLUN%,105T2%(),RECSIZ%,RECBUFS) &

GOTO 50 IWait for a completion
130 11! Exit program !!! &
PRINT "Ené c¢f program execution” E
\ END

3-86 DECnet-RSX Programmer's Reference Manuat

P

3.9 Remote File Access

This section contains descriptions and usage guidelines specific to the remote file
access calls listed alphabetically in Table 3-3.

Table 3-3: Remote File Access Calls

Call Function

ACONFW Set record and file access options
ATTNFW Set extended attributes

CLSNFW Close a file

DELNFW Delete a file

EXENFW Execute a file

GETNFW Read a single record

OPANFW Open and append a sequential file
OPMNFW Open and modify a sequential file
OPRNFW Open and read a sequential file
OPUNFW Open and update 2 sequentiat file
OPWNFW Create, open, and write a sequentizl file
PRGNFW Discard an open file

PUTNFW Write a record to a file

RENNFW Rename a file

SPLNFW Open, write, and print 2 file
SUBNFW Open, write, and execute a file

These calls are implemented by subroutines. The network open call, OPNNT[W],
and the nerwork close call, CLSNT[W], are also used in remote file access opera-
tions. You must always issue OPNNT[W] first because OPNNT[W] lets your task
access the network. Issue CLSNT[W] last to close your task’s access to the net-

work.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities

3.9.1

Opening Files

The following nine subroutines open files:

ACONFW Specifies record and file access options before performing a spe-
cific file operation.

ATTNFW Specifies extended attributes before performing OPWNFW,
SPLNFW, SUBNFW, OPRNFW, OPANFW, and RENNFW calls.

OPRNFW Opens an existing fite for reading, bégirming with the first record.
OPANFW Opens an existing file and appends records to the end of the file.
OPMNFW Opens an existing file for record moedification.

OPUNFW Opens an existing file for record update.

OPWNFW Creates and opens x file, then writes records to it, beginning with
the first record position.

SPLNFW Performs the same function as OPWNFW and then prints the file.

SUBNFW Performs the same function as OPWNFW and then executes the
file.

Each open subroutine creates 2 DECnet logical link to the aode where the file
resides and then creates and opens the file. You must use the same LUN to open,
write, and close the file. This LUN must not be in use.

Issue an ATTNFW or ACONFW call immediately before OPRNFW, OPANFW, and
RENNFW calls to specify additional attributes to be returned after the open opera-
tion completes.

3.9.2 Pertorming File Operations

The following subroutines perform file operations:
EXENFW Executes a remote file.
DELNFW Deletes a remote file.

RENNFW Renames 3 remote file.

DECnet-RASX Programmer's Reference Manual

3.9.3 Performing Record Operations

The following subroutines perform record operations:
GETNFW Reads a2 record from a remote file.

PUTNEFW Writes a record to a remote file.

3.9.4 Closing Files and Completing Calls

When you compilete 2 file access operation, use CLSNFW to close the file. To
clean up errors before closing the file, use PRGNFW for your close cperation.
Both CLSNFW and PRGNFW disconnect the logicat link and free the logical unit
number for use. If you do not perform a close operation before attempting a
CLSNT[W] to stop accessing the network, or if 2 network abort occurs while the
file is open, the network closes the file. However, all data may not have been
transferred successfully.

Remote file access calls are synchronous and do not return to the user untii an
operation completes.

3.9.5 Setting Task Build Pa_rameters

DECnet-RSX uses network file access routines (NFARs) as the local node interface
to access remote files for user applications. At task build time you can override
defaults to tailor these NFARs for a particular application. You can sez the follow-
ing task build parameters:

®* Event flzgs .TREF and .RCEF. (The defaults are 17 and 18, respectively.)

= Buffering level. (The defaultis 2.)

® Maximum record size. (The default is 256. bytes.)

= Buffer space allocation. (There is no default.)

3.9.5.1 Setting Event Flags

The network file access routines (NFARs) require the exclusive use of two event
flags. The default event flags are 17(.TREF) and 18(.RCEF). To override these
defaults, issue the following commands in the task builder command file:

GBLDEF= ,TREF: value

GBLDEF= . RCEF : value

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-89

The value variable specifies an event flag and must be in the form of an octal inte-
ger from 1 to 200 (octal). Event flags 33. through 64. are global flags.

3.9.5.2 Setting Buffering Level

The NFARs can be configured for multibuffering to improve throughput. This
requires more internal buffering space than the default buffering level of 2. To
override this default, issue the following command in the task builder command
file:

GBLDEF=$NFNMB : buffering-leve!

The buffering-level variable specifies an integer from 1 to 4. For an RSX or IAS
remote system, use the buffering level that the remote system uses. Ask the sys-
tem manager for the information.

3.9.5.3 Setting Maximum Record Size

3-89

The internal buffers used by the NFARs must be large enough to hold the largest
data record in the remote file. The default maximurm record size is 256 bytes. To
override this defaulr, include the following command in the task builder com-
mand file:

GBLDEF=$NFRSZ :record-size

The record-size variable specifies 2n octal value. For an RSX or IAS remote sys-
tem:, use the record size that the remote system uses.

In calculating the maximum tecord size, note that certain file types require extra
bytes, as follows:

» ASCII files require 2 extra bytes for carriage return and line feed characters
that are appended to each ASCII record.

® Sequenced variable length records require 2 extra bytes for the sequence
number included with each record.

= ASCII files with sequenced variable length records require 4 extea bytes.

DECnet-RSX Programmer’s Reference Manual

AT

3.9.5.4 Setting Buffer Space Allocation

The NFARs allocate buffer space from the file storage region used by the File Con-
trol System (FCS~11). This space is allocated in the P-section $$FSR1. Your task
must include the module NFAFSR from the NETFOR object library. Be sure to
enter the following line in the task build command as an input file:

[1,1]NETFOR/LB:NFAFSR

Use the following formula to calculate the reguired buffer space for performing
remote file access:

(((BNFRSZ + 14.)"(SNFNMB + 1)) + 64.)* (max-rem-files) + (space.” <max-loc-files>)

where

space is the space overhead per local file,

max-rem-files is the maximum number of remote files that can be open con-
currently.

max-loc-files is the maximum number of local files that can be open con-
currently.

The space variable for local file overhead value is 512. if your language uses FCS-

11. If your language uses a different file system, refer to its documentation for the
exact value.

At task build time, use the value that you calculated with the formula to extend
the file storage region. Include the following command in the task builder com-
mand file, entering the vaiue in octal bytes:

EXTSCT=$3FSR1: value

3.9.5.5 Using the Task Build Procedure

A task must link to NETFOR.OLB 1o use the DECnet—RSX remote file access capa-
bilities. Edit the ODL file that the compiler created. The following example shows
a task using the CMD and ODL files. This task uses the defaults for the buffer size
($NFRSZ), the number of buffers ($NFNMB), and only one link. The underlined
items indicate the required edits for the task builder to include remote file access
capabilities in the task. Boldface items are required for network access.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-91

FORTRAN Example:

FILES.CMD {.B SY:FILES,SY:FILES/-SP=SY:FILES.LB: [1,1]F4POTS
LB: [1,11NETFOR/LE, NETFOR /LB : NFAFSR

J
EXTSCT=8$3$FSRL: 2700
'

You enter:
MCR>TXB o FILES BED
COBOL Example:

FILES.CMD
-5Y:FILES,SY:FILES/-SP=SY: FILES/MP
EXTSCT=$$FSR1: 2700
'
FILES.ODL

jMERGED ODL FILE CREATED ON 26-FEB-B2 AT 16:54:32
;COBOL STANDAAD ODL FILE GENERATED ON 26-FEB-82 16:46:29
;COBOBJ=FILES.0BT

;COBMAIN
LIBRY: .FCTR LB:([1,1)NETFOR/LB~-NETFOR/LB:NFAFSR
CROBIS: .FCTR SY:[200,200)FILES
CBOTSS: JFCTR LB:[1,1]COBLIB/LB
OBJRT$: .FCTR CBOBJ$-CBOTS$-LIER1
.ROCT OBJRT$
.END
You enter:

MCR-TKB e FILES

BASIC-PLUS-2 Example:

FILES.CMD
SY:FILES/CP/FP,FILES/-SP=SY: FILES/MP
URITS = 14
ASG = TI:13
ASG = 5Y:5:6:7:8:9:10:11:12
EXTSCT = $$FSRL:2700

/f
FILES.ODL .
«ROOT BASIC2-RMSROT-USER,RMSALL
USER: .FCTR SY:FILES-NETLIB
LIBR: FCTR LB:[1,1]BP20TS/LB
NETLIE: JFCTR 1B:[1,1)NETFOR/LB-NETFOR/LB :NFAFSR

o LB:[1,1)BP2IC1
o LB:[1,1]RM511X
ZND

You enter:

MCR- TKE # FILES EET)

392 DECnet~-RSX Programmer’s Reference Manual

3.9.6 Using ASCH Zero (ASCIZ) Strings

Some of the network file access subroutines require that you provide one or more
arguments in the CALL statement as ASCIZ strings. An ASCIZ string is 2 string of
ASCH characters terminated by a binary (0).

You ¢an create an array/numeric data item, store the string in the array/numeric
data item, and then set the last element to zero Q).

FORTRAN Example:

DIMENSION IFILE {12)

DATA IFILE/'DK','0:',7[1%,7,4%,'3C1,
!Nf,!TR',tOLI".k!’lLG,l’!;zr/
IFILE(12)=0

You then specify the array name in the CALL statement:
CALL OPRNFW (mﬁ,m:m: ’IFIIE)
COBOL. Example:

01 NULLL PIC 9 COMP VALUE O.

01 NULLS REDEFINES NULL1.

03 NULL OCCURS 2 TIMES PIC X{1).

01 IFILE PIC X{23) VALUE “DKO:[200,200,]NAME.CBL;1"

STRING IFILE
NULL {1)

INTO IDENT.

You then specify the string in the CALL statement:

CALL "OPENFW™ USING hen,status,node,ident.

BASIC-PLUS-2 Example:

IFILE$="DKO: (200, 200)NAME, B2S; 1"+ CHARS (0%) CHARS(0%)

You then specify the array name in the CALL statement:

CALL OPRNFW BY REF {lun%,status%(),node$,idents,ifiles)

FORTRAN, COBOL., and BASIC-PLUS-2 Programming Facilities 3-93

3.9.7 Common Argument Definitions for Remote File Access Calls

This section defines the common arguments for remote file access calls. The gen-
e€ral group defines arguments common to all Janguages, and three individual
groups define arguments specific to FORTRAN, COBOL, and BASIC-PLUS-2.

GENERAL

® un

is an integer variable or constant that specifies the jogical unit number of the
logical link created for a specific file access operation.

= node

specifies the name of the target node. It is a 1- to 7-clement array/string that
ends with 2 binary 0 and contains a 1- to 6-character ASCIZ steing..

= ident

contains three successive ASCIZ strings: the user ID, password, and account
number necessary to access remote node files. It is 2 1- to 72.-element ASCIZ
array.

Enter a null value (0) for each item not required by the remote node or each
item previously entered. For example, you may have already entered the
required information in an alias node name block.

] fﬂ'le

is a byte array/string containing a variable length ASCIZ string that contains
the file specification for a file access operation. Be sure to use the remote
node’s file specification syntax.

FORTRAN

= References to integers imiply single-precision integer values.

» status

specifies an array that contains completion status information on return
from the call. This 2-element single-precision integer array contains the fol-
lowing values when the call completes:

status(1) _ returns a completion code. A positive 1 indicates success;
a negative integer indicates an error. Appendix C lists and
describes the error codes.

3-94 DECnet-RSX Programmer’s Reference Manuai

status(2) depends on the contents of the first status word. Refer to
Appendix C.
COBOL

s For DECnet COBOL, the logical unit number 1 is a reserved number and
should never be assigned for the fun argument.

» status

specifies an elementary numeric data item that contains completion status
information on return from the call. This elementary numeric data item con-
tains the following values when the call compleces:

status(l) returns 2 completion code. A positive 1 indicates success;
a negative integer indicates an error, Appendix C lists and
describes the error codes.

status(2) depends on the content of the first status word. Refer to
Appendix C.

BASIC-PLUS-2

» status%()

specifies an array that contains completion status information on return
from the czll. This 2-element integer array contzins the following values
when the call completes:

status%(0) returns a completion code. A positive 1 indicates success;
a negative integer indicates an error. Appendix C lists and
describes the error codes.

status%(1) depends on the contents of the first status word. Refer to
Appendix C.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-95

ACONFW

ACONFW
(Set Access Options)

3.9.8 ACONFW — Set Access Options
Use:

Call ACONFW before a specific file operation to specify record and file access
options to apply to that file operation. These options remain in effect until the file
is closed.

Formats:
FORTRAN: CALL ACONFW (Jun.status.[fac).{skr].{fop])
COBOL: CALL “ACONFW’" USING lun,status.[fac],[sbr],[fop].
BASIC: CALLACONFW BY REF (lun% status%(), [fac%,[shr%],[fop %))

Arguments:

lun

specifies the logical unit number of the logical link assigned to the file opera-
tion for which to set options.

Status

specifies completion status on return from ACONFW. See the definitions for
your language in Section: 3.9.7. Refer to Appendix C for error code descrip- P
tions. &

o

Jac

specifies the operations to allow during file access. Use this argument only
for open and create operations. The fac value overrides the type of access
that the OPxNFW call specifies. Valid values are:

1 Put access

2 Get access (default)

4 Delete record access

10 Update record access

20 Truncate file access 5

aii”

3-96 DECnet-RSX Programmer’s Reference Manual

ACONFW

40 Block 1/0

41 Block I/O write
42 Block I/O read
shr

specifies the file sharing to be allowed by the remote system. Use this argu-
ment only for open and create operations. The actual functioning depends
on the remote system’s capabilities. Valid values are:

Ty 1 Puz access
v 2 Get access (default)
4 Delete record access
10 Update record access
100 No access to others

v fop

specifies a 3-word array for file-processing options that open, create, and
close operations will use. To specify a fop value for close operations, first
open the file, and then make the ACONFW call, because the open call over-
writes the current value. Valid values are:

First word:

400 Create contiguous file

1000 Supersede existing file

4000 Create temporary file

10000 Create temporary file and mark for delete

Second word:
40 Maximize version number on create
100 Spool on close
400 Execute on close
1000 Delete on close

20000 Truncate on ciose

Completion of open/create operations returns:

First word:

40 File is a directory (system dependent)
100 File is locked

400 File is contiguous

FORTRAN, COBOL, and BASIC-PLUS-~2 Programming Facilities 397

ATTNFW

ATTNFW

(Set Extended Attributes)

3.8.8 ATTNFW — Set Extended Attributes

Use:

Call ATTNFW to specify extended attributes to use with a create, open, or close
file operation. You call ATTNFW immediately before the operation; the attri-
butes are returned on completion of the operation.

Call ATTNFW with the following operations:

Operation Calls What ATTNFW Does

Create OPWNFW Specifies additional attributes in creating the
SPLNFW file,
SUBNFW -

Open OPRNFW Specifies additional attributes to be returned
OPANFW when opening the file,
RENNFW

Close CLSNFW Specifies a change-attributes-on-close

sequence.
Formats:
FORTRAN: CALL ATTNFW (lun status,[namesize),[name},[atb],
[protbik),|owner), [datebik])
COBOL: CALL "ATTNFW'* USING lun,status [nramesize),[name],[atbh],
(protbik) (owner),[datebik).
BASIC: CALL ATTINFW BY REF (lun% status %(),[namesize%) [name$],

3-98

[atb %)), [protble%()),
[owner$),[dateblk%()])

DECnet-RSX Programmer's Reference Manual

o

ATTNFW

Arguments:

lun

specifies the logical unit number of the logical link for the file operation.

status

specifies completion information on return from ATTNFW. See the defini-
tion for your language in Section 3.9.7. Refer to Appendix C for error code
descriptions.

namesize

specifies the maximum length of the array/string that can be returned to the
resultant file specification. Use this single-word argument for open and cre-
ate operations, '

name

specifies the array/string containing the resultant file name. This argument
AT can be used for all operations. The returned file name is an ASCIZ string.

* ath

specifies a Files-11 user file attributes block. When specifying create opera-
tions, the user program is responsible for setting valid values because the
NFARs do not check these values.

NOTE

If atb is specified, the échar(2), ichar(3). and len
arguments are ignored when used with open or
create calls. Use the fields NFSORG, NFSRAT,
and NF#MRS, instead.

When specifying create and open operations, ath returns a 10.-word block
in the following format.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-99

ATTNFW

RECORD ATTR.

FiLE ORG./REC FMT

LONGEST RECORD LENGTH

HIGHEST VBN ALLOCATED (high word)
B (low wor;)-'_
END-OF -FILE VBN {(high word)
B (low word—}_

FIRST FREE BYTE
FIXED CTR SIZE BUCKET SIZE
MAXIMUM RECORD SIZE
DEFAULT EXTEND QUANTITY
LKG-1036-87

For further information on the values of these fields, see the RSX -7 IM/M—
PLUS or Micro/RSX I/0 Operations Referenice Manual.

* protblk

specifies an array containing file protection information to be used as input
for create and close operations, and returns information from create and
open operations. The following format describes a 5-word array.

3~-100

DECnet-RSX Programmer’s Reference Manual

A

ATTNFW

FILE OWNER STRING SIZE

SYSTEM PROTECTION MASK

OWNER PROTECTION MASK

GROUP PROTECTION MASK

WORLD PROTECTION MASK

LKG-1037-87

If the file owner size is 0, the owner string is not returned.

The format of the protection masks is as follows:

Bit 0 = Deny read access

Bit 1 = Deny write access

Bit 2 = Deny execute access

Bit 3 = Deny delete access

Bit 4 = Deny append access

Bit 5 = Deny directory list access

Bit 6 = Deny update access

Bit 7 = Deny change protection access
Bit 8 = Deny extend access

If a word is set to -1, that protection is not sent.

owner

specifies an ASCIZ string/array identifying the file owner to use as input for
create operations and for output from create and open operations. The first
word of the protbik array must specify the maximum size of this string/
array.

dateblk

specifies a 19-word array whose fields contain the file’s revision number,
creation and revision date and time, and/or expiration date. The date block
menu specifics the fields in the block that create and close operations can get

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-101

ATTNFW

values from, and create and open operations can return valaes to. Date block
menu values are as follows:

Bit 0 = Revision number
Bit 1 = Revision date and time
Bit 2 = Creation date and time

Bit 3 = Expiration date

The date block fields contain Files-11 time stamps. The time stamps are in
ASCII and have the format ddmmmyybbmmess, where mmm, the month

abbreviation, is in uppercase letters. Leading zeros are included. This is the
format of the date block.

3-102 DECnet—RSX Programmer’s Reference Manual

ATTNFW

DATE BLOCK MENU

REVISION NUMBER

REVISION DATE

- REVISION TIME —

T
l

CREATION DATE

r

CREATION TiME

L EXPIRATION DATE _—

(not used)

L KG~-1038-87

For further information on the format of dates in a block, see the
RSX-11M/M-PLUS or Micro/RSX 1/0 Operations Reference Manual.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities - 3-103

CLSNFW

CLSNFW
(Close a File)

3.9.10 CLSNFW — Close a File

Use:

Call CLSNFW to close a remote file. CLSNFW forces completion of all pending file
operations, ensures that the file directory information is valid, and optionaily
modifies the attributes that the changeattr argument specifies. The logical unit o
number is freed when the CLSNFW call completes. R

\5\ '\ix’

Note that some systems do not let you change attributes on close.

Formats:

FORTRAN: CALL CLSNFW (lun,status,[changeattr])

COBOL: CALL “CLSNFW'’~ USING Iun status,[changeattr].
BASIC: CALL CLSNFW BY REF (lun% status%(),[changeattr%])
Arguments:
lun

specifies the logical unit number of the logical link to close. See the defini-
tion in Section 3.9.7. Use the same LUN thar the previous open call specified.

* stalus

specifies completion status information on return from CLSNFW. See the
definition for your language in Section 3.9.7. Refer 1o Table C-1 in Appen-
dix C for a complete code list.

changeattr

specifies aitributes to change when this file closes. A previous ATTNFW call
must specify these attributes either at open time or just before this call. Valid
values are:

2 Change protection
4 Change dates and rimes

3-104 DECnet-RSX Programmer’s Reference Manual

DELNFW

DELNFW
(Delete a File)

3.9.11 DELNFW — Delete a File

Use:

Call DELNFW 1o delete a remote file,

Formats:

FORTRAN: CALL DELNFW (lun,status,node,ident ifile)

COBOL: CALL “DELNFW"' USING lun,status,node,ident ifile.
BASIC: CALL DELNFW BY REF(Jun % status%(),node$ ident$ ifile$)
Arguments:
fun

specifies the logical unit number of the logical link to delete. Sce the defini-
tion in Section 3.9.7.

* status

specifies completion status information on return from DELNFW. See the
definition for your language in Section 3.9.7. Refer to Table C-1 in Appen-
dix C for a complete code list.

node

specifies the name of the node for the file to delete. See the definition in Sec-
tion 3.9.7.

ident

is an array/string containing explicit access control information. See the defi-
nition in Section 3.9.7.

ifile

specifies an ASCIZ string containing the file specification for the file to be
deleted. See the definition in Section 3.9.7.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-105

EXENFW

EXENFW
(Execute a File)

3.9.12 EXENFW -— Execute a File

Use:

Formats:

Call EXENFW to submit an existing remote file 1o the batch or command file pro-
cessor. The remote file is not deleted after this call completes.

FORTRAN: CALL EXENFW (lun,status,node,ident,ifile)

COBOL: CALL “EXENFW’* USING lun status,.node ident,ifile.
BASIC: CALL EXENFW BY REF (lun% status%(),node$ ident$ ifile$)
Arguments:
Iun

3-106

specifies the logical unit nurnber of the logical link to execute. See the defini-
tion in Section 3.9.7.

staius

specifies completion status information on return from EXENFW, See the
definition for your language in Section 3.9.7. Refer to Table C-1 in Appen-
dix C for a2 complete code list.

node

specifies the name of the node for the file to execute. See the definition in
Section 3.9.7.

ident

is an array/string containing explicit access control information. See the defi-
nition in Section 3.9.7.

ifile

specifies an ASCIZ string containing the file specification for the file to be
executed. See the definition in Section 3.9.7.

DECnet-RSX Programmer’s Reference Manual

TED GETNFW
GETNFW
(Read a Single Record)

3.9.13 GETNFW — Read a Single Record

Use:

Call GETNFW 1o read arecord from 2 file. The FORTRAN énarray or the COBOL

P or BASIC instring argument specifies the array/string in which to store the

o record. Each successive GETNFW call reads the record into the same array/string,

B overlaying any previous record. The previous record is no longer available in the
user record storage area.

The optional rac argument specifies the record access mode. If you omit this
argument, the default access mode is sequential file transfer by records. The
records are read sequentially from the first record in the file.

H you include a rac argument specifying random access, you must include the
e keyptr argument to specify the record to read.

k!

If an error occurs while 2 ﬁie is being read, the Jogical link is maintained. You
must call CLSNFW to close the file,

Formats:

FORTRAN: CALL GETNFW (Iun, status inbytes, inarray,
[segno).Jrac),[keypir],[rop))

g COBOL: CALL “GETNFW'* USING lun,status,inchars,
AR instring [segno),[rac),[keyptr] [rop].
BASIC: CALL GETNFW BY REF (lun% status%).inchars%, instring$,

[seqno%}.{rac%}.lkeyptr% ()], [rop% ()
Arguments:

lun

specifies the logical unit number of the logical link created for reading your
records. See the definition in Section 3.9.7. Use the same LUN you assigned
in the OPRNFW, OPMNFW, or OPUNFW call.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-107

GETNFW

3-108

status

specifies completion status information on return from GETNFW . The sec-
ond word contains the byte count length of the record returned. See the def-
inition for your language in Section 3.9.7. Refer to Table C~1 in Appendix C
for a complete code list.

inbyteslinchars

specifies the length in bytes/characters of inarraytinstring. It is an integer
variable or constant. The actual length of the record read is returned in the
second starus word.

inarraylinstring

specifies the array/string that contains the record to read from the file. If the
record size is larger than the integer you specified in inbytes/inchars, the
balance of the record is lost.

seqno

specifies the sequence number for the record to read from the file. You must
specify this integer variable for sequenced variable length records. If the
record type is not sequenced variable length (or in RMS terms, variable with
fixed control, VFC) the segno argurnent is ignored. Be sure to specify the
record type in the ichar argument of an open call.

rac

specifies the mode to use in accessing the file. If you omit the rac value, the
default access mode is sequential file transfer by records. Sequential file
transfer modes (3 and 3) cause any rac value in a subsequent GETNFW or
PUTNFW calls to be ignored until you close the file. If the file is open for
record access, the rac argument can be one of the following:

Sequential by record

Random by relative record number (RRN)
Random by record file address (RFA)
Sequential file transfer by records (default)

W e O

if the file is open for block access, the rac argument can be one of the fol-
lowing:

4 Random blocks by virtual block number (VBN)
5 Sequential file transfer by blocks

DECnet-RSX Programmer’s Reference Manual

GETNFW

keyptr
specifies the record. The lengrh is assumed from the rac argument value,

RAC Key

1 Two-word binary value of RRN
Low-order word fisst

2 Three-word binary RFA
Low-order word first

4 Two-word binary value of VBN

Low-order word first

rop

specifies record processing options. Valid values are:
1 Position 1o EOF

4 Update if existing record

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Fatilities

3-109

OPANFW, OPMNFW, OPRNFW, OPUNFW

OPANFW, OPMNFW, OPRNFW, OPUNFW ,
{Open a File for Appending, Modifying, Reading, Updating Records)

3.9.14 OPANFW — Open a File for Appending Records
OPMNFW -. Open a File for Modifying Records
OPRNFW — Open a File for Reading Records
OPUNFW — Open a File for Updating Records

Use:
Cali one of the following subroutines to open an existing file:
Call OPANFW to open a sequential file for appending records.
Call OPMNEW 1o open and modify a sequential file.
Call OPRNFW to open a sequentiai file for reading records.
Call OPUNFW to open and update a sequential file.
For information on OPWNFW (Create and Open a File for Writing Records), refer
to Section 3.9.18.
Formats:
FORTRAN: CALL (OPANFW (lun status,node,ident ifile ichar,len,
OPMNFW [#block))
OPRNFW
OPUNFW
COBOL: CALL ['OPANFW" USING fun status node,ident ifile ichar,
“OPMNFW™’ len [iblock].
“OPRNEFW™
‘OPUNFW™’
BASIC: CALL [OPANFW BY REF (lun% status%(),noded ident$,
OPMNFW ifile$ ichars len% [iblock])
OPRNFW
OPUNFW

3-110 DECnet-RSX Programmer’s Reference Manual

OPANFW, OPMNFW, OPRNFW, OPUNFW

Arguments:

lun

specifies the logical unit number of the logical link created for the OPANFW,
OPMNFW, OPRNFW, or OPUNFW call. Use the same LUN for any succeed-
ing PUTNFW, PRGNFW, or CLSNFW call. See the definition in Section
3.9.7.

T * status

specifies completion status information on return from OPANFW,
OPMNFW, OPRNFW, or QPUNFW. See the definition for your language in
Section 3.9.7. Refer to Table C-1 in Appendix C for 2 complete code list.

node

specifies the name of the node for the file to open. See the definition in Sec-
tion 3.9.7.

ident

is an array/string containing explicit access control information. See the defi-
nition in Section 3.9.7. |

ifile

specifies an ASCIZ string containing the file specification for the file to open.
See the definition in Section 3.9.7.

ichar

is a 3-element array/string. If the values you specify differ from those stored
in the file, the stored values are used. When the open call completes, the
fchar array/string contains the stored values. Check these values to see how
the file was actually opened. Make sure you specify the appropriate ASCII
letter code as defined in the following three fields:

ichar(1) - Mode

Letter Code Description
A ASClII file
I Binary image file

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3111

OPANFW, OPMNFW, OPRNFW, OPUNFW

ichar(2) — Record Format

Letter Code Description

U Undefined formar records

E Fixed length records

v Varizable length records

5 Sequenced variable length records (VFC)
A ASCII stream format

ichar(3) - Carriage Control

Letter Code Description

¥ FORTRAN carriage control
T Terminal carriage control
N No carriage control

p Print file VFC

The following example displays one method for the ichar argument. In this
example, ichar specifies the file to be opened as an ASCII file (A’), with vari-
able length records ('V’}, and FORTRAN style carriage control ('F).

Example:

BYTE ICHAR (3)
DATA ICHAR/'A','V!,'Ft/
ICHAR PIC XXX VALUE "a4VF". (COBOL)

ICHAR$=TAVF" (BASIC) e

* len

is an integer variable that specifies record length. If the file has variable
length records, enter the maximum record length. A null value (0) implies
there is no maximum record length. '

3-112 DECnet-RSX Programmmer's Aeference Manual

OPANFW, OPMNFW, OPRNFW, OPUNFW

* iblock

is an integer variable that returns the number of blocks currently allocated to
the file. The values are described as follows:

Entry Description

+n Number of noncontiguous biocks
(where n = number of blocks)

-n Number of contiguous blocks
(whete n = number of blocks)

FORTRAN, COBOL, and BASIC~-PLUS-2 Programming Facilities 3-113

PRGNFW

PRGNFW
(Discard an Opened File)

3.9.15 PRGNFW — Discard an Opened File

Use:

Call PRGNFW to close a remote file because one or more errors occurred in the
transfer. If the file was newly created by an. OPWNFW, SPLNFW, or SUBNFW
call, it is deleted. If the file existed previously and was just opened by an
QPRNFW or QPANFW call, it is closed in its current state.

Formats:

FORTRAN: CALL PRGNFW (lun.status)

COBOL: CALL “PRGNFW'’ USING lun,status.
BASIC: CALL PRGNFW BY REF ({un% status%())
Arguments:
fun

specifies the logical unit number of the logical link to close. See the defini-
tion in Section 3.9.7. Use the same LUN specified in the previous open call.

status

specifies completion status information on return from PRGNFW. See the
definition for vour language in Section 3.9.7. Refer to Table C-1 in Appen-
dix C for a complete code list.

3-114 - DECnet-RSX Programmer's Reference Manual

PUTNFW

PUTNFW
(Write a Singie Record)

3.9.16 PUTNFW — Write a Single Record

Use:

Call PUTNFW to write 2 record to z file. PUTNFW writes the indicated number of
bytes/characters from the array/string you specify in the outarray/outstring
argument.

The optional rac argument specifies the record access mode. If you omit this
argument, the default access mode is sequential file transfer by records. The
records are written sequentially beginning at the first record position unless the
file was opened with an OPANFW call. In that case they are written after the last
record.

If a rac value specifies random access, the keyptr argument must specify the
record position where the record is written.

if a PUTNFW call returns an error, you can close the output file with either a
PRGNFW or CLSNFW call or continue the write (PUTNFW) operation.

Formats:

FORTRAN: CALL PUTNFW (lun, status,outbytes,outarray,
[segnol.irac).[keypir},[rop])

COBOL: CALL “"PUTNFW’ USING lun, status,outchars,ouistring,
[segno).[racl.[keypir],[rop].

BASIC. CALL PUTNFW BY REF (Jun% status%().outchars% outstring$,
[seqno%},[rac%}.[keyptr%(Lirop %))

Arguments:

lun

specifies the logical unit number of the logical link created for writing 2 sin-
gle record. See the definition in Section 3.9.7. Use the same LUN you
assigned in the OPANFW, OPMNFW, OPUNFW, SPLNFW, SUBNFW, or
OPWNFW call.

FORTRAN, COBOL, and BASIC~PLUS-2 Programming Facilities 3.115

PUTNFW

3-118

status

specifies completion status information on return from PUTNFW. See the
definition for your language in Section 3.9.7. Refer to Table C-1 in Appen-
dix C for a complete code list.

outbytesiouichars

specifies the number of bytes/characters to be written to the file from the
outarray/outstring argument. This integer variable or constant must be
equal to or less than the maximum record length you specified in the open
call. If data overrun occurs, the remaining bytes are lost.

oularray/oulsiring

is the name of the array/string that contains the record to be written to the
file.

seqno

specifies the sequence number of the record to be written. You must specify
this integer variable or constant for sequenced variable length records. If the
record type is not sequenced variable length (or in RMS terms, variable with
fixed control, VFC), the segno argument is ignored. Remember to specify the
record type in the échar argument of an open call.

rac

specifies the mode to use in accessing the file. If you omit the rac value, the
default access mode is sequential file transfer by records. Sequential file
transfer modes (3 and 5) czuse any rac value in 2 subsequent GETNFW or
PUTNFW calls to be ignored until you close the file. If the file is open for
record access, the rac argument can be one of the following:

Sequential by record

Random by relative record number (RRN)
Random by record file address (RFA)
Sequential file transfer by records (default)

WO

If the file is open for block access, the rac argument can be one of the fol-
lowing:

4 Random blocks by virtual block humber (VBN)
5 Sequential file transfer by blocks

DECnet-RSX Programmer's Reference Manual

- PUTNFW

keyptr
specifies the record. The length is assumed from the rec argument value.
RAC Key
1 Two-word binary value of RRN
Low-order word first
2 Three-word binary RFA
Low-order word first
4 Two-word binary value of VBN

Low-order word first
rop
specifies record-processing options. Valid values are:

)] Position to EOF
4 Update if existing record

FORTRAN, COBOL, and BASIC--PLUS~2 Programming Facilities 3117

RENNFW

RENNFW
(Rename a File)

3.9.17 HENNFW — Rename a File

Use:

Call RENNFW to rename 2 remote file,

To return the new, fully-qualified file specification after the rename operation, RN
use the set extended attributes (ATTNFW) call. Issue ATTNFW before issuing RV
RENNFW, and use the name argument to specify a name buffer. On completion
of the RENNFW call, the name buffer will contain the resulting file specification.

Formats:
FORTRAN: CALL RENNFW (lun,status,node,ident ofile nfile)
COBQGL: CALL “RENNFW"’ USING lun status node ident ofile nfile.

BASIC: CALL RENNFW BY REF (lun% status%(), node$ ident$,
ofile$ nfile$)

Arguments:

lun

specifies the logical unit number of the logical link over which to rename a
remote file. See the definition in Section 3.9.7.

status

specifies cornpletion status information on return from RENNFW. Sce the
definition for vour language in Section 3.9.7. Refer to Table C-1 in Appen-
dix C for 2 comp!lete code list.

node
specifies the name of the node on which 10 rename the file. See the defini-
tion in Section 3.9.7.

3-118 DECnet-RSX, Programmer’s Reference Manual

RENNFW

ident

is an array/string containing explicit access control information. See the defi-
nition in Section 3.9.7.

ofile

specifies an ASCIZ array/string containing the current name of the file to
rename.

nfile

specifies an ASCIZ array/string containing the new file specification for the
file to rename.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-119

SPLNFW, SUBNFW, OPWNFW
SPLNFW, SUBNFW, OPWNFW

3.9.18 SPLNFW — Create, Write, and Print a File
SUBNFW — Create, Write, and Execute a File
OPWNFW — Create and Open 2 File for Writing Records

Use:

Call one of the following subroutines to create a file:

Call SPLNFW to create, write to, and print a new remorte file at the remote
node,
Call SUBNFW to create, write to, and submit 2 new remote file to the re-

maote batch/command file processor for execution. The file
is deleted after execution. Successful completion of this call
implies that the remote node handled the file properiy, but
not that the file ran or ran properly.

Call OPWNFW to create and open a sequential file for writing records.

Formats:

SPLNFW {iblock))

FORTRAN: CALL [SUBNFW (lun status .node,ident ifile ichar len,
OPWNFW

COBOL: CALL (SUBNFW™ 7 USING lun,status,node, ident ifile,
{“SPLNFW" j ichar,len,|iblock].
C“OPWNFW™
BASIC: CALL (SUBNFW BY REF (Jun% status%(),node$ ident$,
J_, SPLNFW } ifile$ ichars len% [iblock%))
OPWNFW

3-120 DECnet-RSX Programmer's Reference Manual

SPLNFW, SUBNFW, OPWNFW

Arguments:

lun

specifies the logical unit number of the logical link for the SPLNFW,
SUBNFW, or OPWNFW call. Use the same LUN for any succeeding
PUTNFW, PRGNFW, or CLSNFW call. See the definition in Section 3.9.7.

status

specifies status completion information on return from SPLNFW, SUBNFW,
or OPWNFW . See the definition for your language in Section 3.9.7. Refer to
Table C-1 in Appendix C for a complete code list.

node

specifies the name of the node for the file to open using SPINFW SUBNFW
or OPWNFW. See the definition in Section 3.9.7.

tdent

is an array/string containing explicit access control information. See the defi-
nition in Section 3.9.7.

ifile

specifies an ASCIZ string containing the file specification for the file to be
opened using SPLNFW, SUBNFW, or OPWNFW.

ichar

is a 3-¢lement array/string. If the values you specify differ from those stored
in the file, the stored values are used. When the open call completes, the
ichar array/string contains the stored values. Check these values to see how
the file was actually opened. Make sure you specify the appropriate ASCIH
letter code as defined in the following three fields:

ichar(l) - Mode

Letter Code Description
A ASCII file
I Binary image file

i

4

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-121

SPLNFW, SUBNFW, OPWNFW

ichar(2) — Record Format

Letter Code Description

3] Undefined formar records

F Fixed length records

\Y Variablelength records

5 Sequenced variable length records (VFC)
A ASCII stream format

ichar(3) — Carriage Control

Letter Code Description

F FORTRAN carriage control
T Terminal carriage conirol
N No carriage control

P Print file VFC

The ichar array/siring specifies values for the new file.

* em

is an integer variable that specifies record length. If record lengths vary,
enter the maximum record length. A null value (0) implies there is no maxi-
mum record length.

* iblock

is an integer variable that specifies the number of biocks to altocate for file
creation. Enter one of the following values:

Entry Description
O Dynamic allocation
+n Number of noncontiguous blocks

{where n = number of blocks)

-n Number of contiguous blocks
(where # = number of blocks)

When SPLNFW, SUBNFW, or OPWNFW completes, iblock specifies the
number of blocks allocated (if you specified a + n or 2 -n argument), or 0 {if
you specified dynamic allocation).

3-122 DECnet-RSX Programmer's Reference Manual

SPLNFW, SUBNFW, OPWNFW

If the system cannot allocate the number of requested blocks, an error
returns and frees the LUN. If you omit the éblock argument, the system allo-
cates space dynamically.

FORTRAN, CORBOL, and BASIC-PLLIS-2 Programming Fagcilities 3-123

3.9.19 FORTRAN Remote File Access Programming Examples

The following programs illustrate FORTRAN remote file access. The first example
appends a local file to a remote file. The second example reads the contents of one
remote file into another.

These examples are included in your tape or disk kit.

3-124 DECnst—RSX Programmer’s Reference Manual

3.9.19.1 Append Example

The FTNAPP program appends the contents of 2 local ASCII file o the end of 2
remote ASCII file and then closes both files. If an error occurs, the program dis-
plays an error message.

)

Copyright {(C) 1983, 1985, 1986, 1587 by
Digital Equipment Corporation; Maynard, Mass.

This software is furnigshed under a license and may be used and copied
only in accordance with the terms cof such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwvise made available to any
other person. No title to and ovnership of the software is hereby
transferred.

The information in this software is subject to change without notice
and shoyld not be construed as a commitment by Digital Equipment
Corporation,

Digital assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by Digital.

FTNAPP,FTN ~- Append a local ASCII file to a remote ASCII file

This program illustrates DECnet remote file access support for FORTRAN.
To task build, use the following command string:

FTNAPP,FTNAPP = FTNAPP
LB:[1,1]F4POTS/LB
LB:[1,1]NETFOR/LE
LB:[1,1)NETFOR/LB:NFAFSR

ananNaanNONAanONNNnNnD NnaoonaanoNanNnOonnNnbann

LB:[1,1]RMSLIB/LE (if RMS is included)

/

UNITS=10

EXTSCT=$$FSR1:2700

ACTFIL=4 .

EXTTSK=1000 (if RMS is included)

/7
BYTE UID{40),PaS{40) ,ACC(40) , NOD(T)
BYTE INPFIL(65),0UTFIL(65)
BYTE BUFFER(128}, IDENT{120}, ICHAR{3)
INTEGER NETLUN, INPLUN, OUTLUN , LNKNUM , MBXFLG
INTEGER UIDLEN, PASLEN, ACCLEN, NODLEN
INTEGER INPLEN,QUTLEN, ISTAT(2) ,MSTAT(3), IDENTL
LOGICAL EOF
COMMON IDENTL, IDENT

Initialize LUNs for the network, input file, and output file
DATA NETLUN, INPLUN,OUTLUN /1,2,3/

ASCII files, Variable length records and FORTRAN carriage control

nanNn nNon

{continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-125

nan NnnNnn ann nnn ann naor

ann

HNOO

DATA ICHAR/'A','V','F'/
Build a user ID string in the IDENT array

IDENTL = 0

TYPE 100

ACCEPT 130,UIDLEN, (UID{I), I=1,UIDLEN)}
CALL BLDID(UID,UIDLEN)

Prompt for UID
Read in 2 string
Store UID into IDENT array

Build a password string in the IDENT array

TYPE 1l1C { Prompt for PAS
ACCEPT 130,PASLEN, (PAS{I), I=1,PASLEN} 1 Read in a string
CALL BLDID(PAS,PASLEN} ! Stare PAS into IDENT array

Build an account number string in the IDENT array

TYPE 120 ! Prompt for ACC
ACCEPT 130,ACCLEN,{ACC{I), I=1,ACCLEN) ! Read in a string
CALL BLDID(ACC,ACCLEN) ! Store ACC intoc IDENT array

Build a remote node name string

TYPE 140
ACCEPT 150,NCODLEN, (NOD(I}, I=1,NODBLEN}
NOD(NODLEN+1} = 0

Prompt for a node name
Read in a string
Terminate nodename string

Build a lecal input filename string

TYPE 160 ' Prompt for input filename
ACCEPT 180, INPLEN, (INPFIL(I), I=1,INPLEN}!Read in a string
INPFIL{ INPLEN+1}=0 { Terminate input file string

Build a remote output filename string

TYPE 170 ! Prompt for output filename
ACCEPT 180,0UTLEN, (OQUTFIL(I), I=1,0UTLEN}!Read in a string
QUTFIL(OUTLEN+1}=0 ! Terminate output file string

Cpen access to the network - only one link, use long connect block

LNKNUM = 1 ! Allow only one link
MBXBLF = 1 ! Set long connect block flag
EOF = .FALSE. ! Clear end-of-file flag

CALL OPNNTW (NETLUN,ISTAT, MSTAT,LNKNUM, ,MBXFLG) ! Access the network

IF (ISTAT(1) .EQ. 1} GOTO 10 ! 1f success, proceed
TYPE *,'Cannot open network, status = ', ISTAT ! Flse, report error

GOTO 90 H and finish

Open local input and remote output files
OPEN (UNIT=INPLUN,NAME=INPFIL,TYPE='OLD',READONLY,ERR=50) | Open input

CALL OPANFW (OUTLUN,ISTAT,NCD, IDENT,OUTFIL, ICHAR, LENGTH) ! Open output
IF (ISTAT(1l} .EQ. 1) GOTO 20 ! If OK, proceed

3-126 DECnet—RSX Programmer’s Reference Manual

170
180
1s¢

ann

TYPE *,‘'Cannot open output file, status = ', ISTAT ! Else, report error
GOTO 70 ! and finish

Main loop - read record from local file, write to remote file

READ {INPLUN,130,END=30,ERR=40) ICNT3,(BUFFER(I},I=1,ICNT3)}
CaLL PUTNFW (OUTLUN, ISTAT, ICNT3,BUFFER) ! Put/write record to output

1F {1STAaT{l) .EQ. 1) GOTO 20 I If success, loop
TYPE *,'Write error, status = ', ISTAT ! Else, report error
GOTC 60 1 and finish

Last read is complete. Print error message if not end of file.

EOF = .TRUE. t Incdicate normal completion
IF {EOF) GOTO &0 ! No read error if end-of-file
TYPE *,'Read error, status = ', ISTAT { Blse, print error message
GOTO 60 ! and finish

Process FORTRAN OPEN error

TYPE *,'Cannot open lacal input file’ 1 Indicate that OPEN failed
GOTC 80 1 and finish

Finish - close files, deaccess the network, print status and exit

CALL CLSNFW (OQUTLUN, ISTAT) ! Close remcte output file
CLOSE {(UNIT=INPLUN) t Close local input file
CALL CLSNTW (ISTAT) t Deaccess the network

IF (EOF} TYPE *, 'Successful completion’

I¥ {.NOT. BQF} TYPE *, ‘Error completion’

STOP

Formats

FORMAT {'S$User ID (39 char. max.); ')
FORMAT ('SPassword (39 char. max.): ')
FORMAT ('SAccount (39 char. max.): '}
FORMAT (Q,35Al})

FORMAT {'$Node (6 ¢har. max.}: '}

FORMAT (Q,6Al)

FORMAT ('SInput file (64 char. max.): ')
FORMAT (*SOutput file (64 char. max.): ')
FPORMAT {(Q,64Al1)

FORMAT (Q,128A1)

END

BLDID (f1d,fldlen} - Build an ASCIZ IDENT field

SUBROUTINE BLDID (FLD,LEN)
BYTE IDENT{30),FLD{80)
INTEGER IDENTL,LEN

COMMON IDENTL, IDENT

Do 10, 1=1,LEN

{continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3127

1¢

3-128

IDENT({ IDENTL+1) = FLD(I)
CONTINUE ’
IDENTL = IDENTL+I
IDENT(IDENTL} = ©
RETURN

END

DECnet-RSX Programmer’s Reference Manual

3.8.19.2 Read/Write Example

The FTNRRW program reads the contents of one remote file into another remote
file. When the program encounters an end-of-file character, the last record is
written to the remote file and both files are closed. If a read or write error occurs,
the program displays a message and exits.

Copyright (C) 1983, 1985, 1986, 1987 by
Digital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person, No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

Digital assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by Digital.

AONANONONNANONON0ONN

FTNRRW.FTN ~ Read records from one remote file, write to another

This program illus<rates DECnet remote file access support for FORTRAN.
To task build, use the following command string:

PTNRRW, FINRRW = FTNREW

LB:i1,1]F4POTS/LB

LB:[1,1]NETFOR/LB
Le:{1,1]NETFOR/LB:NFAFSR

LB:[1,1]RMSLIB/LB (if BMS is included)
/

UNITS=10

EXTSCT=$§FSR1:10000

ACTFIL=4

EXTTSK=1000 {if RMS5 is included)
7

Remote input file: RNODEI"NFAR PRIV 121"::FTNRRW,INP
Remote output file: RNODE2"NFAR PRIV 123"::FTNRRW.OUT

nONOaNOOoNAaNNNONONnNQOaNNN

INTEGER NETLUN, INPLUN, OUTLUN

INTEGER MBXFLG, LNKNUM

INTEGER ISTAT(2) ,RECLEN

BYTE IDINFO(14), ICHARS {3} ,RECBUF(512)
LOGICAL EOF

c
€ Specify LUNs for the network, inpur file, and cutput file
[
DATA NETLUN, INPLUN,CUTLUN /7,1,2/
C
c Specify ASCIZ IDENT strings: user, password and account
{continued on next page)
FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities : 3-129

DATA IDINFO/lnl'lF!'IAI'IRI'O'lPl'lRﬁ’lI!'tvl'0‘|l|'|2|'.3.'0/
Image mode, Variable length records and Terminal carriage control

DATA ICHARS /'I','V','T'/

aoONn 000 0

Initialize some flags

MBXFLG = 1 ! Set long connect block flag
LNKNUM = 2 ! Set number of links
EOF = ,FALSE. ! Initialize end-of-file flag
C
C Open access to the network - allow two links, use long connect block
c
CALL OPNNTW({NETLUN, ISTAT, ,LNKNUM, ,MEXFLG)
IF (ISTAT(l) .EQ. 1) GOTC 10
TYPE *, 'Cannot access network, status = ', ISTAT
GOTO 80 .
c
C Cpern remote input file
C
10 CALL OPRNFW(INPLUN, ISTAT, 'RNODEl",IDINFQ,
1 t [NFARIFTNRRW.INP',
1 ICHARS , RECLEN}
IF {1sTAT(i) .EQ. 1) GOTO 20
TYPE *, *Cannot open remote input file', ISTAT
GOTQ 70
C
c Open remote output file
C
20 CALL OPWNFW{QUTLUN,ISTAT, "RNODE2', IDINFO,
b " [NFAR]FTNRRW,OUT",
1 ICHARS , RECLEN)
IF {ISTAT(1l) .EQ. 1) GOTO 30
TYPE %, 'Cannot open remote output file’, ISTAT
GOTO &0
[
C Main loop - transfer records until end-of-file
C
C Get a record from the input file.
C
30 CALL GETNFW(INPLUN, ISTAT,512,RECBUF)
IF (ISTAT{l) .NE, 1) GOTQ 40 t If read error, check for EOF
RECLEN = ISTAT(2) ! Set number of bytes to write
C
c Put the record to the output file
C
CALL PUTNFW(OUTLUN,ISTAT,RECLEN,RECBUF)‘
1P (ISTAT(1} .EQ. 1} GOTO 130 't 1f write succeeded, logp
TYPE *, 'Write error, status = ', ISTAT
GOTC 50
Cc
€ The last read failed. Print error message if not an end-of-file,
C
40 IF (ISTAT(2) .EQ. '050047'C) EOF = ,TRUE.
IF (.NOT. EOF)} TYPE *,'Read error, status = ',IS8TAT
C
¢ Finish - close files, deaccess network, print status and exit
C
S0 CALL CLSNFW({OUTLUN, ISTAT) ' Close output file
60 CALL CLSNFW{INPLUN,ISTAT) ! Close input file
70 CALL CLSNTW{NETLUN) ! Deaccess the network
BO IF¥ (EOF} TYPE *, 'Successful completion’
IF (.,NOT. EOF) TYPE *, 'Execution failure’
STOP
END

3-130 DECnet-RSX Programmer's Reference Manual

3.9.20 COBOL Remote File Access Programming Exampies

The following programs illustrate COBOL remote file access. They are included
in your tape or disk kit.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-131

3.9.20.1 Append Exampie - Do

® % % % % N B N ook N H N N N B N W W

The program COBAPP appends the contents of a local ASCII file to the end of 2
remote ASCII file and then closes both files, If an error occurs, the program dis-
plays an error message.

Copyright (C} 1983, 1985, 1986, 1887 by
Digital Equipment Corporaticn, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This scftware or any other
copies thereof may not be provided or otherwise made available to any
cther person. No titie to and ownership of the software is Thereby
transferred.

The information in this software is subject to change without notice
and. shoculd not be construed as a commitment by Digital Equipment
Corporation,

Digital assumes no responsibility for the use or reliability of its
software on eguipment which is not supplied by Digital.

IDENTIFICATION DIVISION.
PRCGRAM-1D. COBAPP.

*

*
*
&
*
*
x
*
%
*
o
*
d
*
*
*
*

KRk AT IR A A Ak Ak Ak R kR AR AR XA N ARk T Ak Ak r AR AR ATk kR Tk kAR RAR

EXTTSK=1000 (if RMS is included)
s

-

This program appends the contents of a local ASCII file *
to & remote ASCII file and then closes both files. *
k 3

To task build, use the following command string: *
- x

COBAPP, COBAPP =- ‘ *
coeAPP,[1,1INETFOR/LB,C81LIB/LB, RMSLIB/LB, NETFOR/LB: NFAFSR *
/ *
UNITS=10 *
EXTSCT=$§$FSR1:27020 *
ACTFIL=4 *
*

x

-

x

AR E T Rk k kA kAR R XA AR RN R AN AR T Ak kAR A I IR AX AT AL A ARk R AR

ENVIRONMENT DIVISION,
CONFIGURATION SECTION.
SOURCE-COMPUTER., PDP-11.
OBJECT-COMPUTER. PDP-11l.

I

NPUT~-OUTPUT SECTION.

FILE~CONTROL.

SELECT LOCAL-FILE ASSIGN TO "DBO:".

DATA DIVISION.
FILE SECTION.

FD LCCAL-FILE

LABEL RECORDS ARE STANDARD
VALUE OF ID IS LOCAL.

3-132 DECnet-RSX Programmer's Reference Manual

01 LOCAL-REC

WORK ING-STORAGE SECTION.
01 WMSGS.

03 MSGl.
05 FILLER

05 MSG1l-STATL

05 FILLER

05 MSGl-STATZ
03 MSG2,

05 FILLER

05 MSG2-STAT1

05 FILLER

05 MSG2-STAT2
03 MS5G3,

0% FILLER

05 MSG3-STAT1

05 FILLER

05 MSG3-STAT2
03 MSG4.

05 FILLER

05 MSG4-STATI1

05 .FILLER

05 MSG4-STAT2
03 MSGS.

0§ TFILLER

05 MSGS-STAT1
¢ FILLER
05 MSGS5-STAT2
01 ARRAYS.
03 IOST.

PIC X(80).

PIC X(38) VALUE ™ MAIL BOX CREAT
"ION ERROR, I0ST(1l) = ".

PIC ~99999,

PIC X(11) VALUE " IOQST(2) = ".
PIC -99993.

PIC X(38) VALUE “ CAN NOT OPEN R
"EMOTE FILE. IOST(1) = ™.

PIC ~5599%,

PIC X(11) VALUE " IOST(2) = ",
PIC -999%9.

PIC X(42) VALUE " WRITE ERROR FR
"OM REMOTE FILE. I0ST(1) = ",

PIC =-99999,

PIC X(11) VALUE " I0ST(2) = ".
PIC -95999.

PIC X(39) VALUE " CAN NOT CLOSE
"REMOTE FILE. IOST(1l) = ".

PIC -9%99S,

PIC X{(11) VALUE ™ IOST(2) = ",
PIC -959999,

PI1C X(35} VALUE ™ CAN HOT CLOSE
"NETWORK. IOST(l) = ",

PIC -99999.

PIC X{(11} VALUE "10S8T(2) = ",
PIC -9999%.

05 1IOSTAT OCCURS 2 TIMES PIC S9999 USAGE COMP.

03 MSTAT.

05 MSTATS OCCURS 2 TIMES PIC 89993 USAGE COMP.

01 STORE-STUFF.
03 LOCAL
03 iDENT
C3 USERID
03 PASSWD
03 ACCNT :
03 REMOTE-FILE
03 FILLER
03 OPRLUN
03 COUNT1
03 APPLUN
03 LENGTHL
03 BLOCK)
03 REC-LENGTH
03 NODE-NAME
03 TEMP-NODE
03 TEMP-REMOTE
03 ICHAR

PIC X{26).

PIC X(30).

PIC X{12).

PIC X(6).

PIC X{(9}.

PIC X(30).

PIC X.

PIC 9 COMP VALUE 4.
PI1C 8 COMP VALUE 1,
PIC 9 COMP VALUE 3.
PIC §9999 USAGE COMP.
PIC S%999 USAGE COMP.
PIC S99 COMP VALUE 80,
PIC X(7).

PIC X{(6).

PIC X(29).

PIC X(3)} VALUE "AVF".

{continued on next page)

FORTRAN, COBOL, and BASIC-~-PLUS-2 Programming Facilities 3-133

01 NULLl PIC 9 COMP VALUE 0,
01 NULLS REDEFINES NULLI1.

03 NUL OCCURS 2 TIMES PIC X%X(1),
PROCEDURE DIVISIQON,

L2 SRR SRS SR A SRRl ARttt SRl E R

*
Get accounting information for remote node from *
terminal and form ASCIZ string with this information *
for OPRNFW and CPWNFW. *
*
*

LRI

AR KR AAERAAA AR AR R RN AT RN kAR R AR AT A AR AR R AR AR ALk R TR bkt hdk

Al00-START.
DISPLAY ™ INPUT USER ID: *.
ACCEPT USERID.
DISPLAY " INPUT PASSWORD: ".
ACCEPT PASSWD,
DISPLAY " INPUT ACCOUNT NUMBER: ",
ACCEPT ACCNT.
STRING USERID
NUL{1)
PASSWD
NUL({1}
ACCNT
NUL{1l) DELIMITED BY SIZE
INTO IDENT.

L2 2T LA R RS EL SR SRR RS A s S RIS RS R R ALY X

* *
* Get remote node name angd form ASCIZ string. *
* "

kxR AR IR R R A XA TR R XA RTARTANEIR R Rk r bRtk N Ak kX

DISPLAY " INPUT REMOTE NCDE NAME: .
ACCEPT TEMP-NODE.
STRING TEMP-NODE
NUL(1l} DELIMITED BY SIZE
INTO NODE-NAME.

TRk X axRkAk Xk kbt x g bkt ke rrdhd kb brrrrrrrekrxr okt kkid

* *
* Get remote file name and form ASCIZ string. b
* L3

(AT SRR RSS2SR TR SRR RS E RS AR LSRR RS RS ERERaX 2] R}]

DISPLAY " ENTER FILE SPEC. OF REMCTE FILE FOR AFPEND",
ACCEPT TEMP-REMCTE.
STRING TEMP-REMQTE

NUL{l) DELIMITED BY SIZE

INTC REMOTE-FILE.

3-134 DECnet-RSX Programmer’s Reference Manual

kR kkkk kR kb kk kR ek ke kA ke Rtk h kbR Rk Atk TRk kAR Rhk

-> =
* Get local file name. :
*

FX I TP EE LRSI RS R EET ST LRSS LSS AL A 2l R R AL RN

DISPLAY " ENTER FILE SPEC. OF LOCAL FILE TO BE APPENDED".
ACCEPT LOCAL.

AR L A A A AT A A R AR AR AL RN A A A AR AR A AR AL AR AR AR R AR AR LT R
* *
* Access the network. If the call completes *
s * unsuccessfully, write an error message and exit. *
Lo * x

LA L R st At R Rt R T2 LA SRR R R L R R

CALL "OPNNTW®™ USING

OPNLUN
I10ST
MSTAT
COUNT1.
IF IQSTAT {1) = 1
NEXT SENTENCE
ELSE
MOVE IOSTAT {l) TO MSGl-STAT1
MOVE IOSTAT (2) TO MSGLl~STAT2
DISPLAY MSGl
GG E100-END.

dhkkhkhEhkbrhkrk kb kb rXxRE T AL AT R R XX RRT AN AR b rhrr Ak kb khkrikhthk

*

* Open the local file. Open the remote file for *
* append. If unable to open the remote file, write *
* an error message and deaccess the network. *
* *
HE AR AR AR A R A AT R A A AR TR Ak kA kR A R T AN R AR Rk ke k kb h®

OPEN INPUT LOCAL~FILE,

CALL "OPANFW" USING
APPLUN
I08T
NODRE-NAME
IDENT
REMOTE-FILE
ICHAR
LENGTH1
BLOCKL.

IF IOSTAT (1) = 1
NEXT SENTENCE

ELSE
MOVE IOSTAT (1) TO MSG2~STAT1
MOVE IQSTAT (2) TO MSG2-STAT2
DISPLAY MSG2
GG D1Q0-CLOSE.

{continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-135

AR AR kAN Rtk kA AR A kA Rk kAR AR T AN AR AR L AR AR E AN A A AR AT TR R AR * LR

*
Read a receord from the local file and append it to *
the remote file until the end-of-file is encountered *
in the local file, 1f an error occurs while writing *
to the remote file, print an error message and exit. *

*

*

LR O B B]

LI EXTEIESSLE SRS SRS RS R R R YR RSS2 R R R LR LSS R

BI10O-READ.

MOVE SPACES TO LOCAL-REC,
READ LOCAL-FILE RECORD

AT END GO ClO0-EQF.
CALL "PUTNFW" USING

APPLUN

IOST

REC-LENGTH

LOCAL-REC.
IF IOSTAT {1} = 1 GO BlOOQ-READ.
MOVE IOSTAT {1) TO MSG3I-STATL.
MOVE IOSTAT (2) TO MSG3I-STAT2.
DISPLAY MSG3,
GO E1QC-END.

TR AR TR R A AR ARRA R AT AN AT TN AN R T T LAk kA kTR T ekt ke kdx

*
* wWhen the end-of-file is encountered in the local *
* file, close the local and remote files. If unable *
* to close the remote file, print an error message *
* and exit. *
* *x
* *

AT R RN AE LR AN TR kXA RR LA AT AR AR A A AR N AR TR A E kA kX

C100~-EOF.

CLOSE LOCAL-FILE.

CALL "CLSNFW" USING
APPLUNM
10ST.

IF IOSTAT (1) = 1
NEXT SENTENCE

ELCSE

MOVE IOSTAT (1) TO MSG4-STAT1
MOVE IOSTAT (2) TQ MSG4-STATZ2
DISPLAY MSG4
GO E1Q0-END,

3-136 DECnet-RS$X Programmer’s Reference Manual

KAk AR AR AT AN KT TR AR TR ARA AR ARk ek ekt

® *
* Deaccess the netvork. Display an errcor message *
* if the call does not complete successfully. *
- *

AERAREEEXREETK AR AR RALARR A AR A AR A A N ke kkkkk ke ke vk hkkdkhdkin

D100-CLOSE,
CALL "CLSNTW"™ USING
108T.
IF I0STAT (1) = 1
NEXT SENTENCE
ELSE
MOVE IOSTAT (1) TO MSGS5-STATL
MOVE IQSTAT {(2) TO MSGS-STATZ
DISPLAY MSGS
GO ElQ0-END.
DISPLAY "APPEND COMPLETE. END COBAPP PROGRAM EXECUTION™.
E1Q0-END.
STOP RUN.

FORTRAN, COBOL, and BASIC-PLUS-2 Programrniﬁg Facilities

3-137

3.9.20.2 Read/Write Example

The program COBRRW reads the contents of one remote file into another remote
file. When zn end-of-file character is encountered, the last record is written to the
remote file and both files are closed.

Copyright (C} 1983, 1985, 1986, 1987 by
Digital Eguipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software 1is hereby
transferred,

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

Digital assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by Digital.

B O F 4 % X F W N N M X W W N XX ¥ N

IDENTIFICATION DIVISION,
PROGRAM-ID, COBRRW,

IS 32 TTE 2RSSR SRS RSS2 2R R R SRRt Rl)

% *
* This program reads the contents of a remote file into *
* another remote file. The program reads and writes records *
* until it encounters an end-of-file, at which time it writes *
* the last record to the remete file and closes both files. *
* *
* To task build, use the following command string: *
* *
* COBRRW,COBRRW =- *
* (COBRRW,[1l,1]NETFOR/LB,C81LIB/L2,RMSLIB/LB,NETFOR/LB:NFAFSR *
* / *
* UN1TS=10 *
* EXTSCT=5$FSR1:10000 *
* ACTFIL=4 *
* EXTTSK=1000 (if RMS is included) *
* // *
* &
AR xRk A Xk kxR kAR ARk Ak kA rk kb vk adhdrhkr kv hh kIt kkdriex

ENVIRONMENT DIVISION,
CONFIGURATION SECTION,
SOURCE~COMPUTER. PDP-1l.
OBJECT-COMPUTER. PDP-1l.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT DUMMY-FILE ASSIGN TO "COBRRW.DUM".

DATA DIVISION.

3-138 DECnet-RSX Programmer’s Reference Manual

FILE SECTION.

FD DUMMY-FILE
LABEL RECORD STANDARD.
01 DUMMY-FILE-REC.
02 FILLER PIC X{132)},
WORKING-STORAGE SECTION.
01 MSGS.
03 MSGl.
05 FILLER PIC X{34) VALUE " CAN NOT OPEN N
- "ETWORK. IOST{1l) = ",
05 MSG1-STAT1 PIC -99999,
05 FILLER PIC X({11) VALUE " 1087(2} = =,
05 MSGl-STAT2 PIC ~9999%9,
03 MSG2,
05 FILLER PIC X(4¢4) VALUE " CAN NOT OPEN R
- "EMOTE INPUT FILE. IOST{l1l) = ™.
0S5 MSG2-STATL PIC ~9999%.
05 FILLER PIC X{11) VALUE " IOST(2) = ".
05 MSG2-5TaT2 PIC ~-9999%,
03 MSG3.
05 PILLER PIC %{45) VALUE " CAN NOT CPEN R
- "EMOTE INPUT FILE. 10ST(1} = ™.
05 MSG3-STAT1 PIC -99999.
05 FILLER PIC X{11) VALUE " IOQST{2) = ",
05 MSG3-STAT2 PIC -99999,
03 MSG4.
05 FILLER PIC X(24) VALUE ™ READ ERROR. I
- "OST{1l}) = ".
05 MSG4-STATL PIC -999959.
05 FILLER PIC X(11) VALUE " IOST(2) = ",
0% MSG4-S5STAT PIC -99999.
03 MSG5. -
05 FILLER PIC X(25)} VALUE " WRITE ERROR.
- "IOST(1) = ",
05 MSG5-STATL PIC -99%5995.
05 FiILLER PIC X(11) VALUE " IQ0ST(2) = .
05 MSGS5-STAT2 PIC -9599S.
01 ARRAYS.
03 IQST.
0S IOSTAT OCCURS 2 TIMES PIC $9999 USAGE COMP.
03 MSTAT.

05 MSTATS OCCURS 3 TIMES PIC $999% USAGE COMP.
01 STORE~STUFF,

03 OPNLUN PIC 9 COMP VALUE 2.
¢3 COUNTL PIC 8 COMP VALUE 2.
G3 LENGTH1 PIC §99%9 USAGE COMP.

03 BLDCK1 PIC 85999 USAGE COMP,

03 INPLUN PIC 9 COMP VALUE 3.
03 OQUTLUN PIC 9 COMP VALUE 4.
03 I PIC 999 USAGE COMP.

03 TIARRAY-SIZE PIC 99 COMP VALUE 80.
03 EOF PIC 99999 COMP VALUE 2051%.
03 EOFFG PIC § USAGE COMP.

03 TTRUE PIC § CCMP VALUE -1.
03 FFALSE PIC 8 COMP VALUE 0.,

{continued on next page}

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Fagcilities 3-139

03 IDENT PIC X(30}.
03 USERID PIC Xx{12}.
03 PASSWD p1C %{6).
03 ACCNT PIC X{9).
03 TEMP-NODE PIC X{6).
03 NODE-RAME PIC X{(7).
03 TEMP-INPUT PIiC X(2%).
03 REMOTE-INPUT PIC X(30).
03 TEMP-OUTPUT PIC x(29).
03 REMOTE-OUTPUT PIC X{30}).
03 ICHAR PIC X(3) VALUE "AVF",
03 IARRAY PIC X(80).
01 NULLL PIC 9 COMP VALUE 0.

01 WNULLS REDEFINES NULLIL,

03

NUL OCCURS 2 TIMES PIC X{(1).

PROCEDURE DIVISION.

AR XL T L AR R I T R AR A A R AR A TR IR A AL AR AR AR I TA SR A AR AR I AR A AR RN A AR AR AN

*
*
x
Ed
*
*

kR
Get. accounting information for remote node and *
form ASCIZ string for DECnet remote file access *
subroutines. *
*
*

KEX XA ARRR A A kR R ARk kR Rk oIk ke akrkkhktxkkthrkkhk

Al00-START.

DISPLAY "INPUT USER ID:".
ACCEPT USERID.
DISPLAY " INPUT PASSWORD:".
ACCEPT PASSWD.
DISPLAY " INPUT ACCOUNT NUMBER:™.
ACCEPT ACCNT.
STRING USERID
NUL{1l)
PASSWD
NUL{L)
ACCNT
NUL(1l) DELIMITED BY SIZE
INTO IDENT.

I LT TR FE RS LA LI PR SRS LR AR SRS SRR SRR R R R s R R LRl E)

*
*
*

*

Get remote node name and form ASCIZ string. *
*

LZTEFIT R ENSSSLS LSS SRS SRS 2 R L 2 R R R LR RSN EREE S]

DISPLAY " ENTER REMOTE NODE NAME:",
ACCEPT TEMP-NODE.
STRING TEMP-KODE
NUL (1) DELIMITED BY SIZE
INTO NODE-NAME,

Iy R R 222333220 X2 222 2 A2 222 2 s Rt R s et Attt g]

*
*
*
%

*

Get remote input and output file names and form *
ASC1z string for each file. *
*

EEARE AR AR A RN AR TR A AR R A AT R A A AR R ARG AT AR RN AR AR AR R A AR AR LA TR AR

3-140

DECnet-RSX Programmer’s Reference Manual

Ko

DISPLAY ™ INPUT FILE SPEC, FOR INPUT FILE:".
ACCEPT TEMP-INPUT,
STRING TEMP-INPUT

NUL{1l) DELIMITED BY SIZE

INTO REMOTE-INPUT.
DISPLAY " INPUT FILE SPEC. FOR QUTPUT FILE:".
ACCEPT TEMP-QUTPUT.
STRING TEMP-OUTPUT

NUL(1l) DELIMITED BY SIZE

INTC REMOTE-OUTPUT,

AR REERELE TR R ARRAR RN TR R ARk kddhrkdddbdbh kbt hdrtkikkrhik

* *
* Access the network. If the call does not complete *
* successfully, display an error message and exit, *

- x

Y s 2222222222222 83 S 3R 22233328 22 Rt a2 bt ittt gl s

CALL "OPNNTW" USING
OPNLUN
108T
MSTAT
COUNTL,
IF 10STAT (1) =1
NEXT SENTENCE
ELSE
MOVE IOSTAT (1} TO MSG1-STATI
MOVE IOSTAT (2) TO MSGL-STATZ2
DISPLAY MSG1

GO E100-END.
P 2 e R R 23 2222222222 23RS 2030 232 22 R R R R Lty
* : *
* Open remote file for input. 1f there is an open *
* error, print an error message and exit. *
* »*

AAEARRRREE AR R AR ARAAIARA R AT R Ak rk kbR A bk ke kkodkkd

CALL “COPRNFW" USING
INPLUN
I0ST
NODE-NAME
IDENT
REMOTE-INPUT
ICHAR
LENGTHL
BLOCK]1.

IF IOSTAT (1) =1
NEXT SENTENCE

ELSE
MOVE IOSTAT (1} TO MSG2-STAT1

'(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities

3141

MOVE IOSTAT (2) TO MSGZ2-STATZ
DISPLAY MSG2
GO E100-END.

FE2 AT EII LS SRS LRSI RIS RS ST SRR SRS R Rl ERL SR LR 2]

* *
* Open remcte file for output. If there is an open *
* error, display an error message and exit. *
* *

KhREAAEAAE Ak Akt kkh kR kbR A TR RN LR AR A AR AR T AR AR r AN AT h &

CALL "OPWNFW" USING
CUTLUN
I0ST
NODE-NAME
IDENT
REMOTE-QUTPUT
ICHAR
ICHAR
LENGTH1
BLOCKI.,
IF IOQSTAT (1} =1
NEXT SENTENCE
ELSE
MOVE IOSTAT (1) TO MSG3~STAT1
MOVE I10STAT (2) TO MSG3-STATZ
DISPLAY MSG3
GO D100-CLOSE.

KRR TR R AR TRk AR AR R KRR R AR AR AR IR AR AR R RRRE R TR A kR A k%

x
* Transter records between the remote files. When

* the end-cf-file is encountered, exit from the loop,.
* Exit from the loop if a read or write error occurs
* and branch to the appropriate routine to display an
* error message.

*

L 3

oW N B O3 % %

AR E AR A R AR R R AR R R R R A AR AR AR AR R AR KRR AR AT AR R AT A A A A A xR K

PERFORM LOOP VARYING I FROM 1 BY 1 UNTIL I = 100.
LOOP.
CALL "GETNFW" USING
INPLUN
I10ST
IARRAY-SIZE
IARRAY.
IF IOSTAT (1) NOT = 1 AND IOSTAT (2) NOT = EQF
GO B100-READERR.
MOVE IOSTAT (2) TO LENGTHI.
IF IOSTAT (1) NOT = 1 AND IQSTAT (2) = EOF
MOVE TTRUE TC EOFFG
ELSE
MOVE FFALSE TQ EOQOFFG.
1F EOFFG = TTRUE GO D100-CLOSE.
CALL "PUTNFW" USING

3-142 DECnet-RSX Programmer’s Reference Manual

OUTLUN
I0ST
LENGTH1
IARRAY
IF I0STAT (1) NOT = 1 AND IOSTAT (2} NOT = EOF
GO Cl00-WRITERR.

2 s 2222 23T X2 SR 2222 S22 R RS2 S 2222222 Rl 2 d)y

* *
* A read error occurred during file transfer. Print *
* an error message and exit. *
* *

Rk ATk h A gtk ks hd kA b hh e kd kbbb ke kkt

B1C0-READERR,
MOVE IOSTAT (1) TO MSG4~-STATL.
MOVE IOSTAT (2) TO MSG4-STATZ.
DISPLAY MSG4.
GO D1Q0-CLOSE.

E I YRS T E RS R ST IESSS IS AT RS SRR AL NSRS SRS S ST RS R S 22 2]

* *
* A write error occurred during file transfer, Print *
* an error message and exit. *
* *

ITE RS EIELE RS SSS TSR RS L 2L R AR R 2222222 TR R Lo Sd

Cl100~WRITERR.
MOVE IOSTAT (1} TO MSGS5-STAT1.
MOVE IOSTAT {(2) TO MSGS-STAT:Z.
DISPLAY MSGS.

FEXEXEZEZEEE ISR ES LRSS 3282 R2 R XA RS2SRt Rttt ittt s sad sl
* "
* Close both remcte files. *
* *
L R R R 2233 XX 22532 32 2 2122 RS2 2 R 2 22 2 R R SRR 22 22X SR RSS2 R 2 8 %3

Pl00-CLOSE.
PERFORM LQOCPl VARYING I FROM INPLUN BY 1 UNTIL 1 = OUTLUN,
LOCPL. ~
CALL "CLSNFW" USING
I

IOST.

ik kkktrkkkrhkhktthhkstrthhhk kit hrhr Atk thhtt kb hhkkbhkdkhhkhdiy

* *
* If an error occurred before encountering the *
* end-of-file, exit. Otherwise the transfer was *
* successful, so display a success message and *
* exit. *
%* *
* L

TR E R AR AR EELAR AT RR AR EA TR A A A R AR TN AR A Ak w ke ATk kh

END-LQOQP1.

iF EOFFG NOT = TTRUE
GO E100-ERD
ELSE
DISPLAY "END OF FILE REACHED. FILES CLOSED.".
E100-END.
STCP RUN.

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities

13-143

3.9.21 BASIC-PLUS-2 Remote File Access Programming Examples

The folowing programs illustrate BASIC-PLUS-2 remote file access. The first
example appends a local file to a remote file. The second example reads the con-
tents of one remote file into another. :

These programs are included in your tape or disk kit.

3-144 DECnet-R8X Programmer's Reference Manual

3.9.21.1 Append Example

The BASAPP program appends the contents of 2 locat ASCII file to the end of 2
remote ASCII file and then closes both files. If an error occurs, the program dis-
plays an error message. In the following example, the user ID, the password, and
the account number are entered from the terminal.

Copyright (C) 1983, 1885, 1986, 1987 by
Digital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This softvare or any other
copies thereof wmay not be provided or otherwise made available to any
other person. No title to and ownership of the software 1is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation,

bigital assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by Digital.

Avm drm Avm ATm A Gk Aem Asm Aaa dne Gam nm dew ber Vew T beb (om B

10 1t LN
11 ‘BASAPP.B2S - Append local file to remote file 11y &
114 11y &
IER! To task build, edit the task build command file 11y &
. I39! file and the ODL file created by the build. LR I 4
1l ’ 1y &
1 1} Add the lines 11 &
1y ACTFIL=4 t1l g
Ly EXTSCT=$5FSRi; 2700 11! &
bttt to the task build commang file, [
tes LIS
Ly 2) Append (RN
1 =~KETLIB~-NETLEZ Pl &
te to the USER: line of the ODL file, 11
LR 111 &
L 3) Add the lines 111§
141 NETLIB: .FCTR LB:{1l,1]NETFOR/LB 111 g
il METLB2: .FCTR LB:(1,lINETFOR/LB:NFAFSR til &
1el “to the ODL file. L

ON ERROR GO TO 200 ! Error handler
20 11 Define array constants 1!! k
\ DIM ISTAT%(1%),JSTAT%{1%) ,KSTATS(1%) ,LSTATS{1%) ,MSTATY(2%) Ek
\ DIM NSTAT%(1%) { Define array elements &

\ NULLS = STRINGS(1%,0%) ! Define null char for ASCIZ

30 1) Define constants !1! &
OPNLUN% = 2% ! Network open LUN &
\ MBXFLG% = 1% ! Long connect block flag &
\ APPLUNS = 1% { File LUN &
\ COUNTS = 1% t Max # of logical links &
{continued on next page)

FORTRAN, COBOL, and BASIC-PLUS--2 Programming Facilities 3-145

3-146

FLAGS = 0% : ! End of file flag &
ICHARS = "AVE" ! Mode, type, carriage cantrol

INPUT "Remote node.name (6 char. max.)";NODNAMS
IF LEN{NODNAMS)>6% THEN PRINT
"Node name toc long, please re-enter”
PRINT \ GO TO 40
NODNAMS = NODNAMS+NULLS ! Create ASCIZ string for OPANFW

"

INPUT "Remote output file (&4 char. max.)";CFILS
IF LEN{OFILS)>64% THEN PRINT
"Remote output filename too long, please re-enter”
PRINT \ GOTC 60
OFIL$ = OFIL§$+NULLS ! Create ASCIZ string for OPANFW

o m

INPUT "Local input file {64 char. max)";IFILS
IF LEN{IFILS§)>64% THEN PRINT
"Local input filename too long, please re-enter”
PRINT \ GOTO 80

Lol ol 4]

INPUT "User ID (39 char. max.)";UID$! Get user ID
IF LEN(UIDS)>39% THEN PRINT
"User ID too long, please re-enter”
PRINT \ GOTQ 90
INPUT "Password (39 char. max.)";PASS i Ger password
IF LEN{PAS$}>39% THEN PRINT
"pPassword too long, please re-enter”
PRINT \ GOTO 100
INPUT "Account (39 char. max.)":ACCS 1 Get account number
IF LEN{ACCS$)>39% THEN PRINT
"Account number too long, please re-enter”
PRINT \ GOTO 110

Lol <N &}

Lol L o Lo o o]

1Y Create ASCIZ string for IDENT in OPANTW Pt &
IDENTS = UIDS+NULLS+PASS+NULLS+ACCS+NULLS

11! Open agcess to netwoerk - 1 link, long connect bleck !!!? &
CALL OPNNTW BY REF (OPNLUN%,LSTATS(),MSTAT%{),COUNT% &
,» MBXFLG%) &
IF LSTAT%(C%)=1% THEN 140 ! If OPNNTW succeeded, proceed
ELSE PRINT "Cannot access network” ! Else, print message &
PRINT "Status = ";LSTATE{0%);",";LSTATH(1%) &
GC TO 229 ! status and exit

t!1! Qpen local file 1
OPEN IFILS FOR INPUT AS TILE #4

o]

111 Open remote file for append Lty
CALL OPANFW BY REF(APPLUN%,ISTATS{), NODNAMS, IDENTS,OFILS,
ICHARS ,LENGTHS, 1BLOCKS)
IF ISTAT®{0%)=1% THEN 16&0 ! If successful, proceed
ELSE PRINT "Canncot open remote file.” ! Else, print message,
PRINT "STATUS = ";ISTAT%(0%):",";ISTATR(1%) ! status
GO TO 180 ' and exit

[N o o 4]

DECnet-RSX Programmer's Reference Manuat

CL »

{ rRead records from local file and write them to !1!!}
1 remote file. 1t
FLAGY = 1% 1 Set flag for ecf check
INPUT #4, TEMPS ! Read from local file
CALL PUTNFW BY REF{APPLUN%,JSTAT%(},LEN{TEMPS},f TEMPS]
t Append to remote file

IF JSTATS(0%)=1% THEN 160 ! 1f successful, loop
ELSE PRINT "Write error from remote file." ! Else, print msqg,
PRINT "Status = ";JSTATS(0%);",";JSTATH(1%)! status

GO TO 220 H and exit

!
!

b gum

(=
P)
o

Lol Ll oAl o o

111 BOF found -- close both files and network t!!
FLAGS = 0% ! Clear end of file flag
CLOSE #4 ! Close local file
CALL CLSNFJ4 BY REF(APPLUN%,KSTAT:()}) ! Close remote file
IF KSTAT${0%)=1% THEN 180 ! If success, deaccess network
ELSE PRINT " Cannot close remote file." ! If close error,
PRINT "Status = ";KSTAT%(0%);",":KSTAT%(1%)}
GO TO 220 ! Print message, status and exit

[
PrRr IV N R & S
Q

E ol Lo O o A

0 CALL CLSNT BY REF(NSTAT%()} | Deaccess network
IF NSTAT%(0%)=1% THEN 190 t If success, append complete
ELSE PRINT "Cannot close network." ! If error, print
PRINT "Status = ";NSTAT%(0%);",";NSTATS(1%)
GG TC 22Q ! message, status and exit

=

L oo o]

bt
P I A S

(o)

PRINT "Append complete. End program execution” &
GO TO 220

%]
i=]
L)

IF ERR <> 11 TEEN 210

If not EQF, print error
ELSE IF FLAG%=0% THEN 210

t

t If EOF and EOF flag not set,
! print error

3 ECF s0 close both files

b ol L 4]

ELSE RESUME 170
210 PRINT "Error ":ERR;" at line ";ERL ! Print error and line number

220 END

FORTRAN, COBOL, and BASIC~PILUS-2 Programming Fagcilities 3147

3.9.21.2 Read/Write Example

The BASRRW program reads the contents of one remote file into another remote
file, When the program encounters an end-of-file character, the last record is
written to the remote file and both files are closed.

only in accordance

and should not be
Corperation,

L I N R S L R

construed as

Pigital assumes no responsibility for the use or
software on equipment which is not supplied by Digital.

Copyright (C) 1983, 1985, 1985, 1987 by
Digital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
with the
inclusion of the above copyright notice.

terms of such license and with the

This software or any other

copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred,

The information in this software is subject to change without potice

a commitment by Digital Eguipment

reliability of Iits

10 1 e &
11 BASRRW.B25 - Read records from one remcte file 1t &
11l and write them to another 1t &
e 16
tet Ta task build, edit the task build command file til &
i1y and the CDL file created by the build. o
s try &
tee 1) Add the lines 1 &
[ACTFIL=4 1t &
e EXTSCT=$SFSR1: 10000 fr1 &
e to the task build command file. 11 B
e 1t &
et 2) Append Pty g
LN -NETLIB-NETLBZ Prer &
t1l to the USER: line of the QDL file, 1Y
1y L
ti 3) AdQ the lines 1ty &
(B NETLIB: .FCTR LB:;[1,1]NETFOR/LB g
(R RETLB2: .FCTR LB:{1,1}NETFOR/LB:NFAFSR IR R 1
tee to the ¢DL file, [
e '
20 {11 Define array constants !!! &
DIM TARRAY3(255%), ISTATS(1%) ,MSTATS(2%) &
! pefine maximum string lengths &
\ NULLS = STRINGS(1%,0%) ! Define maximum string lengths &
30 11t Define constants !!! &
ICHARSS = "AVF" ! Mode, type, c¢arriage contrel &
N OPNLUN% = 7% ! Networh OPEN LUN &
A\ COUNT% = 2% ! Max. # of active logical linkss
3-148 DECnet-RSX Programmet’s Reference Manual

\ MBXFLGY: = 1 ! Long connect block flag &
\ INPLUN: = 1% ! Input file LUN &
\ CUTLUNS = 2% ! Qutput file LUN &
\ EOF% = 20519% ! End of file status return &
\ FALSE: = 0% t Flag indicating FALSE &
A TRUE% = -1% ! Flag indicating TRUE
40 INPUT "Remote node name {6 char. max.)";NODNAMS &
\ 1F LEN{NODNAMS)>6% THEN PRINT &
"Noede name too long, please re-enter” &
\ PRINT \ GO TO 40 &
ELSE NODNAMS = NODNAMS+NULLS ! Form ASCIZ nodename
50 INPUT "User ID (39 char. max.)";UID§ ! Ger user ID &
\ IF LEN{UIDS$)}>39% THEN PRINT &
*User ID too long, please re-enter” &
\ PRINT \ GOTC 50
60 INPUT "Password {3S$ char. max.)";PASS$! Get password &
\ IF LEN(PASS$)>39% THEN PRINT &
"passwvord toc long, please re-enter” &
N\ PRINT \ GOTC &0
70 INPUT "Account humber {39 char. max,)";ACCS ! Get account &
\ IF LEN(PASS)>39% THEN PRINT &
"Account numper too long, please re-enter” &
\ PRINT \ GOTO 70
80 1'! Form ASCIZ IDENT string for remcte file opens 1ty &
5\ IDENTS = UIDS+NULLS+PASS+NULLS+ACCS+NULLS
S0 INPUT "Input file (64 char. max.)";IFILS ! Get inp file &
\ IF LEN({IFILS)>64% THEN PRINT &
"Input filename too long, please re-enter” &
\ PRINT \ GOTO 90 &
ELSE IFIL$=IFILS$+NULLS ! Form ASCIZ filename
100 INPUT "Output file (64 char. max.}";OFILS ! Get out file &
\ IF LEN(QFILS$)>64% THEN PRINT &
"Output filename too long, please re-enter” &
N PRINT \ GOTO 100 &
ELSE OFILS$=QFILS+NULLS ! Form ASCIZ filename
110 t1l Open access to network - 2 links, leong connect block!!! &
CALL OPNNTW BY REF{OPNLUN%,ISTAT%(),MSTAT%(),CCUNT% &
, yMBXFLG) &
\ LOC1 = 1 t Origin of CALL for subroutine &
N\ GOSUB 250 t Check status
120 1t Open remote file for input. LB R &
CALL OPRNFW BY REF{INPLUN%,ISTAT%(),NODNAMS, IDENTS,IFILS, &
ICHARSS , LNTH%,BLOCK%) ! Cpen remote file for input &
\ LOCl = 2 ! Origin of CALL for subroutine &
\ GOSUB 250 ! Check status
130 tt1 Open remote file for output. tie &
CALL OPWNFW BY REF{QUTLUN%, ISTAT%(),NODNAMS, IDENTS,OFILS, &

(continued on next page)

FORTRAN, COBOL., and BASIC-PLUS-2 Programming Facilities 3-149

150

160

170

180

240
250

280
270

3-150

Open remote file for output

ICHARSS, LNTH% ,BLOCK%) ! &
LeCl = 3 ! Origin of CALL for subroutine &
GOSUB 250 ! Check status)
1rr MAIN LOOP - read from input file ' Tt &
111 and write to output file L] &
FOR I%=1% TO 100%
CALL GETNFW BY REF(INPLUN%, ISTAT%(),256%, ARRAYS()) &
! Read a record from input file
IF ISTAT%{0%)<>1% AND ISTAT%(1%)<>EOF% THEN 210 &
! If error, print message &
ELSE LNTH%=ISTAT%(l1%) i ! Save no. of bytes transferred
it! Check for ecof el &
IF ISTAT%{0%)<>1% AND ISTAT%(1%)=EQOF% THEN EOFFG%=TRUE% &
ELSE BOFFG%=FALSES 1 Set flag if end of file
IF EOFFG%=TRUE% THEN 230!IF END OF FILE, CLOSE FILES &
ELSE CALL PUTNFW BY REF(OUTLUN%,ISTATS%(),LNTH% &
, TARRAY%(}) ! Write record
IF ISTATE{0%)}<>1% AND ISTAT(1%)}<>EOF% GO TO 220 &
ELSE A%=1% !t If unsuccessful, print message
NEXT 1% ! Terminate loop
11! Read error occurred et &
PRINT "Read error. Status = ";ISTAT:%{(0%);",";ISTATE(1%) &
GO TO 230 ! Close both files
11! Write error occurred LN &
PRINT "Write error. Status = ";ISTATH{0%)};","; ISTATH{1%)
ft! Close files e &
FOR J%=1% TO 2% ! Close files 1 and 2 &
CALL CLSNFW(J%,ISTAT:()} ! Close each file &
NEXT J% ! Terminate locp &
IF EOQOFFG%<>TRUE% THEN 240 t If flag not true, transfer nots
! successful &
ELSE PRINT "End of file reached. File closed" &

! Indicate transfer successful

GOTO 270 ! Branch to end
!!f Subroutine to check status on completion of OPEN calls 11! &
IF ISTAT%{0%)=1% THEN 260 ! If success, just return &
ELSE PRINT "Open erroy. Status = ";ISTATH{0%);:",";ISTAT:(1%) &
PRINT "Loc = ";LOC1 t Oorigin of call &
GC TO 270) !t Quit if unsuccessful
RETURN ! Exit from subroutine
END ! End execution

DECnet-RSX Programmer's Reference Manual

3.10 FORTRAN Task Control

This section contains descriptions and usage guidelines for the FORTRAN task
control calls summarized in Table 3-4. Task control ailows you to run or abort
specific tasks according to time schedules that you define in a DECnet call.

Before you issue any of these calls you must access the network by issuing an
OPNNTW call. Whes you complete task control operations, you must issue the
CLSNTW call to stop accessing the network.

3.10.1 Waiting for Requests

All calls are synchronous and pass control back to the user task only after the
operation completes.

Table 3-4: FORTRAN Task Control Calls

Call Function
ABONCW Abort an executing task or cancel a schedule task
e BACUSR Build account and user ID) information area
‘. RUNNCW Execute an installed rask in a remote node

3.10.2 RASXRemote Task Control Utility

In order for these calls 10 execute successfully, the R$X Remote Task Control atil-
ity (TCL) must be installed on the remote node. If TCL is not installed, the call
completes with an error.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3151

ABONCW

ABONCW
(Abort an Executing Task or Cancel a Scheduled Task)

3.10.3 ABONCW — Abort an Executing Task or Cancel a Scheduled Task

Use:

Call ABONCW to abort an executing task or cancel a scheduled task.

Format:

CALL ABONCW (lun [status),ndsz ndnm passwdsiz.passwd,
tskstz, tsknam [ident),[mask})

Arguments:

fun

specifies an integer variable or constant and must be a logical unit number
not currently inuse.

* status

specifies an integer array containing the following completion status infor-
mation on return from ABONCW:

status(l) Returns an error/completion code

status(2) If the error code in status(l) indicates a network reject (-7),
status (2) contains the disconnect or reject reason code. Refer
10 Appendix A. Otherwise, stafus(2) contains a directive error
code (if status(1) is —40) or null value (0).

ndsz

specifies an integer varizble or constant contzining the node name length in
bytes.

ndnm

specifies a 1- 10 G-element byte array containing the name of the target node.

3-152 DECnet-RSX Progfammer's Reference Manuai

ABONCW

passwdsiz

specifies an integer variable or constant containing the password length in
bytes.

passwd

specifics an array containing a user password with which to gain access to
the remote system, Specify an array size consistent with the connect block
size that you specified in the OPNNT call. The password can have 1-8. bytes
in a short connect block, or 1-39. bytes in 2 long connect block.

A privileged password lets 2 user abort any task running on the remote node
without specifying the ident parameter. A nonprivileged password lets a
user abort a task only by specifying the correct ident parameter.

tsksiz

specifies the remote task name length in bytes.

tsknam

specifies 2 1- 1o 6-element byte array containing the name of the remote task
to abort or cancel.

ident
specifies an integer variable containing the negated task control block
address of the remote task. This value is returned to the ident parameter of

the RUNNCW call when the RUNNCW call cornpletes. This argument is
optional for 2 user with a privileged password.

mask
indicates how ABONCW is used. This argument is optional.

Omiitting the mask argument or specifying a value of ¢ aborts only the exe-
cuting task that the call specifies. Specifying the value 1 cancels the resched-
uling of the specified task and continues execution of the current active task.
Specifying a value greater than 1 aborts the executing task and cancels the
rescheduling of the task.

FORTRAN, COBOL, and BASIC~-PLUS~2 Programming Facilities T 3153

ABONCW

Error/Completion Codes:

1

—40

3-154

The call completed successfuily.
System resources needed for the logical link are not available,
The connection was rejected by the network. Refer to Appendix A.

A logical link has already been established using this LUN.

The task is not a network task: OPNNT did not execute successfully.
The requesied task is not installed on the remote node.
An ABONCW was issued for a task that was not active.

A privileged violation has occurred. You are not a privileged user, and
you are attempting an ABONCW for a task with improper identification.

An ABONCW was issucd for a task that either was being loaded into or
was exiting from the remote nede.

A directive error has occurred. Directive error codes are defined in the
RSX-1IM/M-PLUS Executive Reference Manual.

DECnet—-RSX Programmer'’s Reference Manual

BACUSL

BACUSL
(Build Account and User ID Information Area (Long))

3.10.4 BACUSL — Build Account and User ID Information Area (Long)

Use:

Call BACUSL in the source task to build the user ID and account areas of the out-

going connect block for task control programming BACUSL supports 39.-charac-
ter user IDs and accounts.

BACUSL's function is similar to BACCL’s, but you do not specify a password with
BACUSL. Instead, you include the password with the ABONCW or RUNNCW call.

If you have defined an alias node name that includes explicit access control infor-
mation, Or use proxy access, you need not call BACUSL.

" Format:

CALL BACUSL ([status],[usersz,user] jaccnosz, accnol)

Arguments:

status

specifies an integer variable. On return from BACUSL, this optional argn-
ment is set to .'TRUE.{~1) if the ¢all completed successfully. It is set to
.FALSE.(0) if one of the arguments to BACUSL is invalid.

usersz

specifies an integer variable or constant containing the user ID length in
bytes. '

user

specifies 2 1- to 39.-byte array containing the user ID. The arguments zsersz
and user are paired optional arguments. Include both or omit both.

accnosz

specifies ah integer variable or constant containing the length in bytes of the
account number. RSX target systems do not use this argument.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-155

BACUSL

accno

specifies a 1- to 39.-byte array containing the account number. The acenosz
and aceno arguments are paired optional arguments. Include both or omit
both.

3-156 DECnet~-RSX Programmer’s Reference Manual

BACUSR

BACUSR
(Build Account and User ID Information Area (Shott))

3.10.5 BACUSR — Build Account and User ID Information Area (Short)

Use:

Call BACUSR in the source task to build the user ID and account areas of the our-
going connect block for task control programming. BACUSR supports16.-charac-
ter user IDs and accounts.

BACUSR’s function is similar to BACC’s, but you do not specify a password with
BACUSR. Instead, you include the password with the ABONCW or RUNNCW
call.

If you have defined an alias node name that includes access control information,
Of use proxy access, you need not call BACUSR.

Format:

CALL BACUSR ([status],[usersz, user],[accnosz,accrol)

Arguments:

* status

specifies an integer variable. On retarn from BACUSR, this optional argu-
ment is set to . TRUE.(-1) if the call completed successfully. It is set to
.FALSE (0) if one of the arguments to BACUSR is invalid.

Hsersz

specifies an integer variable or constant containing the user ID length in
bytes.

user

specifies a 1- to 16.-byte array containing the user ID. The arguments usersz
and user are paired optional argaments. Inciude both or omit both.

accnosz

specifies an integer variable or constant containing the length in bytes of the
account number. RSX target systems do not use this argument.

FORTRAN, COBROL, and BASIC-PLUS-2 Programming Faciities 3-157

BACUSR

accno

specifies a 1- to 16.-byte array containing the account number. The acenosz
and accro arguments are paired optional arguments. Include both or omit
both.

3-158 ' DECnet-RSX Programmer’s Refersnce Manual

e

RUNNCW

RUNNCW
(Execute an Installed Task in a Remote Node)

3.10.6 RUNNCW — Execute an Installed Task in a Remote Node

Use:

RUNNCW allows you to execute an installed task in 2 remote node using any or all
of the following options:

= Execuie the task immediately.
= Schedule the task for execution at some furure time.

» Schedule the task for periodical execution based on predefined time sched-
ules.

Format:

CALL RUNNCW (lun jstatus),ndnm passwdsz passwd,tsksz tsknam.|ident],
[eic],[smg.snt},[rmg,rnt])

Arguments:

fun

specifies an integer variable or constant and must be a logical unit number
not currently in use.

* staius
specifies an integer array containing the following completion status infor-
mation on return from RUNNCW:

status(1) Returns an error/completion code

status(2) If the error code in status(1) indicates a network reject (-7),
status (2) contains the disconnect or reject reason code. Refer
to Appendix A. Otherwise, status(2) contains a directive error
ot is not used.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities -3-159

RUNNCW

ndsz

specifies an integer variable or constant containing the node name length in
bytes.

ndnm

specifies a 1- to 6-element byte array containing the name of the target node.

passwdsiz

specifies an integer variable or constant containing the password length in
bytes.

passwd

specifies an array containing a user password with which to gain access to
the remote node. Specify 2n array size consistent with the connect block size
that you specified in the OPNNT call. The password can have 1-8. bytesina
short connect block, or 1-39. bytes in a long connect block.

A privileged password lets you run a task under any user identification code
on the remote node. A nonprivileged password lets you run a task under N
only the UIC assigned to you. St

tsksiz

specifies an integer variable or constant containing the remote task name
length in bytes.

tskname

specifies a 1- to 6-element byte array containing the name of the remote task
to execute.

* ident
specifies an integer variable containing the negated task control biock
address of the remote task when RUNNCW completes. ABONCW uses this

value. If you do not plan to cancel or abort this task later, you can omit this
argument.

uic

specifies a 2-byte array containing the group and user codes under which the
task runs on the remote node. The first element of the array contains the
user member code; the second element contains the user group code. This
argument is optional with a privileged password. If a privileged user omits
this argument, the task runs under its default UIC on the remote node.

3-160 DECnet-RSX Programmer’s Reference Manual

RUNNCW

smg

specifies an integer variable or constant containing the schedule delta magni-
tude. The value of this optional argument is the difference in time from the
issuance of the call to the time the task is to run at the remote node.

This argument is used with the following argument, snt, which specifies the
unit of time used to schedule the task (in hours, minutes, seconds, or ticks).
In no case can the magnitude exceed 24 hours.

e - snt

specifies an integer variable or constant containing the schedule delta unit.
This argument is a code identifying the time unit specified with the smg
argument. The time unit codes are as follows:

Code Description

1 Ticks: A tick occurs for each clock interrupt and depends on the type
of clock installed in the system.

PR Line frequency clock: The tick rate is either 50 or 60 per second and
Ay corresponds to the powerline frequency.

Programmable clock: A maximum of 1000 ticks per second is avail-
able. The exact rate is determined at systerm generation.,

2 Seconds
3 Minutes
4 Hours
rmg

specifies an integer variable or constant containing the reschedule deltz mag-
nitude. The reschedule interval is the difference in time from task initiation
to the time the task is to be reinitiated on the remote node. The task is exe-
cuted each time the elapsed time equals the reschedule magnitude specified
in this argument. If this time interval elapses and the task is still active, no
reinitiation request is issued. However, a new reschedule interval is started.

This argument is used with the following argument, r#f, which specifies the
unit of time used to reschedule the task {(in hours, minutes, seconds, or
ticks). In no case can the magnitude exceed 24 hours,

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facitities 3-161

RUNNCW

rmt

specifies an integer variable or constant containing the reschedule delta unit.
This argument is a code identifying the time unit to use with the delta magni-
tude specified in the rmg argument.

NOTE

s If you omit the smg, snt, rmg, and rat argu-
ments, the task is executed immediately.

® If you specify smyg and sn¢, but omit rmg and it
rnt, the task is executed once at the scheduled
time,

« If you specify rmg and rnf, but omit smg and
snt, the task is executed immediately and again
each time the reschedule delta time has elapsed.

3 You can specify all four argumemts. For exam-
pie:

CALL RUNNCW (lun status ndsz tsksiz,tsknam, "o
wic,1,4.4,4)

specifies that the task runs for the first time in
onc hour and then every four hours after that.

Error/Completion Codes:
1 The cail completed successfully.
-1 System resources needed for the logical link are not available. fe
-7 The connection was rejected by the network. Refer to Appendix A.

-8 A logical link has zlready been established using this LUN.

-9 The task is not a network task: QPNNT did not execute successfully.
-20 There is insufficient dynamic memory on the remote node.
=21 The requested task is not installed on the remote node. ;

3-162 DECnet-RSX Programmer's Reference Manual

RUNNCW

=22 RUNNCW has an invalid time parameter,

~23 An RUNNCW call was issued without scheduling patameters for a task
that is already active. :

-24 A privileged violation has occurred. You are not a privileged user, and
you are attempting to issue 2 RUNNCW under a UIC different from the
UIC 10 which you are assigned on the remote node.

P -26 A RUNNCW was issved under an invalid UIC (for example, [1,0] or
Ty [0.1]).
—40 A directive error has occurred. Directive ecror codes are defined in the

RSX~-11M/M~PLUS Executive Reference Manual.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-163

3.10.7 FORTRAN Task Control Programming Example

onNOaNONAMONNONONONONNNANOONNOONOOON

The RUNABQ.FTN program uses DECnet task control calls to run or abort 2 task
on a specified local or remote nnode. After executing your task control request, the
program prompts you to enter another request to run orabort the associated task.
When you finish entering task control requests, press to exit from the
request-prompting loop and stop the program.

Before running RUNABOQ.FTN, you must install the TCL task on the target node.

This programming example is inciuded in your tape or disk kit.

RUNABO.FTN - Run or abort a task installed on remocte nhode

Copyright (C} 1983, 1885, 1986, 1987 by
Digital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This scftware or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporaticn.
DPigital assumes no responsibility for the use or reliability of its
software ¢n equipment which is not supplied by Digital.
This program illustrates the DECnet RSX task control routines.
To task build, use the following command string:
>TKB RUNABO, RUNABO=RUNABOQ,LB:[1,1)NETFOR/LB,F4POTS/LE
Note: The TCL task must be installed on the specified node,
LOGICAL*1 ANSWER,RUN,ABO,TARTSK(6),TARNOD(6),PASSWD(8) ,USERID(16}
LOGICAL*1l ACCNT(16)
INTEGER STATUS({2),STAT

INTEGER*2 MSTAT(3}, IDENT
DATA RUN/'R'/,ABC/'A'/

(continued on next page)

3-164 DECnet-RSX Programmer’s Reference Manual

nan

nonn

10
1

2

ann

50

11

non

80

neoa

70

nno

20
100

110

Create the network data queue

CALL OPNNTW(,STATUS,MSTAT)
IF (STATUS(l) .NE. 1) WRITE({5,B)STATUS({1)

Prompt for target node and target task

WRITE(S,1}

FORMAT(SX,$ Enter target node: ')
READ(5,2,END=999) 1CNT1, TARNOD
FORMAT{Q,16a1)

WRITE(S,3)
FPORMAT(5X, S Enter target task: '}
READ{S,2,END=999)} ICNT2, TARTSK

Prompt for access control information

WRITE(S5,50)
FORMAT(SX,$ 'Enter target wuser ID: "}
READ (5,2,END=999) ICNT4,USERID

WRITE(S, 4}

FORMAT{5X, $'Enter target password: ')
READ {(5,2,END=59%} ICNT3,PASSWD

WRITE(S5,11)
FORMAT(SX,$'Enter target account number: '}
READ (5,2,END=999) ICNT5, ACCNT

WRITE(S5,6)

FORMAT(5X,$ 'Enter RUN {R) or ABORT (A): '}
READ(S,7,END=9%9) ANSWER

FORMAT (AL}

Decide whether to call BACUSR

IF (ICNT4 .EQ. 0 .AND. ICNTS5 .EQ. 0) GO TO 70
CALL BACUSR (STAT,ICNT4,USERID, ICNTS, ACCNT)
IF (STAT .EQ. ,TRUE.) GO TO 70
WRITE{5,80)STAT

FORMAT (' Error building connect block '}
GOTO 10

Decide whether to run or abort the task

1F {ANSWER L.EQ, ABO) GOTC 20
IF (ANSWER .EQ. RUN} GOTO 30
GOTO 999

Abort the task and print status

WRITE (5,100)

FORMAT (5X,$'IDENT of task to abort {0 if password is privileged): '}

READ (5,110)1DENT

FORMAT{16)

CALL ABONCW (Z.STATUS.ICNT1.TARNOD, ICNT3.PASSWD.ICNTZ2,TARTSK, IDENT)
{continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-168

[sNgkg]

B

WRITE(5,B)STATUS(1)
FORMAT{' Status = *,I7)
GOTO 10

Run the task and print status.

30

30
9g9

3-166

CALL RUNNCW(2Z2,STATUS, ICNTL1l,TARNCD, ICNT3,PASSWD, ICNT2,TARTSK, IDENT}
WRITE (5,8)sTATUS(L)

IF (STATUS(1l) .EQ. 1) WRITE (5,90) IDENT

FORMAT (' The IDENT is ',I&}

GOTO 10

STOP

END

DECnet~RSX Programmer's Reference Manual

DLX

Insert tabbed

divider here.
T, Then discard
v this sheet

4

DLX Ethernet Programming Facilities

The Direct Line Access Controller (DLX) gives application programs a direct
interface to the datz link, bypassing the standard DECnet user interface. With
DLX, you can communicate with DECnct or non-DECnet based systems, Because
DLX does not offer higher-level DECnet services, such as routing and gnaranteed
delivery, it can give high performance in network applications. DLX also lets you
build customized user-level protocols that best suit your applications.

To use DLX, you issue queued input/output (QIO) calls to the NX: device. Your
DLX program uses the Ethernet and/or IEEE 802.3 standard. It can communicate
with a DLX program or the equivalent data link function on an adjacent DECnet—
RSX or non-DECaet node. Your DECnet—RSX node can simultaneousty run multi-
ple DECnet and DLX tasks, each possibly communicating with different remote
nodes.

DLX is automaticaily built for DECnet-RSX-11M-PLUS 2nd DECnet—Micro/RSX
systems; it is optional for DECnet—RSX-11M. It is aiso optional for RSX-118 sys-
tems, but is required on 2 host for down-line loads and up-line dumps from RSX~
118 systems. You can use DLX to communicate over all devices that DECnet—-RSX
supports. For information on programming for point-to-point and multipoint
lines, refer to Chapter 5.

Throughout this chapter, the term ‘‘the Ethernet’ refers to the physical transmis-
sion mediza (cables and controllers) and data link level software that provides
access to the physical media according to a Carrier Sense Multiple Access with
Collision Detection {CSMA/CD) protocol. The physical channel may be broad-
band or baseband. The Ethernet can transmit frames in formats that conform to
cither the Ethernet standard or the IEEE standards.

4-1

4’1

4.2

4-2

Preparing the System

Before your systern runs a DLX program, the DLX process must be loaded and the
line set.

The person in charge of network or system management installs the network,
usually by executing a command file that contains the comnand for loading DLX.
When DLX is loaded, it resides in the common partition NT.DLX,

The network manager also sets the line, either by answering Yes to the NETGEN
question that asks about marking the line for load, or by issuing the Network Con-
trol Program {(NCP) SET LINE command. For information on using NCP to set the
line, refer to the DECnet—-RSX Guide to Network Management Utilities.

Including Higher-Level Services

DLX programming requires a thorough knowledge of MACRO-11 assembly lan-
guage and experience in writing real-time application programs.

Since DLX bypasses the higher levels of DECnet you lose the services at those
levels and must, therefore, include them in your application. Your programs must
provide the following:

Flow control DLX does not support flow control for data transfer. The
DLX programs that run on different nodes must therefore
synchronize with each other before transferring data. If
the tasks are unsynchronized, data can be lost.

Error recovery The DLX software reports errors, but your program must
include error recovery procedures.

Data segmentation When transmitting data, your program must segment it;
the buffer size must be appropriate to the controller
devices on the communicating systems. For information
on appropriate buffer sizes, consult your network man-
ager,

Note that all incoming and outgoing DLX and DECnet messages are buffered in a
shared network buffer pool. Your network manager can increase the size and/or
number of buffers to maintain good throughput performance, if necessary. For
information on displaying and setting buffer sizes, refer to the DECnet-RSX net-
work management documentation.

Also note that you must use the /PR:0 switch to task build your DLX programs,

DECnet-RSX Programmer's Reference Manual

o

4.2.1 Using DLX Resources

4.3

DLX provides macros and QIOs to use in your application.

The DECnet macro library, NETLIB.MLB, defines the offsets and macros that DLX
QIOs use. During NETGEN, this library is transferred to your system. The defini-
tion macro DLXDF$ contains definitions for offsets and macros.

Your program must issuc an .MCALL statement and explicitly invoke the defini-
tion macro, as in the following example:

-MCALL DLXDF$; extract from macro library

DLXDF$; define DLX symbols

You can use the following QIO functions in Ethernet programming:

10.X0OP Open a port on the Ethernet device. This lets your program
treat the Ethernet as a device that your QIOs control.

10.XSC Set characteristics for your Ethernet port. You can set-such port
characteristics as the frame format to use, the addresses from
which you want to receive messages, and so forth.

10.XGC Get characteristics of the port.

I0.XTM Transmit a message.

10.XRC Ready the pott to receivea mcséage.

10.XCL Close the port and relinquish use of the controlier.

Using DLX to Access the Ethernet

An Ethernet data link on a single Ethernet controller supports multiple concur-
rent users, Each station represents an available port onto the Ethernet channel.

Because multiple users simultanecusly access the Ethernet channel, your program
must use addressing mechanisms that ensure delivery of messages to the correct
recipient. Any message that you transmit on the Ethernet must include an
Ethernet address that identifies the target node. The message must also include an
additional identifier that directs the message to the correct user on the target
node; this identifier varies according to the frame format you choose to use. DLX
lets you choose to build frames according to the Ethernet or IEEE 802.3 standard,
or both. '

DSX Ethernet Programming Fagilities 4-3

The Ethernet format is a proprietary standard that belongs to Digital Equipment,
Intel, and Xerox corporations. The [EEE 802.3 format, in contrast, is a standard
for multi-vendor networking. To communicate with other Digital nodes, you
might have applications that use the Ethernet frame format, and to communicate
with non-Digital nodes, you might use the 802.3 frame format. Any single appli-
cation can send and receive both types of frames. Later sections of this chapter
describe how to set up the Ethernet address and use each frame format,

This chapter covers the following topics:

% Synchronizing DLX programs

» Using physical and multicast addressing

» Setting up the Ethernet address

® Using characteristics buffers

= Processing Ethernet-format frames

® Processing 802.3-format frames

= DLX QIOs

References throughout the chapter to the IEEE standard are to the information in
two publications listed in the Preface to this manual: Carrier Sense Multiple

Access with Collision Detection (CSMA/CD) Access Method and Physical Layer
Specifications (802.3), and Logical Link Control (802.2).

4.3.1 Synchronizing DLX Programs

In writing your DLX application, you must synchronize the programs on both
nodes to ensure that they can cooperate. Both communicating nodes must do the
following:

= Openthe line, specifying the same frame format (Ethernet or 8G2.3).

= Specify what frames you want the port to send and receive. For Ethernet
frame format, both nodes must enable the port to send and receive frames
with the same protocol type. For 802.3 frame format, both nodes must
enable the port to send and receive frames with the same Subnetwork Access
Protocol (SNAP) identifier, or to receive frames with each other’s Service
Access Point (SAP). Later sections explain how you use protocol types,
SNAPs, and SAPs,

DECnet-RSX Programmer’s Reference Manual

* The nodes must then coordinate their transmission and reception. The
receiving node must have a receive QIO pending before the sending node
transmits.

4.3.2 Using Physical and Multicast Addressing

You can transmit and receive messages over the Ethernet in physical or multicast
address mode. Physical addressing sends messages to a single destination node.
Multicast addressing sends messages to a group of nodes. If each node in the
group enables reception of messages with 2 given multicast address, a smgle trans-
mission to that address can reach all nodes in the group.

To send messages in physical mode, you specify the destination address in a trans-
mit requesi. If the target node is a non-DECnet node, you send messages 1o its
Ethernet hardware address. If the target node is a DECnet node, you send mes-
sages to its Ethernet physical address. The Ethernet physical address is derived
from the node address. The next section explains how to set up the Ethernet
address for remote DECnet nodes. You receive any physical mode messages that
other nodes address 1o your Ethernet hardware address on a non-DECnet node,
or to your Ethernet physical address on a DECnet node. You need not specially
enable these addresses.

‘To send multicast messages, you simply specify the Ethernet multicast address as
the destination on a transmit operation. Any node can send messages to any
multicast address. To receive messages sent to 2 multicast address, you specify the
address when setting port characteristics with I0.XSC. You can receive any num-
ber of multicast addresses.

The multicast address for Digital Equipment Corporation customer use is 09-00~
2B-00-00-0F. In a Digital-only environment, you can use other numbers that
fall outside the range of those reserved for internal Digital use. In 2 multi-vendor
environment, other multicast addresses might conflict with the other vendors'
conventions. For more information on multicast addresses, refer to Appendix G.

For a further description of Ethernet addressing, refer to DECnet—-RSX Network
Management Concepts and Procedures.

4.3.3 Setting Up the Ethernet Address

ALl messages on an Ethernet channel have one 48-bit Ethernet address that
specifies the destination node and one that specifies the source node. While you
need not supply your own (source) address when you transmit, you must always
supply the destination address.

DLX Ethernet Programming Facilities 4-5

When sending messages to a DECnet node, you can derive the Ethernet address
from the node address. The DECnet destination consists of 6 bytes. The first four
bytes are standard, and contain the following octal values:

Byte 0 252
Byte 1 0
Byte 2 4
Byte 3 0

For bytes 4 and 5, use an octal version of the area number and node number, and
format them as follows:

Bits 1010 15 DECnet area number {The defauit area numberis 1.)
Bits0 109 DECnet node number

For example, you convert DECnet node addresses of 1.154 and 4.153 to destina-
tion addresses as follows:

Node Address Destination Address

(Decimal) {Octal) Hexadecimal Equivalent
1.154 252,0,4,0,4,232 AA-00-04-00-04-94A e "
4.153 252,0,4,0,20,231 AA-00-04-00-10~89 -

To send messages 10 2 non-Digital node, you must know the destination hardware
address. Be sure to program the address into the correct bytes. For example, if the
destination address, in hexadecimal notation, is 08—00-AB—-00-AF-FE, enter the
hexadecimal values as follows:

1 00 08 0 o
3 00 AB 2
5 FE AF 4

LKG-1039-87

DECnet-RSX Programmer's Referance Manual

4.3.4 Setting Up a Characteristics Buffer

Most of the DLX QIOs let you specify or read characteristics for the QIO. Some
characteristics affect the Ethernet port: others affect a specific transmit or receive
operation. You can set characteristics for the port when you issue 10.XOP to
open the port and by issuing the Set Characteristics QIO. You can read the port
characteristics by issuing the 10 XGC (get characteristics) QIO. You can also set
certain characteristics for each transmit (10.XTM) and receive (0. XRC) QIO.

Some characteristics are required for a QIQ; others ate optional. A transmit QIO,

for example, always requires that you supply the destination Ethernet address
characteristic.

To set or read characteristics, you create a characteristics buffer and enter the
buffer’s address and length as QIO parameters. One or more characteristics
blocks in the buffer specify the characteristics to set or read. This chapter
describes the various characteristics blocks for Ethernet programming in the sec-
tion about processing Ethernet frames, and the characteristics for 802.3 program-
ming in the section about processing 802.3 frames. In addition, each QIO descrip-
tion includes a description of the characteristics to use with that QIO.

For example, you can specify that a port opens in Ethernet or 802.3 frame format
when you issue the Open Port (10.XOP) directive. You create a buffer that
includes the frame format characteristics block, CC.FMO, into which you enter
the frame format value. You then reference the buffer’s address and length in the
QIO. Once you have specified the frame format (Ethernet format is the defauit),
you can then specify other format-specific characteristics. For 802.3 format, you
can specify the 802.3 service class; for Ethernet format, you can specify the
Ethernet protocol type. You append the blocks for these characteristics to the
frame format block in the buffer. An exampile later in this section illustrates how a
program opens a port for 802.3 format and specifies the service class.

A characteristic that affects the port affects all data that the port handles, nnless
you override the characteristic on a specific transmit or receive QIO. In contrast,
a characteristic that affects a transmit or receive request affects only the specific
transmit or receive QIO.

Characteristics blocks have a standard format in the first four fields. Table 4-1
describes these fields.

DLX Ethernet Programming Facilities 4-7

4-8

Table 4-1:

The First Four Fields in a Characteristics Block

Word Name Contents Use

0 C.TYP Characteristics Identifies what characteristic
type the block contzins information

about. For example, CC.ADR in
this field specifies a destination
address block, CC.MCT
specifies a multicast address
block, and so orn.

1 C.DATI Size of Identifies the length, in bytes,
data input of the characteristics data in the

C.CHRL field. For example, ifa
CC.MCT block contains one¢ 6-
byte mukicast address, this field
contains a 6.

2 C.DATO Reserved for Gives the length, in bytes, of
size of any retwrned data on comple-
data output tion of characteristics process-

ing. Always put a zero (0) in
this field.

3 C.STAT Reserved for Contains a code indicating com-

characteristics
status

pletion status after characteris-
tics block processing. Always
put a2 zero (0) in this field.

DECnet-RSX Programmer’s Reference Manual

N

The characteristics block for a single characteristic looks like this:

CHARACTERISTICS
BLOCK
CHARACTERISTICS TYPE CTYP
SIZE OF DATA INPUT CDATI =
o RESERVED C.DATO
CHARACTERISTICS STATUS C.STAT
—
CHARACTERISTICS DATA C.CHRL
LKG-1040-87

The fifth ficld, C.CHRL, contains the specific characteristics information.

DLX Ethernet Programming Facilities

4-10

You can append multiple characteristics blocks in a single characteristics buffer as
follows:

CHARACTERISTICS
BUFFER
BUFFER ADDRESS
e 3 R
CHARACTERISTICS TYPE CTYP !
SIZE OF DATA INPUT C.DAT] —mer
RESERVED C.DATO

CHARACTERISTICS STATUS | CSTAT
CHARACTERISTICS DATA C.CHAL

ey

CHARACTERISTICS TYPE CTypP
SIZE OF DATA INPUT C.DATI

RESERVED C.DATO

CHARACTERISTICS STATUS | C.STAT
CHARACTERISTICSDATA | GCHRL |

CHARACTERISTICS TYPE C.TYP s

SIZE OF DATA INPUT C.DATI
RESERVED C.DATO

CHARACTERISTICS STATUS | C.STAT
CHARACTERISTICS DATA | ocHRL |

} BUFFER i.".
LENGTH .

i

LKG-1041-87

DECnet-RSX Programmer's Reference Manual

The following program fragment uses a characteristics buffer in opening an
Ethernet port. Before issuing the 10.XOP QIO, the program creates a characteris-
tics buffer with two characteristics blocks. As an example, the first block requests
802.3 frame format. With 802.3 frame format, the data link provides certain ser-
vices if you request Class I service. The second block requests Class I service. The
10.X0OP QIO then references the buffer that contains these characteristics blocks.

.MCALL DLXDF$

DLXDFS ; Define DIX I/0 codes and symbols
PRTLUN =1 ' Logical unit number of port
PRTFLG =1 Event flag for all port I/C

DEVNM: <ASCII \UNA-CY Address of device name

M owE W N

DEVLN = . =DEVNM Length of device name
.EVEN

I088: BLEW 2 ; 1/0 status bloek

Characteristies buffer for open

This buffer contains a palr of characteristics blocks - one to
open the port for handling 802.3 frames and the other to
regquest Class I service for the 802.3 port.

OPNCHE:
; Define frame format for open
+WORD CC.FMO

F)
5
i
3
H
¥

C.TYP ' Charagteristic type

JWORD 2 C.DATI Frame format takes 2 bytes
.WORD o] C.DATO To be returmed
.WORD Q C.STAT To be returned

. WORD NX$B02
; Define Class I service for op
WORD cc.5C0

C.CHRL 802 frame format
n
C.TYP Chnarscteristic type

+WORD 2 C.DATI Service class takes 2 bytes
.WORD 0 C.DATC To be returned
.WORD 0 C,.STAT Te be returned

.WORD NX$CLI
OPNCHL =, ~0PNCHL

C.CHRL 802 Class I service
Size of charscteristics buffer

e M s e we (I wa W w2 we wes

H
; Directive parameter blocks

OPNDPB QIOVS :
I0.XO0P,PRTLON, PRTFLG, , I0SB, ,«DEVNM, DEVNMI. , OPNCHE , OPNCHL>

e

In the line containing the I0.XOP call, OPNCHB specifies the address of the char-
acteristics buffer and OPNCHL specifies its length.

The order in which your program references the characteristics can be important.
DLX processes the characteristics buffer sequentially, and some characteristics
create prerequisite conditions that are prerequisites for other characteristics. For
instance, if the previous example aitempted to request Class I service without
first requesting 802.3 frame format, an error would occur.

DLX Ethernet Programming Facilities 4-11

The DECnet-RSX Network Management Concepts and Procedures manuval has
more information on using Ethernet devices. For detailed information on 802.3
frame formats, refer to the IEEE standard. The next sections describe special pro-
cedures for processing Ethernet and 802.3 frame format.

4.3.5 Processing Ethernet Frames

This section describes special considerations for using Ethernet frame format on
the Ethernet channel.

All Ethernet frames contain a 16-bit identification number called an Ethernet pro-
tocol type. When a2 message arrives at the controller, the protocol type identifies
which port receives the frame. DLX applications that communicate across the
Ethernet must always enable the same Ethernet protocol type.

You enable the port to receive the protocol type by issuing an I0.XS8C to set the
port characteristics. You specify the protocol type in a2 CC.DST characteristic
block, which IG.XSC references. Enable the protocol type after opening the port,
but before receiving or transmitting messages with the protocol type. Specify an
enabled protocol type in every transmit QIO and read it in every teceive QIO.

The protocol type for Digital Equipment Corporation customer use is 60-06. For
more information on protocol type values, refer to Appendix G.

When enabling an Ethernet protocol type, you can add the following information
to the CC.DST characteristics block to further specify how the port handles the
protocol:

» Protocol flags that specify modes for receiving and sending messages with
the protocol type.

= $pecific remote addresses to and from which the port will process messages
with the protocol type.

4.3.5.1 Setting Protocol Flags

4-12

The characteristic block that you use to enable a protocol type has 2 field for pro-
tocol flags. Protocol flags can do the following:

s Set the receipt mode for the protocol type to exclusive or default
s Request padding support for frames with the protoco! type

= Disable the protocel type

DECnet-RSX Programmer’'s Reference Manual

Your Ethernet port ¢an receive messages with a given protoco!l type in exclusive,
default, or normal usage mode:

Exclusive The application receives all messages with the protocol type.

LF$EXC

Default The application receives messages with the protocol type

LF$DEF from any address that another application does not receive in
o Normal The application specifies the addresses from which to receive

messages with the protocol type.

For exclusive or default mode, you set the appropriate flag in the CC.DST charac-
teristics block. Normal mode requires that you omit the flag and specify
addresses in the characteristic block, as the foiowing section describes.

To request padding support, you ¢an set the LFSPAD flag. Padding is a highly rec-

ommended option for ensuring data integrity. On transmit operations, the device

driver software pads each frame to the minimum Ethernet size; the actual dataina

. frame may therefore be less than the frame’s physical length. With padding sup-

£ port, however, the data link will prefix the actual dara with a 2-byte length field

on transmit and read the length field on receive. On receive, it strips the padding

from the message before passing the message to your application. You must set
the flag to get padding support when you enable a protocol.

To disable a protocol type, set the LESDIS flag.

4.3.5.2 Specifying Protocol/Address Pairs

To instruct the port to process the protocol type to and from certain addresses
mﬁg only, add the addresses to the characteristics block that enables the protocol type
R (CC.DST). To ensute communication among DLX programs on different nodes,

each program enables the same protocol type. Each program pairs the protocol

with the remote nodes’ physical or multicast Ethernet addresses or sets the proto-
col flag to receive in exclusive mode.

Two or more users on 4 node can enable the same protocol or the same addresses,
but only one user can enable any protocolfaddress pair. This prevents two pro-
grams on a node from competing for the same frames.

DLX Ethernet Programming Facilities 4-13

4.3.5.3 Using Characteristics Blocks

Table 4-2 lists the characteristics for Ethernet frame format according to the DLX
function and QIO with which you use them. Within each function, the character-
istics are listed alphabetically. Each QIO description later in this chapter has
detailed information on the related characteristics.

Table 4-2: Characteristics for Ethernet Frame Format

Symbol &

Value What It Does

Open the Port 10.XOP)

CC.FMO Defines a single frame format for the port.

(103)

Set and Get Port Characteristics (10.XSC and 10.XGC)

CC.DST Enables the port to send and receive messages with a specified pro-
(200) tocol type and pairs the protocol with addresses on a set character-.

istics operation; returns the protocol type and addresses on a get
characteristics operation,

CC.FRM Specifies 2 second frame format for the port on 2 set characteristics
{(202) operation; returns the second frame format on a get characteristics
operation.

Transmit and Receive (10.XTM and 10.XRC)

CC.ADR Sets the destination node address on transmit; returns the source
{100} node address on receive.

CC.DAD Returns the destination 2ddress to which a received message was
(102) sent.

CC.FMM Sets the frame format of 2 message on transmit; returns the frame
(10%) format on receive.

CC.PRO Sets the protocol type of a message on transmit; returns the proto-
(101) col type on receive.

4.3.6 Processing IEEE 802.3 Frames

The Institute of Electrical and Electronics Engineers (IEEE) has defined the 802.3
frame format for communicating over the Ethernet. You may choose to use
802.3 frame format, especially for inter-vendor communications. Using 802.3
format, 2 DLX program on a Digital node can communicate with a similar pro-
gram on 2 Digital or non-Digital node. To use 802.3 frame format, familiarize
yourself with the IEEE standard.

DECnet-RSX Prcgrammer’s Reference Manual

When you use 802.3 format, you must choose the 802.3 service class and address-
ing mode 10 use. The next sections explain your choices.
4.3.6.1 Specifying the Service Class

The service class determines the level of service that the data link provides to

your application. DECnet~RSX supports two 802.3 service classes: Class T and
user-supplied service.

Class I service lets your program perform IEEE 802.3 Type I operations and it sup-

ports three frame types:

Ul Unnumbered information
TEST Test

XiD System identification

UI frames contain data to send and receive. TEST and XID frames verify that a
node with which you want to communicate is up and running the correct soft-
ware. The IEEE standard fully describes these frame types.

With Class I service, the data link:
* Filters out all extraneous types of messages.
® Handles unsolicited XID and TEST messages from other nodes.

® Builds and strips frames, letting your program handle just the data in the
frame without supplying or reading headers.

Ciass I service also provides 2 group addressing capability described in 2 follow-
ing section.

With user-supplied service, your application can use any IEEE 802.3 frame types,
but your application must build and strip them. Your program must also include
routines for filtering out unwanted {ypes of messages.

You can specify Class I service when you open the port or set port characteristics
for 802.3 format. The default service type is user-supplied.

You must also choose to use cither Service Access Points (SAPs) or Subnetwork
Access Protocols (SNAPs) to identify your 802.3 frames. The next two sections
describe SAPs and SNAPs.

DLX Ethernet Programming Facilities ' 4-15

4.3.6.2 Defining Service Access Points

Service Access Points (SAPs) identify each application that accesses the Ethernet
in 802.3 format. The destination Ethernet address identifies the target node for
the message, and then the Destination SAP (DSAP) and Source SAP (SSAP) identify
the destination and source application at the port. All 8023 frames contain SAPs,
which are therefore helpful in multi-vendor programming environments.

With SAPs, vou must define at least one Individual SAP (ISAP) for each 802.3
application. The application’s ISAP must be unique and exclusive. You then use
IO . XSC to set the part characteristics to receive messages with the specified ISAP. T
On transmit, you supply the Destination SAP and Source SAP; on receive, you W
read the DSAP and SSAP.

Each ISAP on 2 node identifies only one application, but each application can
enable multiple SAPs. You might use different SAPs, for example, to identify dif-
ferent functions that the application performs.

With Class 1 service only, your application program can also enable one or more
Group SAPs in addition to its individual SAPs. Group SAPs (GSAPs) let you send
messages tQ 2 group of programs on a remote node. To define a program as a
member of a group, the program sets the port characteristics to enable receipt of
the GSAP. Any other application ¢an then address messages to the entire group at
once, simply by specifying the GSAP as the Destination SAP in a transmit. An
application must enable at least one 1SAP before receiving frames addressed 10 its
GSAP.

Each 802.3 frame has 2 control (CTL) ficld that specifies whar type of data the
frame contains. With SAPs, you must specify the contents of the CTL field on
every transmit and rezd them on every receive. With Class I service, the control
field can contain the value that specifies a Ul, 2 TEST, or an XID frame. With user-
supplied service, the field can contain a value that specifies any type of 802.3
frame.

4.3.6.3 Defining SNAP Protocol Identifiers

Subnerwork Access Protocol (SNAP) identifiers provide an alternate identifica-
tion mode for 802.3 frames. SNAP identifiers consist of 5 bytes. Because they are
larger than SAPs, they let you address many more users on a single node, offering
flexibility for uniquely identifying applications in 2 very large environment.
SNAP identifiers might be preferable in an environment that consists onlty of
Digital nodes.

4-18 DECnet-RSX Programmer’s Reference Manual

To use SNAPs, you 2ssign identical SNAP identifiers to communicating programs.
You set characteristics to enable the port to transmit and receive messages with
that SNAP identifier, using the CC.SNP characteristic with I0.X5C. Then you
specify a message’s SNAP identifier on transmit and read it on receive, using the
CC.SNM characteristic with 10.XTM and I0.XRC. You need not specify the Desti-
nation SAP, Source SAP, or CTL fields, as you would in simple SAP addressing.
DLX automatically builds these fields with standard values when you specify a
SNAP identifier. When the data link receives a frame with these standard DSAP,

SSAP, and CTL values, it automatically proceeds to processing the SNAP identi-
fier. ' :

When enabling a SNAP identifier, you can add the following information to the

CC.SNP characteristics block to further specify how the port handles the proto-
cok:

= Protocol flags that specify modes for receiving and sending messages with
the protocol type.

® Specific remote addresses to and from which the port will process messages
with the protocol type.

4.3.6.4 Setting Protocol Flags

‘The characteristics block that you use to enable a SNAP identifier has a field for
protocol flags. Protocol flags can do the following:

= Set the receipt mode for the protocol type to exclusive or defzult

®= Disable the prorocol type

Your Etherniet pott can receive messages with a given SNAP identifier in exclu-
sive, default, or normal usage mode:

Exclusive The application receives all messages with the SNAP identifier.

LF$EXC

Default The application receives messages with the SNAP identifier from

LF$DEF any address that another application does not receive in normal
mode.

Normal The application specifies the addresses from which to receive

messages with the SNAP identifier.

DLX Ethernet Programming Facilities 4-17

For exclusive or defanlt mode, you set the appropriate flag in the CC.DST charac-
teristics block. Normal mode requirés that you omit the flag and specify
addresses in the characteristic block, as the following section describes,

To disable a SNAP identifier, sct the LF$DIS flag.

4.3.6.5 Specifying Protocol/Address Pairs

To instruct the pott to process the SNAP identifier to and from certzin addresses
only, add the addresses to the characteristics block that enables the protocol type
{(CC.SNP). To ensure communication among DLX programs on different nodes,
each program enables the same SNAP identifier. Each program pairs the protocol
with the remote nodes’ physical Ethernet addresses or sets the protoco! flag to
receive in exclusive mode.

Two or more users on a node can enable the same SNAP identifier or the same
addresses, but only one user can enable any protocol/address pair. This prevents
two programs on a node from competing for the same frames.

Appendix G has information on the available SNAP identifiers.

4.3.6.6 Using Characteristics Blocks

4-18

Table 4-3 lists the characteristics for 802.3 frame format according to the DLX
function and QIO with which you use them. Within each function, the character-
istics are listed alphabetically. Each QIO description later in this chapter has
detailed information on the related characteristics.

DECnet-RSX Programmer's Reference Manual

Table 4-3: Characteristics for 802.3 Frame Format

Symbol &
Value What It Does
Open the Port (10.XOP)
- CC.FMO Defines a single frame format for the port.

(103)
CC.8COo Requests Class I service for the 802.3 port.

EUERaN aod

SR Set and Get Port Characteristics (10.XSC and 10.XGC)
CC.FRM With IO.XSC, enables or disables 2 second frame format; with
(202} 10.XGC, returns the second frame format.
CC.GSP With 10.XSC, enables or disables the port’s processing of a specified
(205) group SAP; with 10.XGC, returns information on enzbled GSAPs.
CC.ISP With $#0.XSC, enables or disables the port’s processing of a specified
(204) individual SAP; with 10, XGC, returns information on enabled

ISAPs.
CC.MCT With 10.XSC, enables the port to receive messages with the speci-
(201} fied muiticast address; with 10.XGC, returns the enabled multicast
address.
CC.SNP With I0.XSC, enables or disables the port’s processing of the speci-
(206) fied SNAP protocol identifier; with [0.XGC, returns information on
: enabied SNAP protocols.

CC.SRV With I0.XSC, requests Class I service; with I0.XGC, returns the
(203) value for Class I service.
Transmit and Recelve (10.XTM and 10.XRC)
CC.ADR Sets 2 destination node address on transmis; retucns the source node
(100} address on receive.
CC.CTM Specifies the contents of the control field (CTL) on transmit; returns
107 the contents of the control field on receive.
CC.DAD Rerurns the destination address of an incoming frame on receive.
(102)
CC.FMM Specifies the frame formar of 2 message on transmit; ccturns the
(105) frame format of a message on receive,
CC.SNM Specifies the SNAP protocol identifier for 2 message on transmit;
(110) returns the SNAP protocol on receive.
CC.5PM Specifies the Destination SAP/Source SAP pair for a message on
(106) transmit; returns the DSAP/SSAP on receive.

DLX Ethernet Programming Examples 4-19

4.4

4-20

DLX QlOs

DLX reguests conform to normal standards for R$X-11 QIOs, including logical
unit numbers (LUNSs), event flags, I/O status blocks, asynchronous system traps
(ASTs), and parameter lists. According to RSX-11 standards, you can nse any one
of the three macro formats (see Chapter 2). You can use the QIQ wait option
{QIOW §) to suspend execution of the program until the call completes.

The rest of this chapter describes the DLX QIOs. The descriptions are in the order
in which you will probably use the QIOs. Note that the QIO descriptions include
lists of codes for two distinct types of completion status:

= QIO completion status
= Characteristics completion status

QIO completion status codes tell you that the QIO executed successfully or thata
specific error occurred during execution. DLX returns the completion status to
the 2-word status block that you specify as the stafus parameter in the QIO's for-
mat. I$.SUC (1} is the standard success code. The codes for execution errors have
an IE. prefix and three letters that represent a specific error. Each QIO description
includes any QIO completion status codes you may get.

Characteristics status codes t¢ll you that the characteristics block was success-
fully processed or that a2 specific error occurred during processing. DLX returns
the status code to the characteristics block’s status fietld, C.STAT. CS.SUC (1) is
the code for success. The other codes have a CE. or CS. prefix and three variable
letters representing specific status. Each characteristic description lists the status
codes you can receive for that characteristic, and Appendix H provides more
detailed information on each code,

Note that the QIO can succeed even if the characteristics function encounters an

error. For full completion status, check the contents of both the status biock and
C.STAT field.

DECnet-RSX Programmer's Referance Manual

10.X0P

10.XOP
(Open a Port)

4441

Use:

10.XOP — Open a Port

Issue this QIO to create a port for DLX transmission and reception. The port is an
1/0 access path to the controller whose device ID you specify in arguments p4
and p5. In response to this QIO, DLX scans the controller’s port data base and
associates an available port with the logical unit numbet (LUN) that you specify.

The port will open for Ethernet frame format unless you use the p4 and p5 param-
eters to specify 8023 format, '

Format:

QIO$ 10.XOP lun [efn), [status].[ast), <pl,p2 p3,[p4.05]>

Arguments:

10.XOP

is the function code that opens a port.

lun

is the logical unit number associated with the port.

efn
is an optional event flag number set when the QIO completes.
status

is the address of an optional 2-word status block that containg the Q1O’s comple-
tion status in the low-order byte of the first word (see under “QIO Completion
Status™’). -

ast

is the entry point into an optional user-written AST routine to execute after this
QIO completes.

DLX Ethernet Programming Facilities 4-21

10.XOP

i

is the address of an ASCII string that identifies the controller on which to open the
port. The string has the form dev-ctl, where dev is 2 device name, such as UNA or
QNA, and ctlis the decimal value for the controller number.

p2

is the length of an ASCII string that identifies the controller on which to open the
port. The string has the form dev-ctl, where dev is a device name, such as UNA or
QNA, and c#/ is the decimal value for the controller number.

p3

is 2 word argument that specifies the timeout value and port mode. The timeout
value specifies how long to wait to receive a transmitted message. The low-order
byte of the word designates the receive timeout value as follows:

timeout = O for no receive timer.
timeout = <n>

where 7 is the timer value in seconds. (The timer value 2 causes the timeout to
havearange of n-1107.)

D

is the address of the characteristics buffer.

D5 is the length of the characteristics buffer.

Characteristics Buffer:

4-22

The characteristics buffer can contain the following blocks:

CC.FMO Fratne Format for Open
CC.5CO Class I Service for Open

The blocks must be in sequential order in the buffer; that is, the frame format
characteristic must precede the service class characteristic.

Refer to Appendix H for more information on the characteristics status codes.

DECnet-RSX Programmer’s Reference Manual

10.X0OP

CC.FMO (103) = Frame Format for Open

This characteristic specifies 2 frame format for opening the port. You can
specify one format. To use both Ethernet and 802.3 frame format, specify one
when opening the port, and the other when setting port characteristics with
10.XSC.

The C.CHRL ficld consists of 2 bytes:

& The low byte can contain NX$ETH (1) for Ethernet format or NX$802
{2) for 802.3 format.

= The high byte is reserved.

RESERVED FRAME FORMAT C.CHRL
LKG-1233-87
2 CC.FMO returns the following status codes in the C.STAT field:
CE.FMI Illegal frame formai.
CE.FMC ‘Frame usage conflict,
CS.8UC Success.

CC.SCO (104) = Class I Service for Open

This characteristic requests 802.3 Class I service for your application. You
must use CC.5CO to get Class I service; Class II (user-supplied) service is the
default.

The C.CHRL field consists of 2 bytes:
s The low byte must contain NX$CLI (4).

» The high byte is reserved.

RESERVED SERVICE CLASS C CHRL

LKG-1234-87

DLX Ethernet Programming Facilities 4-23

10.X0P

CC.5CO returns the following characteristics status codes in C.STAT:

CE.FMC Frame usage conflict.
CE.SRI Ilegal service class.
Cs.8UC Success.
QI0 Completion Status:
IS.SUC The port successfully opened.
(1)
177736 The LUN you specified is already in use.
IE.ALN
(-34.)
- 177776 The LUN is not assigned 1o NX:.
IE IEC '
(2.}
177646 You specified a non-existent line.
IE.NSF
(-26.)
177760 The port you specified is not available for use by DLX,
IE.PRI
(-16.)
177757 The port you specified is already in use.
IE.RSU
(-17.)
4-24 DECnet-RSX Programmer's Reference Manual

L H

10.XCS

10.X8SC
(Set Characteristics)

4.4.2

Use:

10.XSC — Set Characteristics

Use this QIO to set vatious port characteristics. The characteristics can include a
second frame format, multicast addresses, and protocols,

For a description of the fields in characteristics blocks, refer to Section 4.3.4.
Always put a zero (0) in the C.DATO field.

Format:

QIOS 10.XSC,lun [efn], [status),[ast], <p1,p2>

Arguments:

10.X5C

is the function code whose parameters specify the location and length of the char-
acteristics buffer.

tun

is the logical unit number associated with the port.
efn
is an optional event flag number set when the call compietes,

status

is the address of a 2-word status block that contains compietion status. On com-
pletion, the second word of the I/O starus block indicates how much of the char-
acteristics block was processed. :

ast

is the entry point into an optional user-written AST routine to ¢xecute after this
QIO completes.

DLX Ethemnet Programming Facifities 4-25

10.XCS

I
is the address of the characteristics buffer.

p2

is the length of the characteristics buffer. The buffer can contain multiple charac-
teristics blocks.

Characteristics Buffer:

4-28

This section has information on the characteristics blocks to use with 10.XSC.
The blocks are in alphabetical order.

You can use the following blocks with Ethemet frame format:

CC.DST Ethernet Protocel Type for Port
CC.FRM Frame Format for Port
CC.MCT Multicast Address for Port

You can use the following blocks with 802.3 frame format:

CC.FRM Frame Format for Port
CC.MCT Multicast Address for Port
CC.GSP Group SAP for Port
CC.ISP Individual SAP for Port
CC.SNP SNAP Identifier for Port
CC.SRV Service Class for Port

Enter the characteristics blocks in sequential order in the buffer. For example,
specify the frame format before the characteristics that depend on a particular
frame format.

Use the data input size field (C.DATI) to indicate how many bytes of data you are
supplying.

Refer to Appendix H for more information on characteristics status codes.

CC.DST (200) = Protocol Type for Port

This characteristic contains a protocot type and may inciude other instruc-
tions about the use of the protocol type. It can optionaily set protocol flags
and specify Ethernet addresses to which to send and from which to reccive
messages with the protocol type. Unless you set the DF$DIS flag, the charac-
teristic enables the protocol type.

DECnet-RSX Programmer's Reference Manual

T 10.XCS

The protocol type must have a value greater than 1500. Store the low byte of
the protocol in the high byte of C.CHRL and the high byte of the protocol in
the low byte of C.CHRL.

You can use the following protocol flags:

LF$DIS disables the protocol type.

LFSEXC causes the port to receive the protocol type in exclusive mode.

LF$DEF causes the port to receive the protocol type in default mode.

LF$PAD requests padding support for frames with the protocol type.

You can add the Ethernet addresses of remote nodes to the protocol type
characteristic, but not with exclusive or default mode.

The C.DATI field equals 4 + 6 n bytes, where xn is the number of addresses

that you include.
T
PROTOCOL | TYPE CCHRL
RESERVED PROTOCOL FLAGS
ADDRESS 1
n ADDRESSES
ADDRESS n {8 BYTES EACH]

LKG-1236-87

DLX Ethernet Programming Facilities 4-27

10.XCS

CC.DST returns the following characteristics status codes to the C.STAT

field:

CE.ACN Address usage conflict.

CE.IUN Iliegal use of multicast address.
CE.PCN Protocol usage conflict.
CE.RES Resource allocation failure.
CE.RTL Request 1oo large.

CE.RTS Reguest too small.

CE.UDF Undefined function.

C8.5UC Success.

CC.FRM (202) = Frame Format for Port

CC.FRM enables or disables a frame format for the port. Use it to enable a for-
mat other than the one in which you opened the port.

The C.CHRL field consists of 2 bytes:

= The low byte specifies the format. The low byte can have the value
PFS$ETH (2) for Ethernet format or PF$802 (4) for 802.3 format.

= The high byte specifies whether to enable or disable the format. A value
of zero (0) disables the format; any other value enables it.

ENABLE/DISABLE FORMAT C.CHRL

LKG~1235-87

CC.FRM returns the following characteristics status codes to the C.STAT

field:

CE.FMI Illegal frame format.

CE.FMC Frame usage conflict.

CE.RES Resource allocation failure.

CERTL Request too large.

CE.RTS Request too small.

CE.UDF Undefined function. TR
CS.5UC Success. i

4-28 DECnet-RSX Programmer’s Reference Manual

ST 10.XCS

CC.GSP (205) = Group SAP for Port

This characteristic enables or disables a specified GSAP for the port. You must
first enable Class I service and an Individual Sap. The C.CHRL field consists of
two bytes:

= The low byte is the GSAP value, in the range 0 to 255., where bit zero (0)
must equal 1.

» The high byte specifies whether to enable or disable. A value of zero (0)
disables the GSAP; any other value enables it,

ENABLE/DISABLE GSAP C CHRL

LKG-1237-87

CC.GSP returns the following characteristics status codes to the C.STAT field:

CE.FMC Frame usage conflict.
CE.RES Resource allocation failure.
CE.RTL Request too large.

CE.RTS Request too small.

CE.UDF ‘Undefined function.
CS.5UC Success.

CC.ISP (204) = Individual SAP for Port

This characteristic enables or disables a specified Individual SAP. The
C.CHRL ficld consists of two bytes:

= ‘The low byte is the SAP value, in the range 0 to 255, where bit 0 mast
equal 0.

= The high byte specifies whether to enable or disable. A value of zero (0)
disables the ISAP; any other value enables it.

- ENABLE/DISABLE ISAP C CHRL

LKG-1238-87

DLX Ethernet Programming Facilities 4-29

10.XCS

4-30

CC.ISP returns the following characteristics status codes to the C.STAT field:

CE.FMC
CE.SPU
CE.RES
CE.RTL
CE.RTS
CE.UDG
C8.50C

Frame usage conflict.

SAP in use.

Resource allocation failure.
Request too large.

Request too small.
Undefined function.
Success.

CC.MCT (201) = Multicast Address for Port

CC.MCT enables the port to receive messages with the specified multicast
address. The C.CHRL field consists of 6 bytes.

1 0 C.CHRL
3 2
5 4

LKG-1239-87

CC.MCT returns the following characteristics status codes in the C.STAT

field:

CE.MCE
CE.NMA
CE.RES
CE.RTL
CE.RTS
CE.UDF
CS.SuC

Multicast address already enabled.

Not a multicast address.
Resource allocation failure.
Request too large.

Request too smail.
Undefined function.
Success.

CC.SNP (206) = SNAP Identifier for Port

This characteristic specifies a SNAP identifier and may include other instruc-
tions about the use of the protocol. It can optionally set protocol flags and
specify Ethernet addresses to which to send and from which 1o receive mes-
sages with the SNAP identifier. Unless you set the LF$DIS flag, the character-
istic enables the port 1o send and receive messages that have the protocol.

DECnet-RSX Programmer’s Reference Manual

10.XCS

The C.CHRL field consists of the following:
= Bytes zero (0) through 4 contain the SNAP identifier.
= Byte 5 is reserved. .

= Byte 6 contains any flags 1o set (LFSEXC for exclusive mode, LF$DEF for
default mode, or LF$DIS to disable the SNAP identifier).

s Byte 7 is reserved.

* Successive 6-Dyte groups contain any Ethernet addresses to pair with the
protocol. You cannot add addresses with exclusive or default mode.

The C.DATI field equals 8 + 6 n bytes, where # is the namber of addresses
that you inciude,

PROTOCOLID (1) PROTOCOL ID (0} C.CHRL
PROTOCOL ID (3) PROTOCOL ID (2)
RESERVED PROTOCOL 1D (4)
RESERVED PROTOCOL FLAGS
ADDRESS 1

e r—— e — T pp—— |

n ADDRESSES
ADDRESS n 16 BYTES EACH)

LKG-1240~-87

DLX Ethernet Programming Facilities 43

10.XCS

T
[A

CC.SNP returns the following characteristics status codes in the C.STAT field:

CE.FMC Frame usage conflict.

CE.RES Resource allocation failure,

CE.RTL Request too large.

CE.RTS Request too small.

CE.SNU SNAP in use.

CE.UDF Undefined function.

CS8.8UC Success.

CC.SRV (203) = Service Class for Port - E‘e...,}'

This characteristic specifies 802.3 Class I service. Inthe buffer, this character-
istics block precedes SAP or SNAP identifiers. Use it in conjunction with
CC.FRM. C.CHRL has two bytes:

= The low byte specifies the service class and has the value PF$CLI (10).

#* The high byte specifies whether to enable or disable. A value of zero (0)
disables Class I service; any other value enables it.

ENABLE/DISABLE SERVICE CLASS C.CHRL

LKG~-1241-87

CC.SRV returns the following charzcteristics status codes in the C.STAT field:

CS.IGN Ignored. o
CE.SRI Illegal service class. e
CE.RES Resource allocation failure.

CE.RTL Request too large.

CE.RTS Request 100 small.

CE.UDF Undefined function.

CS§.5UC Success.

4--32 DECnet-RSX Programmer's Reference Manual

10.XGC

10.XGC
(Get Characteristics)

4.4.3 10.XGC - Get Characteristics

Use:

Use this QIO 10 return information on various characteristics of 2 port. The char-
acteristics to return include the port’s frame format, enabled multicast addresses,
enabled protocols, and so forth.

For more information on characteristics, refer to section 4.3 .4.

Format:

QIO$ 10.XGC Jun [efin], [status) [ast], <p1,p2>

Arguments:

10.XGC

is the function code whose parameters specify the location and length of 2 charzc-
teristics buffer that returns port characteristics.

lun

is the logical unit number associated with the port.

efn
is an optional event flag number set when the QIO completes.

status

is the address of a 2-word status block that contains the QIO completion status.
On completion, the second word of the 1/0O status block indicates how much of
the characteristics block was processed.

ast

is the entry point into an optional user-written AST routine to execute after this
QIO completes.

DLX Ethernet Programming Facilities 4-33

10.XGC

pl

is the address of the characteristics buffer.

p2

is the length of the characteristics buffer. The buffer can contain multiple charac-
teristics biocks. ‘

Characteristics Buffer:

N
This section has information on the characteristics blocks to use with 10.XGC. k,,_j

The blocks are arranged alphabetically.

You can use the following blocks with Ethernet frame format:
CC.DST Ethernet Protocol Type for Port

CC.FRM Frame Format for Port

CC.MCT Multicast Address for Port

You can use the following blocks with 802.3 frame format:

CC.FRM Frame Format for Port
CC.GSP Group SAP for Port
CC.Isp Individual SAP for Port
CC.MCT Multicast Address for Port
CC.SNP SNAP Identifier for Port
CC.SRV Class I Service for Port

For characteristics with multiple occurrences, append multiple blocks. Each sub-
sequent block returns the next occurrence of the characteristic. For example, o
CC.MCT returns an enabled multicast address; for multiple multicast addresses, Vs
append multiple CC.MCT blocks in the buffer. If no more occurrences of the char- ’
acteristic exist, the C.STAT field returns an IE.IGN (ignored) error.

For variable-length fields, such as a protocol that may or may not be paired with a
number of addresses, check the contents of the C.DATO field for the size of the
returned data.

Refer to Appendix H for more information on characteristics status codes.

4-34 DECnet-RSX Programmer’s Reference Manual

10.XGC

CC.DST (200) = Ethernet Protocol Type for Port

This characteristic returns information on the enabled Ethernet protocol
type, including the protocol flags and any Ethernet addresses you may have
paired with the protocol, A recurrence of the characteristics block returns
information on the next enabled protocol type.

The protocol type and flags consist of 2 bytes each, and each address consists
of 6 bytes. The high byte of C.CHRL returns the low byte of the protocol and
the low byte of C.CHRL returns the high byte of the protocol.

TN
PROTOCOL | TYPE - C.CHRL
PROTOCOL E FLAGS
ADDRESS 1
n ADDRESSES
ADDRESS n (6 BYTES EACH)
LKG-1242-87

The value in the C.DATO field equals 4 + 6 2 bytes, where » is the number of
addresses for the protocol type.

DLX Ethernet Programming Facilities 4-35

10.XGC

CC.DST returns the following characteristics status codes in the C.STAT

field:

CE.DAO Data overrun.
CE.RTS Request too small,
CS.8UC Success.

CC.FRM (202) = Frame Format for Port

This characteristic returns the current frame format(s) for the port.

The C.CHRL field consists of 2 bytes: N

s The low byte returns PF$ETH (2) for Ethernet format, PF$802 (4) for
802.3 format, or PFSETHI!PF$802 (6) for both formats.

a The high byte is reserved.

RESERVED FORMAT C.CHRL

LKG-1243-87

CC.FRM returns the following characteristics status codes in the C.STAT

field:

CE.RTL Request too large.
CE.RTS Request too small,
Cs.suC Success.

i

CC.MCT (201) = Muiticast Address for Port

This characteristic returns a multicast Ethernet address currently enabled for
the port. A recurrence of the characteristics block returns the next enabled
multicast address.

The €. CHRL field consists of 6 bytes. For more information on Ethernet
addresses, refer to section 4.3.3,

4-36 DECnet-RSX Programmer’s Reference Manual

MULTICAST

ADDRESS

|

10.XGC

0 C.CHRL
2
4

LKG-1244-87

CC.MCT returns the following characteristics status codes in the C.STAT

field:

CE.RTL Request teo large.
CE.RTS Request too small.
CS8.8UC Success.

CC.GSP (205) = Group SAP for Port

This characreristic returns information on enabled Group SAPs. The C.CHRL

ficld has two bytes:

= The high byte returns the number of currentiy-enabled Group SAPs for

the port.

= The low byte returns the first enabled Group SAP for the first occur-
rence of the block. The next occurrence of the block returns the next

enabled Group SAP,

TOTAL G5APs

GSAP

C.CHRI.

LKG-1245-87

CC.GSP returns the following chraracteristics status codes in C.STAT:

CE.FMC Frame usage conflict.
CE.RTL Request too large.
CE.RTS Request too small.
CS.IGN Ignored.

CS8.8UC Success.

DLX Ethernet Programming Facilities

4-37

10.XGC

CC.ISP (204) = Individual SAP for Port

This characteristic returns an enabled Individual SAP. A recurrence of the
characteristics block returns the next Individual SAP.

The C.CHRL ficld consists of two bytes:

® The low byte is the SAP, which is in the range zero (0) to 255, where bit
zero {0) equals O.

= The high byte returns the number of currently-enabled Individual SAPs
for the port.

TOTAL ISAPs ISAP C.CHRL

LKG-1245-87

CC.ISP returns the following characteristics status codes in the C.STAT field:

CE.FMC Frame usage conflict.
CE.RTL Request too large.
CE.RTS Request too small.
CS.SUC Success.

CC.SNP (206) = SNAP Identifier for Port

This characteristic returns information 2bout the SNAP identifiers currently
enabled for the port. The first occurrence of the block returns information on
the first SNAP; subsequent occurrences of the block each return the next
SNAF.

The C.CHRL field consists of 8 bytes:
= Bytes 0-4 contain the SNAP identifier.

= Byte 5 returns the number of currently-enabled SNAP identifiers for the
port.

s Bvte 6 contains any protocol flags.

» Byte 7 returns the number of ports currently using this SNAP identifier.

4-38 DECnet-RSX Programmer's Reference Manual

10.XGC

» Successive 6-byte groups contain any Ethernet addresses associated with

the protocol.
PROTOCOL ID (1) PROTOCOL ID (0} " G.CHRL
PROTOCOL ID (3) PROTOCOL ID (2)
TOTAL SNAPs PROTOCOL ID {4)
TOTAL PORTS PROTOCOL FLAGS
ADDRESS 1
n ADDRESSES
ADDRESS n (6 BYTES EACH;
LKG-1247-87

CC.SNP returns the following characteristics status codes in the C.STAT field:

CE.FMU Frame usage conflict.
CE.RTL Request too large.
CE.RTS Request 100 small.
CS8.SUC Success.

DLX Ethernet Programming Facilities , 4-3¢8

10.XGC

CC.5RV (203) = Class I Service for Port

This characteristic returns the value for 802.3 Class I service when 802.3isa
second frame format. Use it in conjunction with CC.FMM.

The C.CHRL field has two bytes:
® The low byte returns PF$CLI (10) if Class I service is enabled.

s The high byte is reserved.

RESERVED SERVICE CLASS C.CHRL

LKG-1248-87

CC.SRV returns the following characteristics status codes in the C.STAT field:

CE.RTL Request too large.
CE.RTS Request too small.

CS5.50C Success.

4-40 DECnet-RSX Programmer’s Reference Manual

10.XT™M

10.XTM
(Transmit a Message on the Port)

4.4.4 10.XTM — Transmit a Message on the Port

Issue this QIO to transmit 2 message on an open port. Ia entering the QIO, you
specify the address and length of a buffer that contains the data that you want to
transmit, When the QIO executes, it transfers that data to a network buffer.

You can set 2 number of characteristics for the transmit operation, including the
destination address, frame format, protocol, and so forth.

Format:

QIO$ 10.XTM,lun,jefn), [status)jast}, <p1.p2,[p3,p4)>

Arguments:

I0.XTM

is the function code for transmitting a message.

un

is the logical unit number associated with the port.

efn

is an optional event flag humber set when the call completes.

status

is the address of 2 2-word status biock that contains completion status. The status
block contains the QIO completion status in the low-otder byte of the first word
(see under QIO Completion Status™).

ast

is the entry point into an optional user-written AST routine to execute after the
QIO completes.

p1 _
is the address of the user buffer that contains the message to transmit.

DLX Ethernet Programming Facilities 4-41

10.XTM

p2
is the length of the message to transmnit.

b3
is the address of the characteristics buffer.

b4
is the length of the characteristics buffer.

Characteristics Buffer:

This section has information on the characteristics blocks to use with IO XTM.
The blocks are described in alphabetical order.

You can usc the following characteristics with Ethernet frame format:

CC.ADR Address for Message
CC.FMM Frame Format for Message
CC.PRC Ethernet Protocol Type for Message

You can use the following characteristics with 802.3 frame format:

CC.ADR Address for Message

CC.CT™M Control Field for Message

CC.FMM Frame Format for Message

CC.5SNM SNAP Identifier for Message

CC.SPM Destination and Source SAP for Message

Enter the characteristics blocks into the buffer in sequentizl order. For example,

specify the frame format before the characteristics that depend on a particular
frame format.

Refer to Appendix H for more information on characteristics status codes.

CC.ADR (100) = Address for Message

This characteristic specifies the Ethernet address to use as a destination for
transmission,; it is required on each rransmission. The address consists of 6
bytes. For information on setting up the Ethernet address for DECnet nodes,
refer to the introductory sections of this chapter.

DECnet-RSX Programmer's Reference Manual

FTh | 10.XTM

1 I 0 C.CHAL
DESTINATION
3 2
ADDRESS
5 4
LKG~1249-87

CC.ADR returns the following characteristics status codes in the C.STAT

field:
CS.IGN Ignored.
CS.sucC Success.

CC.CTM (107) = Control Field for Message

- This characteristic specifies the value for the 802.3 control (CTL) field. Use
" CC.CTM in conjunction with an Individual or Group SAP (ISAP or GSAP)
o address to specify the contents of the frame.

For user-supplied service, you can create symbolics to use in the control field
in accordance with the IEEE standard. For Class I service, you can wse the fol-

lowing symbolics:
Symbolle Message Type
$CSUIF 131
ol $CSXIF XID
$CSTSF TEST
CTL(1) CTL(0) C.CHRL

LKG-1250-87

DLX Ethernet Programming FacHlities 4-43

10.XTM

CC.CTM returns the following characteristics status codes in the C.STAT

field:
CS.IGN Ignored.
CS.8UC Success.

CC.FMM (105) = Frame Format for Message

This characteristic specifies the frame format for the message. The character-
istic block is necessary only with 802.3 transmissions, since Ethernet is the
default formatr. The C.CHRL field consists of 2 bytes:

*# The low byte contains NX$ETH (1) for Ethernet format or NX$802 (2)
for 802 .3 format.

» The high byteis reserved.

RESERVED FRAME FORMAT C.CHRL
_ LKG-1251-87
CC.FMM returns the following characteristics status codes in the C.STAT
field:
CS.IGN Ignored.
CSs.8SUC Success.

CC.PRO (101) = Protocol Type for Message

This characteristic supplies the message’s protocol type. You must supply the -
protocol type on all Etchernet-format transmissions.

The C.CHRL field contains 2 bytes for the protocol type.

-
PROTOCOL | TYPE C.CHRL
]

LKG-1252-87

CC.PRO returns the following characteristics status codes in the C.STAT

field:
CS.IGN Ignored. ; v :
CS.50C Success.

4-44 DECnat-RSX Programmer’s Reference Manual

10.XTM

CC.SNM (110) = SNAP Identifier for Message

This characteristic specifies a message’s SNAP identifier. Use six bytes, with 5
bytes for the SNAP and 1 byte reserved, 2s follows:

SNAP (1) SNAP (0) C.CHRL
P SNAP (3) SNAP (2)
RESERVED SNAP (4)

LKG-1254-87

CC.SNM returns the following characteristics status codes in the C.STAT

field:
CS.IGN Ignored.
CS8.8UC Success.

CC.SPM (106) = Destination and Source SAPs for Message

This characteristic specifies a message’s Destination and Source SAPs. Use it
in conjunction with CC.CTM.

SSAP DsAP C.CHRL

§ _(j{j

LKG-1253-87

CC.5PM returns the following characteristics status codes in the C.STAT

field:
CS.IGN Ignored.
CS8.8UC Success.

DLX Ethernet Programming Facilities 4-45

10.XTM

QIO Completion Status:
15.80C The message was successfully transmitted to the remote node.
(1)
177761 The transmission was aborted. Close and reopen the port.
IE.ABO
(-15.) _
177777 You get this code with Ethernet frame format if you omit the
1IE.BAD protocol type and/or remote address. You get the code with
-1 802_3 frame format if you omit either a SNAP identifier or 2
DSAP/SSAP pair and control field.
177776 The LUN is not assigned to NX:.
1E.IFC
(-2
177733 Ne open port has the specified LUN.
IE.NLN
(~37.) .
177772 The transmit buffer is too large. This status code applies only to
IE.SPC PDP-11/44 or PDP-11/70 with extended memory.
(-6.)

4-46

DECnet-RSX Programmer's Reference Manual

10.XRC

10.XRC
(Receive a Message on the Port)

4.4.5 10.XRC — Receive a Message on the Port

Issue this QIO to receive a message from a remote node.

Format:

QIO$ 10.XRC, lun,(efn), [status)[ast], <p1,p2,[p3.p4] >

Arguments:

IO.XRC

is the function code for receiving a message.

lun
L is the logical unit number associated with the port. _
efn
is an optional event flag number set when the call completes.

status

is the address of a 2-word status block. The status block contains the QIO comple-
tion status in the low-order byte of the first word (see under QIO Completion
Status’’).

ast

is the entry point into an optional user-written AST routine to execute after this
QIO completes.

pl

is the address of a user buffer to receive the message.

p2

is the length, in bytes, of the user buffer to receive the message. The length of the
received message cannot exceed the system buffer, regardless of the length you
specify in p2. '

DLX Ethernet Programming Facilities 447

10.XRC

p3

is the address of the characteristics buffer.

pé

is the length of the characteristics buffer.

Characteristics Buffer:

This section has information on the characteristics blocks to use with 10.XRC.
The blocks are in zlphabetical order.

You can use the following chtaracteristics with Ethernet frame format:

CC.ADR
CC.DAD
CC.FMM
CC.PRO

Source Address of Message
Destination Address of Message
Frame Format of Message

Ethernet Protocol Type of Message

You can use the following characteristics with 802.3 frame format:

CC.ADR
CC.CTM
CC.DAD
CC.FMM
CC.SNM
CC.SPM

Source Address of Message

Control Field of Message

Destination Address of Message

Frame Format of Message

SNAP Identifier of Message ,
Destination and Source SAPs of Message

Refer to Appendix H for more information on characteristics status codes,

DECnet-RSX Programmer’s Reference Manual

10.XRC

CC.ADR (100) = Address of Message

This characteristic returns the source Ethernet address from which a received
frame was sent. The address consists of 6 bytes.

1 0 C.CHRL
SOURCE
[¥ . 3 2
‘ ADDRESS
S 4
LKG-1255-87

CC.ADR returns the following characteristics status codes in the C.STAT

field:
CS.IGN ignored.
CS8.8UC Success.

CC.CTM(107) = Control Field of Message

This characteristic returns the 802.3 conirol (CTL) field’s value. The control

field tells what type of data the frame containg in frames with DSAP/SSAP
identifiers.

In frames with Class I service onty, the control field value will be one of the

following:
ERIRNG N H
£ B! Symbolic Message Type
$CSUIF Ul
SCSXIF XiD
$CSTSF TEST
CTL (1) CTLO) C.CHRL

LKG-1256-87

DLX Ethernet Programming Facilities 4-49

10.XRC

CC.CTM returns the following characteristics status codes in the C.STAT

field:
CS.IGN Ignored.
CS.85UC Success.

CC.DAD (102) = Destination Address of Message

This characteristic returns the destination address on a received frame; it wifl

be either your physical address or one of your enabled multicast addresses.
The destination address consists of 6 bytes.

1 0 C.CHRL
DESTINATION
3 | 2
ADDRESS
5 4
LKG-1257-87

CC.DAD returns the following characteristics status codes in the C.STAT

field:
CS.IGN Ignored.
CS.SUC Success.

CC.FMM (105) = Frame Format of Message

This characteristic returns the frame format of a received message. The
C.CHRL field consists of 2 bytes:

» The low byte returns NX$ETH (1) for Ethernet format or NX$802 (2) for

802.3 format.

s The high byte is reserved.

RESERVED FRAME FORMAT ~ C.CHRL

LKG-1258-87

DECnet-RSX Programmer's Reference Manual

10.XRC

CC.FMM returns the following characteristics status codes in the C.STAT

field:
CS.IGN Ignored.
CS.SUC Success.

CC.PRO (101) = Protocol Type of Message

CC.PRO returns the protocol type for an Ethernet-format frame. The
AT C.CHRL field contains 2 bytes for the protocol type.

1
PROTOCOL | TYPE C.CHRL
A

LKG-1252-87

CC.PRO returns the following characteristics status codes in the C.STAT

field:
CS.IGN ignored.
CS.sUC Success,

CC.SNM (110) = SNAP Identifier of Message

This characteristic returns the SNAP identifier of a received message. The
SNAP identifier has 5 bytes, formatted as follows:

SNAP (1) SNAP (0 C.CHRL
SNAP (3) SNAP (2}
RESERVED SNAP (4)
LKG-1259-87

CC.SNM returns the following characteristics status codes in the C.STAT

field:
CS.IGN Ignored.
CS8.8UC Success.

DLX Ethernet Programming Facilities 4-51

10.XRC .

CC.SPM (106) = SAPs of Message

CC.SPM returns the Destination SAP (DSAP) and Source SAP (8SAP) address of
a received message. The C.CHRL field has two bytes: the low byte stores the
DSAP, and the high byte stores the SSAP. '

SSAP DSAP C.CHRL

LKG-1260-87

CC.SPM returns the following characteristics status codes in the C.STAT
field:

CS.IGN ignored.
CS.5UC Success.
QIO Completion Status:
IS.sUC Y ou successfully received a message from the remote node. The
(1) second word of the I/O status block contains the number of
bytes you received.
177761 The receive function was aborted because an unrecoverable
IE.ABO error occurred in the hardware device. Close and reopen the
{~15.) port.
177763 Some data was lost because a message arrived before the appli-
IE.DAO cation issued an I0.XRC directive, or because the user buffer
(-13.) was too small and trunicated the message. The user buffer length
is in the second word of the I/O status block.
177776 The LUN is not assigned to NX:.
IE.IFC
(-2.) _
177733 No open port has the specified logical unit number.
IE.NLN
(-37.)
177641 A timeout condition occurred. The timer interval that you spec-
IE.TMOQ ified in opening the port expired without a message arriving.
(-95.)

4-52

DECnet-RSX Programmer's Reference Manual

10.XCL

10.XCL
(Close the Port)

4.4.6 10.XCL — Close the Port

Use:

Issue IO.XCL to close the port.

Format:

QIO$ 10.XCL lun [efn], [status],[ast]

Arguments:

I10.XCL
is the function code that closes the port.

lun

is the logical unit number associated with the port.
efn ‘
is an optional event flag number set when the calt completes.

status

is the address of a 2-word status block. The status block contains the QIC comple-
tion status in the low-order byte of the first word (see under QIO Completion
Status'’).

ast

is the entry point inzo an optional user-written AST routine to execute after this
QIO completes.

DLX Ethernet Programming Facilities 4-53

10.XCL

QIO Completion Status:
I§.8UC The port has successfully closed.
ey
177776 The LUN is not assigned to NX:.
IE.IFC
(-2)
177733 No open port has the specified LUN.
1E.NLN
~37.)

4-54

DECnet-RSX Programmer’s Reference Manual

4.4.7 DLX QIO Programming Examples

The following programs are examples of programming DLX for an Ethernet. The
first example uses 802.3 frame format. The second example uses Ethernet frame
format.

DLX Ethernet Programming Facilities 4-55

4.4.7.1 802.3 Example

This program is 2 DLX 802.3 test program. You <an run the program on two
nodes 1o test the nodes’ ability to send and receive 802.3 frames on the data link
level. On the transmitting node, the task builds and sends 802.3 XID, TEST, or Ul
frames. On the receiving node, the task simply returns the received frames to the
sender.

.TITLE 802TST -~ B02.3 Test Tool
.IDENT /V(1.00/

Copyright (C) 1983, 1985, 1986, 1987 by
Digital Eguipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
enly in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person, No title to and ownership of the software is hereby
transferred,

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation,

Digital assumes no responsibility for the use or reliability of its ST
software on equipment which is not supplied by Digital. f

This program tests an 802.2 data link. As a "sender," the

task builds an 802.3 XID, TEST, or Ul command frame and transmits it
to the remote responder. As a "receiver,” the task transmits the
received frames back tc the sender. The sending task then logs the
raturned data to the terminal or to a file.

The program is initiated by command line options:

Option Default Comment,

/DEV[ICE]=ddd-n /DEVICE=UNA-Q Ceontroller to use £
/DSA[P]=n /DSAP=4 Destination SAP E
/GSA[Pl=n none Group SAP

/HAR[DWARE]=nn-, . .~nn none Remote hardware address
F1SA(P]=n /ISAP=4 Individual SAP

/LOG none Log to BG2TST.DAT
/MES[SAGE]=message /MES=XID Build XID, TEST or UI
/NOD[E]=n.m rone Remote DECnet address
/BHY[SICAL]=an-. . .-nn none Remcte physical address

/RES{ PONDER] none Responder mode

/SIZ[El=n 60, Size to transmit

/USE[R) none User-supplied service
/SNA[B]=nn~-...-nn none SNAP protocol identifier

The following commands configure BO2TST to respond to frames sent either
to SAP 8 or to SNAP protocel identifier 01-02-C3-04-05, The frames will
come from the controller QNA-0 on node 55.202:

>INS 802TST et
>802 /DEV=0NA-C/RES/ISAP=8/SNAP=01-02-03-G1-05

M6 e e e E a W RE e wE ME wE NS e e WA wE WE Sy ta er Tw NE RE WS WS e 4 Wa WE WE NS WE WE Ne bs 8 N6 W4 4 e wp N8 N A S8 we we N e

$
&

DECnet-RSX Programmet’s Reference Manual

wa WA U WE NE WS N WS WE WE NF R WA WA WE ey my S WS Ny WP R MG M R AR W NE WA W SR ma e v

The preogram loops back received 8¢2.3 frames until it is aborted,

The following commands are executed on a different system on the same LAN.
They cause B802TST to send a 60. byte TEST message to the above image of
B02TST on node 55.202. They alsco cause the program to log the response to
the file §¥:[current1802TST.DAT:

>INS 802TST
>802 /DEV=QNA-0/ISAP=16/DSAP=8/N0OD=55.202/MES=TEST/LOG

The program exits after receiving and logging the response. Note that
the responder program must be started *hefore* the sender program transmits
any frames.

To assemble, use the following command string:
MAC BO2TST,802TST/-SP/LI:TTM =IN:[130,10]INETLIB/ML,[200,200])802TST
To task build, use the following command string:

BO2TST/PR:0, 8Q2TST/-SP =
802TST

(161,124 INETLIB/LB

/

UNITS=4
ASGeTIz1:2:3:4
TASK=...802
GBLDEF=SHELP:0
/7

Note: the IN: device must be the DECnet distribution devige
after the PREGEN {if any) has been performed.

.SBTTL Macros

.MCALL DIRS,ALUNSS,QIOWS,QI0S,CLEFSS, SETFSS,WISESS, EXITSS,EXSTSS
MCALL GTIMSS,SREXSS,ENARSS,DSARSS,ASTKSS

-MCALL GCMLBS,GCMLS, ISTATS,STATES , TRANS

.MCALL FCSMCS

+JMCALL DLXDFS, CHERDFS,CSMDFS

FCSMCS ; Define FCS macros

DLXDF$,,,ETHERNET ; Define DLX and EPM symbols
CHRDFS ; Define characteristics
CSMDF$; Define CSMA/CD symbols

JMATRC SAVRG list
.IRP reg,<list>
MOV reg,-{5P)

« ENDM

« ENDM SAVRG

+MACRO RESRG list

(continued on next page)

DLX Ethernet Programming Facilities ' 4-57

.IRP reg,<list>
MOV (SP)+,req
. ENDM
. ENDM RESRG
MACRO TYPE adr,len,vfc
MOV adr, QUTQIO+Q. IOPL
MOV len,QUTQIO+Q,.IOPL+2
.IF NB,vic
MOV vic,OUTQIO+Q. IQPL+4
.IFF
MOV #40,0UTQI0+Q. IOPL+4
.ENDC
DIRS #QUTQIO
«ENDM TYPE
LMACRO LOG adr,len,?A,?B
BIT #0P,LOG,QPTFLG
BNE A
TYPE adr,len
BR B
Az PUTS #LOGFIL,adr,len
B:
.ENDM LOG
MACRO FORMAT adr,fmt
MOV adr,R2 :
MoV fmt ,R1
MOV #FMTBUF, RO
CALL $SEDMSG
MOV Rl ,FMTL
+ENDM FORMAT
.MACRO ERROR adr, fmt
FORMAT <adr>,<fmt>
LOG #FMTBUF, FMTL
.ENDM ERROR
.MACRO CHRGEN code,size
JWORD code : Characteristic type = code
.WORD size : Buffersize = size bytes
+WORD 0,0 : Reserved, status
.ENDM CHRGEN
MACRC OPFFSET block,symbol '
AP EQ, <BF-1> symbol = .-block'l
. ENDM QFFSET
.SBTTL Local constants
EQUALS = '=
SPACE = &0
TAB = 11
CMDLUN =1
4-58 DECnet-RSX Programmer’s Reference Manual

TILUN

= 2

CHNLUN = 3
LOGLUN = 4
CMDEFN = 1
TIEFN = 2
CHNEFN = 3
DONE = 4
1SAP = & ; Default Individual/Source SAP
DSAP = 0 : Default Destination SAP
AREART = 176000 ; Area mask
MXAREA = 63. : Areaz limit

., MYXNODE = 1023, : Node limit

gL MXCTL = 377 ; Maximum control value
X1Dl = ~B10000001 ; XID message bytes
X1D2 = ~B00000001 ;
X103 = ~B40QCG0000 H
MAXFRM = 1492, : Maximum frame data
BUFS1Z = MAXFRM ; Recelve buffer length .
NUMBUF = 4, ; Number of receive buffers
T™O = § ; Time-out value in seconds

.SBTTL Impure data
LPSECT SIDATA D,RW

LSBTTL . LTPARS action routine state variables
OPTFLG: .BLKW 1 ; Option flags
OP.DEV = 1 3 /DEV[ICE?
AT OP,.DSP = 2 : /DSAL{P]
b OP.GSP = 4 s /GsAlP]
N CP.HDW = 10 : /HAR[DWARE_ADDRESS]
CP.ISP = 20 : /1salr]
CP.LOG = 40 r /LOG
OP.MSG = 100 : /MES{SAGE_TYPE]
OP.NOD = 200 : /NODLE)
OP.PHY = 400 ; /PHY[SICAL ADDRESS]
OP.RSP = 1000 : /RES{PONDER]
OP.SIZ = 2000 : /s1ziel
OP.USR = 4000 : JUSE{R]
OP.SNP = 10000 : /SRA[P]
MSGFLG: .BLKW 1 ; Message type flags
OP.TST = 1 : TEST
CP.UIF = 2 : Ul
OP.XID = 4 : XID

.MSADR: ,BLKW 1 ; Message address

LMSLEN: ,BLKW 1 H length

.NDADR: : Remote node address (48 bits)
.HWADR: :; Hardware address

.PHADR: .BLKW 3 ; Physical address

LCTLs: .BLKW 1 1 CTL field

L.SIZE: ,BLKW 1 : Size of data block to transmit
.DEVNM: ,BLKW 2 : Device length, acddress
.NODID: ,BLKW 2 :+ Node address (area, node)
JHXADR: .BLKW 3 :+ Hex address

.GSAP: .BLKB 1 H

Group SAP

(continued on next page)

- DLX Ethernet Programming Facilities 4-59

.I8AP:
.DEAP:
+SNAP:
LHXDIG:
.HXBYT:

OUTQIOC:
OPNQIO:
SETQIC:
RCVQIO:
XMTQIO:
CLSQIO:

LOGFIL:

O ne ve ne

PNCHB :

e we

OPKCLO

ETRETE vy

OPNCHEL

ETBFl:

ot e s () e de v

SETISP:

SETLN1

SETBFL:

4-80

.BLKB 1 ; Individual SarP

.BLKB 1 : Destination SAP

,BLRKB S ; SNAP protocol identifier
BLKB 1 ; Hex digit

.BLKB 1 ; Hex byte

.EVEN

LSBTTL . Directive parameter blocks

QIOWS I10.WVB,TILUN,TIEFN,,, ,<0,0,40>

QIOWS 10.XCP, CHNLUN, CHNEFN, ,CHNSE, ,<0,0,0,0PNCHE, 0>
QIOWS I1Q.X8C,CHNLUN,CHNEFN, ,CHNSB, ,<0,0>

QIOS 10.XRC,CHNLUN, ,, ,RCVAST,<0,BUFSIZ,0,RC.LEN>

QIOWS IQ.XTM, CHENLUN,CHNEFN, ,CHNSB, ,<0,0,0,0>

eIows 10.XCL,CENLUN,CHNEFN

+SBTTL . Leg file sStructures

FDBDFS$

FDATSA R.VAR,FD.CR

FDRCSA ,FMTBUF,132.

FDOP$SA LOGLUN, ,LOGDFN

FSREZS 2 ;1 Allocate space for 2 files
.SBTTL . Channel characteristics buffers

Open characteristics buffer

pefine frame format (=802,3)

CHRGEN CC.FMO,2
+WORD NXsg02
= . - OPNCHB

Define service class (Class I}
CHRGEN CC.S8C0,2

.WORD NX$CLI
= . — OPNCHB

Set characteristics buffers

Define Individual SAP

CHRGEN CC.ISP,2

+.BLKB 1
.BYTE 1
= .=SETBF1

pefine Group SAP

-

~r e

Frame format is 802.3
Length for user service

Service class is Class 1
Length for Class I service

Individual SAP
Enable flag (0=disable}

DECnet—-RS8X Programmer’'s Reference Manual

CHRGEN CC.GSP,2

SETGSF: ,BLKB 1 H
<BYTE 1 H
SETLNZ = .-SETBF2
; Define SNAP protocol identifier
SETBF3:
CHRGEN CC.SKNP,8.
SETSNA: .BLKB 5 :
.BLKB 1 H
+BYTE LF3BXC H
.BLKB 1 H
SETLN3 = ,-SETBF3
.SBTTL .

;
; Transmit characteristics buffer
;

XMTBFR: .
; Define Ethernet address
' CHRGEN CC.ADR,6
XMTADR: .BLHEW 3 H
; Pefine frame format (=802.3)
! CHRGEN CC.FMM, 2

+WORD NXs802 ;
; Define Destination SAP and Source
’ CHRGEN CC.SPM,2
XMTDSP: .BLKB 1 H
XMTSSP: .BLKB 1 :
; Define PDU type
’ CHRGEN CC.CTM,2
XMTCTL: .WORD 0 H
XMTLN1 = .-XMTBFR
; Define SNAP protocol identifier
’ CHRGEN CC.SNM,6
XMTSNA: .BLKW 3
XMTLNZ = .-XMTBFR

«SBTTL Ring buffers

BF =0

+REPT NUMBUF

BF = BF+1

. IRP N, <\BF>

DLX Ethernet Programming Facilities

Group SAP
Enable flag

ENAP protocol identifier
RESERVED

Exclusive use

RESERVED

Message characteristics buffers

Ethernet address
802.3 frame format

SAP

Destinaticn SAP
Source SAP

802.2 message type

{continued on next page)

4-61

Buffer descriptor block #'n

e wp e

.PSECT SIBDB D,RW
BDB8'n:

; I/0 status block

OFFSET BDB,BD.STS
.BLKW 2

: Link to next BDB in ring

OFFSET BDB,BD.LNK

.IF LT, <BF-NUMBUF>
. IRP NEXT,<\BF+1>
.WORD BDB 'NEXT

+ENDM

.IFF

.WORD BDBE1l

LENDC

: Data buffer address

OFFSET BDB,BD.BUF
+WORD BUF'N

OFFSET BDB,BD.RCH
.WORD RCHE'N

; Received chr buffer address

: Transmitted chr buffer address

OFFSET EBDB,BD.XCH
.WORD XCH'N

: Buffer Descriptor Bleck length

OFFSET BDEB,BD,.LEN

Data buffer #'n

LY T

.PSECT S$IBUF D,RW
BUF'n:

.BLRB BUFSIZ

.EVEN

e we e

.PSECT S$IRCH D,RW

Received characteristics buffer #'n

: Destination Ethernet address

: Source Ethernet address

: SNAP protocol identifier

; Destination and source SAPs

RCH'n:
CHRGEN (C,DAD,6&
OFFSET RCE,RC.DAD
+BLKW 3
CHRGEN CC.ADR,6
OFFSET RCH,RC,SAD
. BLKW 3
CHRGEN CC.SNM,6
OFFSET RCH,RC,SNM
.BLKW 3

4-62

DECnet-RSX Programmer’s Reference Manual

CHRGEN CC.S8PM,2
QOFFSET RCH,RC.SPM
«BLKW 1

; Contrel field

CHERGEN CC.CTM,2
OFFSET RCH,RC.CTM
+BLERW 1

; Received chr buffer length

OFFSET RCH,RC.LEN

LT

.PSECT $IXCH D,RW
XCE'n:

Transmitted characteristics buffer #'n

: Frame format {B02.3)

CHRGEN CC.FMM,2.
-.WORD NX5802

; Destination Ethernet address

CHRGEN <CC.ADR, 6
QFFSET XCH,XC,ADR
+BLEW 3

¢ Destination and Source SAPs

CHRGEN CC.5PM,2
OFFSET XCE,XC.SPM
. BLKW 1

CHRGEN CC.CTM,2
OFFSET XCHE,XC.CTM
.BLEKW 1

; Contrel field

; Transmit chr buffer length (DSAP/SSAP/CTL}

CFFSET XCH,XC.LN1

; SNAP protocol identifier

CHRGEN CC.SNM, 6
OFFSET ACH,XC.SNM
« BLKW 3

; Transmit chr buffer length (SNAP protocol}

OFFSET XCH,XC,LNZ2

. ENDM
«ENDR

CMDBUF: .BLKB 134.
NUMRCV: .BLKW 1
EXSTAT: .BLKW i
FMTDAT: .BLKW 25.

RCVSEB: (BLXW 2
CHENSB: .BLKW 2
IOSE: . BLEW 1
FMTL: +BLKW 1
TIMBUF: ,BLKW 8
TIMOUT: .BLKW 1

3

FMTBUF: .BLKW 00.

DLX Ethernet Programming Facilities

.
’
N
H
-
r

e e wE wh e we

.SBTTL Miscellanecus local storage

Command bhuffer

Number ¢f received frames
Exit status

Data bufifer for formatting

Receive status

Channel status

Address of receive status block
Length of formatted record
Time buffer

Time~out for receives

(continued on next page)

ERRFM1:
ERRFM2:
NSFFMT:
ASNFM1:
ASNFMZ:
ASNFM3:
OPNFMT:
SETFMT:
RCVFMT:
XMTFMT :
DEVDFR:
DEVDFL
GCLERR:
PRSERR:

TIMFMT:

OPNCHF:

SETCHF:

XMTCHF :

RCVMS1:
RCVLNL
RCVMEZ:
RCVLN2Z
RCVYME]:
RCVLN3
RCVMS 4 :
RCVLN4

RCVYMSS:-

.SBTTL Pure data

.PSECT $PDATA D,RO

+SBTTL . Text strings

JNLIST BEX

LASCIZ \%N802 -- %I, $DSW is 3D.\

JASCIZ \INB02 -- &I, I/0 status is 3P %P\
LASCIZ \No such file\

.ASCIZ \Cannot assign LUN tc channell

LASCIZ \Cannot assign LUN to command terminall
.ASCIZ \Cannot assign LUN to output terminall
JASCIZ \Cannot open line\

.ASCIZ \Errecr defining ISAPY

.ASCIZ \Receive error\

LASCIZ \Transmit error\

JASCITI \UNA-OA

=.-DEVDFB

LASCIZ \%NGet command line error, code = 3P\
LASCII \%NSyntax error: "EVA"\ '

LASTIT \EN%ASOPTFLG %P MSGFLG 3P\

LASCII \%N%4S5.DEVNM "$VA"™ _NDADR %P %P %P\
LASCII \%N%4S.ISAP %D. +GSAP %D. .DSaP %D.
JASCIZ \%N%4S,SNAP %5B\

JASCIZ /RNRY %32/

,ASCITI \%3NOpen characteristics:\

LASCII \$NCC.FMO {=%P} %P %P %P %P\

LASCIZ \SNCC.SCO {=%P} %P %P %P %P\

LASCII \%NSet characteristics:\

LASCII \BNCC.ISP (=%P) %P %P %P 3P\

JASCIT \BNCC.GSP (=%P) %P %P %P E32AN

LASCIZ \SNCC,SNP (=%P) %P %P %P %P %P 3%IP\
.NLIST BEX

JASCIT \%NTransmit characteristics:\

LASCII \3NCC.ADR {=%P) %P %P %P $P %P 3P\
JASCIT \%NCC.FMM (=3P} %P %P &%F $P\

LASCIT \SNCC.SPM (=%P)} %P %P %P 3P\

JASCII \ENCC.CTM (=3%P) %P %P %P %P\

LASCIZ \3NCC.SNM (=%P) %P %P %P %P %P %P\
LASCIT <l2»<l15>/Destination Ethernet Address:/
= _-RCVMS1

ASCII /Source Ethernet Address:/

= ,=-RCVMS2

L.ASCII /Destination SAP, Source $AP and CTL bhytes:/
= . = RCVMS3

.ASCII /SWAP protocol identifier:/

= . - RCVMS4

.ASCIZ /Received data, %D. bytes:/

.EVEN

.SBTTL Canned XID, UI and TEST messages

DECnet-RSX Programmer’s Reference Manual

SRt

H
: XID message
H

XIDMSG: .BYTE

XID1,XID2,XID3

XIDLEN = .-XIDMSG

YRTRIRTIRT]

UIFMEG:

TSTMEG:
$551 =
+REPT
§$s82 =
$583 =
.BYTE
$5%1 =
+ENDR
+EVEN

+SBTTL
BDBLST: .WORD
LOGDFN: NMBLKS
GCLBLK: GCMLBS

.SBTTL
+PSECT

TET802; FINITS
MOV
CALL
BCC
JME

NXTCMD:
CLR
CLR
MoV
MOV
MOVB
CLRE
MOV
MOVE
MOV
MOV

CLEFSS
GCML3S
MOVE
BCC

CMPB
BNE

UI and TEST messages

for (i=0; i<MAXFRM; i++)
(buf(i) = i%256)

1]

MAXFRM
$851/256.,
§551-<$552%286,>

$583
$581+1

BDBl
802TsT,DAT,,S5Y,0
2,802,CMDBUF,CMDLUN, ,132

TST802 - Mainline code
$SCODE I,RO

#EXSSUC,EXSTAT
ASNLNS

NXTCMD

EXIT

OPTFLG

MSGFLG

#DEVDFL, .DEVNM
#DEVDFB, . DEVNM+2
#1SAP, . ISAP
.DSAP
#60.,.81IZE
#SCSXIF,.CTL
#XIDMSG, .MSADR
#XIDLEN, .MSLEN

#DONE
#GCLBLK
G.ERR(RO},RS5
2cs

RS, #GE.EQF
103

DLX Ethernet Programming Facilities

+
r

-
r

R TR T

wa W e wa e ME WE ME wE R

e e e

~a na

$883 = $581 mod 256,

Miscellaneous pure data

Address of first buffer descriptor
Log file default filename block
: Get command line bleck

Assume success
Assign channel, command and error LUNs
If CC, proceed

Zero options flag
Zero message type flag

Set

(u

Set
Set
Set
Set
Set

default
UNA-D")
default
default
defavit
default
default

device string

individual SAP (4)
destination SAP (NULL}
data block size (80)
message type (XD}
message address

and length

- Clear exit flag

Retrieve a command line
Pick up error byte
If CC, we're ready to parse

End_of_file?
If NE, no

(continued on next page)

108:

20%:

DOCMD :

e nu we

10§:

TR LT

4-56

JIMP

FORMAT
LOG
JMP

MOV
MOV
MoV
BEQ
MOV
MOV
CALL
BCC

CALL
IMP
CALL
CALL
BCS

CALL
BCS

Fill the ring

DSARSS
MOV
MOV
CLR

MOV
MOV
MOV
DIRS
BCS
50B

CLEFSS

BIT
BNE"

Mov
MCV
MOV
MOVB
MOVEB
MOVB

EXIT

RS, #GCLERR
#FMTBUF , FMTL
EXIT

#3*256.,R]
#KEYTSL,R2
G.CMLD(RO) ,R3
NXTCMD
G.CMLD+2(RO},R4
#START,RS

. TPARS

DOCMD

PREDMP
NXTCMD
OBPNLOG
OPNCHN
EXIT

SETCHN
EXIT

with receives
BDBLST,RO
#NUMBUF, Rl
NUMRCV

RO, RCVQIO+(D. IOSB

N WE We B Mg Wy wa hg - e wE

~s w8

. wp

LTRT)

YR Y]

BD.BUF{R0},RCVQIO+(Q. ICPL

#RCVQID
EXIT
R1,10%

#DONE

#QP. RSP, OPTFLG
2035

Transmit an 802.3 command PDU

. PHADR, XMTADR
+PHADR+2, XMTADR+ 2
+PHADR+4 , XMTADR+4
.DSAP, XMTDEP

- ISAP, XMTSSP
.CTL,XMTCTL

-y v

AT

P YR LI TR T

DECnhet-RSX Programmer's Reference Manual

EQF - just exit

Format error status
and report the error

Exit

Abbreviate to three characters
Getr address of key table

Get command line length

If EQ, get another command line
Get command line address

Get address of first state
Parse the command line

If CC, ok - proceed

Open log file, if /LOG
{Ignore possible open error}

Open an Ethernet channel

- exit if errar

Set the channel characteristics

- exit if error

Disable AST recognition

Get first buffer descriptor addr
Get number of buffers in ring
Zerc received frame count

. : Set IOSB address
; Set data buffer address
BD.RCH(RO) ,RCVQIO+(.10PL+4 ; Set receive char address

Post receive

If CS, error ~ all done
Loop through the ring

Are we a passive responder?
1f NE, yes - don't send command

Set Ethernet address for transmit

Set DSAP for transmit
Set SSAP for transmit
Set CTL field for transmit

MOV MSADR, XMTQIO+Q. ICPL Set adr of message to XMT

¥
MOV MSLEN, XMTQIC+Q.IOPL+2 ; Set len of message to XMT
MOV #XMTBFR, XMTQ10+Q. IOPL+4 ; Set adr of XMT char buffer
MOV $XMTLNL , XMTQIQ+Q,.ICPL+6 ; Set len of XMT char buffer
; {Assume using oniy DSAP/SSAP/CTL)
BIT $0P . SNP,OPTFLG : Use only DSAP/SSAB/CIL for XMT?
BEQ 158 ; If EQ, yes — no SNAP specified
MOV #.8NAP,RO : Get address of stored SNaP
MOV #XMTSNA,RL :+ Get address of SNAP buffer
MOV #5,R2 ; Set number of bytes in protocgol
125: MOVB {RO}+,(R1)}+ ; Move a protocel byte into buffer
508 R2,12% s Loop until done
MOV FXMTLNZ ,XMTQIO+Q,. IOPL+6 ; Set len of transmit char buffer to
: include SNAP protoccol ident
1551 DIRS #XMTQIO : Transmiti a command PDU
BCS EXIT ; If C8, directive error
TSTB CHNSB : Get an 1/0 error?
BMI EXIT s If MI, yes
208+ ENARSS Enable AST recognition

SREX$S #ABOAST

Specify abort AST
WTSESS #DONE

Wait for receive(s)

~ wn

DSARSS
CLOSES #LOGFIL
DIRS #CLSQIO

Disable AST recognition
Close the log file
Close the Ethernet channel

- wE e s

JMP NXTCMD and process the next command
XMTERL:
XMTER2:
EXIT: DIRS #CLSQIO ; Close the Ethernet channel

CLOSES #LOGFIL
EXSTSS EXSTAT
EXITSS

Close the leg file
Try to exit-with-status
Else, just exit

LR TR TR

.SBTTL AST routines
.SBTTL . RCVAST - channel read complete

+

**RCVAST - AST for channel read complete

Inputs:
{SP) = address of I/0 status block

Qutputs: .
Message read from channel is formatted and logged

T TR R TETE TR T)

RCVAST:

Save BDB/status blcck address
Save R3-RB

MOV (SP),I10SB -
MOV R3,(SP)
SAVRG <R4,R5>

s e W

(continued on next page)

DLX Ethernet Programming Facilities ' 4-67

125:

18%:

175%:

208:
30%:

MOV
TSTB
BMI

INC
MOV
MOV

BIT
BEQ

MCV
MOV
MOV
MOV
MOV

BIT
BEQ.

SAVRG
MOV
ADD
MOV
ADD
MOV
MOVB
SOB
RESRG
MOV

BR

MOV
SWAB
MOV

MOV
MOV
Mov
DIRS
BCS
BR

CALL

MOV
MOV
MOV
MOV
MOV
DIRS
BCC

10S8,R3 ; Retrieve BDB/status block address
{R3) ; Receive error?

908 1 If MI, yes

NUMRCV Count one more buffer filled

BD.RCE(R3),Rg¢
BD.XCH{R3)},R5

Get rcved chr buffer address
Get xmted chr buffer address

P

#COP.RSP,OPTFLG ;1 Are we a passive responder?
20% ; If EQ, no - dor't send respconse
R3,KMTQIO+Q. IOSB Set IOSH address

BD.BUF(R3),XMTRIC+{.IOPL Set data buffer address

BD.STS+2(R3) ,KMTQIO+Q.IOPL+2 and length
BD.ACH{R1) ,XMTQIO+Q. I10PL+ & Set xmt char address
#XC.LN1,XMTQIO+Q, IOPL+E and length

e wa wh e ma we

(Assuming DSAP/SSAP/CTL)

#0OP ,SNP ,OPTFLG ; Use only DSAP/SSAP/CTL for XMT?

15% ; I1f EQ, yes - no SNAP specified

<RO,R1,R2>

R4, RO ; Farm pointer to received SNAP

$RC.SNM, RO H

R5,R1 ; Form pointer to transmitted SNAP

#XC.5NM,R1 H

#5,R2 ; Set size of SNAP protocol ident

(RO)+, (R1)+ : Copy a protocol byte

RZ,125 : Loop until done

<R2,R1,R0>

#XC.LN2 ,XMTQIO+Q.I0PL+6 ;: Include SNAP in XMT char buffer
; (Note: SNAP supersedes DSAP/...

178 ; Join common code

RC.SPM(R4) ,XC.SPM(RS)
XC.SPM{RS) :
RC.CTMIR4) ,XC,CTHMIRS)

Get the DSAP/SSAP from receive
and swap them for response
Set the CTL field

- wa me

RC.SAD(R4)}, XC.ADR{(RS)
RC.5AD+2{R4) ,XC.ADR+2{R5}
RC.SAD+4(R4) ,XC.ADR+4 (RS}

Set Ethernet address for transmit

~a wp wa

#XMTQIC ; Send response PDU

90% ; If CS, directive error

308 : Don't log data while responding
LOGRCV : Log received data

R3,RCVDIO+Q. 10SE
BD.BUF{R3),RCVQIO+Q. IOPL

Set I0SE address
Set gdata buffer address

$BUFSIZ,RCVQIQ+Q.IOPL+2 ; and length
BD.RCH{R3)} ,RCVQIO+Q.IOPL+4 : Set receive char address
#RC.LEN,RCVQIO+Q, fOPL+6 ; and length

§RCVQIO ; Hang another receive
1003 :+ If CC, receive is gueued

DECnet-RSX Programmer’s Reference Manual

9035: DSARSS : Disable AST_recognition
SETFS$SS #DCNE ; Wake up mainline for cleanup

1008: RESRG <R5,R4,R3>

ASTXSS
.SBTTL . ABOAST - Abort AST
ABCAST:
ADD {SP},sP .
DSARSS : Disable AST recognition
SETPSS #DONE ; Done
ASTXSS
Pl
T .SBTTL Utility subroutines
.SBTTL . ASNLNS - Assign channel, command, error LUNs
ASNLNS: -

Assign LUN to channel

LR TR 1]

ALUNSS #CHNLUN,#"NX,0

BCC 10%

JSR RO,DIRERR
+WORD ASNFM1

BR 40%

Assign LUN to command terminal

[W

ALUNSS #CMDLUN, #°T1

BCC 203

JSR RO, DIRERR
.WORD ASNFM2

BR 40%

Assign LUN to output terminal

Be v w

OPENSW #LOGFIL

0%: ALUNSS #TILUN,#"TI
BCC 30%
JSR RO ,DIRERR
.WORD ASNFM3
Py BR 408
Fd 30§: TST (pC)+
Tod 405: SEC
RETURN
.SBTTL . OPNLOG- Open a log file
.ENABL LSB
OPNLOG:
BIT #0P,LOG,OPTFLG ; /LOG requested?
BEQ 208 : Tf EQ, no
OPENSA #LOGFIL ; Append to file if existing
BCC 108 : 1£ ¢c, file is open

Else, create a new file

{continued on next page)

DLX Ethernet Programming Facilities 4-68

105

20%:

OPNCHN:

5%:

7%:

108:

208

308

SETCHN:

4-70

BCC
BIC
BR
GTIMSS
FORMAT
PUTS
SUB
PUTS
RETURN
.DSABL

LSBTTL

MOV
MOV
MOV
BIT
BEQ
CLR,
MOV
MOV
BIT
BEQ
MOV
DIRS
BCC
JSR
.WORD
BR

TSTB
CLC
BPL
JSR
.WORD
ERROR
SEC

RETURN
SBTTL

MOVB
MOV
MOV
DIRS
BCS
TETE
BMI

BIT
BEQ
MOVE
MOV

1f CC, file is open

Indicate no log file in use
and return |

Getr current time

Format time inta ASCII

Store timestamp in log file

Compute length of command
and log the command line

108

#0OP.LOG,OPTFLG

2038

#TIMBUF
#TIMBUF , #TIMFMT
#LOGFIL, #FMTBUF, FMTL
#CMDBUF R4

#LOGFIL, $#CMDBUF R4

LR TR T T DR TR Y

LSB
. OPNCHN ~ Open channel
.DEVNM+2 ,0PNQIC+Q.I10PL

.DEVNM,0PNQIO+Q. IOPL+2
#TMO, TIMOUT

Set "xxx-n" address
Set "xxx-n" length
Set timeocut in seconds

#OP , RSP, OPTFLG Are we passively responding?
5% tf EQ, no
TIMOUT No timegut on receives

TIMOUT,OPNQIO+Q. IOPL+4
#OPNCHL , OPNQIO+Q. IOPL+10
#0P . USR,OPTFLG

Set the time-out for cpen
Assume Class 1 service
Cpening for Class I service?

g s e MIE NE ha e WE VY Ra e we

7% 1f EQ, yes
#OPNCLD, OPNQIO+Q.IOPL+10; Else get setr for user service
#OPNQIO Cpen the line
103 If, CC, OPEN queued
RO,DIRERR
OPNFMT
20%
CHNSE : Did OPEN succeed?
: Assume yes
0% ; If PL, yes
RO, IQERR
OPNFMT

#0OPNCHB, $0OPNCHF
Indicate failure

~a

SETCHN - Set channel characteristics

. 1SAP,SETISP
#SETBF1l,SETQIO0+Q,I0PL
#SETLNL , SETQIO+Q. IOPL+2

Store SAP number
Get char buffer address
Get char buffer length

P R TR T TR TY

#SETQIO Enable the ISAP

208 If CC, request got gQueued
CHNSE Did we enable an ISAP?
308 If MI, ne

#0P .GSP,OPTFLG

19%

.GSAP,SETGSP
#SETBF2,SETQIO+Q. IOPL

Enabling a group SaP?
If EQ, no

Store group SAP number
Get char buffer address

g wa W mg

DECnet-RSX Programmer’s Reference Manual

MOV #SETLNZ,SETQIO+Q. IOPL+2

Get char buffer length
DIRS #SETQIO

Enable the GSAP

BCS 203 ; If CC, request got gueued
TSTB CHNSB : id we enable a GSAP?
BMI 303 + If MI, no
10%: BIT #0P . SNP,OPTFLG : Enabling a SNAP protocel ID?
CLC : Assume not
BEQ 50% : 1f EQ, all done
MOV #.SNAP,RO : Copy protocol ident to buffer
MOV #SETSNA R1 H
MOV #5,R2 :
15%: MOVE (RO}+, (R1)+ :
SOB RrR2,158 H
MOV #SETBF3,SETQIO+Q.IOPL ; Get char buffer address
MOV #SETLN3,SETQI0+Q.IOPL+2 ; Get char buffer length
DIRS #SETQIO » Enable the SNAP proteccol ID
BCS 208 :+ If CC, request got queued
TSTB CHNSB ; Did we enable a SNAP?
CLC, : Assume success
BPL 50% : If PL, yes - all done
BMI 308 ; Lf MI, ne
20%: JSR RO,DIRERR
.WORD SETFMT
BR 408
308: JSR RO, ICERR
.WORD SETFMT
40535 SEC ; Indicate failure
50%: RETURN
.SBTTL . LOGRCV - Log received data

*

**_LOGRCV - Log received data

Inputs:
R3 is buffer descriptcr block address
BD.BUF{(R3) contains the buffer address
BD.STS+2{R3) contains the number of bytes received
Ré is received characteristics block address
RC.DAD(R4) contains the received destination address

wr ma A% WA e We M A WE NR WE WE e WA Te w4

RC.SAD(R4)} source
RC.SPM(R4) DSAP/SSAP
RC.CTM(R4) CTL
Registers modified:
R4 ,RS
LOGRCV: TST BD.BUF+2{R3) : Any data to log?
BNE 108 1 If NE, yes
JMP 1008 ; Else, get out
10§: SAVRG <R0O,R1, R2>
LOG #RCVMS1, #RCVLN] ; Log DST Ethernet address
ADD $RC.DAD,R4 :

{continued on next page)

DLX Ethernet Programming Facilities 4-71

2082

30s:

1008

DIRERR:

IQERR:

4-72

MOV
CALL
SUB

LoG
ADD
CALL
SUB

BIT
BNE

MOV
MOvE
BICB
HMOVE
MOVEB
MoV
MOV
CALL
BR

LOG
MOV
ADD
MOV
CALL

MOV
MOV
FORMAT
LOG
MOV
CALL

RESRG
RETURN

JSBTTL
SBTTL
JSBTTL
.ENABL

MOV
SAVRG
MoV
ERRCR
BR

MOV
SAVRG
MOV
MOV

#6,R5
LOGDAT
#RC.DAD,R4

#RCVMS 2, #RCVLNZ
#RC.SAD, RS
LOGDAT
#RC.SAD,R%

#OP.SNP,OPTFLG
208

#RCVMS 3, #RCVLNI
#FMTDAT,R2
RC,SPM{R4), (R2)+
#1,RC.SPM+1(R4)
RC.SPM+1(R4Y, (R2)+
RC.CTM{R4), (R2)+
#FMTDAT, R4

#3,R5

LOGDAT

305

FROVMSA , $RCVLNSG
#FMTDAT,R2
#RC.S5NM, R4
#5,RE

LOGDAT

BD.STS+2{R3),R5
RS, FMTDAT
#FMTDAT , #RCVMSS
#FMTBUF, FMTL
BD.BUF(R3},R4
LOGDAT

<R2,R1,R0>

YT PR Y -~ wg e

e ne

e LT TR VI TR T ¥

L Y

e ma WE ws we we

Log SRC Ethernet address

Logging DSAP/SSAP/CTL?

If NE, no ~ log a SNAP id

Log DSAP/SSAP/CTL bhytes

Log SNAP protocol ID

Received data,

. DIRERR - Report a directive error

. ICERR
. 1CER2
LSB

{R0O)+,FMTDAT
<RO,R1,R2>
SDSW, FMTDAT+2
#FMTDAT, #ERRFML
168

{RO}+, FMTDAT
<R0,R1,R2>
CHNSB, FMTDAT+2
CHNSB+2,FMTDAT+4

- Report an 1/0 error
- Report an I/0 error {alternate entry)

n. bytes

DECnet-RSX Programmer's Reference Manual

ERROR #FMTDAT, #ERRFM2

BR 108
I0ER2:
MOV (RO)+ ,FMTDAT
SAVRG <R0,R1,R2>
MOVE RCVSB,R1
MoV R1,FMTDAT+2
MOV RCVSB+2, FMTDAT+4
ERROR #FMTDAT, #ERRFM2
10%: MOV #EXSERR, EXSTAT
RESRG <R2,R1,RO>
RTS RO
.DSABL LSB
.SETTL . LOGDAT ~ Log data in hex
HEX = 16,
NOSUP = 1*1000
BLKFIL = 1*2000
FLDWID = 2+*4000
MASK = HEX+FLDWID+NOSUP
NFLDS = 16.

LOGDAT: CALL SSAVAL

10%: MOV #FMTBUF, RO
MOV #NFLDS,R3
cMp R3,RS
BLE 208
MOV RS,R3
BEQ 50%

208: MGV R3,-(sP)

MOVE #40,(RO)+
MOVB #40, (RO} +
MOVE #40, (RO} +
MOVB #40,(RO)+

30%5: DEC R3
BLT 408
CLR Rl
BISB (R4)+,R1
Mov #MASK ,R2

- CALL SCBTA
MOVB #40, (RO} +

BR 308
40%: SuB #FMTBUF, RO
MOV RO,R1
LOG §FMTBUF,R1
SUB (spP)+, RS
BGT 1038

(continued on next page)

DLX Ethernet Programming Facilities 4-73

50s:

4-74

RETURN
.SBTTL

SRONLY
ISTATS

+SBTTL

STATES
TRANS

+SBTTL

STATES
TRANS
TRANS
TRANS

STATES
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

.SBTTL

STATES
TRANS
STATES
TRANS
STATES
TRANS

.SBTTL

STATES
TRANS
STATES
TRANS
STATES
TRANS

.8BTTL

STATES
TRANS

Parser data base

=1
STATBL,KEYTBL

. Main states

START
$LAMDA

Options

oPT
$ECS, SEXIT
<';>,3EXIT
'/

!DEVOPT, OPT, ,OP.DEV,OPTFLG
!DSPOPT, OPT, ,OP . DSP,OPTFLG
!{GSPCPT,OPT, ,OP.GSP,OPTFLG
! HDWOPT, OPT, , OP . HDW,OPTFLG
1 18PQPT QPT, ,OP ., ISP ,QPTFLG
! LOGOPT, OPT, ,OP.LOG,OPTFLG
!MSGCPT,OPT, ,0P.MSG,0PTFLG
tNODOPT,CPT, ,OF. NOD, OPTFLG
| PHYCPT,CPT, ,OP.PHY,OPTFLG
|RSPOPT,OPT, ,OP.RSP,OPTFLG
'SIZOPT,CPT, ,OP.SIZ,0PTFLG
| SNPCPT ,OPT, ,QP.SNP,OPTFLG
!USRQPT,OPT, ,CP,USR,OPTFLG

. . DEVOPT - /DEVIICEl=dddé-n

DEVOPT
"DEVICE"

EQUALS
tDEVICE, SEXIT, STDEV

. . DSPOPT - /DSAP={n,NULL,SNAP}

DSPOPT
"DSAP”

EQUALS

IDSPID, SEXIT

. . GSPOPT - /GSA[P]=n

GSPOPT
"GEBAPT

DECnet-RSX Programmer's Reference Manua!

Make tables read-only

STATES

TRANS EQUALS
STATES

TRANS {GSPID,SEXIT

.SBTTL . . HDWOPT - /HAR[DWARE]=nn-nn-an-nn-nn-nn

STATES HDWOPT

TRANS "HARDWARE"

STATES

TRANS EQUALS

STATES

TRANS 1HXADR,$EXIT,STHADD

LSBTTL . . 1SPOPT -~ /ISAP=n

STATES ISPQPT

TRANS "ISAP",1SPOP2
TRANS "SSAP"

STATES ISPOP2

TRANS EQUALS

STATES

TRANS !ISPID,SEXIT

JSBTTL . . LOGOPT FLOG

STATES LOGOPT
TRANS "LOG",$EXIT

.BBTTL . . MSGOPT /MES[SAGE]={XID,TEST,UT}
STATES MSGOPT

TRANS T"MESSAGE"

STATES ‘

TRANS EQUALS

STATES

TRANS !MSGTYP,$EXIT

8BTTL . . NODOPT

/NOD{E]=aa.nn

STATE$ NODOPT

TRANS "NODE"

STATES

TRANS EQUALS

STATES

TRAN§ !NODID,SEXIT,

3

.SBTTL , . PHYOPT /PHY[SICAL]=nn-nn-nn-nn—-nn-nn
STATES PHYOPT

TRANS "PHYSICAL"

STATES

TRANS EQUALS

STATES

TRANS !HXADR, SEXIT,STFADD

(continued on next page)

DLX Ethernet Programming Facilities 4-75

«EBTTL

STATES
TRANS

.SBTTL

STATES
TRANS
STATES
TRANS
STATES
TRANS

+SBTTL

STATES
TRANS
STATES
TRANS
STATES
TRANS

.SBTTL

STATES
TRANS

LSBTTL
+SBTTL

STATES
TRANS
STATES
TRANS
STATES
TRANS

.SBTTL
STATES
TRANS
TRANS
TRANS
.SBTTL

STATES
TRANS

+SBTTL

STATES
TRANS

4-76

. ., RSPOPT - /RES[PONSE}
RSPOPT

"RESPONDER" , SEXIT

. . S8IZQ0PT ~ /sizl[El=n
SIZOPT

"SIZE"

EQUALS

tSIZE,$EXIT

. . SNPOPT - /SNA[P]=nn-nn-nn
SNPCOPT

"SNAP"

EQUALS

1SNAP, SEXIT

. . USROPT - /USE[R]
USROPT

PUSER™,SEXIT

. Utility substates

. . DEVICE - device string
DEVICE

S$RADS0

< —>»

$DNUMEB, SEXIT

- . DSPID - destination SAF number
pSPID

"SNAP" ,SEXIT,STSKRP

"NULL" ,SEXIT,STNSP

$DNUMB, SEXIT,STDSP

. . GSPID =~ group SAP number
GSPID

$DNUMB, SEXIT,STGSP

. . BXADR - hex address
HXADR

{HXBYT, ,STHADL

DECnet-RSX Programmer’s Reference Manual

-i?

STATES

TRANS '~

STATES

PRANS !HKXBYT,,STHAD2
STATES

TRANS ‘'~
STATES

CTRANS 'HXBYT,,STHAD3
STATES

TRANS ‘-

STATES

TRANS IHXBYT,,STHAD4
STATES

TRANS '-

STATES

TRANS |HXBYT,,STHADS
STATES

TRANS '-

STATES

TRANS !HXBYT,SEXIT,STHADG

.8BTTL . HXBYT - hex byte

STATES HXBYT

TRANS !HMXDIG, ,STHXD1
STATES

TRANS IHXDIG,SEXIT,STHXD2

.SBTTL . . HXDIG - hex digit

STATES HXDIG
TRANS S$DIGIT,S$EXIT,STHXN
TRANS SALPHA, $SEXIT,STHXA

LEBTTL . . ISPID =~ Individual SAP number

STATES ISPID
TRANS $DNUMB,SEX1T,STISP

.SBTTL . . MSGTYP ~ message type

STATES MSGTYP

TRANS ™TEST",SEXIT,.STTST,OP.TST, MSGFLG
TRANS ™uU1",$EXIT,STUIF,QP,UIF,MSGFLG
TRANS *XID",SEXIT,STXID,OP.XID, MSGFLG

.SBTTL . . KODID -~ node id

STATES NODID

TRANS SDNUMB, ,STNDA
STATES

TRANS <'.>

STATES

TRANS $DNUMB, $EXIT,STNDN

(continued on next page)

DLX Ethernet Programming Facilities 4-77

«SBTTL

STATES
TRANS

.SBTTL

STATES
TRANS
STATES
TRANS
STATES
TRANS
STATES
TRANS
STATES
TRANS
STATES
TRANS
STATES
TRANS
STATES
TRANS
STATES
TRANS

STATES

.SBTTL
.PSECT

LSBTTL
.SBTTL

.ENABL
STNDA: MOV
TST
BNE
CMP
BHI
MOV
BR
STNDN: MOV
TST
BNE
P
BHI
MOV

BIT
BNE

MOVB

MCVB
MCVB

4-78

. « SIZE - data block size

SIZE

$DNUMB, SEXIT,STSIZ

. . SNaP - SNAP protocel identifier
SNAP

{HXBYT, ,STSNP1

*

YHXBYT, ,STSNP2

1BXBYT, ,STSNP3

{HXBYT, ,STSNP4

'-

{HXBYT, $EXIT,STSNFS

Parser action routines
SCODE

. STNDA ~ Set nede
. STNDN - Set node

LSB

. PNUME, RO
. PNUMH

10%

RO, #MXAREA

.PNUMB, RO

. PNUMH

108

RO, #MXNODE
108

RO, .NODID+2

o
¥
NE WE WA WS WA WA wm wE Ne WE W4 wE NS

#OP . PHY ,QPTFLG
208

#252, .PHADR+D
#0, .PHADR+1
#4, .PHADR+2

~ s

DECnet-RSX Programmer's Reference Manual

area
number

Get area number

Overflow into high word?
If NE, ves - error

Area in range?

If HI, no - error
Store area number

and return
Get node nunmber

Overflow into high word?
If NE, yes - errcr
Number in range?

1f HI, no - error’

Store nocde number

Already specified physical address?
if NE, yes - use 1t

MOVE #0, .PHADR+3
: Set up area and number in ,PHADR+4, +5 ...

MOV .NODID,RO : Get area in RQ
MCV .NODID+2,R1 ; Get node number in R1
SWAB RO ; Get area in high byte
ASL RO : Move area into <15:10>
ASL RO ;
BIS RO,R1 ; Form node address word
MQVEB R1l, .PHADR+4 H and store in PHADR+4,+5
SWAB R1 :
MOVE R],.PHADR+5 :
BR 208 3 Jein common c¢ode for return
108: ADD #2,{sp) ; REJECT TRANSITION
205: RETURN
‘ .DSABL LSB
.SBTTL . STDEV - Set devige string
+SBTTL . STSNP - Set 802.3 SNAP SAP as DSAP
.SBTTL . STNSP - Set 802.3 NULL SAP as DSAP
.SBTTL . STDSP -~ Set 802.3 user-specified SAP as DSAP
.SBTTL . STISP -~ Set 802.3 user-specified SAP as ISAP
LSBTTL . STS1Z - Set data block size
STDEV: MOV .PSTCN, .DEVNM
MOV .PSTPT, .DEVNM+2
RETURN

.ENABL LSB
STSNP: MOVB #~Bl01010L0, .DSAP

Store the SNAP SAP

-

BR 208
STNSP: CLRB .DSAP : Store the NULL SAP
BR 208
STDSF: CALL 308 : Is SAP in range?
BCS 109 ; 1£ ¢S, no
MOVE .PNUMB, . DSAP : Store destination SAP
BR 208
STGSP: CALL 1053 : Is SAP in range?
BCS 10% ; If CS, no
BIT #1, .PNUMB ; valid group?
BEQ 148 : If EQ, no - it's individual
MOVB . PNUMB, .GSAP ; Store Group SAP
£ BIsS #0OP USSR, OPTFLG ; User-supplied service is needegd
[T BR 208
R STISP: CALL 303 ; Is SAP in range?
BCS 108 ; If CS, no
BIT 41, .PNUMB ; Is this an Individual SapP?
BNE 1038 ; If NE, no - it's a group
MOVE .PNUMB, . ISAP :+ Else, store individual Sap
BR 203
STSIZ: CMP . PNUMB , #MAXFRM ; Data block size too large?
BHI 10% ; If HI, yes
TST . PNUMH ; Is it?
BNE 108 s+ If NE, ves
MoV .PNUMB, .SIZE ; Store data block size
BIT #OP.TST!OP.JIF,MSGFLG ; Already parse message type?

{continued on next page}

DLX Ethemet Programming Facilities 4-79

10§:
208:

: Check

STTST:
STUIF:

STXID:

STSNPL:
STSNPZ:
STSNP3:
STSNP4:
STSNPS:

STPADD:

BEQ
MOV

BR

ADD
RETURN

if sarP

CMP
BHI
TST
BNE
TST
SEC
RETURN
.DSABL

.SBTTL
.SBTTL
.SBTTL

MOVE
MOV
MoV
RETURN

MOVE
MOV
MCV
RETURN

MOVE
MOV
MOV
RETURN

.SETTL

MOVB
MOVE
MOVEB
MOVE
MOVB
RETURN

.SBTTL
.SBTTL

.ENABL
BIT
BNE
MOV
MOV
MOV
RETURN

208

.SIZE, .MSLEN
208

#2,(8P)

is in range

.PNUME, $377

40%

. PNUMH

405

{pC)+

LSB

. STTST
STUIF
STXIF

#SCSTSF, .CTL
#TSTMSG, .MSADR
+SIZE, .MSLEN

#SCSULF,.CTL
$UIFMSG, .MSADR
.S12E, ,MSLEN

#SCSXIF, .CTL
#XIDMSG, .MSADR
#XIDLEN, .MSLEN

. STSNPn

+HXBYT, .SNAP

.HXBYT, .SNAP+1
-HXBYT, ,SNAP+2
JHXBYT, .SNAP+3
.HXBYT, .SNAP+4

-y

“a we mu ma wm

- Set TEST
- Set UI
- Set RID

- Set SNAP

If B¢, no - .SI2ZE will get used
Else, stuff size into message len

REJECT TRANSITION

Is SAP in range?

if HI, no

s it?

if NE, no
SUCCESS (C=0)

message type
message type
message type

protocol 1D (byte #n)

. STPADD - Set physical address
STHEADD - Set hardware address

Lsa

#$<QP.NQD!OP,PHY> ,0PTFLG ;

10%
HXADR, . PHADR

HXADR+2, .PHADR«+2
LHXADR+4, .PHADR+§

DECnet-RSX Programmer’s Reference Manual

Already specified remote address?
If NE, yes - all done

BIT
BNE
MOV
MOV
MoV
RETURN
.DSABL

STHADD:

106:

.SBTTL

STHADL:
STHADZ:
STEAD3:
STHADG ¢
STHADS:
STHADG:

MOVB
MOVB
MOVB
MOVE
MOVB
MOVB
RETURN

.SBTTL

.SBTTL
STHXN: MOVB
SuB
MOVB
RETURN

MOVB
CcMPB
BLO
CMPB
BLOS
ADD
BR
SUB
MOVB
RETURN

STHXA:

10%:
20%:
308§:

.SBTTL
<SBTTL

. ENABL
MOVE
ASL
ASL
ASL
ASL
MOVE
BR
MOVEB
BICB
BISB
RETURN
.DSABL

STHXD1:

STHXDZ:

108:

.8BTTL

#<OP.PHY!OP.NOD>,OPTFLG
108

.EXADR, .HWADR

JHXADR+2, .HWADR+2
.HXADR+4, .HWADR+4

LSB

LTS

Already specified remote address?

. STHADN - Set hex address (byte #n)

+HXBYT, . HKADR

JHEXBYT, .HXADR+1
+HXBYT, .HXADR+2
LJHXBYT, .HXADR+]3
JHXBYT, .HXADR+4
LHXBYT, .HXADR+5S

STHXN - Convert a digit to hex
. STEXA - Convert an alpha to hex
.PCHAR,RQ ; Get digit character
#'0,RO : Convert to digit value
RQ, .HXDIG : and store
.PCHAR,RO ¢+ Get alpha character
RO,8#"A ; Is it a hex digit?
108 ; 1f LO, no
RO, #'F : Is it?
20% s 1f LOS, yes
#2,(8P) : Reject transition
30% : and return
#<*A-10.>,R0 ; Convert to value
RO, .HXDIG
. STHXDI - Set lst hex digit
. STHXD2 - Set 2nd hex digit
LSE
JHXDIG,RO
RG
RO
RO
RO
RO, .HXBYT
103
LHXDIG, RO
#~Cl7,R0
RO, .HXBYT
LSB
. PRSDMP - Dump parse data on syntax error
{continued on next page)
4-81

DLX Ethernet Programming Fagilities

sDMP:

CALL
MOV
MOV
MOV
MOV
MOV

MOV
MOV
MOV
MOV
MOV

MOVE
CLRB
MOVB
CLRB
MQVB
CLRB
MOV

MOV
FORMAT
LOG
RETURN

.END

$SAVAL
#FMTDAT , RS
R3,(R5}+

R4, (R5)+
OPTFLG, (R5)+
MSGFLG, (RS)+

.DEVNM, (R5)+
.DEVNM+2,{R5)+
.NDADR, (RS} +
JNDADR+2,(R5)+
.NDADR+4, (RS} +

.ISAP, (RS)}+
(R5)+
.GSAP,(R5) +
(RS)+
.DSAP, (R5)+
(RS)+
LCTL,(R5)+

#.SNAP, (R5)+
#FMTDAT, #PRSERR
#FMTBUF , FMTL

TSTE02

P T

A We W

" wE mp wE wp %l AN

-

e e

Point
Store

Store
Store

Store

Store

Store

at binary buffer
ynparsed string

option flags
message flags

device name leng
addr

daestination Ethernet addr

individual SAP

as a word

Store

qroup SaP

as a word

Store

destination SAP

as a word

Store

CTL field

length
address

th
ess

Store SNAP protocol address

Format data into ASCII
Log the text

DECnet-R$X Programmer's Reference Manual

4.4.7.2 Ethernet Example

This program uses Ethernet frame format. You can use the program to remotely
trigger a QNA controller.

.TITLE TRGQNA - Trigger QNA
JIDENT /X1,01/
LNLIST BEX

Copyright (C) 1983, 1985, 1986, 1987 by
Digital Egquipment Corporaticn, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
incliusion ©of the above copyright notige. This software or any other
copies therecf may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporatien,

Digital assumes no responsibility for the use or reliability of its
software on eguipment which is not supplied by Digital.

P T e A TR R TR TR TR R LT 1)

.SBTTL Program Description

This program enables remote triggering of & properly configured
PDP-11 Q-bus system with a DEQNA that is running RSX-11§ with DECnet.

- This enables an operator to load a new system image into a running
system without manually rebooting the system.

If the system hangs or crashes the system will request s reboot
from the network via the DECQNA,

Notes and Cautions:

- The processor board must be either a RDF11-BE/BF with the KDF11-B2
bootstrap ROM update kit installed or a KDJ11l-B.

-~ The bootstrap switches (1-8) on the processor board must be set so
that the boot reguest will be directed to the DEQNA.

e d WE %y wp s te wd e m W MR W we T4 WE U MR WS Wa WA wp N4 W N

Switch
B7654321
*»x01010¢0. . . . DECNA unit O
xx 010101, . ., ., DEQNA unit 1
0 xxx ¥ x XX Console terminal is not an ANSI mode scope
1X%X % XX %X .., .Consele terminal is an ANSI node scope
*x0xx ¥xxxx. .. . Loop self test but no memory diagnostics
¥ 1 xx xxxx

Loop self rest and memory diagnostics

Instructions for building the task:

R L L

(continued on next page)

DLX Ethernet Programming Facilities 4-83

STMLN

.WORD

0

= _-STMBUF

sC.CHRL = timer value (Off)
;Length for set characteristics

; DPB for write to terminal

H
CuUTIO:

RCVBUF:
RCVLN

I0sB:

ASNERR: .ASCIZ
OPNERR: .ASCIZ
DSTERR: .ASCIZ
RCVERR: .ASCIZ
STMERR: .ASCIZ
REBOOT: .ASCIZ
’ .EVEN
LINE: .ASCII
LINL =
EVEN
,SETTL
START: ;
ALUNSS
ALINSS
BCC
MOV
CALL
BR
; Open the line
iOS:

20%:

4-84

QIOWS IC.WVE,
.BLKB 100

= .-RCVBUF
-BLEW 2
.SBTTL Text St

Information /

MOV
MOV
MOV
QIQWss
BCS
MOVE
BPL

MoV
CALL
BR

TILUN,2,,,.<0,0,40>

;Receive buffer
;Length of receive buffer

;1/0 status block for QIOs

rings

Error Messages

/TRG - Unable to assign LUN/

/TRG - Unakle to open line/

/TRG - Unakle to set protocel type or sanity timer on/
/TRG - Unable to request receive data/

/TRG -~ Unable to set sanity timer off/

/TRG - *** Remote trigger received -- system re-booting ***/
SONA-Q/ tLine definition for Set Characteristic
.~LINE ;Line definition length

Main Line Code

$TILUN,4"CO,#0 ;Assign LUN to terminal
#DLXLUN,#"NX,#0 ;Assign a LUN to DLX

10% $If CC, ok

$ASNERR, RO ;Print assign LUN errcr msg
PRINT HES

999s ; and exit

#I10SB,R3 1Ger address of 1/0 status block
#LINE,RO :Get address ¢f line to be opened
#LINL,RI ;Get length of line descriptor
#I0.X0P,#DLXLUN, %1, ,R3, ,<R0O,RL, 4400>

208 :I1f CS, directive error

(R3},R1 ;Get "OPEN"T QIO status

205 ;Plus, is ok

#OPNERR, RO sPrint open arror msg

PRINT -

9gs ; and exit

Enable conscle carrier protccol type and set sanity timer on

DECnet~-RSX Programmer’s Reference Manuzl

Note that the QMNA driver will refresh

(AL TR T

the timer as long as it is running

0%:
MoV $I08B,R3 ;Get I/0 status block address
MOV #DSTRBUF, R4 :Get address of characteristics buffer
MOV #DSTLN, RS ;Get length of characteristics buffer
CALL SETCHR :Set characteristics
BCC 408 :1f CC, success
MOV #DSTERR, RO :Print set characteristics error msq
CALL PRINT HP
BR 993 :And exit
r
; Hang a receive to look for trigger message
408«
QIOWSS #I0.XRC, #DLXLUN, #1, , #1088, ,<#RCVBUF, #RCVLN>
BCS 508 :I1f CC, directive success
TSTB I0SB 1Was the receive successful?
BPL 60%
50%: .
MOV #RCVERR, RO ;Print receive error msg
CALL PRINT
BR 9495 1And exit
!
: Make sure message received is trigger message
605:
MoV #RCVBUF, RO :Get the message address
MOV I0SB+2,R1 ;Get the message length
CMP Rl ,#5 ;1s the message minimum length?
BLT 405 +1f LT, no - try for another message
CMPB §6, (RO + ;1Is this a boot message?
BNE 40% :1f NE, no - try for another message
MOV #REBOOT, RO :Print re-boot message
CALL PRINT Feve
: Set the sanity timer off
MOV #I0SB,R3 :Get 1/0 status block address
MOV #8TMBUY R4 :Get address of characteristic¢ s buffer
MOV #STMLN, RS iGet length of characteristics buffer
CALL SETCHR :1Set characteristics
BCC 708 :If €C, success
MOV #STMERR, RO iPrint set characteristics er ror msg
CALL PRINT HIP
BR °8s tAnd exit
; Switch to system state and jump to system boot
’
70%5:
CALL $EWSTK, 998 ;Switch to system state
JMP R#173000 ;Activate system boot

ne

DLX Ethernet Programming Facilities

{continued on next page)

Error exit

99S5:
QIOWSS #I0.XCL,#DLXLUN, #1 sClose the open line
2995
EXITSS :Exit the task
; Set characteristics routine
SETCHR:
QIOwWsSsS #10.XSC,§DLXLUN,#1,,R3,,<R4,R5> ;Issue set characteristics
BCS 10§ ;1f C8, directive error i
TSTB {R3) 1Any problem with the QIOQ? £
BMI 108 1 IF MI, yes N o
CMP $CS.SUC,6(R4) ;Any problem with characteristics?
BNE 10% :1f NE, yes
TST (PC)+ :Indicate success
10%: SEC ;Iindicate error
RETURN ;Return to caller
; Print message routine
PRINT: ,
MOV RO, QUTIO+Q, IOPL ;8ave message address in DPB
5§
TSTB (RO}~ :8earch for end of message .
BNE 55 ; (terminated by null) i
DEC RO ;Back up to null o
SUB OUT10+Q.10PL,R0 :Compute length of message had
MOV RO,QUTIO+Q,I0PL+2 ; and save in DPB
DIRS #OUTIO ;Print error message
MOV #40,00TIO+Q.I0PL+4 :Set up carriage contrel
RETURN tReturn to caller
.END START
BEQ 20% : 1f EQ, no ~ L.SIZE will get used
MoV .SI1ZE, .MSLEN ; Else, stuff size into message len
BR 20%
10%: ADD #2,(s5P) ; REJECT TRANSITION
208: RETURN E
: Check if SAP is in range £
305: CMP .PNUMB, #3177 : Is SAP in range?
BHI 403 ; 1f H1, no
TST . PNUMH ; Is it?
BNE 40% ; If NE, no
8T (PCY+ ; SUCCESS (C=0}
40%: SEC
RETURN
.DSABL LSB
.SBTTL . STTST -~ Set TEST message type
LSBTTL . STUIF =~ Set Ul message type
.SBTTL . STXIF - Set KID message type
4-86 DECnet-RSX Programmer’s Reference Manual

STTST: MOVB
MOV
MOV
RETURN
STUIF: MOVB
MOV
MOV
RETURN
STXID: MOVE
MOV
MOV
RETURN

.SBTTL

STSNPL:
STSNP2:
STSNP3:
STSNP4:
STSNP5:

MOVB
MOVB
MOVB
MOVB
MOVE
RETURN

+SBTTL
«SBTTL

.ENABL
BIT
BNE
MOV
MOV
MOV
RETURN

STPADD:

STEADD: BIT
BNE
MOV
MOV
MOV
RETURN
.DSABL

10%:

-SBTTL

STHADL:
STHADZ:
STHAD3:
STHADG 3
STHADS:
STHADSG:

MOVEB
MOVE
MOVE
MOVE
MOVE
MOVB
RETURN

-SBTTL
.SBTTL

#sCsTSEF, .CTL
#TSTMSG, .MSADR
.SIZE, .MSLEN

#scsurr, .CIL
#UIFMSG, .MSADR
.SI1ZE, .MSLEN

#SCSXIF, .CTL
#XIDMSG, .MSADR
#XIDLEN, .MSLEN

STSNPn
LHXBYT, .SNAP
LHXBYT, .SNAP+1
JHABYT, .SHAP+2

.HXBYT, .SNAP+3
.BXBYT, .SNAP+4

. STPADD

LSB

- Set SNAP protocol ID (byte #n}

- Set physical address
. STHADD - Set hardware address

$<QP.NOD!OP.PHY>,0PTFLG ;

105
»HXADR, . PHADR

¥

.HXADR+2, .PHADR+2
.HXADR+4, .PHADR+¢

#<OP.PHY !OP.NOD>,0PTFLG

10%
.HXADR, . HWADR

LHXADR+2, . HWADR+2
.HXADR+4, .HWADR+4

LSB

Already specified remote address?

; I1f NE, yes ~ all done

Already specified remote adéress?

. STHADn - Set hex address (byte §n)

LJHXBYT, .HXADR,

LHXBYT, .HXADR+1
.HXBYT, .HXADR+2
HXBYT, .EXADR+3
.HXBYT, . HXADR+4
JHXBYT, .HXADR+S

. STHXN
. STHXA

DLX Ethernet Programming Facilities

~ Convert & digit to hex
- Convert an alpha to hex

(continued on next page)

4-87

STEXN:

STHXA:

10%:
208%:
30%:

STEXD1:

STHXADZ:

10s5:

PRSDMP :

MOVEB
SUB
MOVB
RETURN

MOVE
CMPB
BLO

CMPE
BLOS

-ADD

BR
SUB
MOVB
RETURN

«SBTTL
.SBTTL

.ENABL
MOVB
ASL
ASL
ASL
ASL
MOVE
BR
MCVB
BICB
BISE
RETURN
.DSABL

.SBTTL

CALL
MOV
MoV
MOV
MOV
MCV

MOV
MOV
MOV
MOV
MOV

.PCHAR,RO : Get digit character
#'0,RO : Convert tec digit value
RO, .HXDIG : and store

.PCHAR,RO ; Get alpha character
RO, %A : Is it & hex digit?

108 : If LO, no

RO, &'F s Is it?

205 ; If LOS, yes

#2,(sP) ; Reject transition

305 : and return
$<'A-~10.>,RO ; Convert to value

RO, .HXDIG

. STHXDY - Set 1lst hex digit

. STHXD2 - Set 2nd hex digit

LSB

.HXDIG,RO

RO

RO

RO

RO

RO, .HXBYT

103

.HXDIG,RO

$~C17,R0

RO, .HXBYT

LSB

. - PRSDMP - Dump parse data on syntax error
SSAVAL

$FMTDAT, RS Point at binary buffer
R3,(R5)+ Store unparsed string length
Re, (RS)+ address

OPTFLG, (RS)+
MSGFLG, (RS }+

.DEVNM, (R5)+
.DEVNM+2Z, (R5)+
.NDADR, (R5) +
LNDADR+2, {R5)+
MDADR+4,{(RE)+

L DR T T

we me Ny W WE

Store option flags
Store message flags

Store device name length
address
Store destination Ethernet addr

DECnet-RSX Programmer's Reference Manual

MOVE ISAP, (RS}+
CLRB {RS)+
MOVB .GSAP, (R5)+
CLRB {R5)+

MOVB .DSAP, (R5)+
CLRB {RS)+

MOV .CTL, (R5}+

MOV #.SNAP, (R5)+
FORMAT #FMTDAT, #PRSERR
LOG $FMTBUF, FMTL
RETURN

.END TST302

DLX Ethernet Programming Facilities

b HE e wd W W

-

. wr

Store individual SAP
as a word

Store group SAP
as a word

Store destination SAP
as a werd

Store CTL field

Store SNAP protocol address

Format data into ASCII
Log the text

5

5.1

DLX Point-to-Point and Multipoint
Programming Facilities

The Direct Line Access controller (DLX) gives programs a direct interface to the
data link, bypassing the standard DECnet user interface. With DLX, you can com-
municate with DECnet or non-DECnet based systems. Because DLX does not
offer higher-level DECnet services, such as routing and guaranteed delivery, it
can give high performance in network applications. DLX also lets you build cus-
tomized user-Jevel protocols that best suit your applications.

To use DLX, vou issue quened input/output (QIO) calls to the NX: device. Your
DLX program car communicate with 2 DLX program on an adjacent DECpet-RSX
or non-DECnet node, using the DECnet DDCMP protocol. Your DECpet-RSX
node can simultanecusly ron multiple DECnet and DLX tasks, each possibly com-
municating with different nodes,

DLX is automatically built for RSX-11M-PLUS systems; it is optional for RSX~
11M. It is also optional for RSX-11S systems, but is required for R§X-115 down-
line loads and up-line dumps.

Prerequisites for Tasks Using DLX

Before your system runs 2 DLX program, the DLX process must be loaded and the
circuit set.

The person in charge of network or system management installs the network,

usually by executing a command file that contains the command for loading DLX.
When DLX is loaded, it resides in the comnmon partition NT.DLX.

5-1

5.2

5-2

The network manager also sets the circuit, either by answering Yes to the
NETGEN question that asks about marking the circnit for load, or by issuing the
Network Control Program (NCP) SET LINE command. The circuit owner must be
DLX. For information on using NCP to set the circuit, refer to the DECnet-RSX
Guide to Network Management Utilities.

Writing DLX Programs

DLX programming requires a thorough knowiedge of MACRO-11 assembly lan-
guage and ¢xperience in writing real-time application programs.

Since DLX bypasses the higher levels of DECnet, you lose the services at those
levels and must therefore include them in your application. Your programs must
provide the following:

Flow control DLX does not support flow control for data transfer.
The DLX programs that run on different nodes must
therefore synchronize with each other before transfer-
ring data_ If the tasks are unsynchronized, data can be
lost.

Error recovery The DLX software reports errors, but your program
must include error recovery procedures.

Data segmentation When transtnitting data, your program must segment it;
' the buffer size must be appropriate 10 the controtler
devices on the communicating systems. For information
on appropriate buffer sizes, consult your network man-
ager.

Note that all incoming and outgoing DLX messages are buffered in a shared net-
work buffer pool. DECnet and other DLX tasks also use these buffers. Depending
on the requirements of the tasks sharing the buffers, you may want to increase the

‘size and/or number of buffers to maintain good throughput performance. For

information on displaying and setting buffer sizes, refer to the DECnet-RSX net-
work management documentation.

Also note that you must use the /PR:0 switch to task build your DLX programs.

DECnet-RSX Programmer’s Reference Manual

5.2.1 DLX Resources

5.3

DLX provides macros and QIOs to use in your application.

The DECnet macro library, NETLIB.MLB, defines the offsets and macros that DLX
QIOs use. During NETGEN, this library is transferred to your system. The defini-
tion macro DLXDF$ contains definitions for offsets and macros.

Your program must issue .MCALL statements and explicitly invoke the macros, as
in the following example:

MCALL DIXDF$; extract from macro library

DLXDF$; define DLX symbols

DLX QIO functions perform services your application will require. The QIOs for
muliipoint and peint-to-point programming are:

I10.XOP Open a circuit for your program. This gives your program
access to the controller.
10.XIN Initialize the circuit after a device error.
10.XTM Transmit a message.
I0.XRC Ready the circuit to receive a message,
10.XHG Hang up the circuit without closing it.
10.XCL Close the circuit.
DLX QIOs

DLX requests conform to normal standards for RSX-11 QIOs, including logical
unit numbers (LUNs), event flags, I/O status blocks, asynchronous system traps
(ASTs), and parameter lists. According to RSX-11 standards, you can use any one
of the three macro formats (see Chapter 2). You can use the QIO wait option
(QIOW§) to suspend execution of the program until the call completes.

The rest of this chapter describes the DLX QIOs. The descriptions are in the order
in which you will probably use the QIOs.

DLX Point-to-Point and Multipoint Programming Facilities 5-3

10.XOP

10.XOP
(Open a Circuit)

5.3.1 10.XOP — Open a Circuit

Use:

Issue this QIO 1o open a circuit for DLX transmission and reception. This QIO
associates the LUN you specify with the circuit you specify. The circuit is then
implicitly initiated, and the DDCMP protocol is started.

Before your application issues the IQ.XOP call, the circuit owner must be set to
DLX; the circuit must be either ON or in SERVICE state, and the LUN must be
assigned to NX:. With devices that implement the DDCMP protocol in software,
suchasPL11, DUP11, DZ, DHU, and DHV devices, the IO XOP function does not
complete until the task at the other end of the circuit also performs an open or ini-
tiatize function.

Format:

QIOS 10.XOP,lun [efn), [status],[ast}, <pl,p2 p3>

~ Arguments:
10.X0P
is the function code that opens a circuit.

lun

is the logical unit number associated with the circuit.

efn

is an optional event flag number set wheﬁ the call completes.

status

is the address of an optional 2-word status block. On completion, the block con-

tains the QIO completion status in the low-order byte of the first word (see under
‘‘Completion Status'’).

5-4 DECnet-RSX Programmer’s Reference Manuai

10.XOP

ast

is the entry point into an optional user-writien AST routine to execute after the
QIO completes.

pl
is the address of an ASCII string that identifies the circuit to open.

The format is:

dev-cti[-circuit]| tributary)

where dev is the device mnemonic, ctl is the decimat value for the controller num-
ber, circuit is the decimal number of the circuit you are opening, and tributary
defines the decimal number of the multipoint tributary with which to communi-
cate.

b2

is the length of an ASCII string that identifies the circuit to open.

p3

is a word argument that specifies the timeout value. This value specifies how long
to wait to receive a transmitted message. The low-order byte of the word desig-
nates the receive timeout value as follows:

‘timmeout = (for no receive tisner.
timeout = <n>

where n is the timer value in seconds. The timer value n causes the timeout to
have a range of n-1ton.

Use a zero {0) in the high-order byte of this word.

DLX Point-to-Point and Multipoint Programming Facilities 5-8

|°.X°P w ﬁf %

Compietion Status:

18.SUC The circuit opened successfully.
(1)

177736 The specified LUN is already in use.
IE.ALN .

(-34.)

177776 The LUN is not assigned to NX:.
IE.IFC

2)

177646 Either you identified the circuit incorrectly or it is not in the
IE.NSF system.
(-26.)

177760 The circuit you specified is not available for DLX use.
IE.PRI
(-16.)

177757 The specified circuit is already in use. £y
1E.RSU Rl
(-17.)

5-6 BECnet-RSX Programmer’s Reference Manual

10.XIiN

10.XIN
(Initialize the Circuit)

5.3.2

Use:

10.XIN — Initialize the Circuit

Issue this QIO to reinitialize a circuit after a fatal device error. When you use this
QIO, you must reset the mode and timer values.

With devices that implement the DDCMP protocol in software, such as DL11,
DUF11, DZ, DHU, and DHY devices, the I0.XOP function does not compilete
until the task at the other end of the circuit also performs an open or initialize
function.

Format:

QIO$ 10 XIN,Jun fefnl. [status) (ast], < pl >

Arguments:

I0.XIN

is the function code that initializes the circuit.

fun

is the logical unit number that you assigned when you opened the circuit.

efn

is an optional event flag number set when the call completes.

Status

is the address of an optional 2-word status block. On completion, the block con-

tains the QIO completion status in the low-order byte of the first word (see under
“Completion Status’”).

DLX Point-to-Point and Multipoint Programming Facilities 57

{O.XIN

ast

is the entry point into an optional user-written AST routine 10 execute after this
call completes.

pl

is the timer argument. Use the format for the I0.XOP argument p3 (Section
5.3.1).

Completion Status:

1s.SUC The circuit was successfully initialized.

(1)

177761 The initizlization attempt was aborted. Either 2 hardware device
IE.ABO error occurred, a user issued a hang-up QIO, or the circuit was
(~15.) not hung up.

177776 The LUN is not assigned to NX:.
IE.IFC

-2.)

177733 No open circuit has the specified LUN.
IE.NLN

(-37.)

5-8 DECnet-RSX Programmer's Reference Manual

10.XTM

10.XTM
(Transmit a Message on the Circuit)

5.3.3 10.XTM — Transmit a Message on the Circuit

Issue this QIO to transmit 2 message. IO.XTM transfers the data from the buffer
whose address and length you specify in pf and p2 to 2 network buffer for trans-
mission. Before transmitting, you must open the circuit; before transmitting after
a device error, you must initizlize the circuit.

Format:

QIOS 10 XTM,lun fefn], [status] [ast}, < p1,p2>

Arguments:

IC.XTM

is the function code for transmitting 2 message.

lun

is the logical unit number associated with the circuit on which to transmit.
e

is an optional event fiag number set when the call completes.

status

is the address of an optional 2-word status block. On completion, the block con-

tains the Q1O completion status in the low-order byte of the first word (see under
“Completion Status’’).

ast

is the entry point into an optional user-written AST routine to execute after this
QIO completes.

bl
is the address of the user buffer that contains the message to transmit.

p2

is the length of the message to transmit, excluding the DDCMP header and
checksum.

DLX Paint-to-Point and Multipeint Programming Facilities 5-9

I0.XTM

Completion Status:

IS .SUC
M
177761
IEABO
(-15.)

177775
IE.DNR
-3.)
177776
IE.IFC
(-2)
177733
IE.NLN
(=37.)
177772
IE.SPC
(-6.)

5-10

The message was successfully transmitted-

The transmission was aboried because you of the remote user
issued a hang-up QIO or because an unrecoverable error
occurred in the hardware device. When a message transmission
completes with an IE.ABO code, the circuit is hung up. You
must either initialize or close and reopen the circuit before
using it again.

The hardware device was not ready. The circuit was hung up
and not reinitiatized.
The LUN is not assigned ro NX:.

No open circuit hias the specified LUN.

The transmit buffer is too large.

DECnst-RSX Programmer’s Reference Manual

T | 10.XRC
Y 10.XRC |
(Receive a Message on the Circuit)

5.3.4 10.XRC — Receive a Message on the Circuit

issue this QIO to receive a message from the remote node. The circuit must
already be initialized. You must issue IO, XRC to get any data that a remote node
sends. If 4 remote node sends data, but you have not issned I0.XRC, you get an
error report when you next issue this QIO.

Format:

QIOS 10.XRC, lun [efn). [status),[ast), <pl,p2>

Arguments:

IO.XRC

is the function code for receiving a2 message.

Iun

is the logical unit mumber associated with the circuit on which to receive the mes-
sage.

efn
is an optional event flag number set when the call completes.
status

is the address of an optional 2-word status block. On completion, the block con-
tains the QIO completion status in the low-order byte of the first word (see under
“Completion Status’’).

ast

is the entry point into an optional user-written AST routine to execute after this
call completes.

1
is the address of the user buffer to receive the message.

DLX Point-ic-Point and Multipoint Programming Facilities 5-11

10.XRC

p2

is the length in bytes to allocate for the receive buffer. The length of the received
message cannot exceed the size of the system buffer, regardless of the length that

you specify for p2.

Completion Status:
1s.sUC You successfully received a message from the remote node. The .
a) second word of the I/O status block contains the number of

bytes you received.

177761 The receive function was aborted. Eithet you or the remote user
IE.ABO issued a hang-up QIO or an unrecoverable hardware device
~15.) error occurred. When a receive is aborted, the circuit is hung

up. You must either initialize or close and reopen the circuit
before using it again.

177763 Either a message was received before a receive QIO was issued

IEDAO and the data was lost or the user buffer was too small, and the

{-13) message was truncated. The user buffer length is in the second
word of the 1/O status block.

177775 - The hardware device was not ready. The circuit was hung up

IE.DNR and not reinitialized,

(-3.)

177776 The LUN is not assigned to NX:.

IE.IFC .

2) |

177733 . No open circuit has the specified logical unit number.

IE.NLN

{~37.)

177641 A timeout condition occurred. No message arrived within the

IE. TMO timer interval that you specified when you opened or initialized

(-95.) the circuit.

5-12 DECnet-RSX Programmer's Reference Manuai

10.XRC

177774 An error occurred on the circuit. The second word of the I/O
YE.VER status block contains the error code. The error codes are as fol-
(~4.) lows:

100361 DDCMP transmit error threshold exceeded
100362 Operation aborted

100363 Message received without receive pending
100364 Start received

100366 Circuit physically disconnected

100370 General error

100374 DDCMP reply timeout threshold exceeded
100376 DDCMP receive error threshold exceeded

DLX Point-to-Point and Multipoint Programming Facilities 5-13

10.XHG

I0.XHG
(Hang Up the Circuit)

5.3.5 [0.XHG — Hang Up the Circuit
Use:

This QIO stops operations on a circuit. 10.XHG does not close a circuit, but to
resume operations, you must either initialize or close and reopen the circuit.

Format:

QIO$ 10.XHG lun, [efn], [status).jast)

Arguments:
I0.XHG

is the function code that hangs up the circuit.

lun

is the logical unit number associated with the circuit.

efn

is an optional event flag number set when the call completes.

Status

is the address of an optional 2-word status block. On completion, the block con-
tains the QIO completion status in the low-order byte of the first word (see under
“Compietion Status’).

ast

is the entry point into an optional user-written AST routine to execute after this
cali compietes.

5-14 DECnet-RSX Prograrnmer's Reference Manual

10.XHG

Completion Status:

18.5UC This circuit was hung up.

1

177776 The LUN is not assigned to NX:.

IE.IFC

-2}

177733 No open circuit has the specified LUN.
ST ~ IE.NLN
gt (~-37)

DLX Point-to-Point and Multipoint Programming Facilities 5-15

10.XCL

10.XCL
(Close the Circuit)

§.3.6 [0.XCL — Close the Circuit

Use:

Issue the 10.XCL call to close an open circuit and stop the DDCMP protocol. If
you have a dial-up connection, the circuit will hang up only after the close com-
pletes.

Format:

QIOS$ 10 XCL Jun,[efn), [status] {ast]

Arguments:

I10.XCL

£
%

is the function code that closes the circuit. L

lun

is the logical unit number associated with the circuit.

efn

is an optional event flag number set when the call completes.

status

is the address of an optional 2-word status block. On completion, the block con-
tains the QIO completion status in the low-order byte of the first word (see under
“Completion Status’’).

ast

is the entry point into an optional user-written AST routine to execute after this
call completes.

5-16 DECnet-RSX Programmer's Reterence Manual

- 10.XCL

Completion Status:

18.8UC ‘The circuit was successfully closed.
(1)
177776 ‘The LUN is not assigned to NX..
IE.IFC
-2.)
177733 No open circuit has the specified LUN.
ST IE.NLN
S (-37.)

DPLX Point-to-Point and Multipoint Programming Facilities 517

5.3.7 Programming Examples

The following two programs use DLX to send and receive data. These examples
are also included in your tape or disk kit.

5-18 DECnet-RSX Programmer’s Reference Manual

5.3.7.1 Transmit Example

The XTS program reads data from a user or an indirect command file and trans-
mits the data to the cooperating XTR program on a remote node.

.TITLE XIS - DLX TRANSMITTER
LIDENT /V01.01/

Copyright (C) 1983, 1985, 1986, 1587 by
Digital Equipment Cocrporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
oniy in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and shoulé not be construed as a commitment by Digital Egquipment
Corporation.

Digital assumes no responsibility for the use or rellability of its
software on equipment which is not supplied by Digital.

The XTS program transmits data across an "error free” circuit to a
receiver task. The data can be read in from a user at a terminal or
or from an indirect command file. The receiver task, XTR, echoes the
received data back over the circuit.
You must run this program on a system that supports write break-throughs,
To assemble, use the following command string:

MAC XTS,XTS/-SP/LI:TTM=IN:[130,10]NETLIB/ML, IN:{200,2001X7S
To task build, use the following command string:

XTS/PR: 0, XTS/~SP=XTS, IN: (130, 10 INETLIB/LB:GCL
/

STACK=30
UNITS=4
ASG=TI:l:2:3:4
TASK=...XTS
//

Note: The IN: device must be the DECnet distribution device
after the PREGEN procedure (if any) has been performed.

[e v R TR VIV DR DR DR DI DI DI TR LT DR LU S St il S PRI T

The following is an example of the XTS-XTR dialog:

>XTS

LINE: DMC-0

XTS>THIS IS A TEST OF XTS-XTR
THIS IS & TEST OF XTS-XTR

e we wr 4w s e

{continued on next page)

DLX Point-to-Peint and Multipoint Programming Facilities 5-19

P T TR T T T

e vy

Event

1w wp

LTI

khxdk

DPBs

s Ekn

WRITE:

e ws e

ERDPB:

REC1:
REC2:

5-20

XTS>TESTING
TESTING

XTS»~Z
»

«SBTTL

~MACRO
MOV
CALL
. ENDM

SBTTL

MCALL
~MCALL

XTR must be running on the remote system in order to receive the message
from ¥TS and return an echo,

LOCAL MACROS

EPRINT ERRMSG
#ERRMSG, RO
SEPRINT
EPRINT

MACRO CALLS

QIOWS,QI0S,QIOWSS , ALUNSS ,EXITSS ,EXSTSS, FSRSZS, ASTXSS
GCLS .GCLDF$,CALLR, DLXDF$

DLXDFS$

.SBTTL CONSTANTS

LUN assignments:

tbefine DLX function codes

TILUN=1 LUN for TI

CHNLUN=2 ;LUN for error free circuilt
ERRLUN=3 ;LUN for errors

CMDLUN=4 sLUN for command lines

flag assignments:

TIEFN=1 :Event flag for termiral I/0
CHNEFN=2 t1Event flag for circuit
ERREFN=3 sEvent flag for error messages
CMDEFN=4 :Event flag for command lines

.SBTTL DATA

GCLDF3

bDefine GCL parameters

CMDLUN, CMDEFN, <XTS>,CMDBUF, 80.

Define FSR size

FSR52% 1 ;Room for 1 file {(GCL)
QIOWS IO.WVB,TILUN,TIEFN,,,,<0,0,40>

QlOWS I0,WVB,ERRLUN,ERREFN,,,,.<0,0,40>

QI0% 10, XRC,CHNLUN, , , R15B, RECAST , <R1BUF,B0.>

Q103 10.%RC,CHNLUN, , ,R2SB, RECAST, <RZBUF,B80.>

DECnet-RSX Programmer's Reference Manual

CLOSE: QIOWS I0.RCL,CHNLUN, CHNEFN

; Exit-with-status word
EXSTAT: .BLKW 1 :Exit status
; Circuit 1/0 status block
CENSB: .BLKW 2
; AST saved 1/0 status block
10s8: .BLEW 1
; Circuit receive I/C status blocks
R1SB: .BLKW 2 ;Status of first receive
.WORD RI1BUF :Address of buffer
.WORD HNGRC1 ;address of receive posting routine
RZ8B: .BLEW 2 :Status of second receive
JHORD R2BUF ;Address of buffer
JWORD HNGRC2 ;1Address of receive posting routine

puffer for command line

~e v me

CMDBUF: .BLEB 8z.
.EVEN

Circuit receive buffers

R TIETY

RiIBUF: .BLKB 80.

RZBUF: ,BLKB a0.
.EVEN

I

TEXT STRINGS:

khkk

Header for error messages

Bhwe wr e we v s

TSEM: .ASCIZ /XT§ -- /

Temporary prompt

ROMPT: .ASCIZ <15»<]12>/LINE: /

Error messages

as ws wa MY me e w

LENABL LC

.NLIST BEX
GCLERR: .ASCIZ /Command line read error/
NSFERR: .ASCIZ /No such command file/

DLXERR: .ASCIZ /DLX not loaded/

OPNERR: .ASCII /Unable to open line -- /
BUFCPN: .BLKB 7

XMTERR: .ASCII /Error transmitting data -- /
BUFXMT: .BLXB 7

RECERR: .ASCI! /Error receiving data -- /

{continued on next page)

DLX Point-to-Point and Multipoint Programming Facilities 5-21

BUFREC: .BLKB 7
.LIST BEX
.EVEN

.SBTTL XTS - XTS5 MAIN LINE

.
XTS -- Main line of XTS code

P

XTSEP::
MOV #EXSSUC, EXSTAT :Assume exit with status

Assign LUN to circuit

ne e we

ALUNSS #CHNLUN, #"NX, #0

BCC 13% ;I1f CC, all okay
EPRINT DLXERR :Else, assume DLX not loaded
BR EXIT ;and leave
; Prompt user for line ID
108: MOV SCLPMT, - {SP) ;Save current prompt
MOV BPROMPT, SCLPMT ;Prompt string
CALL GCL 1Get a command line
MoV {SP)+,SCLPMT ;Restore prompt
BCS EXIT ;1 CS, assume EOF
TST RS ;Blank line?
22Q 10% ;1 EQ, yes - try again
; Open access to the line
’ QIOWSS #10,XCP, #CHNLUN, #CHNEFN, , #CHNSB, , <R , RS>
BCS 15% ;IF CS, error
MOVB CHNS3,R1 :Successful?
BPL 203 ;1f PL, yes
MOV #BUFOPN, RO 1Else, get buffer addéress
CLR R2 ;Zero suppression
CALL SCBOMG sConvert number
CLRB (RO) tMake string ASCIZ
15%: EPRINT CPNERR ;0pen error
BR EXIT
; Hang an asynchronous read on line
20$: CALL HNGRG)
CALL HNGRCZ
BCS BXIT +I1f CS, error
; Get ccmmand line
505: CALL GCL ;Get command line
BCSs EXIT :1£ CS, assume ECF
TST RS ;Empty line?
BEQ 308 :1f EQ, yes - try again
; Transmit the buffer
b
CALL RMIT sTransmit the buffer
BCC 308 :1f CC, get next message
h
5-22

DECnet-RSX Programmer’s Reference Manuai

: Close the line

EXIT: DIR$ §CLOSE

+ Exit XTS
' EXSTSS EXSTAT ;Try to exit-with-status
EXITSS ;Else, just exit

.SBTTL GCL - GET COMMAND LINE
+

**_GCL-Get command line

-

This routine reads a command line for XTS. The input can be from

TI: or from an indirect command file. Return with carry set for error
or EQF.

Inputs:
None

Cutputs:
R4=address of command line
R5=size cf command line in bytes
Carry bit set/cleared

Glne ~s ~u we mp ma ws WE N4 Ra S we SE e N4 s

Effects:
R4,R5 modified
CL: GCLS :Get command line
MCV ,SCLIQS,RS sPoint to I1/0 status block
TSTB {RS) ;Ervor?
BGT 408 :1f GT, na
CMPE #1E.EOF, (R5) ;End of file?
BEQ 308 1I1f BEQ, yes - set C and return
CMPB #1E.ABQ, (R5) 1Was read killed by receive?
BEQ 308 +11f EQ, yes - return with C-SET
CMPB #1E .NSF, (R5) ;No such file error?
BNE 16% :if NE, no
EPRINT NSFERR ;Else, say so
CALL ECHO :Echo command line
CLR RS ;Set command line length to 0§
BR 8508 ;and return empty
105: EPRINT GCLERR ;Print get command line error
205 TSTB SCLEVL ;Terminal input?
BNE 308 . +If NE, nc - fatal error
BR GCL ;Else, prompt again
30§%: SEC ;Set carry
BR 568 ;and exit
:+ Get size and address of command line
40%: MoV $CLBUF,R4 ;Get address of command line
MOV 2{R5),RS 1Get size of command line
CLC : 1Set success
{continued on next page)

DLX Point-to-Point and Multipoint Pregramming Facilities §5-23

50%:
RETURN

;Return

LSBTTL HNGRCL - HANG ASYNCHRONOUS READ ON LINE

+

**_HNGRC2 -

Inputs:
None

Outputs:

Ma me NE WP W4 me e WE B W e

.ENABL
BNGRC1 :

CALL

DIRS

BCS

BR

HNGRC2:
CALL
DIRS
BCC
10%: EPRINT
SEC
208%: RETURN
.DSABL

.SBTTL

Fy

Inputs:
R4
RS

"on

~e e S RE me W wh

Cutputs:

AT “ne

MIT:
QIOWSS
. BCS
‘MOVEB
BPL
MOV
CLR
‘CALL
CLRB
10%: EPRINT
SEC
209%: RETURN

.SBTTL

+

Inputs:
(gp) =

L N L T

5-24

Data transmitted

**.RECAST - AST for circuit read complete

**.HNGRC1 - Hang an asynchronous read or the circuit

Receive hung on line

LSB

SSAVAL ;Save all registers

#REC] tHang receive

1035 :I1f CS, error

208 ;and continue in common code

$SSAVAL :1Save all registers

¥RECZ rHang receive

203 11f CC, success

RECERR ;Receive error
rIndicate failure
;Return

LSB

XMIT - TRANSMIT DATA CVER LINE

®x_¥MIT ~ Transmit datz over line

Address of data
Length of data

#I0.XMT,#CHNLUN, #CENEFN, , #CHNSB, , <R4, RS>

108 ;11f CS, error

CHNER,RL ;Successful?

208 ;1f PL, yes

#BUFXMT, RO ;Else, get buffer address
R2 ;Zero suppression

SCBOMG ;Convert number

(RO) :Make string ASCIZ
XMTERR :Transmit error

;Indicate failure

RECAST - AST FOR CHANNEL READ COMPLETE

Address of /0 status block

DECnet-RSX Programmer’s Reference Manual

Cutputs:

ECAST:
MOV (SP},108B
MOV R1l, (sP)
MOV 108B,R]
TSTB {R1)
BPL 108
CALLR EXIT
1C5: MOV 2(R}) ,WRITE+Q.IOPL+2

MOV 4(R1),WRITE+Q.10PL
DIRS FWRITE

CALL @6{R1)

MoV {8P)+,R]

ASTXSS

1. Another read hung on channel (if last receive succeeded)
2. Buffer read from channel is echoed on terminal

;S8ave I/0 status block address
:Save Rl

;Get 1/C status block address
:Successful completion?

:1f PL, vyes - write it out
+Else, cleose line and exit
;Set leng<h of buffer to writs
:Set buffer address

;Write buffer to terminal
:Hang another receive

:Restore R1

.SBTTL SEPRINT -- PRINT ERROR MESSAGE

+

**-SEPRINT- Print error message
g

Inputs:
RO=Address of message

Cutputs:

EXSTAT = EXSERR

48 A NE WE B4 e ME %E %s WA s wa e v he R

Effects:

¥No registers modified
.ENABL LSB

SEPRINT:
MOV R®O,-(5P}
MOV #EXSERR ,EXSTAT
MOV #44 ,ERDPB+Q.IOPL~+4
MOV #XTSEM, RO
CALL 58
MOV #53 ,ERDPB+Q, IOPL+4
MOV (SP}+,RC

PRINTZ2:

5%: MOV RO ,ERDPB+Q. IQOPL

10%: TSTB {RO)+
TNE 108
DEC RO
SUB ZRDPB+Q, IOPL,RD
MOV RO ,ERDPB+Q.I0PL+2
DIRS $ERDPB
MoV #40,ERDPB+Q.IOPL+4
RETURN

.DSABL LSB

Error message printed on TI;

Prints the specified error message prefixed by "XT§ -- ",
Sets the exit-status as "EXSERR",

;Save RO

:Set exit status to "ERROR"
;Set vertical format to prompt
;Get prefix message

:Print prefix

;Set vert. format to overprint
:Get address of message

;Set address of message

:Null byte?

;11f NE, no - keep locking

:Don't count null

:Calculate length of string

;Set length of string

:Issue directive

;Restore vertical format to normal

.SBTTL ECHO - ECEO COMMAND LINE

(continued on next page)

DLX Point-to-Point and Multipoint Programming Facilities 5-25

+

**-BECHO-Echo command line

This routine echoes the current command line if it came from an indirect
command file.

Inputs:
SCLEVL=Indicates command file level
$CLBUF=Pointer to start of ASCIZ command line

[H mn ~e W& %o Na wp %e e mb Ne g AR e s e e

Qutpuss:

LINE FEED appended to command line and command line echoed on TI:

Effects: '
RO, Rl medified

CHO: ’
TSTB $CLEVL ;Command from terminal?
3EQ 108 ;1f EQ, yes - don't echo
WOV SCLBUF, R0 :Point to command line
CALL PRINT2 ;Print line on error LUN

10%: RETURN

.END XTSEP

5-26 DECnet-RSX Programmer’s Reference Manual

5.3.7.2 Receive Example

Mo we wE M4 NE TR R4 WE 4 wE TE We s wé A VA WE We We NG Na Wh TO Ne W Wa e B8 OB N VS Ve wp Ne TE W WS N Ve NE VR NS NS WE wa e WS W Ny N4 e we

The XTR program uses DLX QIOs to receive data from the cooperating XTS task
on 2 remote node.

L.TITLE XTR - DLX RECEIVER
JIDEN? /VQl.0l/

Copyright (C} 1983, 1985, 1986, 1987 by
Digital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
cnly in accordance with the terms ©f such license and with the
inclusion of the above copyright notice. This software or any other
copies ' thereof may not be provided or otherwise made available to any
other person, No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

Digital assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by Digital.

The XTR program receives and echoes data over a c¢ircuit. Use it in
conjunction with the XTS program.
To assemble, use the follo#ing command string:

MAC XTR,XTR/=-SP=IN:{130,10INETLIB/ML,IN:[200,200]XTR
To task build, use the following commané string:

XTR/PR:0,XTR/~SP=XTR, IN:[130,10]NETLIB/LB:GCL

/

STACK=30

UNITS=3

ASG=TI:1:2:3

TASK=.., .XTR'

r/

Note: The IN: device must be the DECnet distribution device
after the PREGEN procedure (if any) has been performed.

The following is an example of the XTS-XTR dialeg:
>XTS
LINE: DMC-Q
XTS>THIS IS A TEST QOF XTS-XTR
THIS IS A TEST OF XTS-XTR

KTS>TESTING
TESTING

XT§>"Z
>

{(continued on next page)

DLX Peint-to-Paint and Multipoint Programming Facilities 5-27

up e ww W ws e wa

e e

wa we wE

Event

~a v

~y we W

sk
DPBs

L3 2]

EYRET 1Y

ERDPB:

REC1:
REC2:

5-28

>XTR

Start XTR before starting the remote XTS program. Start XTR as follows:

LINE: DUP-0

.SBTTL
MACRO
MOV
CALL
.ENDM
.SBTTL

.MCALL
MCALL

DLXDBFS

.SBTTL

Wwhen you are finished with these programs, abort XTR.

LOCAL MACROS
EPRINT ERRMSG
#ERRMSG, RO
SEPRINT
EPRINT

MACRO CALLS

QIOWS ,QIO0S,QIOWSS ,ALUNSS ,EXITSS,EXSTS$S,ASTXSS , WTSESS
GCLS,GCLDFS, DLXDFS, DLXBUF

:Define DLX function codes ané overnead

CONSTANTS

Receive buffer size

BUFSIZ = 90.

LUN assignments:

TILUN=1 ;LUN for TI

CHNLUN=2 sLUN for error-free circuit
ERRLUN=3 sLUN for errors

£fag assignments:

TIEFN=1 ;Event fleg for terminal I1/C
CHNEFN=2 ;Event flag for circuit

ERREFN=3 sEvent [lag for error messages
DONE=4 ;Event flag signaling completion

.SBTTL

GCLDFS

QIOWS

QICS
QlOs

DATA

Define GCL parameters

TILUN,TIEFN,<LINE>,R1BUF,BUFSIZ

I0.WVB,ERRLUN,ERREFN, ,,,<0,0,40>

I0.XRC,CHENLUN, , ,R15B,RECAST, <R1BUF ,BUFSIZ>
I1Q.XRC,CHNLUN, , ,R288,RECAST, <R2BUF ,BUFSIZ>

DECnet-RSX Programmer’s Reference Manual

XMT:
START:

CLOSE:

- s we

CHNSB:

QICWS
QIOWS
QIOWS

.BLKW

10.XTM, CENLUN, CHNEFN, ,CHNSB, ,<0,0>

ICG.XIN,CHNLUN,CHNEFN, ,CENSB

I0.XCL , CHNLUN, CHNEFN

Circuit [/0 status block

2

; Temporary location to contain IQOSR address

iOSB:
TEMP:

m-. ~ ™y

18B:

R28B:

LTI

RRRR

- wp wp

"k kk

A LR TR T

TREM:

Error

nt e ww

GCLERR:
DLXERR:
OPNERR:
BUFOPN:
XMTERR:
BUFXMT:

. BLEKW
+BLKW

.BLEW
.WORD
-WORD

+BLEW
.WORD
.WORD

DLXBUF
DLXBUF
.EVEN

Text strings:

LASCIZ

messages

.ENABL
+NLIST
LASCIZ
.ASCIZ
LASCII
.BLKB

-ASCII
.BLKBE

1
1

Circuit receive I1/0 status blocks

2
R1BUF
HNGRC1

2
R2BUF
HNGRC2

Circuit receive buffers

R1BUF,BUFSIZ
R2BUF, BUFSIZ

Header for error messages

/XTR -= /

LC
BEX

sStatus of first receive
sAddress of buffer
;sAddress of receive posting routine

:Status of second receive
+Address of buffer
;Address of receive posting routine

;First buffer descriptor
;Second buffer descriptor

/Command line read error/

/DLX not loaded/

/Unable to open line ~- /
?

/Error transmitting data -- /

7

{(continued on next page)

DLX Point-to-Point and Multipoint Programming Facilities 5-29

RECERR: .ASCI{ /Error receiving data -- /
BUFREC: .BLKB 7

.LIST BEX

.EVEN

.SBTTL XTREP -~ XTR MAIN LINE

+

XTREP -- Main line of XTR code

Inputs:
None.

outputs:

e wE ws we e Va4 WA ME N e

i

XTREP::
CLR- R3

; Assign LUN to circuit

ALUNSS #CHNLUN,#"NX,#0
BCC 10%
EPRINT DLXERR
BR 993
; Prompt user for line ID
10s: CALL GCL
BCS 9s3
TST RS
BEQ 10%

Open access to the line

LT TR

QIOWSS #10.XOP, #CHNLUN, #CHNEFYN,
BCS 1%
MOVB CHNSB,R1
BPL 203
MOV #BUFOPN, RO
CLR R2
CALL SCBOMG
CLRB (RO}
15%; EPRINT OPNERR
B8R $3%
; Kang an asyrchronous read on line
20$: CALL HNGRCL
BCS 993
CALL HNGRC?2
BCE 998
5-30

Loop &ll messages indefinitely.

Prompt user for line toc open and loop all received messages over the same

;I1f ¢C, all okay
:Else, assume DLX not lcaded
;and leave

:Get a command line

;If €S, assume EOF
;Blank line?
;1f EQ, yes - try again

, #CENSBE, , <R& ,R5>

;1f C8, error
sSuccessful?

;1f PL, ves

;Else, get buffer address
;Zero suppression
;Cenvert number

;Make string ASCIZ

:Cpen error

11f CS, error

1Hang seccond receive
+I1f CS, error

DECnet-RSX Programmer’s Reference Manual

line

LT

~r e W

WTSESS #DONE

99%: DIRS
EXITSS

#CLOSE

.SBTTL GCL - GET COMMAND LINE

+

**-GCL-Get command line

Inputs:
NONE

Outputs:
R4=ADDRESS OF COMMAND LINE

C-BIT SET/CLEARED

BEffects:
R4 ,RS MODIFIED.

Wk R W W WE WE W4 N NE we WE We wE e Wb WP MR

GCL3 GCLS

MOV $CLIOS,RS
TSTB (R5)
BGT 40%

CMEB #1E.ECF, (RS)
BEQ 3058

CMPB #1E.ABC, (R5)
BEQ i0s

10%: EPRINT GCLERR

205: TSTB SCLEVL
BNE 308
BR GCL
308 SEC]
BR 508
; Get size and address of command line
405: MOV $CLBUF, R4
MOV 2(R5)},R5
CLT
SQ5%:
RETURN

R5=SIZE OF COMMAND LINE IN BYTES

The rest is AST-driven. Pretend we are waiting for scmething.

iWait for completion {(never happens)

iClose down the line
1Exit

This routine reads a command line for XTR. The input can be from TI:
or from an indirect command file. Return with carry bit set for error or EOF.

:Get command line .
;Point to /0 status block
1Error?

;If GT, no

;End of file?
+If EQ, yes - set carry and return

;Was read killed by receive?
:1f EQ, yes ~ return with carry set

;Print get command line error
sTerminal input?

;1f NE, no - fatal error
;Else, re-prompt

rSet carry

rand exit

t1Get address of command line
:1Get size of command line
;8et success

:1Global return

LSBTTL HNGRCL - HANG ASYNCHRCONCQUS RIAD ON LINE

{continued on next page)

DLX Point-to-Point and Multipoint Programming Facilities 5-31

+

TE WA e W WE S TR WA W N

.SBTTL

HNGRCZ - HANG SECOND ASYNCHRONOUS READ

**-HNGREC - Hang an asynchronous read on the circuit
**-HNGRCZ - Hang second asynchronous read on circuit

Receive hung on line

inputs:
None.
Outputs:
.ENABL
HNGRC1:
DIRS
BCS
BR
HNGRC2:
DIRS
BCC
10§; .EPRINT
SEC
20%: RETURN
.DSABL
.SBTTL

+

P AR N VI TIE R s

x
—
3

108:
208:

-

-
2
.
’
.
h
.
’

5-32

inputs:

None

Qutputs:

'LSB

#REC1 ;Hang read
108 ;If ¢s, error
20% ;And continue in common code
#REC?2 ;Hang read
203 ;I1f£f CC return
RECERR ;Receive error
:Indicate failure
LSB

KMIT -« TRANSMIT DATA OVER LINE

**-XMIT ~ Transmit data over line

Data transmitted

MOV
DIRS
8Cs
MOVB
BPL
MOV
CLR
CALL
CLRB
EPRINT
SeC
MOV
RETURN
.DSABL

.SBTTL

Inputs:

RLl,-{8?) ;Save Rl

#XMT ;Transmit data

10% ;I1f €5, error

CHNSB,R1 ;Successful ?

208 +11f PL, ves

$BUFXMT, RO ;Else, get buffer address

R2 1Zero suppression

SCBOMG ;Convert number

{RC) :Make string ASCIZ

XMTERR ;Transmit error
t+Indicate failure

(SP)+,R1 tRestore Rl

LSB

RECAST - AST FOR CIRCUIT READ COMPLETE

**.RECAST - AST for circuit read complete

DECnet-RSX Programmmer’s Reference Manual

{8P) = ADDRESS CF 1/0Q STATUS BLOCK

Outputs: -
1. Another read hung on circuit
2. Buffer read from circuit is echoed over line

LI T TR TAE T T

RECAST:
MOV {8p), TEMP ;Save 10SB address
MOV Rr1l,(SP) :Save Rl
MOV TEMP,R1 sRL -» IQ0SB
TSTB {R1) . :Successful completion?
BPL 103 ;1f PL, yes - transmit message
TST R3 :Been through this code last time?
BNE 20% 1Yes - post receive and return
INC R3 sMark
DIRS #START ;Else, restart the line
BCC 5% :1f success, continue
107 :Else abort
58: TSTB CHNSB :Success?
BRL- 20% 1Yes - continue
10T ;1Else fatal error - abort
10%: CLR R3 ;Clear flag
MOV 2{(R1),XMT+Q.I0PL+2 :Set length of buffer to transmit
BEQ 20¢% :I1f EQ, no buffer to transmit?
MOV 4(R1},XMT+Q.IQPL :Set address of buffer
CALL XMIT :Echo message back over line
203%: CALL @6{R1) :Hang another receive on circuit
. ;Ighore any errors
MOV (sP)+,R1 :Restore R1
ASTXSS ;Exit AST

.S5BTTL S$EPRINT ~- PRINT ERRCR MESSAGE

+
**-SEPRINT-Print error message

prints the specified error message, with an "XTR -- " prefix.
Sets the exit-status as "EX$ERR".

Inputs:
RO=address of message

L wn w0 e T R WE W e w4 N4 we We Na we e

Cutputs:
Error message printed on TI:
Effects:
No registers modified
EPRINT:
MOV RrO,-{sP) :Save RO
MOV #44 ,ERDPB+Q.IOPL+4 :Set vertical format to prompt
MOV #XTREM, RO :Get prefix message
CALL 58 :Print prefix
MOV #53,ERDPR+Q.I0OPL+4 :5et vert. format to overprint
MOV {SP}+,RD ;Get address of message
£S5 MOV RO ,ERDPE+Q, IOPL ;Set address of message

{continued on next page)

DLX Point-to-Point and Multipoint Programming Facilities §-33

10%:

5-34

TSTB
BNE
DEC
SUB
MOV
DIRS

RETURN

.END

(RO}+

108

RO

ERDPE+Q. IOPL,R(
RO, ERDPB+Q, IOPL+2
#ERDPE

%30 ,ERDPB+D. 10PL+4

XTREP

;Null byte?

:I1f NE, no - keep looking

;Don't count null

;jCalculiate length of string

:Set length of string

;Issue directive

sRestore vertical format to normal

DECnet-RSX Programmer's Reference Manuai

6

LAT Programming Facilities

The Local Area Transport (LAT) communications protocol runs on terminal
servers and host systermns, It handles communications among local area nerwork
(LAN) devices attached to an Ethernet. Terminal servers are communications
servers to which a number of devices, such as user terminals and printers, are
attached. An application ont a host node on the Ethernet can make logical connec-
tions 10 these devices through the terminal server. During communication
between the host node and remote device, the terminal server is almost transpar-
ent.

LAT software is available with DECnet-RS$X~-11M-PLUS and DECnet-Micro/
RSX. The LAT protocol and DECnet protocol are different, but they coexist on
the same Ethernet.

This chapter is written for programmers who are experienced in using RSX
programming directives to write applications for directly-attached devices. The
chapter describes how to write new applications or modify applications when the
target device is not attached to the host, but to a rernote terminal server else-
where on the Ethernet. The chapter supplements the full-duplex terminal driver
information in the RSX-1IM/M-PLUS {/0 Drivers Reference Manual or the
Micro/RSX I/0 Drivers Reference Manual.

Throughout the chapter, “device” refers to a hardware terminal device. “Termi-
nal” refers to the operating system’s data structures for handling the hardwate
device.

The chapter covers the following topics:
* Components of the LAT environment

s Programming steps for applications to LAT terminals

6-1

®* Directives for programming LAT terminals

For a thorough introduction to the LAT environment, refer to the Local Area
Transport (LAT) Network Concepts nanual.

6.1 Components of the LAT Environment

The LAT environment consists of components on the terminal server and host,
along with the Ethernet network that lets themm communicate. Figure 6-1 illus-
trates an application using 2 LAT connection.

Figure 6-1: Using a LAT Connection

APPLICATION

RSX]
HOST WRITE | | READ

ETHERNET

TERMINAL
SERVER

LKG-1232-87

Figure 6-2 gives 2 more detailed picture of the components that make it possible
for applications to communicate with remote LAT devices.

6-2 DECnet-RSX Programmer's Reference Manual

Figure 6-2: LAT Components for Applications

USER
APPLICATION
RSX
OPERATING SYSTEM
HOST
TERMINAL DRIVER (TTDRV) SYSTEM
— YU vz A
CONTR| CONTROLLER |LOGICAL CONTROLLER
TT: DEVICES
0112 415|617 10]11
3 "2 | (TERMINALS)

OHT T BORT|POAT
2 5| 2| & | LOCAL PORTS
LAT PROCESS
ETHERNET PROTCCOL
MANAGER

PORT|PORT|
1 2

ETHERNET DRIVER
HARDWARE
INTERFACE
TO
ETHERNET ETHERNET CABLE
B i | 3
HARDWARE
INTERFACE
TO
ETHERNET
ETHERNET DRIVER TERMINAL
LAT SERVER SOFTWARE | SERVER
PORT 1| PORY 2 F'ORT_S PORT_4 PORT n HEMOTE PORTS
S @
LKG-1026-87

The terminal server is a piece of hardware that has a physical connection to the
Ethernet. It also has connections to devices such as user terminals, printers, and
so on. A device attached to the terminal server is the target of your application.

LAT Programming Facilities 63

Note that LAT software exists on both the host anditerminal server. The LAT pro-
tocol is implemented on the host by the LAT process and on the terminal server
by LAT server software. The LAT process on the host provides an interface
between the terminal driver and Ethernet driver. It sends and receives messages
having the LAT protocol.

The LAT Control Program (LCP) is a network management interface to the LAT
process and operating system. This chapter assumes that someone (called 2 *“net-
work manager”) has responsibility for using LCP to set up the host LAT environ-
ment. Al your site, a systefn manager or programmer may perform the network
manager function. The DECnet—RSX Guide to Network Management Utilities
includes informarion on LCP.

When a user and provider of LAT resources have a logical connection, a session
exists. Applications can initiate sessions from the host to the terminal server, and
interactive users can initiate sessions from the terminal server to the host.

Each end point of the LAT session is a port. The figure shows ports on the RSX
host that relate to local terminals (TT: devices) and ports on the terminal server to
which user terminals and printers are attached. In order to perform /O opera-
tions on the device at the remote port, your application must make 2 connection
between the local (host) port and the remote (terminal server) port. The next sec-
tions describe the local port and remote pott.

6.1.1 The Local Port

The local port on the RSX host is a2 LAT terminal. To create ports, the network
manager uses LCP and creates a number of LAT terminals. LAT terminals are TT:
devices for use only in LAT sessions. While other TT: devices perform I/O opera-
tions to attached devices, the LAT terminals send and receive I/O across a net-
work connection. Unlike other TT: devices, which are created by the SYSGEN
procedure, LAT terminals are created after the SYSGEN and NETGEN procedures,

are complete. The numbering of the LAT terminals starts with the first available *

number after the numbers for hard-wired terminals, in octal notation. For exam-
ple, if the system already has 7 terminals with the numbers zero (0) through 6, cre-
ating 3 new LAT terminals creates TT7:, TT1¢:, and TT11.. These terminals
would have local port names of PORT__1, PORT__2, and PORT_3.

A LAT terminal can be an interactive or application terminal. Interactive termi-

nals are those that remote interactive users use to log on to the host, Application
terminals are those that local applications use to connect to a remote device.

DECnet-RSX Programmer’s Reference Manual

LCP normally creates LAT terminals as interactive terminals. Application termi-
nals can be created in several ways. When initially creating LAT terminals, the
network manager can specify a nurmber to reserve for application use. Alterna-
tively, after the LAT terminals exist, the network manager or an application can
change an interactive terminal into an application terminal by specifying the tar-
get information for the terminal. The target information comprises the name ofa
terminal server and a port and/or service on that terminal server to which any
connect request that follows will be directed.

To specify the target information and change an interactive terminal into an
application terminal, the petwork manager issues the LCP SET PORT command.
An application does this by issuing the Set Multiple Characteristics (SF.SMC) pro-
gramming directive, including the appropriate characteristics (Section 6.3.4).

Although the operating system communicates with a TT: device and the LAT pro-
cess with a port, both refer to the same logical device, as Figure 6-3 illustrates.
Figure 6-3 uses as examples the same TT: and port numbers as in Figure 6-2.

Figure 6-3: The LAT Terminal and Local Port

RSX
OPERATING
SYSTEM

LAT
PROCESS

LKG-1034-87

LAT Programming Facilities 65

The MCR command CON DISPLAY FOR *LH lists the LAT terminals on your host
as TT: devices associated with the LH logical controller, as in the following exam-
ple:

TTiil: LHAO:
TT12: LHAl:
TT13: LHAZ:

The LCP SHOW PORT command lists your host’s application terminals with the
target information for each. It also lists the interactive terminals currently in use.

6.1.2 The Remote Port

The target for your application is a device at a remote port. The remote portis a
physical outlet on the terminal server. Each terminal server has multiple ports.
Input- or output-only devices, such as printers or badge readers, or standard
input/ourput user terminals can be attached 1o terminal server ports. This chapter
assumes that someont is responsible for the terminal server, and calls this person
the “‘server manager.”

Terminal server poris have names. They can be default names or names that the
terminal server manager created. To specify the target for your application, you
can always choose to specify the name of the port to which the device is attached.

On some terminal servers, the server manager can also designate a service name
for one or more ports. A service is a resource such as a printer, card reader, or
computer, that the terminal server makes available to network users. For exam-
ple, Port__3 and Port_ 4 of the terminal server in Figure 6-2 could have the ser-
vice name PRINTER. If the server manager assigns service names, an appiication
can specify the target by its service name instead of its port. When the terminal
servet receives a request for a service, it passes the request to any free port that
offers the service. This frees the application from dependence on a particular con-
figuration at the terminal server; the terminal server manager can move and
change devices without causing errors in applications. However, to ensure that
the application connects 1o both a particular port and service, you can specify
both a port and service name.

L

For more information on setting up terminal servers, refer to the Local Area
Transport (LAT) Network Concepts manual and the management guide for your
terminal server.

6-6 DECnet-RSX Programmer's Retference Manual

6.2 LAT Application Programming
This section describes the basic steps in writing a LAT application:
1. Coordinating available resources
2. Attaching the terminal

3. Setting the terminal characteristics

4. Establishing the connection
5. Performing read and write operations

6. Terminating the connection

6.2.1 Coordinating Avallable Resources

Before writing your application, you need information about the resources avail-
able at your site. If your site includes a terminal server manager and network man-
ager, coordinating with them is important. They can ensure that your application
gets the resources it needs and conforms to the existing LAT environment.

First, you need information about the terminal server your application will
access. The following list points out some questions to which you need answers.
If your site has a terminal server manager, ask that person the guestions in the first
column; if not, enter the commands in the second column.

Ask the server manager: Or enter this command:
What is the terminal server name? SHOW SERVER
What are the port names? SHOW PORT ALL

What service names have been assigned? SHOW SERVICES/LOCAL
‘This command gives a command syntax
error if the terminal does not support ser-
vice names.

Next, find out what LAT terminals on the host are available for your application
to use. If 2 system manager or network manager is available, ask what terminals
you can use. If not, answer the questions in the first column of the following list
by entering the commands in the second column of the list.

LAT Programming Facilities 6-7

Ask the network manager: . Orenterthis command:

What LAT terminals exist on the hast? MCR command:

CON DISPLAY ATTRIBUTES FOR *Lid
Which of the LAT terminals are in use LCP command:
by or reserved for other applications? SHOW PORT/APPLICATION

You and the network manager must decide whether to specify the application’s
target port and/or service from LCP, or through the application.

Coordination with the network manager is impoertant because LCP commands
affect applications. For example:

= CREATE and START are required, before you run the application, to create
the terminals and start the LAT process. Your network manager may zlso
choose to reserve some terminals for applications at creation time.

s SET PORT lets the nerwork manager specify the target for 2 LAT terminal,
making that terminal an application terminal. Using LCP in this way readies
the terminal for you and lets you omit a step in the application.

* DISCONNECT can terminate a connection.

® STOP halts the LAT process, aborting all LAT connections and destroying
the target information for application terminals.

For more information on LCP commands, refer to the DECnet—RSX Guide to Nel-
work Management Utilities.

6.2.2 Anaching the Terminal

Attaching the terminal ensures that your application gets exclusive use of the ter-
minal and prevents it from receiving 1/0O requests from other applications. It is an
optional step, but is very important and strongly recommended. If you omit this
step, another application can attach the terminzl, specify target information that
overrides the information zbout your target, or perform other disruptive opera-
tions.

Attach the terminal by issuing an IO.ATT directive.

6-8 DECnet-RSX Programmer’s Reference Manual

e

6.2.3 Setting the LAT Terminal Characteristics

Next, specify the target terminal server port and/or service to which the terminal
will later connect. The terminal server name, port name, and service name are the
LAT terminal characteristics. Issue a Set Multiple Characteristics (SF.SMC) QIO,
and specify these names by including the TC.MAP characteristics block. Section
6.3.4.1 describes the TC.MAP characteristics block.

Setting these characteristics sets the terminal nobroadcast (NOBRO) and slave
characteristics. NOBRO prevents the terminal from receiving broadcasts; SLAVE
5 prevents it from accepting unsolicited input.

If the terminal is currently an interactive terminal, setting the characteristics to
provide the target information changes it into an application terminal. If the ter-
minal is currently an application terminal for which LCP previously specified a
different target, your characteristics directive resets the characteristics to your
target specifications. If the terminal is carrently a reserved application terminal, it
has no prior target information, but requires this information before you issue a
connect request.

You can set the characteristics only if the terminal is currently availabie for a ses-
sion. If the terminal is engaged in a session on behaif of an interactive user or
another application, the characteristics directive returns an error.

‘You can omit setting the LAT characteristics in your application if your network
manager has already used the LCP SET PORT command to do so. Using LCP in this
way has some benefits; for example, it lets you designate a terminal for use by a
specific application, whether or not the application is currently in use. Using LCP
also allows you to use an existing application designed for a hard-wired device

with a remote LAT device without modifying the application, as the next section
explains.

6.2.4 Establishing the Connection

The application terminal establishes 2 network connection in order to exchange
data with a2 remote LAT device. The LAT protocol includes a master/slave rela-
tionship: terminal servers can establish sessions with hosts, but hosts cannot
establish sessions with terminal servers. When your application initiates 2 con-
nection, therefore, it actually sends a request soliciting the connection from the
terminal server. You can request the connection explicitly or implicitly.

An explicit connection starts when an application issues an Originate Explicit
Connection (}O.ORG) directive. This directive solicits a connection between the
application terminal and the terminal server specified in the Set Characteristics or
LCP SET PORT operation. The IO.CRG directive is for LAT terminals only and is
described in Section 6.3.2,

LAT Programming Facilitias 6-9

An implicit connection starts when an application immediately issues a Read Vir-
tual Block (10.RVB) or Write Virtual Block (O0.WVB) directive, instead of first
requesting a connection. If the terminal is a LAT application terminal that is not
vet connected to a remote terminal server, the initial read or write request starts 2
connection sequence. When the connection complietes, the read or write opera-
tion is performed.

Implicit connections let you run an application originally written for 2 hard-
wired devicein2 LAT environment. In most cases, you need not modify the appli-
cation if you use LCP to specify the target for the application terminal. Note, how-
ever, that the initial JO.RVB or I0.WVB directive will return status messages that
report the success or failure of the connection attetnpt. Refer to Section 6.3.3 for
the LAT connection status returns.

Some target services, such as printers, have queues. If you make a connection
request to 2 queued service, the connection does not complete until the service
becomes available. To avoid an indefinite wait, include a time-out routine in your
application.

6.2.5 Reading and Writing Data

The Read Virtual Block (I0.RVB) and Write Virtual Block (I0.WVB) QIO func-
tions exchange data with the application terminal. Use them as you do for stan-
dard terminals, but remember that if you have not created an explicit connection,
the first read or write request establishes an implicit connection. Use time-out and
error-handling routines with the first read or write request in case connection
problems occur. '

6.2.6 Terminating the Connection

Termination methods for explicit and implicit connections differ.

An explicit connection terminates only in response to a Disconnect Terminal
{JO.HNG) directive. IO.HNG assures a clean, synchronous termination and does
not complete until the disconnect sequence completes. Once the directive com-
pletes, the remote device becomes available for I/O from other sources. By not
issuing an 10 HNG directive, an application that exits and restarts can maintain an
available connection. :

Implicit connections terminate in response to both the 10.HNG and Detach O
Device (IQ.DET) directives and at task exit. Both IO.HNG and IO.DET assure
clean, synchronous terminations and, on completion, leave the remote device
available for 1/0 from other sources. Use IO.DET, however, only if you previ-
ously attached the terminal.

DECnet-REX Programmer’s Reference Manual

Although task exit can terminate an implicit connection, avoid using it as a terni-
nation method. If an application includes multiple tasks, the connection termi-
nates when any one task exits, and the next read or write request establishes a
new connection. Terminating and reconnecting consumes time and adds over-
head. It can also cause you to lose the remote resource if another application is

queued and waiting when yours disconnects. To avoid this, do one of the follow-
ing:

® Modify the application to issue an I0.ORG directive. |

= Create an initial task that issues an I0.ORG directive and then passes control
to the existing application.

‘Both I0.HNG and IO.DET allow the application terminal to send outstanding
data to the terminal server before completing a disconnect request.

Also note that any connection can terminate due to unexpected errots such as ter-

minal server crash or nerwork errors, or because the network manager has issued
an LCP STOP or LCP TERMINATE command.

6.2.7 Summary

Table 6-1 summarizes the basic steps in 2 LAT application. The first column lists
the functions to perform. The second and third columns show what you do to
perform that function using explicit and implicit connections, respectively.

Table 6-1: StepsinaLAT Application

Function Explicit Connection Implicit Connection
Attach the Issue IO.ATT. Same.
terminal.
Set LAT terminal Issue SF.SMC and include Same.
characteristics. the TC.MAP characteristic.
Alternatively, use the LCF
SET PORT command prior
to execution.
Establish 2 Issue 10.0RG. Issuc an initial I0.RVB or IO.WVB
connection. directive.
Application execcutes....
Terminate the Issue IO.HNG. Issue IO.HNG or I0Q.DET. (Use
connection. IQ.DET only if you previously

attached the terminal.) Task exit also
terminates the connection.

LAT Programming Facilities 611

6.3 Directives for Programming Application Terminals

The LAT application terminals use standard RSX terminal driver directives. Table
6-2 notes the special usage of directives that form important steps ina LAT appli-
cation and gives the formats of those directives.

Table 6-2: Terminal Driver Directive Usage for LAT Terminals

Directive

Use and Format

IO ATT

IO0.DET

10.HNG

I0.0RG

IORVB

10.WVB

SF.GMC

SF.SMC

Attaches the terminal.
QIOWSC I0.ATT,lun,efn,pri],|ish),(ast]

Terminates an implicit connection to a LAT terminal that yvou previously
attached. '

QIOWSC 10.DET,lun,efn,[pri),lisb)[as?)

Terminates any éonnec:ion o2 LAT terminal.
QIOWSC I0.HNG,lun gfn,[pri],[isb],[ast]
Initiates an explicit connection between a LAT application terminal and

the terminal server previously specified in an SF.SMC directive or LCP
SET PORT command.

QIOWSC 10.0RG,lun efn,[pri][isb] jast]

Reads data from a LAT application terminal. If the application terminal is
not yet connected to the remote terminal server, this directive first cre-
ates the connection and then performs the read operation.

QIOWSC IO.RVB,lun efn,[pril[isb],[ast], < stadd,size pn>

Writes data to a LAT application terminal. If the application terminal is
not yet connected to the remote 1erminal server, this directive first cre-
ates the connection and then performs the write operation.

QIOWSC IQO.WVB, lunefn,[pri].[isbl.[ast], <stadd size prn>

Returns the name of the rerminal server and port and/or service to which
a LAT application terminal is mapped. Also returns the terminal’s connec-
tion status. ‘

QIOWSC SF.GMC,lun efn,[pri},lish}.[ast], < stadd size pn>

Maps the LAT application terminal to a specificd terminal server port and/
or service to which it can later connect,

QIOWSC SF.SMC lun efn [prilish).[ast], <stadd,size.pn>

6-12

DECnet-RSX Programmer's Reference Manuai

The RSX-1IM/M-PLUS I/O Drivers Reference Manual and Micro/RSX I/O
Drivers Reference Manual have information on most of the directives you use.
However, the following information applies only to LAT terminals:

= TheIO.0ORG directive.

s Status codes that result from connection solicitation requests.

= LAT-specific characteristics to use with Set Multiple Chatracteristics and Get
Py Multiple Characteristics directives.

6.3.1 Programming Suggestions

The following suggestions may be helpful in writing your application:

= Use the Wait form of the QIO or an AST routine to synchronize the applica-
tion with the completion of the connection. Using the Wait QIO form
ensures that connection compietes before the application proceeds.

® Check the status block after every read and write request. Because your con-
nection to a LAT device is through the network, and not direct, check the
status block to make sure that the write request succeeded.

* Remember in using all RSX directives that LAT devices are remote, not hard-
wired. '

Occasionally, you might get a Device Not Ready (IE.DNR) error when attempting
to perform 2 Read, Write, or Set Characteristics operation on a terminal that you
have already attached successfully. This error can occur when a previous zpplica-
tion has issued an 10 DET directive to terminate its connection. Upon receiving
this directive, a terminal can detach and be ready for a new attachment even if the
previous application’s connection is completely terminated or its 10.DET direc-
tive completed. In this case, your application can attach a terminal whose pre-
vious session is not completely finished. To prevent your own application from
causing this type of problem, issue an 10.HNG directive before each 10.DET. The
I0.HNG cleanly breaks the connection before the IO.DET detaches the terminal,

LAT Programming Facilities 6-13

10.0RG

10.0RG
{Originate Explicit Connection)

6.3.2 10.0RG — Originate Explicit Connection

I0.ORG solicits a terminal server to initiate a connection to the LAT terminal. The
directive does not complete until the connection is established or an error gccurs.
Ensure that the application waits for the connection by using the Wait QIO form
or an AST routine. The LAT terminal characteristics must be set before you issue a
connection request.

10.0RG is a control function; it does not cause any data transfer.

Format:

QIOWSC IO.ORG, lun,efn [pri],[isbl.jast]

Parameters:

6-14

The following are the I0.ORG parameters. For more information on QIO parame-
ters, refer to the RSX—1IM-PLUS or Micro/RSX I/0 Drivers Reference Manual.

Parameter

fun

efn

pri

isb

ast

Meaning

The logical unit number associated with the physical device that the 1/O
request aCCesses.

The number of the event flag to associate with the QIO operation. An
event flag is required with the Wait macro form.

A priority value for compatibility with IAS. 'I"his parameter must have a
value of zero (G) or null.

The address of the I/Q status block, a2 2-word array that contains the com-
pletion status for the I/0 request on completion of the operation (see un-
der “*Status Returns'’).

‘The addyess of an optional user-written routine to execute after this call
completes. When control branches to the specified address, it has the
software priority of the requesting task. For no AST processing, omit the
parameter or enter the value zero (0).

DECnet-RSX Programmer’s Reference Manual

™ 10.0RG

Status Returns:;

The /0O status block that #sb specifies has the following format:

1 EXPLANATION CODE COMPLETION CODE 0

LKG-1261-67

The completion codes are described in the next section.

LAT Programming Facilities 6-15

6.3.3 Status Codes for LAT Connections

The following status codes result from the connection solicitation sequence. The
sequence can be a result of an explicit 1O.ORG) or implicit {I0.RVB or 10. WVB)
connection request.

Symbol Decimal Octal

Name Value Value Meaning

18.8UC 1 1 Success.

1IE.RSU -17 347 Shared resource in use. The terminal is
connected or busy with 2 connect reguest,

IE.DNR -3 375 Device not ready.

A status block that returns IE.DNR in the low byte returns one of the following
in the high byte:

Symbol Decimal Octal
Name Value ~ Value Meaning
0 0 The terminal server or application termi-

nal was unavailable or incorrectly speci-
fied.

1E.PRI -16 360 The terminal server’s group access list
does not include your host.

IE.ICE —47 321 Internal corruption error.

IE.NR] -74 266 Service busy.

IE.FLN -81 251 Terminal server service disabled.

IE.CNR -96 240 Terminal not 2 LAT application terminal.

IE.UKN -97 237 The specified terminal server port or ser-
vice does not exist.

IE.IRR -102 232 Insufficient resources at the terminal
server.

6.3.4 LAT Specific Characteristics for SF.GMC

The Get Multiple Characteristics (SF.GMC) directive returns information about
various characteristics. This section describes only the characteristics specific to
LAT application terminals: TC.MAP and TC.QDP. Using TC.MAP returns the
application terminal’s associated termina)l server, remote port, and/or service
name. Using TC.QDP returns the application terminal's connection status and
queue position. Use this information in conjunction with the information on
SF.GMC in the RSX-] IM/M—-PLUS or Micro/RSX I/O Drivers Reference Manual.

DECnet-RSX Programmer's Reference Manual

6.3.4.1 TC.MAP

With the TC.MAP characteristic, the SF.GMC directive returns the name of a ter-
minal server. It also returns either a service name or port name, or both. The
block has the following format.

1 LENGTH] TCMAP o
- SERVER NAME —
{16 BYTES)
AR L SERVICE NAME]
" {16 BYTES)
— |
- PORT NAME —
{16 BYTES)
’_ —
LKG-1262-87
where
Length is the length of the characteristics block. The length value 48.
indicates the presence of characteristics data; O indicates no
datz present.

LAT Programming Facilities 6-17

Server name is the name of 2 terminal server, inup to 16. bytes, padded
with zeroes.

Service name is a service name, in up to 16. bytes, padded with zeroes.
' Either the service or port name must be present; both canbe
present. If no service name is returned, the first byte contains
0. :

Port name is a port name, in up o 16. bytes, padded with zeroes. Either
the service or port name must be present; both can be pre-
sent. I no port name is returned, the first byte contains 0.

The following programming fragment shows the formar for seuting up the
TC.MAP characteristic to use with SF.GMC:

CHRBUE: JBYTE IC.MAP ; Characteristic value
_BYTE 48, ; Length of data buffer
2
SERVER: .BLKB 16. ; Returns the terminal server name.
H
SERVICE: ,BLKB 16. ; Returns the service name

; or zero (0) for no service name.
3
PORT: .BLKB 16. ; Returns the port name or

; zerc (0) for no port name.

H
CHRLEN=, ~CHRBUE

6.3.4.2 TC.QDP

With the TC.QDP characteristic, SF.GMC returns the status of the coanection re-
quest. If the connection request is pending at 2 queued service, SF.GMC also re-
turns the queue position. The block has the following format. i

1 STATUS _ TC.QDP 0

LKG~-1263-87

6-18 DECnet-RSX Programmer's Reference Manual

where

Status returns one of the folldwing values:

0 Not connected

1 Connected

<1 Pending. A value greater than 1 indicates the request’s position in
. the queue.

e 6.3.5 LAT Specific Characteristics for SF.SMC

The Set Multiple Characteristics (SF.SMC) directive enables a task to set and reset
the characteristics of a terminal. This section describes only the LAT characteris-

tics. For information on other characteristics, refer to the RSX-7IM/M-PLUS or
Micro/RSX I/0 Drivers Reference Manual.

Using the TC.MAP characteristic, this directive supplies the information on the
target terminal server port and/or service for the application terminal. Specifying
the target of its future connection defines 2 terminal as an application terminal.

Each S$F.SMC directive resets the characteristics. The characteristics you specify
supersede any previous settings, including those specified through LCP.

LAT Programming Facilities 6-19

6.3.5.1 TC.MAP

The TC.MAP characteristic specifies or clears the terminal server name and the
port and/or service name.

To set the LAT characteristics, ¢nter 48. in the length field and include the termi-
nal server name. Alsospecify the service name or port name, or both. To clear the
LAT characteristics, enter O in the length field. Clearing these characteristics re-
turns an application terminal to its prevmus state as a reserved application termi-
nal or an interactive terminal.

The block has the following format.

1 LENGTH [TC.MAP 0
— m—
- SERVER NAME —

{16 BYTES) ﬂ
| - —
- SERVICE NAME —

(16 BYTES)

B _
- PORT NAME -

(16 BYTES)
| S]
— —

LKG- 1262-87

8-20 DECnet-RSX Programmer's Reference Manual

where

Length is the characteristics block length. Use 48. to specify charac-
teristics; use 0 to clear characteristics.

Server name is the name of the terminal server, in 16. or fewer bytes. End
the name in a zero byte if it is smaller than 16. bytes.

Service name is the name of a service that the terminal server offers. To
. omit the service name, allocate 16. bytes and enter 0 in the
Lo first and last bytes of the field. End the naroe in a zero byte if it
L is smaller than 16. bytes.

Port name is the name of a terminal server port. To omit the port name,
allocate the full 16. bytes and enter Q in the first and last bytes
of the field. End the name in a zero byte if it is smaller than
16. bytes.

Using this directive with TC.MAP to set LAT characteristics:

= Sets the specified terminal to SLAVE and NOBROADCAST.

8 Sets the $6.LAT bit in unit status word 6 (U.TSTG) in the Unit Control Block

for the terminal. This bit indicates that the terminal is an application termi-
nal.

Using this directive with TC.MAP to clear characteristics returns the terminal to
its previous state as a reserved application terminal or an intefactive terminal
available to interactive users or applications. If the terminal is connected, when
you issue the directive, however, an IE.RSU error results.

Status Returns:

In addition to the standard SF.SMC status returns, IE.RSU applies only to LAT

application terminals.
Symbol Decimal Octal
Name Value Value Meaning
IE.RSU -17 357 Shared resource in use. The terminal is
busy with another session or connection
_Tequest.

LAT Programming Facilities 6-21

6.4

6-22

The following fragment shows the format for setting up the TC.MAP characteris-

tic:

CHRBUF: .BYTE
BYTE

i

SERVER: .ASCIZ

&= .-SERVER
.BLKB

i
SERVICE: .ASCIZ

B=.-SRVICE
.BLKB
PORT: -ASCIZ

C=.-PORT
.BLKB

i
CHRLEN=. ~CHRBUF

TC.MAP
48.

/Berver_name/
<16.-4>

/Service_name/

«<16,-B>

/Port_name/

<16,-C»

; Characteristic value
; Length of data buffer

; Server name to 16. bytes
; Length of service name
; Pad with zeroes to 16. bytes)

Service name to 16. bytes

or zero {0} to omit name
Length of service name

Pad with zeroes to 16. bytes)

[EP

e e

Port name to 16. bytes

or zero (0} to cmit name
Lengtih of port name

Pad with zeroes to 16. bytes.

e n ten ue

LAT Application Programming Examples

The following examples show how you can write to and read from a device
attached to a remote terminal server. The first example, LATORG, uses the
explicit connection method. The second example, LATEX, uses the implicit

method.

DECnet-RSX Frogrammer’s Reference Manual

6.4.1 Explicit Connection Example

wt me wr e WA e W R NE N N WE L wE Na W wp Np % WA WA WE N A MR Rd A WS R WA WA RE WE S we vk N3 ORI SR R N4 e LB LR L I TS

START: ALUNSC 1,TT,30

.TITLE LATORG
.IDENT /¥1.0/

Copyright (C) 1983, 1985, 1986, 1987 by
Digital Equipment Corperation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accerdance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person., No title tc and ownership of the scftware 1is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

Digital assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by Digital.

This program demonstrates the use of LAT application terminals,
using the explicit method for establishing the cennection
hetween the remote device and host terminal,

First the program specifies the applicaticn terminal’s target.
Next, it issues an IC.ORG QI0 to initiate an explicit connection.

1f the connection is successful, the program displays a message on the
remote device and prompts the user for irput., CTRL/Z terminates the
session,

Data entered at the remote device is printed on the local TI:.

The example uses TT30: as the host terminal. It writes data to a port

named PORT_2 on Terminal Server AUDIO.

Assembly command: MAC LATORG, LATORG=LATORG
To task build, enter the following command at the TKB> prompt:
LATORG/PR: 0, LATORG=LATORG
:‘I"ASK= « « + LAT
//
.MCALL QIOWS,QIOWSC,ALUNSC,DIRS, EXITSS

; Assign LUN 1 to TT30:
QIOWSC I10.ATT,1,1,,I108B : Attach the terminal

(continued on next page}

LAT Programming Facilities 6-23

DIRS #8MC

BMI 5%
TSTR I0SB
BPL 103
5%: MOV #SMCERR, RO
CALL ERROR
JMP EXIT
: Now, initiate the connection,
’
105: QIOWSC IC.ORG,1,1,,I0SB
BMI 203
TSTB 1058
BPL 308
2085: MOV #QIOERR,R(
CALL ERROR
JMP EXIT
308: MOV #SUCMSG, R0
CALE PRINT

AL TR TR ™

5%: DIRS #READ

BMI 30%
TSTB IQSB
BPL 508
CMPRB IQSB,#IE.EQF
BEQ 608

405§: MOV #REAERR, RO
CALL ERRCR
BR EXIT

50%: MOV # INHEAD ,WRITES+Q . IQPL
MOV I08B+2,WRITES+Q. IOPL+2
ADD #8. ,WRITES+Q.IOPL+2
DIRS #WRITES
BR i3

605:
MOV #BYEMSG ,WRITES+Q. IOPL
MOV $BYEMSL,WRITES+Q. IOPL+2
DIRS $WRITES

EXIT: QIOWSC 10.ENG,1,1
QIOWSC 10.DET,1,1
EXITSS

e

e wE we wa W

Registers altered: RO

P VI TR T

-

e we wr he we e

e g ma wE e wm wp WE e

A e N TR TR T

e ve mw wd A

- ws ma

~ wn w4

Specify the terminal's target
1f£ MI, directive error

Check status

If PL, continue

Get error message text

Call error routine

Exit

Initiate the connection

if MI, directive error

Check status

1f PL, connection OK - branch
Get error message text

Call error routine

Exit

Get success message text
Print message

Now the program reads data from the application terminal. The

data is printed (displayed) on the local TI:. The program continues
to read data from the terminal until the user at the remote device
enters the terminating control seguence, CTRL/Z.

Read data from application terminal
If MI, directive error

Check status

If PL, success - branch

pid user type CTRL/Z?

If EQ, yes - not an error

Get error message text

Cail errpr routine

And exit

Move output buffer address to DFB
Move the length aof received data
add length of header

Print the data

Loop te read meore Gata

Move end message 0 DPB
Move length of message
print terminating messsge

Disconnec:t the session
Detach the terminal
and exit

**.ERROR ~ Error handling routine. This routine formatrs an error
message and prints it on the local TI:

INPUTS: RO - Pointer to the error message text (must end in a0 byte)

5DSW - Directive status from last qirective executed
10SB - 1/0 status if SDSW is positive (no error)

6-24 DECnet-RSX Programmer's Reference Manual

ERROR: MOV RL,-(SP) : Save Rl
CALL PRINT ; Print message
CLR R1 : Clear storage for error status
TSTB SDSW : Check for directive error
APL 308 :+ 1f PL, no directive error
MOV #DSWERR, RO ; Point at error text (DsSW)
CALL PRINT : Print error message
BISB $DSW,R1 ; Get error status to Rl
CALL CONVRT ; Convert and print error message
BR EX ; Branch to common exit
208: MOV #10SBML, RO . Point at message text
CALL PRINT : Print IOSBE message (first half)
BISS I0SB,R1 ; Get low byte of 108B
CALL CONVAT ; Convert and print low byte of I0OSB
MOV #I108BM2,RO : Point at 2nd half of I0SB message text
CALL PRINT : Print the message
CLR Rl : Clear storage
BISB 108B+1,R1 : Get value of 2nd half of ICSB
CALL CONVRT ; Convert and print 2nd half of ICSB
EX: MOV (Sp)+,R1 ; Restore register
RETURN ; Back te caller
; **_CONVRT - Ceonvert octal to ASCII and print it out
; INPUTS: Rl - Byte value toc be converted
; All registers are preserved
CONVRT: MOV R1l,-(SP} : Save RI
MOV R2,-{89) » Save R2
MOV R3,-(&P) : Save R3
CLR R3 : Clear storage
MOV #STEMP+1,R2 ; Point at temporary storage area
CLRB -(r2) ;s Ensure (0 byte at the end
108: MoV R1,R3 : Get value to R3
BIC #177770,R3 ; Clear all but the last 3 bits
AED #60,R3 ; Convert to ASCII
MOVE R3,-(R2} ; Save ASCI! in buffer
CHP R2 #STEMP : Are we done?
BEQ 208 ; If EQ, ho
ASR Rl ;: Shift over 3 bits
ASR Ri 3 XA
ASR R1 ; WE*
ER 103 ; Loop for more
20§ MOV #STEMP, RC : Point at ASCII
CALL PRINT ; Print it out
MoV {§P}+,R3 : Restore registers
MOV (sph+,R2 3 wRR
MOV {(SP)+,R1 7 EREX
RETURN + Back to caller
; **-PRINT -~ Print a message on the local TI:
; INPUTS: RO - Address of string te print
; Note: The ASCII string rmust end in a 0 byte
; All registers are preserved
; {continued on next page)
LAT Programming Fagilities 6-25

PRINT: MOV RO, -(5P) Save pointer

CLR -{8P) ; Clear storage

10%; TSTB {RO)+ : Look for end
BEQ. 208 ; If EQ, done
INC (sp) : Count a character
BR 108 : Check next

208: MOV {8P)+,QI0+Q.10PL+2 ; Move length tc DPB
MOV (SP),QI0+Q.I0PL ; Move address to DPB
DIRS #QIC ; Print the message
MOV (&p)+ RO : Restore pointer to message
RETURN s Back to caller

QI0: QIoWS I10.wWVB,5,1,,,,<0,0>

WRITE: QIOWS 10.WVB,1,1,,1088,,<OUTBUF,OUTLEN>
WRITES: QIOWS I0.WVB,5,1,,,,<0,0>

éEAD: QIOWS IO.RPR,1,1,,108B, ,<INBUF, INLEN, ,PROMPT ,PROLEN>

éMC: QIOWS sr.sMC,1,1,,I08B,,<CHRBUF,CHRLEN> ;DPB for SMC

Characteristic name
Characteristics buffer length

CHRBUF: ,BYTE TC.MAP
.BYTE 48,

-~ e

SERVER: .ASCIZ /AUDIO/
A=, -SERVER
.BLKB <l16.-A>

Server name (ends in O byte)
Actual server name length
Allocate the full 1&6. bytes for name

- wp e

SERVIC: .BYTE 0 : Ensure C byte {no service name)
.BLKB 15, Fill to 16. bytes

PORT: .ASCIZ /PORT_2/
= . -PORT
JBLKE <16,-A>

Port name
Length of actual part name
Allocate the full 1l6é. bytes for port

ETEETIT]

éHRLEN=.—CHRBUF : Length of entire buffer

.
¢

-
)

IOSB: .WORD 0.0

$TEMP: .BLKB 4

INHEAD: .ASCII <12><15>/DATA> /
INBUF: .BLKB 132.
INLEN=, - INBUF

I0SB for write and read operations
Temporary storage for error routine
Header for printing data to lecal TI:
Input buffer

A we e e

1,

PROMPT: .ASCII <12><15>/Enter data>/ e

PROLEN= , ~PROMPT Nl
.EVEN

OUTBUF: .ASCI1 <12><15><7>/Application terminal now active/

OUTLEN=.-CUTBUF

DSWERR: .ASCIZ <12»<15>/Directive Error code ($DSW)

TOSBM1: .ASCIZ <12><]15>/I0S8B return code - Low byte

I0SBM2: .ASCIZ / High byte = / :

nmn
.

SMCERR: .ASCIZ <12><i5>/Error setting terminal characteristics./
QIOERR: .ASCIZ <]12»<15>/Error establishing .implicit connection./
SUCMSG: .ASCIZ «12»<l15>/Connection established to terminal server./
REAERR: .ASCIZ <12><]l5>/Error reading data from application terminal,/
BYEMEG: .ASCII <12><15>/Read terminated by user. Now disconnecting/

-ASCIZ / application terminal./
BYEMSL=, ~BYEMSG

,EVEN

+END START

6-26 DECnet-RSX Programmer’s Reference Manual

6.4.2 Implicit Connection Example

.TITLE LATEX
.IDENT /¥1.0/

Copyright (C) 1983, 1985, 1986, 1987 by
Digital Eguipment Corporation, Maynard, Mass.

This scftware is furnished under a license and may be used and copied
only 1in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should nct be construed as a commitment by Digital Equipment
Corporation,

Digital assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by Digital.

This program demonstrates the use of LAT applicatien terminals,
using the implicit method for establishing the connection
between the host terminal and remote device,

First the prcgram specifies the target of the application terminal,

Next, it posts a write request to the terminal to establish the

connection. If the connection completes successfully, the program displays
2 message on the remote device and prompts the user for input.

Any data that the user enters at the remote device is printed (displayed)
cn the local TI:. The user enters CTRL/Z to terminate the session.

The example uses TT30: as the application terminal. It writes data to
the port PORT_2 on terminal server AUDIO.

Assembly command: MAC LATEX,LATEX=LATEX

To task build, enter the following command at the TKB> prompt:
LATEX/PR: 0, LATEX=LATEX

/

TASK=...LAT
7/

M4 B we s NP WE e wE WA WE B VA WA N6 Re WR WP VA NE RE WG WS WE WE WE UE We Wy e VE YR WE WA WE WA Ga WE NS Hp hs omp W4 RS ML N

JMCALL QIOWS,QIOWSC,ALUNSC,DIRS,EXITSS
START: ALUNSC 1,7TT,30

: Assign LUN 1 to TT30:
QIOWSC 10.ATT,1,1,,108B ; Attach the terminail
! DIRS #SMC : Specify its target
BMI S$; If MI, directive error

{continued on hext page)

LAT Programming Facilities 6-27

TSTB I0SE Check status

r
BPL 108 s 1f PL, continue
58: MOV #SMCERR, RO ; Get error message text
CALL ERROR ; Call error routine
JMP EXIT ; And exit
; Now, write data to the LAT application terminal and initiate
; the implicit connection seguence.
r
108: DIRS #WRITE ; Initiate connection and write data
BMI 208 + If Mi, directive error ot
TSTB 108B ; Check completion status
BPL aos : If PL, success - branch
20%5: MOV #QIOERR,RO : Get error message text
CALL ERROR ; Call error routine
JMP EXIT ; And exit..
308:; MOV #S5UCMSG, RO ; Get success message text
r

CALL PRINT Print messaqge

Now the program reads data from the remote device. The data is
printed on the local Tl:, The preogram continues to read

data until the user at the remote device enters the terminating
contrel character sequence, CTRL/Z.

LI s =r %4 =y me =

5% DIRS #READ ; Read data from remote device

BMI 40% ; If MI, directive error
TSTB I0SB ; Check status
BPL 508 ; If PL, success - branch
CMPB 1088, $1E.EQF ;s Did user type CTRL/Z?
BEQ 605 ; If EQ, Yes - not an errsr

40%: MOV #REAERR, RO ; Get error message text
CALL ERROR ; Call error routine
BR EXIT ; And exit

50s%: MOV # INHEAD,WRITES+Q. I0PL ; Move output buffer address to DPB

i MOV IOSB+2 ,WRITES+Q.IOPL+2 ; Move the length of received data

ADD #8. ,WRITES+Q.I0OPL+2 + Add length of header
DIRS #WRITES ; Print the data
BR 355 ; Loop to read more data

608:
MOV #BYEMSG,WRITES+Q. IOPL ; Move end message to DPB
MOV #BYEMSL,WRITES+Q.IOPL+2 ; Move length of message

r

DIRS $WRITES Print terminating message
Now the program detaches the terminal. If the connecticn sequence
was successful, the detach request terminztes the connection.

This is the recommended termination method for implicit connecticons.

[e e =0 ve ne

XIT: QIOWSC IO.DET,1,1 ; Detach the terminal, dissonnect
EXITSS ; And exit

-~ me

.SBTTL ERROR - Error handling routines

6-28 DECnet-RSX Programmer’s Reference Manual

**_ERROR - Error handling routine. This routine formats an error
message and prints it on the lecal TiI:

INPUTS: RO - Pointer to the error message text {must end in a ¢ byte)
$DSW ~ Directive status from last directive executed
I0SB - I/0 status if SDSW is positive (no error)

Registers altered: RC

[=r =+ %0 %8 %4 % %0 me ne

RROR: MOV Rl,-{SP} Save RI1
CALL PRINT Print message
CLR Rl Clear storage for error status
TSTE SDSW Check for directive error
BPL 308 1f PL, no directive error
MoV #DSWERR, RO Point at error text (DSW)

CALL PRINT
BISE $DSW,R1
CALL CONVRT
BR EX

Print error message

Get error status to Rl

Convert and print error message
Branch to common exit

B e e MA WA e W WE N b

308: MOV #I0SBML, RO
CALL PRINT
BISB 108B,R1
CALL CONVRT

Point at message text

Print 108B message {first half)
Get low byte of [0OSB

Convert and print low byte of ICSB

MOV #10SBM2, RO Point at 2nd half of IQSB message text
CALL PRINT Print the message
CLR RL Clear storage

BISB I108B+1,R1
CALL CONVRT

Get value of 2nd half of I0SB
Convert and print 2nd half of IOSB

P A . T T IE TRC YR ¥

EX: MOV (SP)+,R1l

Restore register
RETURN

Back to caller

LTS

**-CONVRT - Convert octal to ASCII and priat it out

; INPUTS: Rl - Byte value to convert
: All regisiers are preserved
CONVRT: MOV RLl,-(SP) : Save Rl
MOV R2,~{5P} : Save R2
MOV R3,-{5P) ; Save R3
CLR R3 + Clear storage
MOV #5TEMP+4 ,R2 :+ Point at temporary storage area
CLRB -{R2} : Ensure 0 byte at the end
108: MOV R1,R3 ; Get value tc R3
BIC #177770,R3 : Clear all but the last 3 bits
ADD $E60,R3 : Convert to ASCII
MQVE R3,-(R2) : Save ASCII in buffer
CMP R2,8STEMP : Are we done?
BEQ 208 s If EQ, no
ASR Rl ; Shift over 3 bits
ASR Rl ; MR

{continued on next page}

LAT Programming Facilities 6-29

ASR R1

BR 108

20s: MOV #$TEMP, RO
CALL PRINT
MOV (5P)+ R3
MOV {SP)+,R2
MOV {sSp)+,R1
RETURN

All registers are preserved

& WS WH ME %e wp e e Wy W wn

PRINT: MOV RO,-(SP)
CLR -(SP)
i0s: TSTB {RO)+
BEQ 2058
INC (5P}
BR 10%
208 MOV {SP)+,010+0. 10PL+2
MOV {SP),Q10+Q. I0PL
DIRS $#Q1I0
MOV (SP}+,RO
RETURN

~p e

* %%
; Loop for more

Point at ASCII
Print it
Restore registers
L 4
*kx

Back to caller

na ME s wa e

**_pPRINT - Prints a message on the local TI:
INPUTS: RO - Address of string to print

Note: The ASCII string must erd in a 0 byte

Save peointer

Clear storage

Look for end

If EQ, done

Count a character
Check next

Move length to DPB
Move address to DPB
Print the message
Restore pointer to message
Back toc caller

T S TR T T T TR T TR

.§8TTL DATA - Data areas, messages and DPBs

Directive Parameter blocks (DPEs}

R YREIR LR

QIO0: QICoWS 10.wvB,8%,1,,,.<0,0>

**_DATA - Data areas, messages and DPBs

WRITE: QIOWS I0.WVvB,1,1,,I0SB,,<QUTEBUF,QUTLEN>

WRITES: QIOWS IO.WVB,5,1,,,.<0,0>

ﬁEAD: QIOWS i0,RPR,1,1,,I08B,,<INBUF, INLEN, , PROMPT, PROLEN>

[N ~e no v e

éHRBUF: .BYTE TC.MAP
.BYTE 48.

-
H

Set characteristics DPB and characteristics buffer

MC: QIOWS SF.SMC,1,1,,1088B, ,<CHRBUF,CHRLEN> ;DPB for SMC

; Characteristic name
; Characteristics buffer length

DECnet-RSX Programmer’s Reference Manual

SERVER: .ASCIZ /AUDIQ/
a=,-SERVER
.BLKB <16.-A>

Server name (ends in 0 byte)
Actual server name length
Allocate the full lé. bytes for name

“a me wmE

SERVIC: .BYTE 0 Ensure O byte {no service name)
.BLKB 15, ; Fill to 16. bytes

-

PORT: .ASCIZ /PORT_2/
A=.-PORT
-BLKB <16.‘A>

Port name
Actual port name length
Allocate the full 16. bytes

PYSE T IE T

CHRLEN=, ~CERBUF ; Length of entire buffer

: Data storage and ASCII Text
I10SB: <WORD o,c

$TEMP: .BLKB 4

INHEAD: .ASCII <12»<15>/DATA> /
INBUF: .BLEB 132.
INLEN=.~INBUF

I10SB for write and read operations
Temporary storage for error routine
Header for printing data to local TI:
Input buffer

P YL

PROMPT: .ASCII <12><15>/Enter data>/
PROLEN=.-PROMPT

.EVEN
OUTBUF: .ASCII <12»<15><7>/application terminal now active/
OUTLEN=, ~QUTBUF
DSWERR: ,ASCIZ <12><15>/Directive Error code ($DSW)
IOSBM1: LASCIZ <12»<15>/I0SB return code - Low byte
IQSBM2: .ASCIZ / High byte = /

SMCERR: .ASCIZ <12»<15>/Error setting terminal characteristics./
QICERR: .ASCIZ <12»<15>/Error establishing implicit connection./
SUCMSG: ASCIZ <12»<iS>/Cennection established to terminal server./
REAERR: .ASCIZ <l2»<15>/Error reading data from application terminai./
BYEMSG: .ASCII <«12»<15>/Read terminated by user. Now disconnecting/

LASCIZ / application terminal./
BYEMSL=.~BYEMSG

.EVEN

.END START

LAT Programming Facilities . 6-31

A
Disconnect or Reject Reason Codes

The following list contains the error reason codes available at the logical link user
interface. These codes can be returned after either of the following events:

» The network rejected a2 connect request (IE.NRJ).

= The network aborted a connected logical link (NT.ABO).

The symbols in columr 1 are defined in the macro NSSYM$. NSSYM#$ is located in
NETLIB.MLB (moved to 1B:[1,1] during network generation). The events in col-
umn 5 indicate the condition that occurred. C refers to a connect request and A
refers to a network abort.

Symbol Decimal Octal
Name Yalue Vatue Standard Message/Explanation Event

NESRES 1 1 Insufficient network resources C

The logical link could not be con-
nected because either the local or the
remote node had insufficient net-
work resources (for example, insuffi-
ciemt logical links, remote node

- counters, or dynamic storage region

- {DSR) on RSX systems).

NESNCD 2 2 Unrecognized node name C

The logical link could not be con-
nected because the destination node
name did not correspond to any
known node address.

Symboi
Name

Decimal
Value

Octal
Value

Standard Message/Explanation

NE$NSR

NE$UOB

NESFMT

NESMLB

NESABM

NESNNF

NE$NSL

3

10

11

10

12

13

Remote node shutring down

The logical link could not be con-
nected because the network on the
remote node was in the process of
shutting down and would accept no
more logical link connections.

Unrecognized bbject

The logical link could not be con-
nected because the object number or
narne specified did not exist at the
remote node.

invalid object name format

The logiczl link could not be con-
nected because the node did not
understand the object name format,

Object oo busy

The logical link could not be con-
nected becanse the remotie object
was 100 busy handling other logicat
links.

Abort by nerwork management

The logical link has been aborted by
4N OpErator Or a program using net-
work management.

Invalid node name format

The logical link coutd not be con-
nected because the remote node
name format was invalid. For exam-
ple, the name contained illegal char-
acters or was too long.

Local node shutting down

The logical link could not be con-
nected because the network on the
local node was in the process of shut-
ting down.

DECnet-RSX Programmer's Reference Manual

Symbol Decimal Octal
Name Velue Value Standard Message/Explanation Event

NESACC 24 42 Access control rejected C

‘The logical link could not be con-
nected because the remote node or
object could not understand or
would not accept the access control
information.

NESABO 38 46 No response from object C

The logical link could not be con-
nected because the object did not
respond. For example, the object
responded too slowly or terminated
abnormally.

NESABO 38 46 Remote node or object failed A

The connected logical link was
aborted because the remote node or
the object terminated abrormally.

NE$COM 39 47 Node unreachable C/A

Either the logical link could not be
connected or the connected logical
link was aborted because no path
existed to the remote node.

Disconnect or Reject Reason Codes A3

B
- Object Types

This appendix lists the object type code values defined by Digital, expressed as
octal and decimal byte values. Digiral reserves the right to add object types and to
make changes to the descriptor formats used by the object types. At present, a
descriptor format of 1 indicates a user process (object type 000). All other object
types in the list have a descriptor format of 0, requiring definition by the object

— type codes in the first two columns.
& Object Type Process Type

Octal Decimal
000 000 General task, user process
001 001 File Access Listener (FAL/DAP) Version 1
002 002 Unit record services (URDS)
003 003 Application terminal services (ATS)

oy 004 004 Command terminal services (CTS)

e 5 005 005 RSX-11M Remote Task Control utility {TCL) Version 1

006 006 Operator services interface
007 007 Node resource manager
010 008 IBM 3270-BSC Gateway
011 009 IBM 2780-BSC Gateway
012 010 IBM 3790-SDLC Gateway
013 o011 TPS application
014 012 RT-11 DIBOL application

f’ﬂ“‘r‘

Sk 015 013 TOPS~20 terminal handler

B-1

B8-2

Object Type Process Type
| Decimal

016 014 TOPS-20 remote spooler
017 015 RSX-11M Remote Task Control utility (T'CL) Version 2
020 016 TLK utility (LSN)
021 017 File Access Listener (FAL/DAP) Version 4 and later
022 018 RSX~11S Host Loader utility (HLD)
023 019 Network Information and Control Exchange (NICE)
024 020 RSTS/E media wransfer program (NETCPY)
025 021 RSTS/E-10-RSTS/E network command terminal handler
026 022 Mail listener (DECnet-based electronic mail system)
027 023 Network command terminal handler (host side)
030 024 Network command terminal handler {terminal side)
031 025 Loopback mirror (MIR)
032 026 Event receiver (EVR)
033 027 VAX/VMS personal message utility
034 028 File Transfer Spooler (FTS)
035 029 PHONE utility
036 030 Distributed data management facility (DDMF)
037 031 X.25 Gateway access
040-076 032-062 Reserved for DECnet use
Q77 063 DECnet test tool (DTR)
100-177 064-127 Reserved for DECnet use
200-377 128-255 Reserved for customer use

DECnet-RSX Programmer’s Reterence Manual

\.__/'

C
Remote File Access Error/Completion Codes

C.1 /O Status Block Error Returns

Each remote file access subroutine returns 2 2-word I/O status block. The con-
tents of the second word depend on the contents of the first word.

Table C~1 describes each code that can be returned in the first word of the starus
block. The description of the code tells where to look up the description of the
value returned in the second word.

Table C-1: First Word I/0 Status Block Error Codes

Error Code Description

177777 (~1) Channel already active.

An attempt was made to open 2 file on an active channel. Either
use another channel or close the active channel before reusing it.

The second word of the 1/O status block is not applicable.
177776 (-2) Channel not active

A file operation request was made on an inactive channel. Either
2 file open was not issued on this channe] or the network link for
this channel was lost.

The second word of the [/O status block is not applicabie.
177775 (~3) Data Access Protocol error

An error was detected by the remote file system or by the remote
server task. DAP then returns the error to the user.

The second word of the 110 status block contains the file access
error code. Look up this code in Table C-3.

{continued on next page)

c-1

C-2

Table C-1 (Cont.):

First Word 1/O Status Block Error Codes

Error Code

Description

177774 (—4)

177773 (-5)

177772 (-6)

177771 (=7}

177770 ¢-8)

177767 (-9)

NSP error (see Tabie C-2}

The Data Access Protocol (DAP) utilities use Network Services
Protocol (NSP) as a vehicle for accessing remote files. This code
indicates that a problem was encountered at the NSP level.

The low-order byte of the second word of the 1/0 status block
contains one of the NSP error codes listed in Table C~2. If the
error is network rejection (—7), the high-order byte of the second
word of the I/O status block contains the reject reason code (see

Appendix A).
Invalid attributes

An invalid character was found in the atiributes array (ichar) of
an open command.

Data overrun

The received message or block of messages did not fit into the
user-specified buffer.

The second word of the [/O status block contains the total num-
ber of bytes read.

Tasks qut of sync

The requesting task and its server (FAL) have lost Data Access
Prorocol (DAP) message synchronization. This indicates a serious
internal software problem to report to your systetn raanager.

The second word of the 1/0 status block is not applicable,
Invalid DAP channel (LUN)

DAP channel numbers must fall in the range of 1 to 255. A value
equal to zero (0) or greater than 255 is invalid.

The second word of the 170 status block is not applicable.
Buffer allocation error for DAP channels

There is no more buffer space available for the DAP channel con-
trol biocks. To extend the buffer size, rebuild the FORTRAN pro-
gram, increasing the size of $FSR1 in the task build.

The second word of the 1/0 status block is not applicable.

DECnet-RSX Programmer's Reference Manuat

Table C-1 (Cont.): First Word /O Status Block Error Codes

Error Code Description

177766 (-10.) Directive error

Directive error from the executive.

The second word of the 1/O status block contains the DSW value.
177765 (~11.) Illegal request

An illegal request was made, such as 2n attempt to read froma
file that was open for write.

The second word of the 17O status block is not applicable.

Remnote Fite Access Error/Completion Codes c-3

Table C-2 contains the NSP error codes that pertain to the NSP error in Table C-1
(177774). NSP error codes occupy the low-order byte of the second word of the
I/O status block. With the exception of the network rejection (~7), the high-order
byte is undefined.

Table C-2: NSP Error Codes

Errvor Code Description

~1 Required system resources are unavailable,

-2 A request was issued for 2 LUN on which there is no established logical
link.

-3 The link was disconnected with the request outstanding.

—4 The data message to be received was truncated because the receive
buffer was too small.

-5 An argument specified in the call was incorrect.

-6 No network data was found in the user’s mailbox.

=7 The network (NSP) rejected an attempted connect. The high-order
byte contains the reject reason code (See Appendix A).

-8 A logical link bas already been established on the LUN to which the
user attempted to connect.

-9 The issuing task is not part of the network. OPNNT was never called,

-10 The user is attempting to access the nerwork for a second time.

~11 An interrupt message transmission was attempted before the last one
had finished.

-12 The user task to which the connection was attempred issued a connect
reject.

~-13 A buffer is outside the user address space or is not word aligned.

-14 The user is attempting to issue a GNDNT[W] when one is already pend-

ing.

DEGnet-RSX Programimer's Reference Manual

C.2 Data Access Protocol (DAP) Error Messages

The DAP status code returns status from the remote file system or from the opera-
tion of the cooperating process using DAP. The 2-byte status field (16 bits)
occupies the second word of the 1/Q status block and has two fields:

= Maccode (bits 12-15): Coniains the error type code {see Table C-3 in
Section C.2.1)

» Miccode (bits 0~11): Contzins the specified error reason code (see
Tables C—4, C-5, and C-6, depending on error
type, as described in Section C.2.2)

C.2.1 Maccode Field

The maccode field is in the high-order byte of the second word in an /O status
block. The value retumed in the maccode field describes the functional type of
the error. The miccode field gives the specific reason for the error. The miccode
field is the low-order byte of the same word that contains the maccode field. The
last column of Table C-3 tells which table in this appendix contains the miccode

values that correspond to the maccode values. '

Remote File Access Error/Completion Codes C-5

Table C-3: DAP Maccode Field Values
Field
Value Miccode
{Octal} Error Type Meaning Table
0 Pending The operation is in progress. E-3
1 Successful Returns information that indicates E-3
suCcess.
2 Unsupported This implementation of DAP does E-2
not support the specified request.
3 Reserved
File open Errors that occur before a file is E-3
successfully opened. '
5 Transfer Esrors that occur after z file is E-3
error opened and before it is closed.
6 Transfer For operations on open files, indicates E-3
warming that the operation completed, but not
with complete success.
7 Access Errors associated with terminating E~-3
terminarion access to 2 file.
10 Format Error in parsing 2 message, Format E-2
is not correct.
11 Invalid Field of message is invalid (that E-2
is, bits that are meant to be mutually
exclusive are sct, an undefined bit is
set, 2 field value is out of range, or an
illegal string is in a field.)
i2 Sync DAP message received out of E-4
synchronization.
1315 Reserved
16-17 User-defined status maccodes

DECnet-RSX Programmer's Reference Manual

C.2.2 Miccode Field

The miccode field is located in the low-order byte of the second word in an /O
status block. The miccode field value identifies the specific reason for the
maccode field error type (see Section C.2.1). Three different tables define the
miccode field values, as follows:

= Table C—4: Foruse with maccode valnes 2, 10, 11

= Table C-5: Foruse with maccodevalues0,1,4,5,6,7

= Table C-~6: Foruse with maccode value 12

Table C~4 follows. The DAP message type number (column 1) is specified in bits
6-11, and the DAP message field number (coluimn 2) is specified in bits 0-5. The
third column describes the field where the error is Jocated.

Table C-4: DAP Miccode Values for Use with Maccode Values of 2, 10,

and 11
_ Type Field
: Number Number
‘ (bits 6-11) (bits 0-5) Field Description

Miscellaneous message errors

00 00 Unspecified DAP message error
10 DAFP message type field (TYPE) error
Configuration message errors
01 00 Unknown field
10 DAP message flags field (FLAGS)
11 Darta stream identification field (STREAMID)
12 Length field (LENGTH)
13 Length extension ficld (LEN256)
14 BITCNT field (BITCNT)
20 Buffer size field (BUFSIZ)
21 Operating system type field (OSTYPE)
22 File system type field (FILESYS)
23 DAP version number (VERNUM)
24 ECO version number field (ECONUM)
25 USER protocol version number field (USRNUM)
26 DEC software release number field (DECVER)
27 User software release number field (USRVER)
30 System capabilities field (SYSCAP)

{continued on next page)

Remote File Access ErrorfCompletion Codes C-7

Table C-4 (Cont.): DAP Miccode Values for Use with Maccode Values ot 2,

10, and 11
Type Fleld
Number Number
{bits 6-11) (bits 0--5) Field Description

Attributes message errors

02 00
10
11
12
13
14
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
45

Unknown field

DAP message flags field (FLAGS)

Data stream identification (STREAMID)
Length field (LENGTH)

Length extension field (LEN 256)

Bit count field (BITCNT)

Attributes menu field (ATTMENU)

Data type ficld (DATATYPE)

Ficld organization field (ORG)

Record format field (RFM)

Record atrributes field (RAT)

Block size field (BLS)

Maximum record size field (MRS)
Allocation quantity field (ALQ)

Bucket size field (BKS)

Fixed control arez size field (FSZ)
Maximum record nensber field (MRN)
Run-tirne system field (RUNSYS)

Default extension quantity field (DEQ)
File options field (FOP)

Byte size field (BSZ)

Device characteristics field (DEV)
Spooling device characteristics field (SDC); reserved
Longest record length field (LRL)

Highest virtual biock allocated field (HBK)
End-of-file block field (EBK)

First free byte field (FFB)

Starting LBN for contiguous file field (SBN)

DECnet-RSX Programmer’s Reference Manual

Table C-4 (Cont.): DAP Miccode Values for Use with Maccode Values of 2,

10,and 11 :
Type Field
Number Number
(bits 6-11) (bits 0-5) Field Description
ACCESS Message errors
03 00 Unknown field
10 DAP message flags field (FLAGS)
11 Data stream identification field (STREAMID)
12 Length field (LENGTH)
13 Length extension ficld {LEN256)
14 Bit count field (BITCNT)
20 Access function field (ACCFUNC)
21 Access options field (ACCOPT)
22 File specification field (FILESPEC)
23 File access field (FAC)
24 File-sharing ficld (SHR)
25 Display attributes request field (DISPLAY)
26 File password field (PASSWORD)
Control message errors
04 00 Unknown field
10 DAP message flags field (FLAGS)
11 Data stream identification field (STREAMID)
12 Length field (LENGTH)
i3 Length extension field (LEN256)
14 Bit count field (BITCNT)
20 Conrrol function field (CTLFUNC)
21 Control menu field (CTLMENU}
22 Record access field (RAC)
23 Key field (XEY)
24 Key of reference field (KRF)
25 Record options field (ROP)
26 Hash code field (HSH); reserved for future use
27 Display attributes request field (DISPLAY)
30 Block count (BLKCNT)
Continue message errors
65 00 Unknown field
10 DAP message flags field (FLAGS)
11 Data stream identification field (STREAMID)
12 Length fieid (LENGTH)
™ 13 Length extension field (LEN256)
i 14 Bit count field (BITCNT)
e 20 Continue transfet function field (CONFUNC)

{continued on next page)

qumole Fiie Access Error/Completion Codes _ c-9

C-10

Table C-4 (Cont.):

DAP Miccode Values for Use with Maccode Values of 2,

10, and 14
Type Field
Number Number
(bits 6-11) {bits 0~-5} Field Description

Acknowledge message errors

06

6o
10
11
12
13
14
15

Access complete message efrors

07

00
10
1t
12
13
14
20
21
22

Key definition message errors

a2

Q0
10
11
12
13
14
20
21
22
23
24
25
26
27
30

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)
Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

System-specific field (SYSPEC)

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)
Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Access complete function field (CMPFUNC)
File options field (FOF)

Checksum field (CHECK)

Unknown fietd

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)
Length field (LENGTH)

Length extension ficld (LEN256)

Bit count field (BITCNT)

Key definition menu field (KEYMENU)
Key option flags ficld (FLG)

Data bucket fill quantity field (DFL)
Index bucket fill quantity field (IFL)

Key segment repeat count field (SEGCNT)
Key segment position field (POS)

Key segment size field (S1Z)

Key of reference field (REF)

Key name field (KNM)

DECnet-RSX Programmer’s Reference Manual

L

d
-

——

Table C-4 (Cont.): DAP Miccode Values for Use with Maccode Values of 2,

10, and 11
Type Field
Number Number
(bits 6-11) (bits 0-5) ‘Field Description
31 Null key character field (NUL)
32 index area pumber field (JAN)
33 Lowest level area number field (LAN)
34 Data level area number field (DAN}
35 Key data type field (DTP)
36 Root VBN for this key field (RVB}
37 Hash algorithm value field (HAL)
40 First data bucket VBN ficld (DVB)
41 Data bucket size fieid (DBS)
42 Index bucket size field (IBS)
43 Level of root bucket fiekd (LVL)
44 Total key size field (TKS)
45 Minimum record size field (MRL)
Allocation message errors
13 00 Unknown field
10 DAP message flags field (FLAGS)
i1 Data stream identification field (STREAMID)
12 Length field (LENGTH)
13 Length extension field (LEN256)
14 Bit count field (BITCNT)
20 Allocation menu field (ALLMENU)
21 Relztive volume number field (VOL)
22 Alignment options field (ALN)
23 Allocation options field (AOP)
24 Starting location field (LOC)
25 Related file fdentification field (RFI)
26 Allocation quantity field (ALQ)
27 Area identification field (AID)
30 Bucker size field (BKZ)
31 Defanlt extension quantity field (DEQ)

(continued on next page)

Remote File Access Error/fCompletion Codes C-11

Tabte C-4 (Cont.): DAP Miccode Values for Use with Maccode Values of 2,

10,and 11
Type Field
Number Number
(bits 6-11) (bits 0-5) Field Description
Summary message errors
14 00 Unknown field
10 DAP message flags field (FLAGS)
11 Data stream identification field (STREAMID)
12 Length field (LENGTH)
13 Length extension field (LEN256)
14 Bit count field (BITCNT)
20 Surmmary menu field (SUMENU)
21 Number of keys field (NOK)
22 Number of areas field (NOA)
23 Number of record descriptors field (NOR)
24 Prologue version number (PVN)

Date and time message errors

15 00 {Unknown field

10 DAP message flags field (FLAGS)
11 Data stream identification field (STREAMID)
12 Length fieid (LENGTH)
13 Length extension field (LEN256)
14 Bit count field (BITCNT)
20 _Date and time menu field (DATMENU)
21 Creation date and time field (CDT)
22 Last update date and time field (RDT)
23 Deletion date and time field (EDT)
24 Revision number field (RVN)
25 Backup date and time field (BDT)
26 Physical creation date and time field (PDT)
27 Accessed date and time field (ADT)

C-12 DECnet-RSX Programmer's Reference Manual

Table C-4 (Cont.): DAP Miccode Values for Use with Maccode Values of 2,

10, and 11
Type Field
Number Number
(bits 6-11) (bits 0-5) Field Description

Protection message ertofs

16 00 Unknown field
_ 10 DAP message flags field (FLAGS)
P 11 Data stream identification field (STREAMID)
o 12 Length field (LENGTH)
13 Length extension field (LEN256)
14 Bit count field (BITCNT)
20 Protection menu field (PROTMENLU)
21 : File owner field (OWNER)
22 System protection field (PROTSYS)
23 Owner protection field (PROTOWN)
24 Group protection field (PROTGRP)
25 World protection ficld (PROTWLD)
Name message errors
17 o0 Unknown field
10 DAP message flags field (FLAGS)
11 Data stream identification fietd (STREAMID)
12 Length field (LENGTH)
13 Length extension field (LEN256)
14 Bit count field (BITCNT)
20 Name type field (NAMETYPE)
21 Name field (NAMESPEC)
Access control list message errors (reserved for future use)
20 00 Unknown field
10 DAP message flags field (FLAGS)
11 Darza stream identification field (STREAMID)
12 Length field (LENGTH)
13 Length extension field (LEN256)
14 Bit count fieid (BITCNT)
15 System-specific field (SYSPEC)
20 Access control list repeat count field (ACLCNT)
21 Access control list entry field (ACL)

Table C-5 follows. The error code number {column 1) is contained in bits 0-11.
Symbolic status codes (column 2, when shown) refer to the corresponding RMS
or FCS status codes. They are included here for ease of reference only, as they
have no meaning for DAP.

Remote File Access Error/Completion Codes Cc-13

C-14

Table C-5: DAP Miccode Valtﬁes_ for Use with_Mact;ode Values0,1,4,5,6,7

Error Code Symbolic
(bits 0-11) Status Code Error Description
0 Unspecified error
1 ERSABO Operation aborted
2 ERSACC F11ACP could not access file
3 ERSACT File activity precludes operation
4 ERSAID Bad area ID
5 ERSALN Alignment options error
6 ERSALQ Allocation quantity too large or 0 value
7 ER$ANI Not ANSI D format
10 ER$AOP Allocation options error
11 ER$AST Invalid (synchronous) operation at AST Jevel
12 ERSATR Attribute read error
13 ERSATW Attribute write error
14 ERSBKS Bucket sizc too large
15 ER$BKZ Bucket size too large
16 ER$BLN BLN length error
17 ER$BOF Beginning of file detected
20 ERSBPA Private pool address
21 ERS$SBPS Private pool size
22 ERSBUG Internal RMS error condition detected
23 ERSCCR Cannot connect RAB
24 ERSCHG $UPDATE changed 2 key without having
attribute of XBSCHG set
25 ERSCHK Bucket format check-byte failure
26 ER$CLS RSTS/E close function failed
27 ERSCOD Invalid or unsupported COD field
30 ERSCRE F11ACP could not create file (STV = system-
error-code)
DECnet-RSX Programmer’s Reference Manual

Table C-5 (Cont.): DAP Miccode Values for Use with Maccode Values 0, 1,

4,5,6,7

Error Code Symbolic Status
(bits 0-11) Code Error Description
31 ERSCUR No current record {operation not preceded

by get/find)
32 . ER$DAC F11ACP deaccess error during close
33 ER$DAN Data area number invalid
34 ER$DEL RFA-accessed record was deleted
35 " ERSDEV Bad device, or inappropriate device type
36 ERSDIR Error in directory name
37 - ERSDME Dynamic memory exhausted
40 ERSDNF Directory not found
41 ERSDNR Device not ready
42 ER$DPE Device has positioning error
43 ERSDTP DTP field invalid
44 ERSDUP Duplicate key detected; XBSDUP not set
45 ERSENTY F11ACP enter function failed
46 ERSENY Operation not seiected in ORG$ macro
47 ‘ ERSEOF End of file
50 ERSESS Expanded string area too short
51 ERSEXP File expiration date not yet reached
52 ERSEXT File extend failure
53 ER$FABR Not a valid FAB (BID does not = FBSBID)
54 ERSFAC Illegal FAC for record operation, or FB$PUT

not set for create
55 ER$FEX File already exists
56 ERSFID Invalid file ID
57 ER$FLG Invalid flag-bits combination
60 ERSFLK File is locked by other user
61 ERSFND F11ACP find function failed

(continued on next page)

Remote File Access Error/Completion Codes

C-15

Cc-18

Table C-5 {(Cont.}: DAP Miccode Values for Use with Maccode Values 0, 1,

4,5,6,7

Error Code Symbolic Status

(bits 0-11) Code Error Description

62 _ ER$FNF File not found

63 ER$FNM Error in file name

64 ER$FOP invalid file options

653 ER$FUL Device/file full

66 ERSIAN Index arez2 number invalid

67 ERSIFI Invalid IFI value or unopened file

70 ER$IMX Maximum NUM (254) areas/key XABS
exceeded

71 ER$INI $INIT macro never issued

72 ERSIOP Operation illegal or invalid for file organiza-
tion

73 ERSIRC Illegal record encountered (with sequential
files oniy)

74 ER$ISI Invalid ISI value on unconnected RAB

75 ERSKBF Bad key buffer address (KBF = 0)

76 ERSKEY Invalid key field (KEY = 0 or negative)

77 ERSKRF Invalid key of reference {($GET/$FIND)

100 ERS$KSZ Key size too large

101 ERSLAN Lowest level index area number invalid

102 ERSLBL Not ANSI-jabeled tape

103 ERSLBY Logical channel busy

104 ER$LCH Logical channel number too large

105 ERSLEX Logical extend error; prior extend still valid

106 ER$LOC LOC field invalid

107 ER§MAP Buffer-mapping error

110 ERSMKD F11ACP could not mark file for deletion

111 ERSMRN

MRN value = negative or relative key > MRN

DECnet~RSX Programmer’s Reference Manual

Table C-5 (Cont.): DAP Miccode Values for Use with Maccode Values 0, 1,

4,5,6,7

Error Code Symbolic Status

(bits 0-11}) Code Error Description

112 ER$MRS MRS value = O for fixed length records and/

_ ‘ or reiative files

113 ERS$NAM NAM block address invalid (NAM = Qoris
not accessible)

114 ERSNEF Not positioned to EOF (with sequential files
only)

115 ERSNID Cannot allocate internal index descriptor

116 ERSNPK Indexed file; primary key defined

117 ER$OPN RSTS/E open function failed

120 ERSORD XABs not in correct order

121 ERSORG Invalid file organization value

122 ER$PLG Error in file’s prologue (reconstruct file)

123 ERSPOS POS field invalid (POS > MRS; STV = XAB
indicator)

124 ERSPRM Bad file date field retrieved

125 ERSPRV Privilege violation {(OS denies access)

126 ERSRAB Not a valid RAB (BID does not = RBSBID)

127 ERSRAC Illegal RAC value

130 ERSRAT Iltegat record attributes

131 ERSRBF Invalid record buffer address (¢ither odd or
not word aligned if BLK~EO)

132 ER$RER File read error

133 ERSREX Record already exists

134 ERSRFA Bad RFA value (RFA = 0)

135 ERSRFM Invalid record format

136 ERSRLK Target bucket locked by another stream

137 ERSRMV F11ACP remove function failed

140 ER$RNF Record not found

{continued on next page)

Remote File Access Error/fCompletion Codes C-17

C-18

Table C-5 (Cont.): DAP Miccode Values for Use with Maccode Values 0, 1,

4,5,6,7
Error Code Symbolic Status
(bits 0-11) Code Error Description
141 ERSRNL Record not locked
142 ERSROP Invalid record options
143 ER$SRPL Error while reading prologue
144 ER$RRV Invalid RRV record encountered
145 ERSRSA RAB stream curtently active
146 ERSRSZ Bad record size (RSZ > MRS or NOT = MRS
if fixed length records)
147 ERSRTB Record too big for user’s buffer
150 ER$SEQ Primary key out of sequence (RAC = RB$SEQ
for $PUT)
151 ER$SHR SHR field invalid for file (cannot share
sequential files)
152 ERSSIZ SIZ field invalid
153 ERS$STK Stack too big for save area
154 ER$SYS System directive error
155 ERSTRE Index tree error
156 ERSTYP Error in file trype (extension on FNS is too big)
157 ERSUBF Invalid user buffer address (0, odd, or not
_ word aligned if BLK-10)
160 ERSUSZ Invalid user buffer size (USZ = 0)
161 ERSVER Error in version number
162 ER$VOL Invalid volume number
163 - ERSWER File write error (STV = system-error-code)
164 ER$WLK Device is write locked
165 ERSWPL Error while writing prologue
166 ER$XAB Not a valid XAB (@XAB = odd; STV = XAB
indicator)
167 BUGDDI Default directory invalid
DECnet-RSX Programmer’s Reference Manual

F-
)
|

Table C-5 (Cont.):

DAP Miccode Values for Use with Maccode Values 0, 1,

4,5,6,7

Error Code Symbolic Status

(bits 0--11) Code Error Description

170 CAA Cannot access argument list

171 CCF Cannot close file

172 ChA Cannot deliver AST

173 CHN Channel assignment failure (STV = system-
error-code)

174 CNTRLO Terminal output ignored due to

175 CNTRLY Terminal input aborted due 1o

176 DNA Defauit file pame string address error

177 DV Invalid device ID field

200 ESA Expanded string 2ddress erfor

201 FNA File name string address error

202 FSZ FSZ field invalid

203 IAL Invalid argument list

204 KFF Known file found

205 LNE Logicai name error

206 NOD Node name error

207 NORMAL Operation successful

210 OX_DUP Inserted record had duplicate key

21 OK_IDX Index update error occurred; record inserted

212 OK_RLK Record locked, but read anyway

213 OK__RRV Record inserted in primary key is okay;, may
not be 2ccessible by secondary keys or RFA

214 CREATE File was created, but not opened

215 PBF Bad prompt buffer address

216 PNDING Asynchronous operation pending completion

217 QuUO Quored string error

220 RHB Record header buffer invalid

Remote File Access Error’Completion Codes

{continued on next page)

c-19

c-20

Table C-5 (Cont.): DAP Miccode Values for U

se with Maccode Values 0, 1,

4,5,6,7 '
Error Code Symbolic Status
{bits 0-11) Code Error Description
221 RLF Invalid related file
222 RSS Invalid resultant strieg size
223 RST Invalid resultant string address '
224 $QO Operation not sequential
225 SuUC Operation successful
226 SPRSED Created file snperseded existing version
227 SYN File name syntax error
230 TMO Timeout period expired
231 ER$BLK FB$BLK record attribute not supported
232 . ER$BSZ Bad byte size
233 ERSCDR Cannot disconnect RAB
234 ERSCG] Cannot get JEN for file
235 ER$COF Cannot open file
236 ER$JFN Bad JFN value
237 ER$PEF Cannot position to end of file
240 ERSTRU Cannot truncate file
241 ER$UDF File currently in an undefined state; access is
denied
242 ERSXCL File must be opened for exclusive access
243 Directory full
244 IE.HWR Handler not in system
245 IE.FHE Fartal hardware error
246 Attempt to write beyond EOF
247 IE.ONP Hardware option not present
250 IE.DNA Device not attached
251 IE.DAA Device already attached
DECnet-RSX Programmer's Reference Manual

Table C-5 (Cont.): DAP Miccode Values for Use with Maccode Values 8, 1,

4,5,6,7
Errer Code Symbolic Status
(bits 0-11) Cade Error Description
252 IE.DUN Device not attachable
253 IE.RSU Shared resource in use
254 IE.OVR Iliegal overlay request
e 255 [E.BCC Block check or CRC error
. 256 IE.NOD Caller's nodes exhausted
o 257 IE.IFU Index file full

260 1E.HFU File header full
261 IE.WAC Accessed for write
262 IE.CKS - File header checksum failure
263 IE.WAT Auribute control list ertor
264 IE.ALN File already accessed on LUN
265 IE.BTF Bad tape format
266 IEILL Tilegal operation on file descriptor block
267 IE.2DV Rename; two different devices
270 1E FEX Rename; new file name already in use
271 IE.RNM Cannot rename old file system
272 IE.FOP File already open
273 IE.VER Parity error on device
274 IE.EOV End of volume detected

m%ﬂ 275 IE.DAO Data overrun

s 276 [E.BBE - Bad block on device
277 IE.EOT End of tape detected
300 1E.NBF No buffer space for file
301 IE.NBK File exceeds allocated space; no blocks left
302 IE.NST Specified task not installed
303 {E.ULK Unlock error
304 IE.NLN No file accessed on LUN

{continued on next page)

Remote File Access Error/Compietion Codes c-21

Table C-5 (Cont.): DAP Miccode Vaiues for Use with Maccode Values 0, 1,

4,5,6,7 '
Error Code Symbolic Status
{bits 0-11) Code Error Description
305 IE.SRE Send/receive failure
306 SPL Spool or submit command file failure
307 NMF No more files
310 CRC DAP file transfer checksum error
311 Quota exceeded
312 "BUGDAP Interﬁal network error condition detected
313 CNTRLC Terminal input aborted due to (CTRUC)
314 DFL Data bucket fill size > bucket size in XAB
315 ESL Invalid expanded siring length
316 IBF IHegal bucket format
317 IBK Bucket size of LAN does not = JAN in XAB
320 IDX Index not initialized
321 IFA Illegal file attributes (corrupt file header)
322 IFL Index bucket fill size > bucket size in XAB
323 KNM Key name buffer cannot be read from or writ-
ten 1o in XAB
324 Ks1 Index bucker will net hold vwo keys for key
of reference
325 MBC Multibuffer count invalid (negative vatue)
326 NET Network operation failed at remote node
327 OK__ALK Record is already locked
330 OK_DEL Deleted record successfully accessed
331 OK__LIM Retrieved record exceeds specified key value
332 OK_NQP Key XAB not filled in
333 OK__RNF Nonexistent record successfully accessed
334 PLV Unsupported prologue version
335 REF Illegal key of reference in XAB
336 RSL Invalid resultant string length
337 RVU Error updating RRVs; some paths 1o data may
be lost
DECnet-RSX Programmer’'s Reference Manual

5
[}

Table C-5 (Cont.): DAP Miccode Values for Use with Maccode Values 0, 1,

4,5,6,7

Error Code Symbolic Status

(bits 0-11}) Code Error Description

340 SEG Data types other than string limited to one
segment in XAB

341 Reserved

342 suUp Operation not supported over network

343 WBE Error on write behind

244 WLD Invalid wildcard operation

345 WSF Working set full (cannot lock buffers in work-
ing set)

346 Directory listing: error in reading volume set
name, directory name, or file name

347 Directory listing: etror in reading file attri-
butes

350 Directory listing: protection violation in try-
ing to read the volume set, directory, or file
name

351 Directory listing: protection violation in try-
ing to read file attributes

352 Directory listing: file attributes do not exist

353 Directory listing: unable to recover directory
list after continue transfer (skip)

354 SNE Sharing not enabled

355 SPE Sharing page count exceeded

356 UPL UPI bit not set when sharing with BRO set

357 ACS Error in access control string

360 TNS Terminator not seen

361 BES Bad escape sequence

362 PES Partial escape sequence

363 wWCC Invalid wildcard context value

364 IDR Invalid directory rename operation

Remote File Access Error/Compietion Codes

" (continued on next page)

c-23

Table C-5 (Cont.): DAP Miccode Values for Use with Maccode Values 0, 1,

4,5,6,7
Error Code Symbolic Status
{bits 0-11) Code Error Description
365 . STR User structure (FAB/RAB) became invatid dur-
ing operation
366 FIM Network file transfer mode precludes opera-
' tion
6000 User-defined errors
to
7777
C-24 DECnet-RSX Programmer’s Reference Manual

Table C-6 follows. The message type number is contained in bits 0-11.

Table C-6: DAP Miccode Values for Use with Maccode Value 12

Type Number

{bits 0-11) Message Type

1] Unknown message type

1 Configuration message

2 Auributes message

3 Access rmessage

& Control message

5 Continue transfer message

6 Acknowledge message

7 Access complete message

10 Data message

11 Status message

12 Key definition attributes extension message
13 Allocation attributes extension message

14 Sammary attributes extension message

15 Date and time atrributes extension message
16 Protection attributes extension message

17 Nzame message

20 Access control list extended attributes message

Remote File Access ErrorfCompietion Codes Cc-25

—
EA

D

MACRO-11 Connect Block Offset and Code

Definitions

The following MACRO-11 offset and code definitions refer to connect block off-

sets used in network connects and accepts.

D-2

.TITLE NETDEF - DECnet User Interface Definitions

.IDENT /V02.05/

; Copyrignt (C) 1978, 1979, 1980, 1987 by
; Digital Equipment Corporation, Maynard, Mass.

H
; Module Description:

f
H
¥
;+

and return values,

vo wr wa

.MADRC NETDFE,L,B

.MCALL CREDF$
CRBDFS L,B
.MCALL CNBDF$
CNEDF$ L,B
.MCAL], NSSYM$
NSSYMS B

MACRO NETDFS$,X,Y
.ENDM NETDF$

.ENDM NETDF$
+

RSX-11M/S/M-PLUS Network Interface Offset and Error Definitions

; Macro to define DECnet MACRO user interface data structures

; Request descriptor block
; Request pending block

; Return symbols

Request Deseriptor Block offset definitions for connects.

Short connect block offsets are prefixed with N.

; NOTE: Long connect block offsets ere prefixed with M.
Ll

The figure does not include the offset prefix. If you are using
; the long connect block, use M for the offset prefix. If you are
; using the short connect block, use N.

DECnet—RSX Programmer’s Reference Manual

SHORT LONG
CONNECT CONNECT
BLOCK BLOCK

_RND ﬁL 000 208

204 004

.ROT .RFM] ees 2es

FORMAT @ W

el
FORMAT 1

.RDEC e10 210

212 912

-RDE , 030 030
FORMAT 2

.RGP 010 210

.RUS Q12 @12

.RNMC @14 214

oM 216 216

) @30 230

{fji .RIDC 1 32 032

- 234 @34

-RID 052 102

.RPSC ' @54 104

> @56 106

-RPS o54 154

.RACC 266 156

270 160

-RAC) ies 230

MACRO-11 Connect Blotk Offset and Code Definitions

-MACRO CREDFS,L,B,LST
.iif ndb LST

-ASECT

3

.List

; Long connect block offsets (support for long passwords, user names and

.
2
.
2
.=

accounting information)

0
M.BND:'L' .BLKB
M.RFM:'L' .BLKB
M.ROT: 'L’ .BLKB
.BLKB
.=,-18.
M.RDEC:"L" .BLXW
M.EDE:'L* .BLKB

18.

Destination node name

6 ;

1 ; Destination descriptor format
1 ; Destination object type
SEEERRX

; Format 0 -

; [UNUSED)

Hild

H Format 1 -

1 3 Destinstion process byte count
16. ; Destination process

s HAR

+

;

3 Offsets between N.RND and N.RDE and M.RND and M.RDE for format 1 or N.RGP
; and M.RGPF for format 2 must be identical jn both the short and long

; connect blocks.

’

.=.=18.
M.RGP: 'L’
M.RUS: 'L’
M.RNMC: 'L’
M.RNM: 'L’

M.RIDC:'L’
M.RID:'L’
M.RPSC: 'L’
M.RPS: 'L’
M.RACC: 'L’
M.RAC: 'L’

-BLKW
+BLKW
BLKW
.BLKB

.BLKW
.BLKB
.BLKW
.BLKB
.BLKW
.BLKB

M.RQL="B".-M.RND

M e M W we e

Short connect block offsets.
existing scftware and versions of DECnet RSX

s e r s s W

Do not add an offset to one without adding it to the other.

Format 2 -
Destination group
Destination user
Destination name byte count
Destination name

Requesting process ID byte count
Requesting process ID

Requesting password byte count
Requesting password byte count
Accounting information byte count
Accounting information

Length of EDB

Included for compatibility with

DECnet-RSX Programmer's Reference Manual

.=0

N.RND: 'L’ .BLKB 6 ; Destination node name
N.RFM:'L"' .BLKB 1 ; Destination descriptor format
N.ROT:'L' .BLKB b3 ; Destination object type

;******
; Format O -
.BLKB 18. ; [UNUSED]
iid
~=.-18. ; Formet 1 -
N.RDEC:'L' .BLKW 1 ; Destination process byte count
e N.RDE:'L' .BLKB 16. ; Destination process
v SRR

H
; Cffsets between N.RND and N.RDE and M.RND and M.RDE for format 1 or N.RGP

; and M.RGP for format 2 must be identical in both the short and long

; connect blocks. Do not add an offset to one without adding it to the other.
H

i

=.-18. ; Format 2 -
N.RGP:'L' .ELEW 1
N.RUS:'L' .BLXKW i
N.RNMC:'L' .BLKW i
N.RNM:'L' L.BLKB 12,

Destination group
Destination user
Destination name byte count
Destination name

W s wa i ue

ERRER

N.RIDC:'L' .BLKW 1 Requesting process ID byte count

N.RID:'L' LEBLKB 16, ; Requesting process id
N.RPSC:'L" .BLKW 1 ; Requesting password byte count
N.RPE:'L* .BIKB B. ; Reguesting password
N.RACC:'L'" .BLKW 1 ; Accounting information byte count
N.RAC:'L*' .BLKB 16. 1 Accounting infermation
;

N.RQL='B',~N,RND ; Length of short RDB

.PSECT

Jif nb LST

Nlist

g

.MACRO CRBDFS,X,Y,Z

.ENDM CRBDFS

.endc

.ENDM CRBDF3

Connect Block offset definitions for received connect requests.

H
H
H
; NOTE: Long conneet bloek offsets are prefixed with M (example: M.RND)
; Short connect block offsets are prefixed with N.

L

r

; The offset prefix is not lncluded in the dlagrem. If you are using
; the long connect block, use M for the offset prefix. If you are
3 using the short connect bloek, use N.

MACRO-11 Connect Block Offset and Code Definitions D-5

-CTL

.SEGZ

.DOT

-DFM

FORMAT &

{UNUSED)

FORMAT 1

.DOELC

.DOE

FORMAT 2

.DGP

.DUS

.DNMC

- DNt

SHORT

CONNECT

BLOCK
280

pe2

Pe5-ee4d

15161
826

@es

Q1@
@26

l6]3]
@19

@lz2
el4

826

LONG
CONNECT
BLOCK

200
g2

eB5-0ed

gea
826

51013

ele
826

006
2ie

212
@l4

226

DECnet-RSX Programmer’s Reference Manual

T

&
s

.MACRO CNBDF%,L,B,LST

.1if nb LST .List
JASECT

e ek wa

=0

M.CTL:'L' +BLKW
M.SEGZ:'L' .BLKW
M.DFM:*fL’ .BLKB
M. DOT: LY BLEB

.BLKB

=,=~18.

M.DDEC:*L' LBLKW
M.DDE:'L? .BLXB
.=,=18.

M.DGP: 'L +BLEW
M.DUS:'L? BLXW
M.DNMC: 'Lt .BLXW
M.DMM: 'L BLKB
M.SND:'L' BLKB
M.SFM: 'L .BLXB
M.SOT: 'L’ .BLKB

.BLKB

.=.=18.

M.SDEC:'L' .BLKW
¥.SDE:'L? .BLXB
.=.-18.

M.SGP: 1L: .BLKW
X.SUS:'L? BLXW
M.SNMC:'L* .BLEW
M. SNM:'L' .BLKB

18.

Incoming short connect block offsets

[

; Temporary link address

; Segment size
; Destination descriptor format
; Destination object type

(SR

Rk X
Format 0 -
[UNUSED]
®EX

-

TR 1)

Format 1 -
; Destination process byte count
; Destination process

. -
v*o\p-l .
N

E

Format 2 -

Destination group
Destination user
Destination name byte count
Destination name

M owe e s

- e
% 5

o .

»»

"

*

Source node name
; Source deseriptor formad
; Source object type

e O
we e e

< KEXRER

Format 0 -
[UNUSED]
(133

-

e

e

Format 1 -
; Source process name byte count
; Sourece process name

u’;‘gps.
%k o
»

Format 2 -

Bource group

Source user

Source name byte count
Source nane

-&R;HH!-“-

*o .
ok
2 e ter ter v

MACRO-11 Connect Block Offset and Code Definitions D-7

$3%=.
M.CIDC: L'
M.CID:'L'
M.CPSC:'L'
M.CPS:'L'
M.CACC: 'L’
¥.CAC:*L*
M.CDAC: 'L’
M.CDA:'LY

«BLKW
.BLKB
+BLKW
-BLKB
~BLKW
.BLXB
»BLKW

M.CEL='B'.~-M.CTL

-=3
¥.COEV:'L® .BLKW
M.CUNI:'L' .BLKD
EVEN
M.CUIC:'L' .BLKW
M.CDDS:*L' .BLKB
;
; Incoming short
=0
N.CTL:'L' JBLXW
N.SEGZ:'L' .BLKW
N.DFM:'L! .BLKB
N.DOT: 'L’ -BLKS
.BLKB
=.=-18,
N.DDEC:'L' .BLKW
N.DDE:'L* BLEE
.=.=18.
N.DGP:'L' -BLKW
N.DUS:'L! -BLKW
N.DNMC:'L' .BLKW
N.DNM: 'L’ .BLKB
N.SND:'L* .BLKB
N.SFM:'L* .BLKB
¥.80T: 'L .BLKB

40.
40,

1
40.

-

1.

Source task ID

Password

et fes NE Cwr Wi Wb twe en

; Length of CNB (without any data)

-

-a

; Login UIC from account file
; Default directory string (byte 0=0 = none)

connect bleck offsets

18.

| od

P

ERAR

w+

w1 s Wi

s RER

B
o

3 %

-

iaialahe

FRERRR

6
1
1

; Temporary link adéress

Segment size

H
; Destination deseriptor format
; Destination object type

*%
Format O -

[UNUSED]

Format 1 -

; Destination process byte count
; Destinaticn process

Format 2 -
Destination group
Destination user

Destination name

Wowe ue e W

; Source node name

; Source descriptor format

; Source cobject type

DECnet-RSX Programmer’s Reference Manual

Souree task ID byte count
Pagsword byte count

Aceounting information byte count
Accounting informetion

Optional data byte count
Optlonal datz buffer

Default device name {from account file)
Default device unit number

Destination name byte count

.BLKB 18.
L= =18,
N.SDEC:'L' .BLKW
N.SDE:'LY .BLKB
.=.-18.
N.SGP:'L!® .BLKW
N.8US:'L? +BLKW
N.SWMC: 'Lt .BLEW
N.SNM:'L! -BLEB
$3p=.
N.CIDC:'L' .BLKW
"K.CID:'L? .BLKB
N.CPCs'L' .BLKM
N.CP3:'L? .BLKB
N.CACC:'L' .BLKW
N.CAC:'L? .BLKB
N.CDAC:'L' .BLKW
N.CDA:'L!
¥.CBL='B'.-N.CIL
=588
N.CDEV:'L' .BLKW
N.CUNI:'L" .BLKB
.EVEN
N.CUIC:'L" .BLKW
N.CDDS: 'L’ .BLKB
.PSECT
- ENDM

CNBDFS

s KEEREX

¥

H Format 0 -

; [UNUSED]

R

H Format 1 ~

1 ; Source procéss nste byte count
16. ; Source process nane

SRR

H Format 2 -

1 Source group

1 ; Source user

H

¥

; Source name byte count
12. ; Source name

*

1 ; Source task ID byte count
16. ; Source task ID
i ; Password byte count
8. s Password
1 ; Accounting information byte count
16. ; Accounting information
1 ; Optional data byte count
; Optional data buffer
H
; Length of CNE (without any deta)
1 ; Default device name (from sccount file}
1 ; Default device unit number
1 ; Login UIC from account file

1l ; Default directory string (byte 0=0 => none)

MACRO-11 Connect Block Offset and Code Definitions

D-g

Network Error/Completion Codes for
FORTRAN, COBOL, and BASIC-PLUS-2

This appendix lists the error/completion codes that can be returned in the first

word of any 2-word I/0 status block by certain calls in the FORTRAN, COBOL,
and BASIC-PLUS-2 languages.

1 The request was successful.
2 The reqguest was successful, but so:lne optional data was lost.
~1 Required system resources are not available,
-2 :\ n::kc:quf:st was issued for a LUN on which there is no established logical

-3 The link was disconnected with the request outstanding.

—4 The data received was truncated because the receive buffer was too
small.

-5 An argument specified in the call is incorrect.

-6 No network data was found in the user's network data queue.

-7 The network (NSP) rejected an attempted connect.

-8 A logical link has already been established on the LUN to which the
user attempted to connect.

-9 The issuing task is not part of the network (that is, OPNNT was never
called).

E-1

-10

=11

-12

~24

~25

-26

~4Q

CE-2

The user is attempting to access the network for a second time.

Transmission of an interrupt message was attempted before the last one
finished.

A connect reject was issued by the user task to which the connection
was attempred.

A buffer either is outside the user address space or is not word aligned.

The user is artempting to issue a GNDNT[W] when one is already pend-
ing.

A RUNNCW was issued for which there was not enough dynamic mem-
ory on the remote noge.

A RUNNCW or ABONCW was issued for a task that was not installed on
the remote node.

A RUNNCW was issued with an invalid time parameter.

Either an ABONCW was issued for a task that was not active, ora W
RUNNCW without scheduling parameters was issued for a task that

already is active.

There was 2 privilege violation on an RUNNCW or ABONCW attempt.

An ABONCW was issaed for a task that either was being loaded into or
was exiting from the remote node.

An RUNNCW was issued with an invalid UIC.

A directive error; the second word of the status bieck contains the
actual directive error code.

DECnet-RSX Programmer’s Reference Manual

F

Network MACRO-11 Error/Completion
Codes

Applicable Standard RSX Codes

The following MACRO-11 error completion codes include all nerwork related
I/O error completion codes for this manual. These codes are defined in the
IOERRS macro in RSXMAC.SML, which is referenced in the NSSYM$ macro in
NETLIB.MLB.

Symbol Decimal Octal

Name Value Value Meaning

18.5UC 1 1 The request was successful.

15.DAO 2 2 The reguest was successful, but some
data was lost.

IE.BAD -1 377 Invalid buffer parameter, or data length
exceeds 16, byies.

IE.SPC -6 372 Invalid buffer parameters: the buffer
may not be word-aligned, may be out-
side user address space, or may exceed
8128. bytes.

IE.WLK -12 364 Transmission of an interrupt message
was attempted before the last one fin-
ished.

IE.DAO ~-13 363 Data overrun; unstored data was lost.

IE.ABO -15 361 The link was aborted or disconnected

(see disconnect and reject reason
codes, Appendix A).

A 201

F-2

Symbol Decimal Octal .

Name Value Value Meaning

1E.PRL -16 360 The network is not accessed on this
LUN.

IE RSU -17 357 Required systemn resources are not
available.

IE.ALN -34 336 The specified LUN is already estab-
lished.

IE.NLN -37 333 There is no established logical link on
the specified LUN.

IE.URJ -73 267 The remote task rejecred an zttempted
connection.

IE.NR} ~74 266 The network rejected an attempted
conaection (see disconnect and reject
reason codes, Appendix A).

IENDA -78 262 There is no data to return.

IE.NNT ~94 242 The issuing task is not a network task;

OPNS$ was not executed successfully.

DECnet-RSX Programmer’s Reference Manual

£
£
5

G
Values for Ethernet and 802.3 Addressing

This appendix provides information on assigned values for
® Multicast addresses

= Protocol types for Ethernet format

= Service Access Point (SAP) addresses for 802.3 format
» Subnetwork Access Protocol (SNAP) identifiers for 802.3 format

All values are in hexadecimal notation, with zn representing variables in
addresses and protocols.

Note that the protocols and addresses for customer use will not change, but the
assigned cross-company and internal Digital values may increase beyond the list
in this appendix. The IEEE is continuing to assign SAP and SNAP values; the 802.3
information is currently valid but is still changing. -

While this appendix includes the assigned multicast and SAP values for broad-
casts, you should avoid using them, since broadcasting congests the network.

G.1 Multicast Addresses

Multicast addresses in the following format are reserved for Digital Equipment
Corporation customer use:

AB-00-04-00-nn-nn

G.1.1 Ethernet Protocol Types

All companies can use the following reserved multicast addresses:

Value

FF-FF-FF-FF-FF-FF

CF-G0-00-00-00-00

Meaning

Broadcast

Loopback assistance

Digital Equipment Corporation reserves the following ranges for internal use

only:

08-00-2B-nn-nn-nn
09-00-2B-nn-nn-nn

AA-00-00-nn-nn-nn
AA-QO-0l-nn-nn-nn
AA-0Q0-02—-nn-nn-nn
AA-O0-O3—nn-nn-nn
AA-00-Q4~nn-nn-nn
AB-00-00-01-00~-00
AB-00-00-02-00-00
AB-00-00-03-00-00
AB-00-00-04-00-00

AB00-04~-01-nn-nn

In a Digital-only environment, you can use any values that fall outside of the
Digital Equipment Corporation ranges. In a multi-vendor environment, however,
these values might conflict with the system software of the other vendors.
Addresses in the Digital customer range, in contrast, are reserved; they will not
conflict even in a multi-vendor environment.

The following protocol type is reserved for Digital Equipment Corporation cus-

tomer use:

60-06

All companies using the Ethernet protocol use the following protocol type:

Value

90-00

Meaning

Loopback

DECnet-RSX Programmer’s Reference Manual

Digital Equipment Corporation reserves protocol types in the following ranges
for internal use only:

60-00 to 60-05

60--07 10 60-09

80-38 to 8042
T In a Digital-only environment, you can use values outside of the Digital
Lo Equipment Corporation range. In a multi-vendor environment, however, using

other values could cause conflicts with other vendors’ software.

Values in the range 00-00 through 05-DC are reserved for internal use and will
cause data link level errors in an application.

G.2 SAP Addresses

The IEEE has not yet assigned SAPs to Digital Equipment Corporation, but it has
assigned the following for inter-company use:

Value Name/Meaning

00 The null SAP: addresses just the data link layer, as in an XID or 2 TEST mes-
sage.

0z The logical link controi sub-layer management function individual SAP:

addresses an individual network management entity on the system,

03 The logical link control sub-laver management function group SAP:
addresses to zll network ranagement entities on the system.

AA The SNAP SAP: indicates that the next five bytes of a Ul frame contzin a
SNAP identifier,
FF The global SAF: broadcasts 1o ali 802 receivers on a node.

The IEEE has not yet assigned SAPs for Digital internal or customer use.

Values for Ethernet and 802.3 Addressing G-3

G.3 SNAP ldentifiers
The following SNAP identifier is reserved for Digital customer use:
08-00-2B-60-06
Digital reserves the following SNAP identifiers for internal use only:
08-00-2B-60-nn

08-00-2B-80-3C
08-00-2B-80-3E

G-4 DECnet-RSX Programmer's Reference Manual

LT

H

DLX Characteristics Status Codes

' This appendix lists the status codes for DLX characteristics and describes the con-

ditions that return each code, noting any conditions unique to specific QIOs or
characteristics blocks.

Error codes have the prefix CE. and 2 negative 16-bit value. Full or partial success
codes have the prefix C$. and a positive 16-bit value. CS.SUC (1) is the code for
complete success; other C$. codes indicate partial success that may return unex-
pected results.

Table H-1: Status Codes for DLX Characteristics

CE. Codes
Status
Code Meaning Characteristic Explanation
CE.ACN Address CC.MCT The protocolfaddress pair is already in
100012 conflict use.
CE.FMI Frame CC.FMQ or You entered an invalid frame format
100015 format CC.FMM value. The value must be NX$ETH or
invalid NX$802.

CE.FMC Frame usage CC.FMO or You specified both frame formars, but
100016 conflict CC.FRM only one is valid.

CC.GSP, The port is not enabled for 802.3 for-

CC.S$CO, mat.

CC.ISP,

CC.SNP

"CC.GSP The port is not enabled for 802.3 for-
mat with Class I service.

(continued on next page)

H-1

H-2

Table H-1 (Cont.):

Status Codes for DLX Characteristics

CE. Codes (Conl.)

Status
Code Meaning Characteristic Explanation
CE.IUN Invalid use CC.DST You specified 2 multicast instead of a
100013 of multicast physical address.
address
CE.MCE Multicast CC.MCT The specified multicast address is
100007 address already enabled.
enabled _
CE.NMA Nota CC.MCT The multicast address you entered is
100014 multicast not valid. Check that the least signifi-
address cantbitis 1.
CE.PCN Protocol CC.DST In attempting to enable a protocol,
100011 conflict your application:
= Attempted to enable itself as the
default protocol user, but a default
user already exists.
= Attempted 1o enable a protocol but
an exclusive user for the protocol
already exists.
= Arrempted to enable an already-
enabled protocol with a padding
status that conflicts with its cur-
rent status. The first request to
enable a protocol type assigns the
padding status to which all subse-
quent uses of the protocol type
conform.
CE.RES Resource Various No mernory is available for the charac-
100010 aliocation teristics operation.
failure
CE.RTS Request too Various, with You allocated too little space for the
100004 small 10.XGC returned data.
Various, with You supplied too little data.
10.X5C
CE.RTL Request too Various, with You allocated too much space for the
100003 large 10.XGC returned data.
Various, with You supplied too much data for the
I0.XSC allocated space.

DEChet-RSX Programmer’s Reference Manual

Table H-1 (Cont.): Status Codes for Di.X Characteristics

CE. Codes (Cont.)

Status

Code Meaning Characteristic Explanation

CE.SNU SNAP in use CC.SNP Another port has already enabled the
100021 specified SNAP protocol identifier.
CE.SPU SAP in use CC.ISP Another port has aiready enabled the
100020 specified SAP.

CE.SRI Service class CC.8CO, You entered a value other than PF$CLI
100017 invalid CC.SRV (10).

CE.UDF Undefined Al The value in the C.TYPE ficld does not
100001 function identify a valid characteristic type.

CS.Codes

CS.DAO Darta overrun CC.DST with Returned information exceeded allo-

000003 , 10 XGC cated space. Ethernet protocol type
information included more addresses
than you allocated space for.

CC.SNP with SNAP protocol identifier information

10.XGC included more addresses than you allo-

cated space for.
CS.IGN Ignored All This code generally indicates that char-
000002 acteristics information was inappropri-

ate. The code indicates various errors,
including: your existing environment is
incompatible with the characteristic
type (in frame format, for exampic); the
data you supplied was incomplete or
incorrect for the characteristic; you
already specified the characteristic and
this is a redundant block.

C5.5UC Success All The characteristics block processed
1 successfully.

DLX Characteristics Status Codes H-3

A

ABONCW, 1-15, 3-152, 3-160
Abort a logical link,
see ABTx, ABTS, ABTNT
Abort a task,
see ABONCW
ABTS, 2-12,2-34
ABTx, 1-9,2-12,3-13
ABTNT, 3-13
ACCS, 2-14
Access control, 1-7, 2-23, 2-24, 2-45,
2-50, 3~-5,3-11, 3-12, 3-17,
3-18, 3-20, 3-21, 3-32, 341,
3-155
ACCNT, 3-2, 3-15
Alias node names, 3-6
ASCIl string, 5-5
ASCIZ strings, 3-93, 3-94

Assigning logical unit numbers, 1-3, 1-8,

1-10, 2-12, 2-14, 2-20, 2-40,
3-2, 3-95,5-4
AST, 1-10, 2-63, 4-20

B
BACC, 3-7,3-17
BACCL, 3-20

BACUSL, 3-155

Index

BACUSR, 3-157

BFMTO, 3-23

BMFT1, 3-25

Buffering level, 3-89, 3-90

Buffer space, 1-10, 2-43, 3-89, 3-91
BUILD type macro, 2-1, 2-2

c

Characteristics status, 4-20

Class I service, 4—15

Closing files, 3-89

Closing the network, 1-10, 3-2

CLS$, 2-17 .

CLSNFW, 3-89, 3-104, 3-107, 3-115

CLSNT, 3-2, 3-89, 3-151

CNACSS, 2-28

CNID$$, 228

CNPSS, 2-28

CONS, 2-19

CONBS$$, 2-23

CONLSS, 2-28

Connect block, 1-6, 2-19, 2-21, 2-23,
2-24,2-390, 2-36, 2-41,3-17,
3-20, 3~-37

contents rerrieved by GND$, 2—44 {o
2-45
contents retrieved by GNDNT (tablc)
3-45 to 3—48

{ndex~1

Connect block (cont.)
incoming, 2-3, 3-3
and mail buffer size, 2-6
short (table), 2-46, 2-47, 2-48, 249,
2-50, 2-51
length, 2-5, 2-41, 3-3, 342
long, 2-28, 2-55
short, 2-23
Connect requests, 2-17, 2-55, 3-29
CONNT, 3~2, 3-10, 3-23, 3-3]
Control field, 4-16

D

DAP (Data Access Protocol), C-5, C-25
DECnet,
code definitions, D-1
communication calls (table), 1-12, 1-13,
1-14
macro library (NETLIB.MLB), 4-3
message types, 1-8
remote file access operations, 1-1
task control, 1-15 i
tasks, 1-6
Default mode (DLX), 4-13, 4-17
DELNFW, 3-88, 3-105
Destination descriptor, 1-6, 2-23, 2..28,
3-11,3-12
Direct line access controller,
see DLX '
DIRS macro, 2-2
Disconnect or reject reason codes, A-1
DLX, 4-1
and Ethernet programming, 4-3
characteristics,
block (figure), 4~9
buffer, 4~7 to 4-11
for Ethernet frame format (1able),
4-14
for 802.3 frame format {table), 4-18
status, 4-20
status codes, H-1 to H-3
data segmentation and buffering, 4-2
error recovery, 4-2
Ethernet address, 4-5
frame formars, 4—4
multicast addressing, 4-5

Index-2

DLX (cont.)
NX: device, 4-1
padding support, 4-13
physical addressing, 4-5
protocol flags, 4-12, 4-17
protocol types, 4~12
QIOs, 4-1, 4-20, 5-3
QIO summary, 5-3
status codes, 4~20
synchronizing programs, 44
DLX calls,
10.XCL, 5-16
10.XGC, 4-26
I0.XHG, 5~14
IO XIN, 5-7
10.XOP, 4-21, 5-4
10.XRC, 4-47,5-11
10.XS8C, 4-25
10.XTM, 441, 5-9
DLX characteristics,
CC.ADR, 4-42, 4-49
CC.CTM, 443, 4—49
CC.DAD, 4-50
CC.DST, 4-26, 4-35
CC.FMM, 444, 4-30
CC.FMQ, 4-22
CC.FRM, 4-28
CC.GSP, 4-29, 4-37
CC.ISP, 4-29,4-38 .
CC.MCT, 4-30, 4-36
CC.PRO, 4-44, 4-51
CC.8CO, 4-23
CC.5NM, 4-45, 4-51
CC.SNP, 4-30, 4-38
CC.SPM, 4-45, 4-52
CC.SRV,4-32, 4-40
DSCS$, 2-34
DSCNT, 3-35

E

Error/Completion codes, 3-3, 3-32
FORTRAN, COBOL, BASIC-PLUS-2, E-3
MACRO-11, F-1
remote file access, C-1

Establishing 2 network task, 3-2

Etherner address, 4-5

Event flags, 3-89, 4-20, 5-3

Event flags,, 3-3

Exclusive mode (DLX), 4-13, 4-17
EXECUTE type macto, 2-1, 2-2,2-3 2.5
EXENFW, 3-88, 3~106

Explicit connection, 6-2, 6-9

F

Flow control
incoming messages, 2-15
options, 1-10
with DLX, 5-2

Frame format,
Ethernet, 4-12
802.3,4-14

G

GETNFW, 3-89, 3-107

GLNS, 236

GLNNT, 3-37

GND$, 2-15, 219, 2-39
connect block (figure), 2~-53
mail buffer size, 2—-6

GNDx, 1-8

GNDNT, 3-31, 3-39
mail buffer size, 3-5

Implicit connection, 6-10
Interrupt message,
receiving, 3-44
sending, 1-8, 3-59, 2-66
Intertask communication,
calls, 1-2, 2-10, 3-1, 3-6, 3-9
concepts, 1-2
conventions, 1-2
macros, 2-10
IO.ATT, 6-8
I0.DET, 6-10
10.HNG, 6-10
I0.0RG, 6-2, -9
IO.RVB, 6-10
1/O status blocks, 3-2, 4-20, 5-3
I0.WVB, 6-10

10.XCL, 4-53
10.XGC, 4-33
I8.DAO, 3-5

L

LAT
definition, 6-1
environment (figure), 62
ports, 6-6
LAT applications
and LCP commands, 6-8
attaching the terminal, 6-8
directives (table), 6-12
establishing the connection, 6-9
preparing for, 6-8
reading and writing data, 6-10
setting characteristics, 6-9
summary, 6-11
terminating a connection, 6-10
1o quened services, 6-10
see also individual directive names
Libraries,
MACRO-11 (NETLIB.MLB), 2-1, 4-3
NETFOR.OLB, 3-1
Links,
data, 4-3
logical, 14, 2-17, 255, 3-50
Logicai unit numbers (LUN),
see Assigning logical unit numbers

Mait buffer,
and incoming connect block, 2-6
specifying iength, 2—41

mbxflg, 3-5

MBXLU, 1-3, 2-54, 3-49

N

Network data queue, 1-2, 1-3, 1-7, 1-8,
1-10,2-17, 2-39

Network File Access Routines (NFARs),
3-89, 3-90, 3~-91, 3-99

NOFLOW option, 1-11, 215, 2-21

Index-3

Non-ASCII data in connect block, 2-24,
2-30

NS: pseudodevice driver, 3-2

NSSYM$ macro, A-1

NT.LCB, 2-55

NT.LON, 241, 2—-43

NT.TYP, 2-41, 2—43

0

Object type codes, 3-23, B~1

OPANFW, 3-88,3-110, 3-114,
3-115

Open calls, 3-2

Opening files, 3-88

OPNS, 2-6, 2-54

OPNNT, 3~2, 349, 3-151

OPRNFW, 3-88, 3-110, 3114

OPWNFW, 3—-88, 3-114, 3-120

Originate explicit connection, 6-9

P

Parameters,
for task build, 3-89
overriding MACRO-11, 2-1, 2-3
required for MACRO-11, 2-4
PRGNFW, 3-89, 3114, 3-115
Protocol/address pairs, 4-13
for 802.3 format, 4-18
Protocol flags (DLX), 4~17
Proxy access, 3-6, 2-7
with CONB£ 8 macro, 2-23
with CONL$$ macro, 2-28
/PR switch, 4-2
PUTNFW, 3-89, 3-115

Q

QIO completion status, $-20

R

Reading a file, 3-88, 3~107, 3-110
RECS, 2-57
RECNT, 3-52

Index~4

Records,
writing, 3-115, 3-120
REJ$, 2-59
Reject reason codes, A-1
REJNT, 3-54
Remote file access,
argument definitions, 3-94
buffer space, 391
calls, 3-1, 3-2, 3-6
cails (table), 3-87
closing files, 3-89
concepts, 1-1, 1-14, 1-15
opening files, 3-88
task build parameters, 3-91
Remote task control, 1-1, 1-15, 3-151
RENNFW, 3-88

S

SAPs, 4-16
Scheduling a task for execution, 1-15,
3-139
Send an interrupt message,
see Interrupt message
Send data,
see SND$, SNDNT
Service Access Points (SAPs), 4-16
Service names, 6-6
SET PORT command, 6-9
SF.GMC, 6~16
SF.SMC, 6-9, 6-19
SNAP identifiers, 4-16
SNDS, 2-61
SNDNT, 3-56
SOURCE DESCRIPTOR, 2—47
Source descriptor, 1-6, 2—49
SPAS, 2~39, 2-63
SPLNFW, 3-88, 3-114, 3-120
Spool or print a file,
see SPLNFW -
STACK 1ype macro, 2-1, 2-4, 2-5
Subnetwork Access Protocols (SNAPs), 4-16
SUBNFW, 3-88, 3-114, 3-120, 3-121

T

Task,

Task, (cont.)
aborting,
see ABONCW
communicating with remote task,
see Intertask communication
scheduling,
see RUNNCW
Task building DLX programs,
/PR switch, 4-2
Task control block, 3—153, 3-160
Task control utility, 3—-151
Task-to-task communication,
using DLX, 4-3
TC .MAP characteristic
with SF.GMC, 6-17
with SF.SMC, 6-20
TC.QDP characteristic, 6-18
Terminal servers, 6—6
port names, 6-6
Terminating LAT connections, 6-10

U

User abort,

see ABT$, ABTNT, GND$, GNDNT
User disconnect,

see names, 1-7

w

WAITNT, 1-10, 3-58
Wait options, 1-10

X

XMI$, 2-66
XMINT, 3~59

802.3 frame formar,
service class, 4-15

Index-5

ECSN

HOW TO ORDER ADDITIONAL DOCUMENTATION

DIRECT TELEPHONE ORDERS
In Continantal USA in Canada In New Hampshire
call 800-DIGITAL calfl 800-267-6215 Alaska or Hawaii
cal! 603-884-6680
In Puerto Rico

call 809-754-7575 x2012

ELECTRONIC ORDERS (U.S. ONLY)

Dial 800-DEC—DEMO with any VT100 or VT200
compatible terminal and a 1200 baud modem.
if you need assistance, call 1-800-DIGITAL. -

DIRECT MAIL ORDERS (U.S. AND PUERTO RICO*)

DIGITAL EQUIPMENT CORPORATION
PO. Box CS2008
Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.
940 Bolkast Road
Ottawa, Ontarlo, Canada K1G 4C2
Attn: A&SG Business Manager

INTERNATIONAL

DIGITAL
EQUIPMENT CORPORATION
A&SG Business Manager
c/o Digital's local subsidiary
or approved distributor

Internal orders should be placed through the Software Services Business (SSB)
Digital Equipment Corporation, Westminster, Massachusetts 01473

*Any prapaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:
B09-754-7575 x2012

DECnel-RSX

Programmer's Refarence Manual
AA-MOSBRE-TC
READER'S COMMENTS
What do you think of this manual? Your comments and suggestions will help us to improve the quality
and usefulness of our publications.
Please rate this manual:
i Poor Exceollont
Accuracy 1 2 3 4 5
Roadability 1 2 3 4 5
Examples 1 2 3 4 5
Organization 1 2 8 4 5
Comploteness 1 2 3 4 5

bid you find errors in this manual? if so, please specify the error(s) and page number(s).

General comments:

Suggestions for improvement.

Name Date
ST Title Department

City, State/Country Zip Code

DO NOT CUT - FOLD HERE AND TAPE

BUSINESS REPLY LABEL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

dlilgliltiali

Networks and
Communications Publications
550 King Street

Littleton, MA 01460-1289

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

DO NOT CUT - FOLD HERE

R . R N T I A A el i I N

P L o I A A IR

