RSX-11M/M-PLUS
RMS-11 User’s Guide
Order No. AA-L669A-TC

April 1983

This manual provides information on file and task design using
RMS-11. The information includes design considerations for writing
application programs in.both MACRO-11 and high-level languages.

SUPERSESSION/UPDATE INFORMATION: This revised document
_supersedes the RMS-11
User’s Guide (Order No.
AA-D538A-TC).

OPERATING SYSTEM AND VERSION: RSX-11M Version 4.1,
RSX-11M-PLUS Version 2.1

SOFTWARE VERSION: RMS-11 Version 2.0

digital equipment corporation - maynard, massachus tts

First Printing, April 1983

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright () 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation,

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMs EduSystem UNIBUS
DEC/MMS IAS VAX
DECnet MASSBUS VMS
DECsystem-10 PDP vT
DECSYSTEM-20 PDT

pECUS RSTS dilgliltiall
DECwriter o '

ZK2168

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continentai USA and Puerto Rico cail 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.0O. Box €CS2008 A&SG Business Manager

Nashua, New Hampshire 03061 c/o Digital’s local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

Internai orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

PREFACE

SUMMARY

CHAPTER

CHAPTER

CONTENTS

MANUAL OBJECTIVES

INTENDED AUDIENCE . & « o o ¢ o o o o o o o o o
STRUCTURE OF THIS DOCUMENT &« & &« ¢ o o o o o o &
ASSOCIATED DOCUMENTS . . &« « o o o o s o o o o o
CONVENTIONS USED IN THIS DOCUMENT . . . « « o &

DESIGN PROCESS

Record Formats . . « .+
Fixed-Length Format . .

OF TECHNICAL CHANGES . ¢ o ¢ o o o o o o o o o o @
1 RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT
1.1 CONCEPTS OF DATA ORGANIZATION AND ACCESS .
1.1.1 RECOYAS v v 4 o o o o o o o o o o o o
1.1.2 FileS v v ¢« ¢ 4 o ¢ o o o o o o o o o o
1.1.3 ACCESS 4 «¢ o o o o o o o s o o o o o o @
l.1.4 Processing . o & ¢ ¢ o o o o o o o o o
1.1.5 File Maintenance . « « « « o « o « o o &
1.2 RMS-11 IMPLEMENTATION OF DATA ORGANIZATION
ACCESS v & o o o o o o o o o o o o o o o o
l.2.1 RMS-11 Record Formats . . ¢« « o« o o o &
1.2.2 RMS-11 File Organizations . . « « o« o &
1.2.3 RMS-11 Record Access ModesS . « « « o o &
102.4 RMs-ll Utilities
1.3 RMS-11 PROCESSING ENVIRONMENT . « « o «
1.3.1 RMS-11 Task Structure « . &
1.3.2 RMS-11 Record Processing . . « « « o o &
1.3.3 RMS-11 File Processing . « « « ¢ o o o &
1.4 FILE ATTRIBUTES e o o o o & s o s e s & o
1.5 PROCESSING BY BLOCK ACCESS ¢« ¢ « o o o o &
2 APPLICATION DESIGN
2.1 WHEN TO DESIGN . ¢ ¢ o o o o o o o o o o &
2.2 DESIGN CONSIDERATIONS .« ¢ ¢ o o ¢ o o o &
2.2,1 Speed . . v e 4 s e e e s e s 4 e e e
2,2.2 SPACE ¢ ¢ ¢ ¢ o o o s o e o o o o e o
2,2.2.1 Data Storage . « o ¢ o o o o o o o o o o
2.2.2.2 Task S1Z€ « o o o o o o o o o o o o o
2.,2.2.3 Buffer Sizes .« v + ¢« o o ¢ o o o o o o
2,2.3 Shared ACCESS « 4+ o o o o o o o o o o
2.2.3.1 Bucket Locking . « « & o o o ¢ ¢ o o o o
2.2.3.2 Sharing among Access Streams . . « « « .
2.2.3.3 Programming Considerations
2.2.4 Ease of Design e o o o s o o
2.3 e e e s e s .
2.4 L] L] L] * * .
2.4 e s e e e o
204 L] . . L] . .
2.4 . . L] L] . .

S
SELECTING A FILE ORGANIZATION

e
L] L]
IR

Variable-Length Format .

¢« o o o o

e o o & & ® 4 s ¢ 0 s Pe o e s s o

e ® ¢ ® ¢ * ¢ ® ¢ & 3 & ¢ & a2 *

e & o ® o o o ¢ o o s e o o o o o

e & e & o ¢ o 0 o o 4 0 g o o o

¢« * s+ o

Page

P NN
L T L L
COoOwVwOUITULITUIUIdWWIN

CHAPTER

CHAPTER

WWWWWWWWWWwWwWWwWwwWwWwWWwWwWwwwwwwwwuwwwww w

18

A N Ll I N T L

e o o e o

Ut UTLE R RWWWLWWWLWNDE

¢ ¢ e e & & 5 6 e 8 e e & * 0 0+ s 0 o o

BWWWWWWNNN e

e e o ® © e o o ° o o o o

oUW WWWWLWWWHNH

6 o e 4 & o o ¢ o s o

. L] (] .
o e e

¢« o
N WoOoOJgaUnidxWN

O~JAU W H

CONTENTS

Variable-with-Fixed-Control Format

Stream Format . « ¢ ¢ o o o o o
Undefined Format . o+ « o« o o +
I/0 Techniques . « « « ¢ ¢ o « &

SEQUENTIAL FILE APPLICATIONS

FILE STRUCTURE . . « « .« &
RECORD SIZE . ¢ o o o o o
FILE DESIGN . . . « « « &
Data Storage Medium . .
File Allocation
Initial Allocation . . .
Default Extension Quantity
Contiguity . « « « « « « &
ACCESS SHARING . . ¢ « + =
Record Access to Sequent1al Files
Block Access to Sequential Files

e ® o o o o
¢ ¢ © o o
e ¢ o e

e Vv s & s+ 0 o

RECORD AND FILE PROCESSING OF SEQUENTIA

Record and Stream Operations
CONNECT . . . &
DISCONNECT
FIND
FLUSH . . .
GET
PUT
REWIND . . .
TRUNCATE . .
UPDATE
Record Transfer Modes

. .

® e 0 ¢ * o o

e o o . % ¢ * o

s & o © o & o ¢
e ® 4 o s & o ¢ o

Move Mode . . .
Locate Mode . .
I1/0 Techniques . .

Asynchronous Record Ope
Deferred Write
Multiple Buffers
Multiple Access Streams .
Multiblock Count
File and Directory Operatio

. .
« o e
rat

O.o .
]

o o N o o ¢ ¢ o o o o o ¢ o o o @

¢ e ® o & ¢ ° o o o o

.

.'_‘sooO.
.

RELATIVE FILE APPLICATIONS

FILE STRUCTURE . .
RECORD SIZE . . .
FILE DESIGN . . .

.
.
.
.

Bucket Size .

File Allocation . .
Initial Allocation . .
Default Extension Quantlty

o o o ®

Contiguity . . « « « « &
Maximum Record Number .
ACCESS SHARING . . « + .« =
Record Access to Relative F11es
Block Access to Relative Files .

e o o % o ° o o o

® °* o ° o o

RECORD AND FILE PROCESSING OF RELAT

Record and Stream Operations . .
CONNECT . .
DELETE . .
DISCONNECT
FIND . . .
FLUSH .
GET . .

PUT .
REWIND

0.0.’

e o ¢ & o o o
* o % o o o o+ o
e o o o o o o+ o
e o ® o o o ¢
o o o o o o o
¢ o ® o & o o
* o o o & o

* o * o & o e o
* e ® & & o+ o
® o e o o o o+ o

iv

e o o ¢ ° 4 s o @

e * o ®

. . L] - e

¢ o o

I

.

e o ¢ o ¢ o o o o o o o

o o Mo o o o o

e ® o 8 & ® o ° o o ¢ & s o o

e ® o o o e o

® o & o o o e ¢ o ITje o e o o

]

e o o & o o ¢ o o [Ne o o o * 2 0 o o o o o

FIJ o o o o ¢ o o o o o o

L}

=)

e [N e o o o © o & o & o o o

* o o o

Ll e o ¢ o o o
t

¢ o o o

. . . .

Ne ¢ o o ¢ o o

e & e ® & ® o ® 4 o & © s 6 ¢ ° ¢ o o ¢

® o & 4 0 o 0 o o g ¢ o o o

e o o o 4 & ¢ & o o

o & & & 0 4 8 4 & 4

« & o 0 o 0

e * s 0

® ¢ 0 o ® ¢ ® 4 ® ¢ ° o o

2-16
2-16
2-17
2-17

1

Il WWwWWwWwwwuwwwwwwwwww
| L I I I T |
MOWOVWOUNINNNoaaoaauTtLiddP_WWNDH

e

R A e N T B N I T L Y
[}

NP TN

i
e 1
NHOOWOJITINNAARNOUT D BWWNNNF

CONTENTS

405.1.9 UPDATE . L] L] . . . 4—12
4.5.2 Record Transfer Modes .« + ¢ ¢ o ¢ ¢« o o o+ o o 4=12
4.5.2.1 Move Mode L] . . 4-12
4.5-2-2 Locate Mode ® L] . L] . . . 4-13
4.5.3 I/o Techniques . 3 4-14
4.5.3.1 Asynchronous Record Operations . « « ¢« ¢« o+ « o 4-14
4-5.3.2 Deferred Write 4-14
405.3.3 Multiple Buffers L] . . 4-15
4,5.3.4 Multiple Access Streams . + o o« o o o o o« » » 415
4,5.4 File and Directory Operations . . « ¢« « & o+ o« 4<15
CHAPTER 5 INDEXED FILE STRUCTURE AND ACCESS
5.1 PHYSICAL FILE STRUCTURE « 4 o« o ¢ o o o s ¢ o o o 5=2
5.2 CONCEPTUAL FILE STRUCTURE o o 5-4
5.201 Data L] 5-5
5.2.1.1 Level 0 of the Prlmary Index e o o s o o s « o s 5=5
5.2.1.2 Level 0 of an Alternate Index . . .« « « &+ « « o+ 5=5
5.2.2 Indexes o . . . 5-6
5.2.3 Random Access Us1ng the RMS 11 Indexed File
Structure . ° * » o o . . . 5-7
5.2.4 Why thls structure? 3 . . . 5-8
5.3 PROCEDURES FOR PERFORMING RANDOM RECORD OPERATIONS 5-9
5.3.1 ertlng a Record L L] . L] 5—10
5.3.1.1 Simplest Case . . . « e o o o . . 5-10
5.301.2 Bucket Splitting L] L] . . . 5—11
5.3.1.3 Incremental Reorganization . « + ¢« ¢« ¢ &« & o« o 5=12
5.3.2 Getting and/or Finding a Record . . ¢« « ¢« « « 5=13
5-3.3 Updatlng a Record L] . . . 5-14
5.3.4 Deleting a Record . . + + « o . « ¢ o« o« 5-15
5.4 PROCEDURES FOR PERFORMING SEQUENTIAL RECOR
OPERATIONS * o . L] 5-16
5.5 I1/0 COST OF PERFORMING RECORD OPERATIONS 5-17
CHAPTER 6 INDEXED FILE DESIGN
6.1 RECORD SIZE e o L] s o . . . 6-1
6.2 KEY SELECTION . . s o . . o o -0 6-2
6-201 Number Of Keys L] 6-2
6-2.2 Key Data Types [o o . L] . . 6-3
6.2.2.1 Strlng Type] . LI] . . . 6-3
6.2.2.2 Two-Byte Signed Integer Type e o ¢ o o o o o s o 6-4
6.2.2.3 Four-Byte Signed Integer TYPE « « o o o o o o o 6=4
6.2.2.4 Two-Byte Unsigned Binary Type =« + « « « o« « o« o 6=5
6.2.2.5 Four-Byte Unsigned Binary TYPE « « « s o o o o o 6=5
6.2.2.6 Packed Decimal Type . . . L] . o o . . e o e o . 6-6
6.2.3 Key Slze o s L] s o . . . 6-6
6.2.4 Position of Key in Record e o s s o s s s s s o 6=7
6.205 Key Characterlstlcs . e o e » . . . 6-8
6.2-5.1 Duplicates [. s & o . . . 6-8
6-2-5.2 Changes L] 6-9
6.2.5.3 Null Key . . .] L] 6-10
6.3 AREAS e o e o o 8 s 8 + e s e e e o o o o o o o 6-10
6.4 PLACEMENT CONTROL .+ &« &« « « o o o o o « o o o o« 6=13
6.5 BUCKET SIZE (] LI 1 . . 6—15
6.5.1 Bucket Size for Prlmary Index e e ¢ o o s o o 6=16
6.5.2 Bucket Sizes for Alternate Indexes 6=19
6.5.3 Program Syntax e . ¢ o 6-21
6.6 FILE ALLOCATION « o o ¢ o &« & e e s e e o s o b6=22
6.6.1 Initial Allocation L] 6-22
6.6.2 Default Extension Quantity . . « ¢« ¢ ¢ ¢ ¢« o » 6=26
607 POPULATION TECHNIQUES ¢ o s+ a e e o e e o o o o 6-26
6.7.1 Ascending Order by Primary Key « « « « o« o o » 6=27

CHAPTER

CHAPTER 8

©0 00 0O 00 0O CO 00

e o e e o o s o

APPENDIX A

Bl g

o & o & ¢ o o

NN

SR WWwwwN

-

CONTENTS

Random Insertions after File Population
Bucket Fill Size .+ v ¢ v ¢ ¢ o« o o o o &
Mass Insertion . « o« « o« o o o o o o o &

RECORD AND FILE PROCESSING OF INDEXED FILES

ACCESS SHARING &« v « o o o o o &
Record Access to Indexed Files
Block Access to Indexed Files

RECORD AND STREAM OPERATIONS . .
CONNECT . .
DELETE . . .
DISCONNECT .
FIND . . .
FLUSH . .
GET . . .
PUT . . o
REWIND . B
UPDATE

RECORD TRANSFER MODES
Move Mode
Locate Mode

I/0 TECHNIQUES . « « «
Asynchronous Record Opera
Deferred Write
Multiple Buffers . . .
Multiple Access Streams .
Sequentially Reading erte—Shared Fil

FILE AND DIRECTORY OPERATIONS . « ¢ « « o

o o . . .

" e s e o o
.
¢ s o o o o

.
.
.
.
-

¢« o o .
o o

.
.
.
.
.
.
.
.
.

e ©® ¢ * o v

o o o * & o o

e o o e o o o
.

e % o & e * o o

.

.
.
.
.
.
.
.
.
. .
(o)

¢ e o

i

e ¢ o N e o o o o o o & o o o
® e ® & * ¢ * o & 4 & o * o

o.ﬂ.t.n.o.c.v.oo

00("'00.0.0.0

[o}

e ® & & o * o
e % o * o * o o

e o
. .
- .
e o
. .
. °
. .
o o
iles

* s o o

e o ¢ o o o o o o

e ¢ o * o ° ¢ o o

e o & & o % ¢ & 9 o o o o

e 0 o & o 0 ¢ ¢ o o

.

TASK BUILDING AND COMMON OPTIMIZATIQN TECHNIQUES

TASK BUILDING WITH RMS-11 ROUTINES .
Disk-Resident Overlays . . . « . .
ODL FileS . & v o o o o o« o o o &
Memory-Resident Overlays . . « « o « o« &
Task Building against the RMS-11 Resident
Library .« o o o o o o o o o o o o o o
Using RMS-11 Operations from within Your
Resident Library . . . « . . « + « &
Deciding Between Types of Overlays .

PROGRAM DEVELOPMENT « e e s
Flow of Operations Should Reflect RMS-1
Structure ¢ e ¢ 0 . .

1
Task Builder Considerations
VIRTUAL-TO-LOGICAL-BLOCK MAPPING
Retrieval Pointers on Disk . . +. « « o &
Retrieval Pointers in Memory
Optimizing Window Turning . . . « « .+ .
OTHER OPTIMIZATIONS . ¢ ¢ ¢ o o o o o o o
Allocating More Resources to the Task .
Disk USage . « o o o o o o o o o o o« o
FILE SPECIFICATION PARSING
STANDARD FILE SPECIFICATION SYNTAX
DEVICE v v ¢ o o o o o o o o o o o o o
DIirectory .« o o o« o o o o o o « o o o @
NamMe o o o o o o o o o o s o s o o o o o
TYDE o v o o o o o o o o o o o o o o o
Version . . . « « .« . . e e e s e .
ANSI MAGNETIC TAPE FILE SPECIFIC TION SYNTA

DEeviICe &+ v ¢ ¢ ¢ ¢ 4 ¢ o o o o o o o o @

vi

® o ° o e o ¢ o o (Yo

Q
1]

o o

e ¢ o o o o ¢ s o

e o o e

« & o o o o

o o o o 8 o @

> w:DD’?iP b
B W W N

6-28
6-28
6-29

| L R
CoowvwooooodIJoaaoauvuuuwwwddNDDH =

\l\l\l\]\l\]\l\l\lTl\l\l\l\l\l\l\l\l\)\l

R
]

CONTENTS

A-4
A-5
A-S
A-5

2.2 DIirectory =« o o o o ¢ o o o o o o o o
2.3 Quoted String . ¢ ¢ ¢ v ¢ o o o o o o
2.4 Version . . . o . o o o o o
3 GENERATION OF A FULL FILE SPECIFICATION o

¢ o o o
* o ¢ o
e o o o
e o o o

APPENDIX B REMOTE FILE AND RECORD ACCESS VIA DECNET

B.1 REMOTE NODE SPECIFICATION . . ¢ «o o « o o o o o o
B.2 REMOTE ACCESS ENVIRONMENTS . . . e s o e o s e
B.3 REMOTE ACCESS POOL CONSIDERATIONS e o s o e o o

m?m
WWN

INDEX

FIGURES

FIGURE Record Formats . « « o« « + &
FileS v 4 o o o o o o o o &
Sequential File Organization
Relative File Organization .
Indexed File Organization
Indexed File Example . . .
Record Access Modes . . .

RMS-11 Task Structure .

¢ o ¢ 4 o o o
[}

| M=
[

)

L]
I o
] Ll el |

Records Spanning Blocks . .
Time Factors in an I/0 Operati
System Protection Concepts .
Bucket Locking Example
Count Field on Disk and Tape .
RMS~11 Task Structure
RMS-11 Task Structure . .
Indexed File with and w1thout A
Formatted Bucket
Index as a Pyramid
Format for Secondary Index Data Recor
Example of a Primary Index
Search Time CUXVES . « « o o« « o o+ o
Single-Area Indexed File
Example of Single-Area Indexed F11e
Two-Area Indexed File
Example of Multi-Area Indexed F11e
RMS-11 Task Structure
Source-to-Task Sequence . . « . .
RMS-11 TasksS « o« o o o o o o o o o

.
.
.
1

1
¢ o & o 8 o * 4 ° ¢ s s * o o

eas

->?ow
=
BNNWNREFHFONORBRLOWWUOABRIBROANU ™ WN

. .
. .
. .
. .
. .
. .
on .
. .
. .
. .
. .
rea
. .

i
NHHEHBWNHFOOOA®WNHERFEBWNHFOONOAUILBWNDME

U‘U‘IU‘ll{lU‘lU‘ll

¢ o ¢ ¢ o o

Ao
]

WVONAANANTANANVIUTVIOUIN D WNNNNRF R
!

@ ® o o o e o o o * o e o O o % & * & * s ° ¢ & ¢ o o o

e & & & o o o & o o s & 5 & 9 & 5 S o+t g O ¢ * ¢ * o =

€ 9 & 8 4 8 o * ¢ % o % e * o O ¢ 0 ¢ 6 o o ¢ © 4 ® & @

¢ ® 9 & 9 8 ¢ * ¢ & 9 ° g & o 0 o * 3 * 9 O » * g o 4 o

® o o o o o o o o fue o e € o 9 4 06 o * ¢ e o ¢ 4 ® & @

1

¢« ¢ o o o
.

0031

11

‘e e & & ¢ e o @ ¢ * 4 & o & o 0 o 0 ¢ & 4 0 ¢ * ¢ & 4 @
L]

TABLES

TABLE Record Formats and File Organizations 1-20
File Organization Characteristics and

Capabilities . ¢« &« ¢ o ¢ ¢ o o o o o o o o o &«
File Organization Advantages and Disadvantages
End-of-Block Indicators
Sequential File Data Sizes (in bytes) .
Relative File Data Sizes (in bytes) . .
I/0 Cost of Performing Record Operations
Key Data TYPES « ¢ ¢ o o o o o o s o o o«

N
1 11
-

AUV WWN
[
HEHENDEHEN
e o o o o
o & o o
e ¢ o ¢ o ¢ o
L]
w [}
i
w

.
.
.
.
.

vii

PREFACE

MANUAL OBJECTIVES

This document is a guide to using RMS-11l capabilities and operations
in file and task design for application programs written in either
MACRO-~11 or high-level languages.

INTENDED AUDIENCE

This document is intended for application programmers who want to

achieve

optimal performance with new applications they are writing or

with existing applications.

NOTE

Only MACRO-1l programmers can use the
full set of RMS-11 capabilities,
Subsets of these capabilities are
available to high-level language
programmers., See your high-level
language documentation to determine:

e What RMS-11 facilities you can use in
your high-level language

e The syntax for using these facilities

STRUCTURE OF THIS DOCUMENT

This manual contains eight chapters and two appendixes:

Chapter 1, RMS-1l1 Concepts and Processing Environment,
introduces the concepts of data organization and access and
the RMS-~1ll implementation of these concepts.

Chapter 2, Application Design, presents general considerations
that apply to application design and information that will
help the application designer select a file organization.

Chapter 3, Sequential File Applications, discusses sequential
file structure, design, and processing.

Chapter 4, Relative File Applications, discusses relative file
structure, design, and processing.

ix

PREFACE

Chapters 5, Indexed File Structure and Access, 6, Indexed File
Design, and 7, Record and File Processing of Indexed Files,
discuss indexed file structure, design, and processing.

e Chapter 8, Task Building and Common Optimization Techniques,
describes techniques that can be used to optimize application
programs that use RMS-11, regardless of the file organization
selected.

e Appendix A, File Specification Parsing, documents RMS-1l's
handling of file specifications.

e Appendix B, Remote File and Record Access via DECnet, briefly
describes the remote access environment and remote file
specification syntax.

ASSOCIATED DOCUMENTS

In addition to this wuser's guide, the RMS-11 documentation set
contains the following manuals.

RSX-11M/M-=PLUS RMS=11: An Introduction presents the major concepts of
RMS-11, introduces the RMS-11 operations, and defines key terms
required for understanding RMS-11 capabilities and £functions. You
should read the introduction before proceeding to other manuals in the
RMS-11 documentation set.

The RSX=11M/M-=PLUS RMS-11 Macro Programmer's Guide is a reference
document for MACRO-11 programmers that describes the macros and
symbols that make up the interface between a MACRO-1l1 program or
subprogram and the RMS-1ll1 operation routines.

The RSX=11M/M-PLUS RMS~11 Utilities manual is both a user and a
reference document for all users, both programmers and nonprogrammers.
It describes the RMS-11 utilities that are available for creating and
maintaining RMS-11 files.

In addition, the Mini-Reference Insert includes an easy-reference
guide for wusers who are familiar with RMS-11 and its documentation.
It summarizes the RMS-11 utilities and error codes.

CONVENTIONS USED IN THIS DOCUMENT

Convention Meaning

UPPERCASE Uppercase words and letters, used in format examples,
indicate that you should type the word or letter
exactly as shown.

lowercase Lowercase words and letters, used in format examples,
indicate that you are to substitute a word or value
of your choice.

quotation marks The term "quotation marks" refers to double quotation
marks (").

apostrophes The term "apostrophe" refers to a single quotation
mark (').

[1

TKB> //

PREFACE

Square brackets indicate that the enclosed item is
optional.

A horizontal ellipsis indicates that the preceding
item(s) can be repeated one or more times. For
example:

file-spec|,file-spec...]

A vertical ellipsis indicates that not all of the
statements in an example or figure are shown.

In examples of commands you enter and system
responses, all output lines and prompting characters
that the system prints or displays are shown in black
letters. All the 1lines you type are shown in red
letters.

Unless otherwise noted, all numeric values are represented in decimal

notation.

Unless otherwise specified, you terminate commands by pressing the

RETURN key.

Xi

SUMMARY OF TECHNICAL CHANGES

RMS-11 Version 2.0 supports random access to fixed-format disk
sequential files and sequential block access to disk files of any
format and organization.

The RMS-11 Version 2.0 resident libraries are task independent. This
means that once a program is linked with this library, the library can
be rebuilt or replaced without requiring that the task linked to it be
rebuilt.

RMS-11 Version 2.0 contains no 1library equivalent +to the RMSSEQ
memory-resident library included with RMS-11 Version 1.8. The RMSRES
resident library or the disk-resident ODL files can be used to obtain
equivalent functionality and performance.

New versions of the RMS-11 Version 1.8 ODL files are provided. These
OoDL files are: RMS11S.0DL, RMS11X.ODL, RMS12X.ODL, and RMS11.0DL.
The Version 1.8 ODL files will still work with Version 2.0, but the
new versions will be more efficient. RMS-1l V1.8 ODL structures other
than RMS11S.0DL, RMS11X.ODL, and RMS12X.ODL may not work correctly
with the RMS-11 V2.0 code; when in doubt, verify them by comparison
with the V2.0 RMS11.0DL file. 1In addition, two new ODL files are
provided with Version 2,0: RMS12S.0DL and DAP11X.ODL.

Files with stream and VFC records can now be created on unit-record
devices to avoid the need for special-case code in copy-type
operations,

e For VFC files, the record header 1is thrown away on output
unless the file is a "print format" file.

e For stream files, if none of the 3 carriage control bits is
set (print file format, carriage control, or FORTRAN carriage
control), and if the 1last character is not a linefeed,
formfeed, or vertical tab, the carriage-return/linefeed
(CR/LF) is appended at the end of the record.

e For stream files, if either the carriage control or FORTRAN
carriage control attribute is set, and if the 1last 2
characters of the record are CR/LF, the trailing CR/LF is
stripped off and then definition of the carriage control
attribute (CR or FTN) is applied.

For similar ease-of-copying reasons, RMS-11 now allows creation of
relative and indexed files for output to nondisk devices (for magtape,
however, the record format must be variable length or fixed length).

The RMS-11 File Design Utility (RMSDES) is a new utility that allows
you to design and create files interactively. It is fully documented
in the RSX-=11M/M-PLUS RMS-11l Utilities manual.

RMS-11 Version 2.0 supports five new directory operations: SENTER,
SPARSE, $REMOVE, S$RENAME, and $SEARCH. These operations are fully
documented in the RSX-11M/M-PLUS RMS-11l Macro Programmer's Guide.

xiii

SUMMARY OF TECHNICAL CHANGES

RMS-11 Version 2.0 supports a new wildcard file specification facility
and a new print-record output handling format. These are also fully
documented in the macro programmer's guide.

User-provided interlocks allow a special, limited form of sequential
file sharing among a group of accessors that includes at most one
read/write accessor and any number of read-only accessors.

If suitable DECnet facilities exist on your system and on the target
system, RMS-11 Version 2.0 will allow file and record access to files
on remote network nodes, if those nodes include an RMS-ll-based file
access listener (FAL).

For magtape, RMS-11 now allows fixed-format records to be less than 18
bytes.

Files with stream or VFC records can now be created on unit-record
devices. In addition, RMS-11 now allows the creation of relative and
indexed files for output to nondisk devices, although they will be
treated as sequential files.

<CTRL/Z> and <ESC> are no longer recognized as record terminators for
stream files, and <CTRL/Z> is no longer recognized as a file
terminator for stream files.

RMS~11 Version 2.0 pads stream files with null characters, to the high
block of the file (not just to the end of the current block).

The memory-résident library RMSRES can be clustered with any other
resident library that supports clustering.

On RSX-11M-PLUS systems that include hardware support for supervisor
mode, RMSRES can also be used in supervisor mode.

On RSX-11M systems, an optional subset library, which contains support
for sequential and relative files only, is available.
NOTE
All new RMS-11 features are fully
accessible only to MACRO-11l programmers.

See your high-level language
documentation for supported features.

Xiv

CHAPTER 1

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Your business, whether commercial, scientific, governmental, or
educational, relies on data. That data indicates the current state of
your business and helps you control the future of the business.
Therefore, you want fast, efficient access to the right data when you
need it.

You are familiar with dealing with data on paper and know that records
of transactions and reports on your business's activities can occupy a
very large number of file folders. You also know that finding exactly
the data you need can be a time-consuming process.

Computer hardware, however, with its speed and mass data storage
capabilities, provides the means for fast, efficient access to data.
Computer software provides the means for translating the data from the
format you use to a format the computer system can handle -- and back
again, ‘

RMS-11 is such a translater between you and your system. This chapter
introduces RMS-11 in terms of general concepts of data organization
and access, which apply regardless of whether data is stored on paper
or within a computer's memory. It then discusses the RMS-11
implementation of data organization and access, and the RMS-11 data
processing environment.

1.1 CONCEPTS OF DATA ORGANIZATION AND ACCESS

This section examines the general concepts of data organization, using
images from the noncomputer environment you may be most familiar with.

l.1.1 Recorxds

When data is stored on paper, it is recorded in groups of items whose
form is repeated throughout the data. Each group of items is called a
record. Within each record are the specific items of data you are
concerned with,. For example, all the information on an employee
constitutes a personnel record; all the information on a stock item
constitutes an inventory record.

On paper, a record can be a form; different types of records require
different forms. Some forms are always the same length; their
information does not expand with time or use. For example, a product
information form does not vary in size. If the facts about a product
change, you fill out a new form. If a new product is added, you also
£ill out a new form,

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Other forms vary in length with time and use, continuing on to new
pages as they grow. For example, an employee with the company for 10
years has more data in his or her personnel record than a new
employee.

Other forms might use a combination of these two formats. For
example, a record of service on a piece of equipment might begin with
control information describing the specific piece of equipment (name,
model number, date of installation, and so on) and continue on to new
pages documenting the service performed on it.

Figure 1-1 illustrates various record formats.

PRODUCT RECORD SALARY HISTORY - E.C.O. HISTORY
P — 1 —
A W \map A O]
— e Ny A A Vi]
——— 6 ——— _ﬁ"\v Ca H B
oy \ g = = g
"X Y e — v -~ | |
P R _Q A V7 a =
—— A s e %) 1 o
o= = afefefefe
—— ———— —— a
END (MAY CONT.) H
i (MAY CONT.) B
1 (MAY CONT.) | (MAY CONT.) H =
l (MAY CONT.) l (MAY CONT.) HH M
| (MAY CONT.) [-
(MAY CONT.)
(MAY CONT.) |5
(MA NT.)
ZK-1170-82

Figure 1-1: Record Formats

1.1.2 Files

When data is stored on paper records, it 1is usually gathered into
files and stored physically in filing cabinets, organized by related
records. For example, all employee records might be stored in one
file and placed in one drawer of the filing cabinet.

A file not only keeps related data in one place, it also segregates
that data from other, unrelated data.

As data grows, the file and storage requirements become more
complicated, and the number of filing cabinets multiplies. Then, the
files acquire names or numbers, the drawers acquire signs indicating
the contents of the drawers and who may use them, and
cross-referencing systems are introduced to help locate data. These
identifying characteristics and restrictions upon who may read or
alter specific files can be called attributes.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Figure 1-2 illustrates data storage using filing cabinets.

ZK-1167-82

Figure 1-2: Files

In general, the person who uses a file establishes a method of
organizing the records within it. This method reflects the file's use
and dictates what information is needed and how much time is required
to locate a record within the file.

There are several typical methods for organizing records in a file,
depending on how the records are used. If you generally use all the
records in a file whenever you open it (that is, you have little or no
need to locate individual records in the file) and the order of the
records is not important, then you can organize the records
sequentially:

e The records assume the physical sequence in which they are
inserted into the file (that is, records are appended to the
file).

e No empty spaces are left in the sequence of records, where
records could be inserted later. Each record, except the
first, has a record before it; each record, except the last,
has a record following it.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Employee payroll records, for example, might be kept in a sequential
file. Because all the records must be accessed every time the payroll
is done, sequential file organization would allow easy access to the
records.

The overhead and maintenance for sequential files is minimal. To
insert a record into the file, you simply put it after the last record
already there. Figure 1-3 illustrates sequential file organization.

ZK-1168-82

Figure 1-3: Sequential File Organization

For more access flexibility than sequential files, if you want to be
able to locate individual records easily, you can set up a series of
file folders and number them in sequence from first folder to last.
Each folder is the same size; it holds only one record, but it can be
empty. Thus, you do not have to look sequentially through the records
to locate the one you want (although you can if you want to access all
the records). You use the numbers on the folders to locate or insert
records; each record will be numbered relative to the beginning of
the file. The numbers can relate to some numbering system meaningful
to your business: for example, order numbers or part numbers.

Figure 1-4 illustrates relative file organization.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

ZK-1171-82

Figure 1-4: Relative File Organization

If you have a large file and most of the time you want to be able to
locate individual records, you may want to index your files. Indexing
is useful when you want to be able to use several kinds of information
to locate records. For example, in an employee file, you may want to
use last-name information to obtain a report on all employees, and
job-designation information to obtain a report on all clerical
employees.

When you open an indexed file drawer, you find records filed with
numbered tabs separating them. At the front of the drawer is a set of
small card files, containing groups of cards separated by dividers.
The cards in each of these small card files are an index to the
records at the back of the file. To insert a record in the file, you
find the data item marked "key" on the record, and using that
information, consult the appropriate index to determine where the
record should be inserted. Figure 1-5 1illustrates indexed file
organization.,

To find a record in an indexed file, you look for the specific key
information in the appropriate key file and use that information to
locate the record. For example, if you want the record of a
transaction with the Q,R,&S Company, you open the indexed file drawer
for transactions, which contains data records filed at the back and
indexes at the front. Figure 1-6 illustrates this example.

RMS~11 CONCEPTS AND PROCESSING ENVIRONMENT

ZK-1169-82

Figure 1-5: Indexed File Organization

QUEEG CO

|

RHESUS INC

}

ROOT

Hitelll

ZK-1175-82

Figure 1-6: Indexed File Example

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

You know that company name is the primary key for records in the file
and that index 0 indexes the primary Xeys. The first record in index
0 is the root, which lists selected primary key values, that is, the
company names, in alphabetical order. Not all company names appear
here: instead, a small subset of names, distributed fairly evenly
across the full set of names, is used as the highest level of
indexing. By selecting one name, you establish the region of the file
(range of names) that interests you.

You look down the list until you find a name that either matches
Q,R,&8 or occurs after this name in the alphabet. You find Rhesus,
Inc with the number 3 alongside it.

You put the root record back in the file and go to the first divider
and the third index record behind it. Again, the set of names here is
incomplete: only a small set of names distributed fairly evenly
across the range covered by the highest level index entry exists.
This provides an intermediate level of indexing, and further limits
the range of names in which you are interested.

Rhesus, Inc is the last entry on this card, but you scan the list and
find the name Queeg Co, which is the first entry at or after Q,R,&S in
alphabetical sequence. The entry for Queeg Co has the number 7
alongside it.

So you reach into the data records at the back of the drawer to tab
number 7. You search sequentially through the records behind this tab
until you find the record of the Q,R,&S transaction.

For another example, using the same transaction file, suppose you want
to find a record but all you know 1is 1its transaction number.
Fortunately, the second alternate key for the file is transaction
number. Index 2 indexes the second alternate keys (recall from the
previous example, that the indexes are numbered starting with primary
index 0). You look at the root record in index 2 and move through the
index as you did in the previous example until you find a card listing
the transaction number you are looking for. Next to the number is the
code 7/5.

So you reach into the data records at the back of the drawer to tab
number 7 and count back to the fifth record behind the tab. You find
that the transaction you are looking for was made with the Q,R,&S
Company.

Here, only one level of indexing -- the root record -- was used. If
many records exist in the file, another intermediate level would also
be used, as it was in index O. Use of intermediate index 1levels
allows the number of entries you must scan in each level to be small,
regardless of the total number of records in the file.

l.1.3 Access

Once you have records organized in a file, you can get, or access,
them in two ways:

@ You can search all the records one after the other. This is
called sequential access.

You can use an identifier to 1locate an individual record.
This is called random access.

[=

Note that access means not only retrieving a record from a file but
putting a record into the file as well.

RMS~11 CONCEPTS AND PROCESSING ENVIRONMENT

Figure 1-7 illustrates the random and sequential access modes.

ZK-1172-82

Figure 1-7: Record Access Modes

Sequential Access

For sequential access, you pick a point in the file and access the
records beyond that point one at a time. At times, the starting point
is the beginning of the file because you want to look at, or access)
each record in the file. Other times, you may begin midway through
the file.

To read each record, you take it out of the file, marking the position
of the record you just removed with a card or some other marker so
that you know:

® Where to put the record back into the file

® Where the next record is
To insert records sequentially, you reach into the drawer to the place
where you want the records to go and mark the position of that place.

Often, the point at which you will insert the new records will be the
end of the file. At other times, it may be midway through the file.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

You insert the records by taking the first record from the stack of
new records and slipping it into position in the file. You then mark
the position after the record you just inserted and add the next
record in that position. You continue in this manner until all the
new records are inserted.

Note that in both retrieving and inserting records you move through
the records consecutively. Each record is retrieved or inserted with
respect to the record accessed right before it.

Random Access

For random access, you determine the location of the record you want
on the basis of some identifier, rather than on the basis of the
record's position within the file. 1If, for example, you have a 1list
of 1locations of records in the file, you can reach into the file to a
record's exact location. Each record selection is independent of the
previously accessed record and of the next record to be accessed.

The record identifier can be a number, as for relative files, or it
can be a key, as for indexed files. Or, the identifier can be a
physical location within the file drawer; for example, you could
place each record in a numbered slot within the file drawer and use
the slot number to access the records in the file. The slot number
would be the address of the record. This type of random access could
be used with any type of file organization.

Often, you will want to switch the mode of access you use. You nmay
want to use random access to find the first record in a series and
then use sequential access to retrieve all the records in that series.
For example, if your employee records are grouped by department codes
within the file, you can use a specific department code as the
identifier to randomly access the first record with that department
code and then switch to sequential access to consecutively read all
the records with that code.

Context

In either type of access, sequential or random, the marking of
position in the file 1is important. This is called context: the
position of the record you are accessing is the current record, and
the position of the record that follows it is the next record.

Access Control

One advantage of the segregation of data provided by files |is
controlled access. Some files, such as budget or payroll, should be
available to only a small group of authorized people. Other files,
such as inventory or transaction files, may be used by larger groups
of people. And some files, such as the telephone directory, must be
accessible to everyone.

Files allow you to control who can use what data. You can 1lock the
filing cabinet that contains the payroll data and give keys to
yourself and the payroll manager only. 2Pnd you can distribute
telephone directories to every employee.

In addition, within a file, you can further control how the data can
be wused within the group of authorized users. Some users may be
allowed to write new data in the file or to modify existing data,
while others may be allowed only to réad the data.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

1.1.4 Processing

Once you locate, either sequentially or randomly, a record's position
within a file, you will probably want to do something with the record
that belongs there. Record operations fall generally into the
following categories:

e Verify that the record exists in the right location
® Read the record; that is, examine its data contents
e Insert a record in the position that you have located

® Revise the contents of the record; that is, modify some of
its data contents

® Remove the record from the file

1.1.5 File Maintenance

Once you establish files and their records and begin wusing them
regularly, you will want to be able to maintain them to ensure both
the protection of the data within them and their continued usability.

Typically, maintenance might include the following activities.

e The data in a file is valuable or you would not keep it. You
should have duplicates of your records in some other place in
case something happens to the originals. Therefore, you need
the ability to back up files.

e If something does happen to your original data, you must be
able to obtain, or restore, the duplicate records.

® You need the ability to list, or display, your files, with
their names and other attributes. .

e Files often grow very large and their usage can change over
time. Therefore, you may want to change a file's organization
from sequential to indexed; or you may want to reload a file
that has grown very 1large to use space more efficiently.
Conversely, usage and file size might decrease and you may
want to make a file simpler. It is also possible that the
information in one file is suitable for another application.
In all these cases, you would want to be able to convert a
file into a new one, perhaps changing some attributes
(including organization) to make it more usable.

® You want to be able to design and create files that you
require.

® Creating an indexed file and putting records into it can be
complicated and time-consuming. You would want a procedure --
indexed file loading -~ that would produce an optimal indexed
file quickly and efficiently.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

1.2 RMS-11 IMPLEMENTATION OF DATA ORGANIZATION AND ACCESS

RMS-11 provides file structure capabilities that allow you to organize
your data within a computer's memory using the same concepts that were
described in Section 1.1 for paper records in filing cabinets.

The following sections briefly present the RMS-11 file structure
capabilities. For more details, see RSX-11M/M-PLUS RMS-1l1l: An
Introduction.

1.2.1 RMS-11 Record Formats

RMS-11 supports the following record formats that allow you to define
the size of your data records:

e Fixed length -- Every record in the file is the same size.

e Variable length -- Records in the file are of different
lengths, up to a maximum size that you can optionally specify.

e Variable with fixed control -- Records in the file are of
different lengths, up to a maximum size that you can
optionally specify, and in addition, a fixed-length control
area precedes the data.

® Stream -- Records consist of a continuous stream of ASCII
characters delimited by a special terminator character or
sequence of characters.

e Undefined -- Records in a file may have no record format or
may be in a format different from the four standard RMS-11
formats.

RMS-11's support of stream and undefined record formats provides
limited support for non-RMS-11 files.

1.2.2 RMS-1ll1l File Organizations
RMS-11 supports three file organizations:

® Sequential -- Records are arranged within the file in the
order in which they were written into the file.

® Relative -- Records are stored in the file 1in cells, or
fixed-length units of storage, one record per cell. The cells
are numbered sequentially. These numbers, called relative

record numbers, are identifiers for the records.

e Indexed -- Records are arranged in the file in ascending order
by key. A key is a data field within the record that RMS-11
uses as an identifier to access the record. BAn indexed file
must have one primary key and may optionally have other
alternate keys.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

1.2.3 RMS-11 Record Access Modes

RMS-11 provides three record access modes for storing and retrieving
records in files:

® Sequential - RMS-11 stores and retrieves records
sequentially, one after another.

e Random by key -- RMS-1l1 uses either a key (for an indexed
file) or a relative record number (for a relative file or for
a disk sequential file with fixed-length format records) as an
identifier to gain direct access to an individual record in
the file.

® Random by record file address (RFA) —-- RMS-11 uses the RFA as
an identifier to gain direct access to an individual record in
the file. The RFA is a unique identifier that RMS-11
establishes for every record that it writes into a disk file.

l1.2.4 RMS-11 Utilities

RMS-11 provides utility programs that can help you perform file and
record maintenance:

® RMSBCK -- The RMS-11 File Back-Up Utility transfers the
contents of an RMS-11 file to another file, which may be on
another device, to maintain the file should the original file
be lost or damaged.

® RMSRST ~- The RMS-11 File Restoration Utility transfers files
that were backed up using RMSBCK back to you so your programs
can access them.

® RMSDSP -- The RMS-11 File Display Utility produces a concise
description of any RMS~-11 file, including back-up files.

® RMSCNV -~ The RMS-11 File Conversion Utility reads records
from an RMS-11 file of any organization and loads them into
another RMS-11 file of any organization.

® RMSDES -- The RMS-~1l1 File Design Utility allows you to design
and create sequential, relative, and indexed files.

e RMSIFL -- The RMS-11 Indexed File Load Utility reads records
from an RMS-11 file of any organization and loads them into an
~indexed file.

1.3 RMS-11 PROCESSING ENVIRONMENT

The RMS-11 software routines organize data on your computer,
implementing the concepts discussed in the previous sections, and
provide the interface between your application programs and the
computer system.

Your computer system consists of layers of hardware and software:

® The hardware devices -- magnetic tapes and disks -- to store
the data. '

RMS~11 CONCEPTS AND PROCESSING ENVIRONMENT

The operating system software -- file control processor,
device drivers -- controls the hardware to maintain files.

® RMS-11 software controls the internal structure of files (as
described in Section 1.2).

® Your application program makes use of these hardware and
software facilities to process data records and files.

1.3.1 RMS-1ll1l Task Structure

You use the RMS-11 software routines by combining them with a program
you have written in a language that implements RMS-11l.

NOTE

Only MACRO-11 programmers can use the
full set of RMS-11 capabilities.
Subsets of these capabilities are
available to high-~level language
programmers. See your high-level
language documentation to determine:

e Which RMS-11 facilities you can use
in your high-level language

e The syntax for using these facilities

Once you write your program, you convert it to object code, using
either a compiler or an assembler.

To combine your object code with the RMS-11 routines, you use the task
builder, which converts object code (modules) to an executable form
called a task. In the process, the task builder not only combines
different object modules, but may also arrange the task so that some
executable modules overlay each other when the task is run.

You can combine RMS-11 routines with your object code in either of the
following ways:

e In the task itself, with nonoverlaid routines or a
disk-resident overlay structure

e In memory-resident overlays, a form apart from your task

The primary difference between these techniques is that
memory-resident overlays can be shared among programs. Nonoverlaid
and disk-resident overlaid routines cannot be shared; each accessing
program must have 1its own copy of such routines. In addition,
memory-resident overlays eliminate the 1I/0 operations needed to bring
disk-resident overlays from disk, thereby making your tasks run
significantly faster,

In either case, your-task takes a logical form in which program code
exists 1in one part of the task and the RMS-11 routines run in another
part. When your program performs an RMS-11 operation, it sets up the
necessary parameters and data and calls the appropriate RMS-11
routine. Control jumps to that part of the task, the routine runs to
completion, and control returns to your program. Figure 1-8
illustrates this logical structure.

RMS~11 CONCEPTS AND PROCESSING ENVIRONMENT

|« NUMBER OF FILES OPENED SIMULTANEOUSLY |
| * BUCKET SIZES

USER BUFFERS ﬂ

/0
BUFFERS
VIRTUAL
MEMORY PROGRAM RMS-11
INTERNAL
CONTROL
STRUCTURES

ZK-1174-82

Figure 1-8: RMS-11 Task Structure

Also part of the task are storage structures, which generally take
three forms:

User buffers -- These buffers are used to pass data records
between your program and RMS-11l. ' They are available to your
program and the data in them can be manipulated, read,
changed, used for calculations, and so on.

I/0 buffers -- For each file your program has open, RMS-11
normally requires at least one internal I/O0 buffer. All data
going to or coming from disk is stored in an 1/0 buffer as
follows:

- RMS-11 requests the file control processor to move block(s)
from a disk file into this buffer to satisfy your program's
requirements. Each request normally specifies the same
number of blocks, called an I/0 unit. The size of the I1/0
unit depends on the file organization, file design, and
settings at acdess time (such as multiblock count).

- RMS-11 moves records between the I/0 buffer and the user
buffer. Your program can also directly access a record
within the 1/0 buffer in certain restricted circumstances.

Control structures -~ RMS-11 <control structures, called
control blocks, are used to communicate between your program
and the RMS-1l1 routines and with each other. Some are
accessible to your program; others are for RMS-11 internal
use only.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

1.3.2 RMS-11 Record Processing

The RMS-11 stream and record operations are the interface between your
program and the data records your program requires.

Before your program can access records in a file, the file must be
open and an access stream must be initiated.

NOTE

Most high-level languages do not support
access streams at the user level. They
use the RMS-11 access stream facilities
to implement their own file access
techniques.

An access stream is a path to the file's data records; record
operations are performed via that stream, one operation at a time.
RMS-11 keeps track of the stream's position, or context, in a file, in
terms of current record and next record. The stream's position
changes at the completion of an operation. Chapters 3, 4, and 7
discuss context for record operations with the different file
organizations.

The stream operations control the stream associated with a file. They
are:

e CONNECT -~ initiates an access stream.

e DISCONNECT -- terminates a stream.

e FLUSH —-- writes the currrent contents of I/0 buffers to the
file.

e FREE -- releases control of the record or block most recently

accessed (and locked) by the stream.

@ REWIND -- resets the stream context to the first record in the
file.
e WAIT -- suspends processing until an outstanding asynchronous

operation is completed.
The record operations process records within a file. They are:

@ FIND -- reads a record from a file to an I/O buffer and sets
the current-record context to that record.

® GET -- reads a record from a file to an I/0 buffer and then to
a user buffer, and sets the current-record context to that
record.

@ PUT -- writes a new record from a user buffer to an I/0 buffer

and then to a file.

® UPDATE -- transfers a modified record from a user buffer to an
1/0 buffer and then to a file, overwriting the previous copy
of the record in the file.

® DELETE -- removes an existing record from a relative or
indexed file.

TRUNCATE -- effectively deletes all records in a sequential
file from the current record to the logical end-of-file.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

For the FIND, GET, and PUT operations, your program specifies the
record access mode ~- sequential, random by RFA (FIND and GET only),
or random by key -- which determines which record is the target of the
operation.

See RSX-11M/M-PLUS RMS-11: An Introduction, Chapter 4, for a more
detailed 1introduction to record processing. Chapters 3, 4, and 7 of
this user's guide describe specifically how the record operations work
depending on the file organization selected and (for FIND, GET, and
PUT) the access mode specified.

1.3.3 RMS-11 File Processing

RMS-11 must manipulate the contents of files so that it can process
records. However, RMS-11 does not directly perform the actual file
manipulation, and the flow of data, control, and overlay segments that
the file manipulation entails. RMS-11 issues requests to the file
control processor to perform the actual I/0 and other operations on
the files. Thus, the file control processor's internal operation,
while invisible to RMS-11, can affect your program's performance.

The file control processor is not concerned with the data records in a
file. It knows only virtual and logical block numbers, directories
and other information, and the disk drivers involved. Therefore,
RMS-11 can direct file manipulation as long as it makes the proper
requests to the file control processor. To do so, RMS-11 maintains
the following structures, or I/0 units:

® Blocks -- The I/0 unit for sequential files is the block., You
can adjust the block count for each record access stream so
that more than one block can be moved during each 1I/0
operation.

In addition, you must decide whether records can cross block
boundaries. When records can cross block boundaries, RMS-11
can pack them with optimal density in the file because a
record can be stored in one or more blocks. This is called
block spanning. Figure 1-9 illustrates block spanning.

When records are restricted by block boundaries, each record
must be no more than 512 bytes (one block) long, and unused
bytes may be left at the end of each block.

® Buckets -- The I/0 unit for relative and indexed files is the
bucket. A Dbucket consists of one or more blocks that RMS-11
treats as a unit. Records can cross block boundaries but they
cannot cross bucket boundaries. Bucket size is a file
attribute that you specify when you create the file.

Buckets are an RMS-11 concept, so when RMS-11 initiates an
operation for a relative or indexed file, it requests the file
control processor to move a bucket by specifying the virtual
block number for the first block in the bucket and the size of
the bucket in bytes. Note that buckets are fixed within the
file; once created, buckets contain the same virtual blocks
at all times.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

I‘—BLOCK—**— BLOCK—>4«—BLOCK—>{«—BLOCK—>j=- BLOCK—Dr— BLOCK—P]
I

]

|
|
]
|
]

b — — —
R —

[
[
|
|
|
. DS LES A

A. RECOR s 4ik\“‘-asconos

THAN 512
BYTES

n I

B. RE EATER ‘k\~\\~_ R
CORDS GR REconns—”//)'ﬁ

THAN 512
BYTES

(-

C. VARIABLE-LENGTH
RECORDS

| N
RECORDS

ZK-1173-82

Figure 1-9: Records Spanning Blocks

You can also direct RMS-11l to request the file control processor to
place a file on a disk at a specific location. This is called
placement control and can improve performance by taking advantage of,
for example, tracks and cylinders.

RMS-11 provides access sharing; that is, your program can control who
can gain concurrent access to the data in a file and what type of
operations they can perform on the data. See Section 2.2.3 for more
information on access sharing.

The RMS-11 directory and file operations perform the file-level
functions. The directory operations affect file specification entries
in directories (not the contents of the files). They are:

® ENTER ~- places a disk file specification in a directory.

® REMOVE -- deletes a disk file specification from a directory.

® RENAME -- replaces an existing disk file specification with a
new one.,

@ PARSE -- returns file specification information to your
program.

® SEARCH -- examines one or more directories for a specified

file and returns the file specification and location.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

NOTE
Most high-level languages do not support
the directory operations. See vyour
high-level language documentation.
The file operations provide access to files. They are:

® CREATE -- creates a new file with the attributes you specify
and opens it for processing.

® OPEN -- makes an existing file available for processing.
® CLOSE -- terminates access to a file.

® ERASE -- deletes a file and removes its directory entry, if
one is specified.

® EXTEND -- increases the allocated size of an open file.
® DISPLAY -~ returns file information about an open file to your
program.

See RSX~11M/M-PLUS RMS-11: An Introduction, Chapter 4, for a more
detailed introduction to file processing. Chapters 3, 4, and 7 of
this user's guide describe specifically how the file operations work
depending on the file organization selected.

1.4 FILE ATTRIBUTES

When you create an RMS-11 file, either through a program (using the
CREATE file operation routine) or by using the RMSDES utility, you
must specify the following information:

® Medium -- Disk or magnetic tape. You can also create files on
unit-record devices, such as line printers and terminals.
Note that relative and indexed files are restricted to disk
devices. ‘

® File specification -- The name you assign to a file enables
RMS-11 to find the file later. Use the file specification
conventions specific to your operating system.

® Protection -- RMS-11 allows you to assign a protection code to
a file when you create it. Use the protection codes specific
to your operating system.

e File organization -- Sequential, relative, or indexed.

® Record format -- Fixed length, variable length, VFC, stream,
or undefined.

® Record size -- For fixed-length records, the size is the same
for every record in the file. For variable-length recorxds,
the size is the maximum length any record can be.

For VFC records, there are two size specifications: (1) the
fixed 1length of the control area, and (2) the maximum length
of the variable data area.

RMS-11 also keeps the length of the 1longest record actually
stored in a sequential file for variable-length and VFC
records.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Block spanning (sequential files) -- Whether records can cross
block boundaries.

Bucket size (relative and indexed files) =-- The number of
blocks in each bucket. '

e Maximum record number (relative files) ~- The maximum number
of records that the file will contain.

e Keys (indexed files) -- The number of keys; the position and
size of each key; the data type for each key; and other key
characteristics. :

® Record-output handling -- You can specify three (mutually
exclusive) types of handling for records being written
directly to a unit-record device, although you need not
specify any:

- Carriage control -- The device driver inserts a linefeed
character as a prefix to each record and a carriage-return
character as a suffix to each record before passing it to
the device.

- FORTRAN -- The device interprets the first byte of each
record as a FORTRAN forms control character.

- Print file format (VFC records with a fixed header size of
0 or 2 bytes) -- RMS-11 interprets the first byte of the
header as a prefix for the record and the second byte as a
suffix for the record.

e File allocation -- You must specify two quantities:

- Initial allocation -- the size of the file in blocks when
it is created.

- Default extension quantity -- the number of blocks to be
added to a file when RMS-11 automatically extends it.

e Contiguity -~ Whether the disk space initially allocated to
the file is to be allocated in continuous, adjacent logical
blocks.

e Placement control ~-- Where the file is to be physically
located on the disk.

During the file creation process, RMS-1ll1 stores this information,
called the file attributes, in the file directory and, for relative
and indexed files, In the first blocks, or prologue, of the file as
well.

After creation, for the life of the file, RMS-1l1 gets information
about a file from the file itself. This offers several advantages:

e Most file attributes do not change.

e You can design your RMS-11 files offline. No program
accessing the files need specify attributes (except those that
may be required by high-level languages), because RMS-1l1l
requires only a file specification from a program to open a
file.

You can open an RMS~1l file with its file specification only.
After that, RMS-11 enables you to read the file attributes.
You can write a program or use the RMSDSP utility to display
those attributes.

1-19

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Note that some of the attributes are interdependent; that 1is, the
selection of one attribute directly affects, or restricts, other
attribute options. File organization, record format, and medium are
all interdependent. For example, if you select magnetic tape medium,
you must use sequential file organization. And if you select VFC
records, you cannot use indexed file organization and you must use a
disk device.

Table 1-1 lists the record format and file organization
interdependencies.

Table 1-1: Record Formats and File Organizations

File Record Format:
Organization Fixed Variable VFC Stream Undefined

Sequential:

Magtape Yes Yes No No No
Disk Yes Yes Yes Yes Yes
Relative Yes Yes Yes No No
Indexed Yes . Yes No No No

Chapters 3 through 7 discuss your file design. options in detail,
depending on your selection of file organization. Chapter 2 provides
information to help you make that selection.

1.5 PROCESSING BY BLOCK ACCESS

Your program can bypass RMS-11 record processing and process any
RMS-11 file in a mode called block access.

Your program can read or write blocks in a file either sequentially or
(on disk only) randomly by virtual block number (VBN). But your
program must be able to interpret the contents of those blocks.

See RSX-11M/M-PLUS RMS-11l: An Introduction for an introduction to
block access and processing. See the RSX-11M/M-PLUS RMS-11 Macro
Programmer's Guide for detailed information on block access and
processing.

1-20

CHAPTER 2

APPLICATION DESIGN

When you write an application program, you want that program to input
data, process 1it, store it, update it if necessary, and at intervals
output it in the proper formats.

You want all this to happen simply, quickly, and accurately. You must
therefore take the time to design your application by carefully
considering RMS-11 file structure and file and record processing
capabilities. Important RMS-11 considerations are data storage
medium, record format, file organization, access mode, allocation,
overlays, and so on.

If you do not consider BMS-11 capabilities when you design your
application, you may not get the best peformance possible from your
application because of the defaults that will be applied automatically
to your files (see Section 2.1).

Example: The first time one user created a file, she used a
high-level 1language program and took all the defaults. Then she
loaded records into the file; the process was quite lengthy.

However, when she re-examined the file and re-created it applying some
RMS-11 design considerations, the record insertion process went 10
times as fast.

Example: Some users, accustomed to programming with BASIC-PLUS record
I1/0, learned that RMS-11 uses 15 bytes of control data in each bucket
and 7 bytes of control data for each fixed-length record in an indexed
file (see Chapter 6). Then, because they were accustomed to working
with whole blocks, they set up single-block buckets (512 bytes) and
subtracted RMS-11 overhead (22 bytes) to come up with a record size of
490 bytes.

But when they used those files, the users were alarmed to see them
grow at high rates. They had not read that RMS-11 preserves its fast
sequential and alternate key access during random insertions by moving
records and leaving behind 7-byte pointers (see Chapter 5).
Therefore, when one of those 490-byte records was moved, it 1left
behind 7 bytes, which meant that no other record fit into that bucket.
Soon the file was filled with practically empty buckets that could not
be wused because the designers did not allow for the full implications
of RMS-11 structure.

If you develop an application with a high-level language, you probably
will not worry about RMS-11. You will accept the language's concept
of design, if any. It is possible, however, that the defaults the
language uses in 1its interface with RMS-11 are not well suited for
your application. ‘

APPLICATION DESIGN

This chapter presents general design considerations that apply to all
application designs and information that will help you make the first
important design decision: selection of a file organization.

2.1 WHEN TO DESIGN
There are two times to design an application:
1. Before you write the application, especially if you have:
e Large file(s)
® Many users simultaneously accessing the file(s)

e A high level of activity (many records read, written,
updated, or deleted in a given time period)

2. After you write the application, if you are not happy with
its performance.

Often, poor performance results from default values that are
inappropriate for your application. You can frequently f£find
improvements by studying the nature and source of the defaults and how
they affect the structure of your application and your file.

Basically, defaults have three sources:
1. Source language compilers

In many instances, source language compilers such as COBOL-81
or BASIC-PLUS-2 supply default values for RMS-11 file
attributes and/or facilities.

Example: RMS-11 does not calculate an optimal bucket size
for indexed files. Rather, the program creating the file
must specify a bucket size. When that program is the product
of a compiler, the bucket size can be explicitly specified in
the source code or it can be implicitly set by the compiler,
using a default value.

2. RMS-11

The interface between the RMS-11l routines and your program
has the same structure .in all tasks, regardless of their
source (PDP-11 COBOL-81, RPG, MACRO-1l1l, and so on). This
interface consists of control blocks (see the RSX-11M/M-PLUS
RMS-=11 Macro Programmer's Guide for details). The
information provided by your program in these blocks
effectively controls RMS-11, causing it to create, open,
access, and close files. However, when explicit information
is not provided, RMS-11l uses its default values.

3. Operating system

RMS-11 acts as an intermediary between your task and the
operating system. As such, RMS-11 can supply control
information for system functions such as protection codes.
However, if RMS-11 supplies no control data, the system uses
its defaults.

APPLICATION DESIGN

2.2 DESIGN CONSIDERATIONS

When you design your application, you are concerned primarily with
four design considerations:

l. Speed -~ You want to maximize the speed with which the
programs process data.

2. Space -~ You want to minimize the room for the data and the
task on disk and the memory the task takes to run.

3. Shared access -- You want your data to be exactly as
accessible to the people using the computer system as
necessary.

4. Ease of design -- You do not want to spend more time than
necessary writing the application.

Remember, the importance of design is proportional to the complexity
of the file organization. That 1is, design is least important for
applications using sequential files and most important for
applications using indexed files.

2.2.1 Speed

You can make many performance (speed) decisions before you have to
consider anything else, Therefore, the first criterion to apply
throughout the design process is minimize I/0 time.

The mechanics of the mass storage devices on your system consume most
of the time for any RMS-11 operation. The memory-resident routines
that prepare the data for I/0 or process it afterwards are very much
faster (one to three orders of magnitude).

An application's entire environment affects I/0 time:

¢ File structure -- A variety of file attributes affect 1I/0
time, including:

bucket size (for a relative or indexed file)

number of keys (for an indexed file)

number of duplicate key values (for an indexed file)
initial file allocation

default extension quantity

® File size -- The number of records in the file affects the I/0
operations required to scan a file sequentially or follow an
index.

¢ Program -- Your program affects I/0 time by requiring 1I1/0
operations for file operations (OPEN, CLOSE, and so on),
record operations (GET, PUT, and so on), and overlays.

e RMS-11 -- The RMS-11 routines can be structured as
disk-resident overlays or as memory-resident overlays.

e File control processor -- Besides requiring overlay segments
from disk, the file control processor can also request I/0
operations required to map virtual blocks of the file to
logical blocks on the storage device.

APPLICATION DESIGN

Device hardware -~ The storage device that contains the task
and data files is the primary contributor to the length of an
I1/0 operation. The type of device chosen (moving-head,
fixed-head, and so on) and the demands on it (amount of I/0
activity for that device within the system) are crucial to 1/0
performance.

Figure 2-1 illustrates this environment.

EVICE
DRIVER

HEAD MOVEMENT.
LaTency, anp OTHERS

DEVICE
ZK-1163-82

Figure 2-1: Time Factors in an I/O Operation

2.2.2 Space

RMS-11 requires space for three reasons:

1.

To store data in a file

To store the RMS-11 routines either (a) on disk when they are
not in use, or (b) in memory when they are being executed

To buffer data in memory while the task runs

APPLICATION DESIGN

2.2.2.1 Data Storage - The space RMS-1ll requires to store data is
proportional to the organization of the file, and to the processing
capabilities of that organization:

® Sequential file organization -- RMS-11l adds to the size of
your data an empty byte, if necessary, to align each
fixed-length, variable-length, or VEC record on an
even-numbered byte boundary. When the file contains
variable-length records, RMS-1l1l also prefixes a count field to
each record.

® Relative file organization -- RMS-11 constructs a series of
record storage cells based on the length of the records. The
cells are 1 byte longer than the fixed size of fixed-length
records or 3 bytes longer than the maximum size specified for
variable~length records.

® Indexed file organization -- RMS-11 adds to your data:
- An index for each defined key.
~ 15 bytes of formatting information for each bucket.
-~ A 7-byte header for each record.
-~ A count field for each variable-length record.

- Other overhead of varying lengths for records RMS-1l moves
during file activity and for deleted records.

You should keep the size of records to the minimum required for your
application.

2.2.2.2 Task Size - The space RMS-1l1 routines occupy in a task
depends on the method you use to link the routines with your program.
See Section 8.1 for more details.

2,2.2.3 Buffer Sizes -~ You can vary the size of the I/0 buffers
RMS~11 uses to store data in memory. Generally, the larger the
buffers, the faster the task processes data. See Section 3.5.3,
Section 4.5.3, or Section 7.4 for the file organization(s) you are
interested in.

2.2.3 Shared Access

Shared access revolves around the question: Who is allowed to read
from or write to a file? The answer involves your operating system's
protection codes, your access declaration, and your sharing
declaration.

System Protection Codes: Before you can access an RMS-11 file, you
must log into your computer system using an account number that will
allow you the kinds of access you need when your access request is
validated against the file's protection codes.

APPLICAT

ION DESIGN

Operating systems allow you to assign a protection code to each file

when it
who are

is created. This code describes concentric circles of users
allowed different levels of access to that file. See your

operating system documentation for specific protection conventions.

Figure 2

-2 illustrates the system protection concepts.

READ ACCESS ‘ WRITE ACCESS

SYSTEM

EXTEND ACCESS DELETE ACCESS

WORLD

RSX-11M/M-PLUS
7K-1166-82

Figure‘2-2: System Protection Concepts

Access Declarations: Your program must declare the types of access
you need by specifying the record or block operations it intends to

perform

on the file, as follows:

Read-only access is granted if your program specifies that
only FIND/GET or READ operations can be performed.

No PUT, UPDATE, DELETE, TRUNCATE, or WRITE operations will be
allowed, nor will any other operation which would modify the
file (an EXTEND operation, for example, will not be allowed
for read-only access).

Read/write access is granted if your program specifies that
PUT, UPDATE, DELETE, TRUNCATE, or WRITE operations can be
performed. FIND/GET and READ operations will also be allowed,
as will EXTEND operations.

Note that, in addition to any access declaration, a CREATE
operation always forces read/write access so that the newly
created file can be populated (using PUT operations for record
access or WRITE operations for block access).

APPLICATION DESIGN

Sharing Declarations: Your sharing declaration specifies the types of
access to the file that vyour program is willing to allow to other
programs that request access to the file at the same time that your
program is accessing it. These declarations can be:

e No sharing -- You do not want any other program to access the
file.

A no-sharing specification in your sharing declaration
overrides any other sharing specification you may also have
included, and guarantees that no other program will have
concurrent read/write access to the file. That is, no other
program will be able to modify the file.

Note, however, that it is not possible to guarantee that
concurrent read-only accessors will be denied access.

e Read-only sharing -- You are willing to allow other programs
read-only access to the file.

® Read/write sharing -- You are willing to allow other programs
read/write, as well as read-only, access to the file.

e Sharing with user-provided interlocks (sequential files only)
-- This specifies a special form of sharing among a group of
programs that includes any number of read-only accessors and
at most one read/write accessor.

User-provided interlocks offer a limited form of access
sharing of sequential files. If the file organization is
sequential, this specification in your sharing declaration
overrides any other sharing specification (except no sharing).
For any other file organization, this specification is
ignored.

NOTE

High-level languages may use slightly
different terms to designate the access
and sharing declarations, and may not
provide equivalents for all the sharing
options. See your high-level 1language
documentation.

Once the operating system's protection checks are passed, RMS-11 and
the operating system cooperate to determine whether the type of access
you request (your access declaration) and the type of sharing you
permit (your sharing declaration) are consistent with any other
current accessors of the file.

If no other tasks have accessed the file at the time that your program
requests access, your access request must only pass the system
protection checks to be granted. However, if one or more programs
already have access to the file, RMS-11 and the operating system will
use the access and sharing declarations of those programs along with
those of your program to determine whether your program will be
allowed concurrent access.

No-sharing and read-only declarations are processed as described above
for files of all organizations and access method (block or record).
In other cases, however, RMS-11 and the operating system interpret the
access and sharing declarations in the manner best suited to the
file's organization and the access method, as described in Section 3.4
for, sequential files, Section 4.4 for relative files, and Section 7.1
for indexed files.

APPLICATION DESIGN

NOTE

As noted, file sharing is a cdoperative
effort between RMS-11 and the operating

system. The RMS-11 processing
algorithms depend - upon the detailed
nature of this cooperation. If you

access a file concurrently with multiple

© programs, some of which use RMS-11 and
some of which do not, the results may be
unpredictable.

2,2.3.1 Bucket Locking - Any time a record is updated, accessing
programs must be assured that the data written to the file is current
until the record is re-accessed and the record updated again.

If no control is placed on access, two or more programs could access
the same record, one after the other, and update it, one after the
other. Only the last update would remain in the file. Access sharing
could thus impair data integrity.

To ensure data integrity, RMS-11 uses bucket locking for a relative or
indexed file when the file is open for write-shared access. From that
point, RMS-11 requests the operating system to lock each bucket read
from disk until RMS-1l explicitly releases the bucket. After a GET,
FIND, or mass-insert PUT operation, only the bucket containing the
data record remains locked. (See Chapter 7 for information on mass
-insertion.) While that bucket is locked, no other program can access
it. ‘

RMS-~11 requests the operating system to unlock such a bucket when one
of the following occurs:

e The GET, FIND, or PUT operation fails.

e The GET or FIND operation succeeds -- if the program has
declared read-only access to the file.

e The program initiates another record operation that accesses a
different bucket.

After the bucket is unlocked, other programs can access it.

Example: Programs A and B are write-sharing a file named RMSREL.DAT.
Both try to update relative record number 12. However, program B
initiates the prerequisite GET operation first, locking the bucket
containing the record. The operating system keeps program A from
accessing that bucket while program B uses it. After program B
updates record 12, RMS-1l1 unlocks the bucket and the operating system
allows program A to get record 12 (including program B's updated
data) . Figure 2-3 illustrates this example.

Bucket locking incurs costs: The operating system administers bucket
locking. It establishes, for each file, a list of virtual blocks that
are locked. The system must scan this list every time RMS-11 performs
an I/O operation and then either permit the operation or return an
error. In addition to this lock-list overhead, extra instructions are
executed to lock and unlock the buckets.

APPLICATION DESIGN

......
woy

RELATIVE
RECORD
NUMBER 12.

PROGRAM B

PROGRAM
B

PROGRAM A
TRY AGAIN

UPDATE
RECORD READ RELATIVE| ~

RECORD #12

PROGRAM
A

PROGRAM \
A

Y ReAD RELATIVE
RECORD #12

PROGRAM A

PROGRAM B PROGRAM B

DO NEXT
PROGESS
RECORD RECORD

READ RELATIVE
RECORD #12

2K-1164.82

Figure 2-3: Bucket Locking Example

2,2,3.2 Sharing among Access Streams - In addition to the bucket
locking used when programs allow sharing, RMS-1ll provides its own
version of bucket 1locking when a program accesses a file for
write-type operations. This locking allows multiple streams to share
the file. RMS-11 bucket locking works the same way as the locking
provided by the operating system, except that the 1locks can be
encountered only by different access streams within the same program.

The overhead for RMS-11 bucket locking is small.

APPLICATION DESIGN

2.2.3.3 Programming Considerations - For the greatest flexibility at
run time, you should assume that access to any record by your program
can be denied because the bucket containing the record 1is 1locked.

RMS-11

returns the error code ERSRLK when the bucket is locked by

another access stream in the same or in another program.

Therefore, you should use the following techniques when you write
RMS-11 programs that involve shared access:

2.2.4

Never keep a bucket locked longer than necessary. You should
follow any successful GET or FIND operation with another
record operation of any type as soon as possible. The second
operation unlocks the bucket 1locked by the read-type
operation,

Alternatively, you can release the bucket explicitly with a
FREE operation. A FREE operation releases only the bucket
locked by the access stream associated with the operation.

If your program detects an ERSRLK error (or its high-level
language equivalent), 1its error processing depends on the
number of access streams active on the file:

- Single stream -- Set up a 1loop that stalls, then
re-initiates the record operation until RMS-11l indicates a
successful completion.

- Multiple streams -- Do not set up a loop that continuously
re-initiates the record operation. You should either (a)
continue processing on the other streams, attempting the
record operation on the locked-out stream periodically, or
(b) release the buckets locked by all other streams, then
re-initiate the record operation that failed. Any
GET-UPDATE or FIND-UPDATE sequencés interrupted on the
other streams must be restarted, because the release of a
bucket destroys the record context.

Ease of Design

When you design and write your application, you should consider

yourself

and the person who will maintain the application. Keep the

following design guidelines in mind:

Keep things simple. You can apply this criterion to the whole
development process, £from program flowcharts to the record
layouts to file organization and design.

Example: From sequential through indexed, the RMS-11 file
organizations offer increasing capabilities, but they are also
increasingly complex. Choose the organization that supplies
enough capabilities, but no more. For instance, if you want
to randomly access a file by a single key only, you might wuse
a relative file and a hashing algorithm instead of an indexed
file.

Apply optimizations one by one until you reach a satisfactory
level of performance. Generally, further improvements are not
necessary.

APPLICATION DESIGN

Example: The optimization of performance of applications
using indexed files can be involved, but you do not have to
use every technique discussed in this manual. You should only
satisfy current performance requirements. For instance, when
an application program needed optimization, the indexed file
being read was made contiguous (see Chapter 6) and the RMS-11
overlay structure was changed (see Chapter 8). Execution time
dropped ' from 16 minutes to 8.5. Since this performance was
adequate, no further optimizations were considered.

Some optimizations apply to one type of record operation, but
not to others. Determine whether an optimization will benefit
your processing before you implement it.

2.3 DESIGN PROCESS

The first step in the design process is the selection of the file
organization. Section 2.4 presents information to help you make this
selection,

Once you have selected a file organization, go to the appropriate
chapter (s):

Sequential Chapter 3
Relative Chapter 4
Indexed Chapters 5, 6, 7

Each chapter discusses file structure (physical and conceptual) as
well as design considerations. Indexed files are the most complex to
design because of their power and flexibility.

After you read the file organization chapter(s), go to Chapter 8, Task
Building and Common Optimization Techniques.

Finally, apply the design considerations described in these chapters.
Write your application; create and populate the files, using the
RMS-11 utilities when they are useful; use the programs and files in
a simulated environment while you evaluate performance. You may have
to return to this manual, changing your design and/or combining
attributes and RMS-11 facilities in different ways, wuntil the
application runs to your satisfaction.

Good design is important to the success of your RMS-11 application.

2.4 SELECTING A FILE ORGANIZATION

Table 2-1 lists important features of each file organization --
sequential, relative, and indexed -- to help you decide which one(s)
you need. Table 2-2 points out advantages and disadvantages of each
organization.

The sections that follow the tables provide information about two of
the features of file organization -- record format and I/O techniques
—- to help you select a file organization.’

APPLICATION DESIGN

Table 2-1: File Organization Characteristics and Capabilities

Characteristics
and
Capabilities Sequential Relative Indexed
Medium
Disk Yes Yes Yes
Magnetic Tape Yes No No
Unit Record Yes No No

Recoxrd Formats

Fixed-length Yes Yes Yes
Variable-length Yes Yes Yes
VFC (disk only) Yes Yes No
Stream (disk only) Yes No No
Undefined (disk only) Yes No No
Overhead per Record None 1 byte 7 bytes
Access Modes

Sequential Yes Yes Yes
Random Yesl Yes Yes
RFA access (disk only) Yes Yes Yes

Record Operations

CONNECT Yes Yes Yes
DELETE No Yes Yes
DISCONNECT Yes Yes Yes
FIND Yes Yes Yes
FLUSH Yes Yes Yes
FREE No Yes Yes
GET Yes Yes Yes
REWIND Yes Yes Yes
TRUNCATE Yes No No
UPDATE (disk only) Yes Yes Yes
PUT Yes Yes Yes
I1/0 Unit 1 or more Bucket Bucket
blocks
I/0 Techniques
Deferred write Normal mode Selectable Selectable
of operation
Multiblock count Yes Bucket size Bucket size
Multiple access No Yes Yes
streams
Multiple buffers No Yes Yes
Mass insertion No No Yes
Access Sharing2 Read-only Read/write Read/write
Other Features Block-span- Maximum record Areas
ning records number

1. For fixed-format disk sequential files only.

2. See exceptions in Section 2.2.3, and in Sections 3.4, 4.4, and
7.1.

APPLICATION DESIGN

Table 2-2: File Organization Advantages and Disadvantages

Organization Advantages Disadvantages
Sequential Simplest organization. To get a record, most
high-level languages
Optimal use of disk and must access all records
memory: before it (no access by
RFA or by key).2
e minimum overhead on
disk You can add recgords only
e block spanning at end of file.
Optimal if application Interactive process is
accesses all records on awkward: operator must
each run, except if file wait as a program searches
must be write-shared. for a record.2
Most versatile in record Certain compiled programs
formats: cannot access a record
already passed without
o exchange data with closing and re-opening
non RMS-11 systems file (REWIND is not
e compatible with available).
RSX-11M/M-PLUS
FCS filesl You can delete records
e compatible with ANSI only at end of file; use
magnetic tape format TRUNCATE record operation.
e compatible with
RSTS/E stream filesl Sharing normally restricted
to multiple readers.
Most versatile in storage
media; file is portable.
Random by key (RRN)
record access available
on fixed-format disk
sequential files,
Relative Random access in all Restricted to disk.

1.RMS-11 can read these file structures and return a record to

However,

languages.
Allows deletions.

Allows random GET and
PUT operations.

differences in

File contains a cell

for each cell number
between 1 and last
record in file; data may
not be stored densely.

your program,

data storage techniques among programming languages

can keep the program from properly interpreting the contents of that record.

2. These restrictions do not exist for disk sequential files with fixed-length

record format;

records in such files can be stored and retrieved using random

by key access, depending on your high-level language capabilities.

(Continued on next page)

APPLICATION DESIGN

Table 2-2 (Cont.): File Organization Advantages and Disadvantages

Organization Advantages Disadvantages
Relative Optimal if application Program must know rela-
(Cont.) accesses all records on tive record number or
each run and file must RFA of record before it
be write-shared. can randomly access the
data; no generic access

Random and sequential as in indexed file organi-
access with low overhead. zation.
Can be write-shared. Interactive access can be

awkward if you do not
access records by relative
number .

You can insert records
only into unused record
cells, but you can update
existing records.

RMS-11 does not allow
duplicate relative record

numbers.
Indexed Most flexible random Highest overhead on
access: disk and in memory.
e by any one of mul- Restricted to disk.
tiple keys or RFA
e key access by generic Least simple program-
or approximate value ming.

® you access records by
record contents

Duplicate key values
possible.

Automatic sort of re-
cords by primary and
alternate keys; avail-
able during sequential
access.,

Record location is
transparent to user.

Can be write-shared.

Potential range of key
values not physically
present as in relative
file organization.

variety of data formats
for keys.

APPLICATION DESIGN

2.4.1 Record Formats

RMS-11 supports all of the record formats described in the following
sections for sequential files, but restricts relative and indexed file
organizations (see Table 2-1).

2.4.1.1 Fixed-~-Length Format - Records in the file are the same size,
which is a file attribute. The fixed-length record format requires no
RMS-11 overhead.

RMS-11 limits fixed block-spanning records to 32,765 bytes, while the
minimum valid record is 1 byte of data.

2.4.1.2 Variable-Length Format - Records in the file can be any
length, up to a maximum of 32,763 bytes for block-spanning records.
This file attribute is user-settable and optional. For each record,
RMS-11 maintains a count field specifying the number of data bytes in
the record. The size of this field depends on the storage medium for
the file,

e On disk, the count field is a 2-byte binary count that does
not include the 2 bytes for the field.

e On ANSI magnetic tape, the count field 1is a 4-character
decimal count that does include the 4 characters for the
field.

Figure 2-4 illustrates the count field for each medium.

LENGTH
A DATA RECORD ON DISK
L1
O~ pg
\\\ S ——— /__\§_______,/
\\\'\) /
N T e e e e e = e
\\~__________,/
LENGTH
P DATA RECORD ON MAGTAPE
| ‘ﬂ'\ |
\ — T — — Pe
S —— ——

ZK-1162-82

Figure 2-4: Count Field on Disk and Tape

Choose the variable-length record format if:

® The data truly varies in length, because the format adds the
length field to each record's size.

® You are designing a new application where future uses may
require records to change length.

APPLICATION DESIGN

NOTE

Changing a record's size during an
UPDATE operation 1is restricted by file
organization. See Sections 3.5.1,
4.5.1, and 7.2 for more information on
using the UPDATE operation with the
specific file organizations.

RMS-11 limits variable-length block-spanning records on disk to 32,763
bytes because of the count field. RMS-11 allows records to reach this
maximum only in sequential files; other file organizations place
further restrictions on record size. The minimum valid record is 2
bytes of zeroes, representing a null record.

2.4.1.3 Vvariable-with-Fixed-Control Format - A VFC record consists of
two areas:

e A fixed-length control area from 1 to 255 bytes long; the
length is maintained as a file attribute.

e A variable-length area that can vary in length from zero bytes
to the maximum record size stored as a file attribute.

For each record, RMS-11 maintains a count field specifying the number
of data bytes in the record including fixed and variable areas. The
size of this field is a 2-byte binary count that does not include the
2 bytes for the field.

RMS-11 limits VFC block-spanning records to 32,763 bytes because of
the count field. The minimum valid record is 3 bytes: the length
field plus the minimum fixed area of 1 byte. The maximum variable
area is the difference between 32,763 and the length of the fixed
area.

2.4.1.4 Stream Format - A stream record consists of a series of
contiguous bytes. RMS-11 detects the end of a stream record only by
the presence of one of the following terminators:

Form feed (014 octal)
Line feed (012 octal)
Vertical tab (013 octal)

RMS-11 limits stream format to disk sequential files. In addition,
the format causes the most CPU overhead because RMS-1l must examine
each record character by character for the terminator.

During record operations, RMS-1l processes stream records as follows:

® For FIND and GET operations, RMS-1l1 scans the stream of bytes,
removing leading NULL (000) characters and searching for the
first occurrence of one of the terminators. If it finds a
form feed, vertical tab, or line feed, RMS-11 includes the
terminator character with the record and considers the record
complete.

APPLICATION DESIGN

If it finds a carriage return, RMS-11 checks the character
following the carriage return. If the next character is a
line feed, RMS-11 discards both characters (carriage return
and 1line feed) and considers the record complete. Otherwise,
RMS-11 includes the carriage-return character in the record
and resumes its search for a terminator.

During a GET operation, RMS-1ll moves each character included
in the record into the user buffer as it scans the stream of
bytes. RMS-11 does not move any data into the user buffer
during a FIND operation.

For PUT and UPDATE operations, RMS-1l1 checks the last
character of the record in the user buffer. If it finds a
line feed, vertical tab, or form feed, RMS-1l1 moves the record
as it is to the I/0 buffer. If it does not find one of these
terminators, RMS-11 moves the record to the 1I/0 buffer and
adds a carriage-return/line-feed pair to the end of the
record.

2.,4.1.5 Undefined Format - The undefined format means that RMS-11

reads

only blocks, not records. Your program must interpret the

contents of each block.

2.4.2

I/0 Techniques

RMS-11 supports the following I/O techniques so you can adjust the
performance of record operations:

Asynchronous record operations - When operating
asynchronously, your program may regain control before the
operation is completed; that is, the program will continue
processing while the operation is being performed. This may
improve processing time.

Multiple access streams -- A stream can handle only one record
at a time, but you can connect more than one access stream to
a relative or indexed file if you want to:

- Process more than one record in a file at a time with
asynchronous record operations.

- Maintain more than one context during the processing of a
file.

Each stream represents an independent, concurrently active
sequence of record operations.

Deferred write -- Normally, every write-type record operation
to a relative or indexed file results in a physical I/0
operation. However, you can sometimes have RMS-1l1l defer this
write function until the I/0 buffer is full or must be used
for another bucket. Deferred write is the normal mode of 1/0
for sequential files.

Multiblock count -- You can open a disk sequential file so
that RMS-11 reads or writes more than one block of the file
into the I/O buffer at a time. This capability speeds file
processing, though the buffer gets bigger. For relative and
indexed files, you achieve a similar effect by increasing
bucket sizes.

APPLICATION DESIGN

e Multiple buffers -- You can allocate I/0 buffers for a
relative or indexed file beyond RMS-1l's minimum requirements:
one for relative; two for indexed. If the file is not

accessed for read/write sharing, RMS-11 uses the buffers to
save in memory, or cache, buckets from the file, so that they
do not have to be read again from disk if needed.

For indexed files, RMS-11 caches the root buckets from indexes
that are used, saving one I/0 operation on every random record
operation. However, for relative files, RMS-11 makes no
distinction Dbetween buckets, saving them until it has to use
the buffer.

® Mass insertion -- Specified before the insertion of a series
of records already sorted in ascending order by primary key,
this mode enables RMS-11 to store the records tightly and
quickly in the file. Records can be mass inserted only at the
logical end of an indexed file. Mass insertion significantly
improves performance for single-key indexed files. However,
with each additional key defined for the file, the percentage
improvement is smaller.

CHAPTER 3

SEQUENTIAL FILE APPLICATIONS

This chapter discusses sequential file structure, design, and
processing. Sequential file design consists generally of determining
the specific attributes, including record size and format, that will
allow you to store, retrieve, and process your data efficiently within
the sequential file structure. Your task design, along with your file
design, will determine your record and file processing options,
including record access modes. ' :

3.1 FILE STRUCTURE

Physical Structure -- Sequential files carry almost no RMS-11
overhead. The operating system's file management software stores
attributes in the file directory. -~ RMS-11 stores ' data records
beginning with virtual block number (VBN) 1,

e If records cross block boundaries (span blocks), RMS-11 packs
records into the file " end-to-end, allowing for control
information and padding.

e If you do not allow records to span ‘blocks, RMS-11 packs
records into each block, allowing for control information and
padding. ' ’ '

- NOTE

You will waste space 1in your £file if
both of the following are true:

e You do not allow records to span
blocks. ~

e Your records do not exactly fit ‘into
a block.

To be compatible with other £file management systems, RMS-11 flags
space that 1is not wused at the end of each block. When you allow
records to span blocks, the only unused space starts after the last
record in the file. Table 3-1 lists the end-of-block indicators.

SEQUENTIAL FILE APPLICATIONS

Table 3-1: End-of-Block Indicators

Medium Record Format End-of-Block Indicator

Disk All but stream -1 in word following last valid byte
Disk Stream nulls (000) to end of file

Magtape All circumflex (*) to end of block

For disk sequential files, RMS-11 uses the end-of-file attribute,
stored in the file directory, to determine where the valid data in a
file ends. This attribute includes a VBN and a byte offset within
this block. The virtual block containing the logical end-of-file may
not be the last block allocated to the file.

RMS-11 reads the end-of-file attribute with the other file attributes
when it opens a file. RMS-11 also updates the end-of-file in the file
directory when it closes the file if the end-of-file changed while the
file was open. The end-of-file changes if records were added to the
end of the file or if the file was truncated.

Conceptual Structure -- In most cases, RMS-ll1l stores records in the
sequence that programs write them, one after the other from the first
record in the file to the last. For these files, RMS-11 can only
access the records sequentially or, for disk files, randomly by record
file address (RFA).

The exception to this structure is the case of disk sequential files
with fixed-length record format. In this case, RMS-11 stores records
in a series of fixed-length cells; this is similar to relative file
organization (see Chapter 4). The cell size 1is the size of the
fixed-length record. Only one record can be put into a cell, and
RMS~-11 assumes that each cell contains a record. RMS-1l1 numbers the
cells consecutively from 1 to n, where n indicates the 1last cell in
the file. A cell number indicates the location of the cell relative
to the beginning of the file, and is associated with the record as a
relative record number (RRN).

RMS-11 can access records in a fixed-format disk sequential file
sequentially, randomly by RFA, or randomly by key (RRN).

NOTE

RMS-11 does not initialize the cells in
a fixed-format disk sequential file, nor
does it "know" whether a cell contains a
valid record. Your applicatioh program
must maintain this information.

3.2 RECORD SIZE

Records in disk sequential files are word aligned, which means that
RMS-11 adds a pad byte to the end of any record with an odd number of
bytes. RMS-11 uses this convention to maintain structural
compatibility with FCS-11 sequential files.

You can define a sequential file so that RMS-11 writes records across
the boundaries between blocks. Such a sequential file is optimally
dense; all bytes within its allocated space are used, except at the
end of the file where no data has been written.

3-2

SEQUENTIAL FILE APPLICATIONS

Table 3-2 shows the maximum data size for records in a sequential
file, They are adjusted for RMS-1l1l restrictions and overhead.

Table 3-2: Sequential File Data Sizes (in bytes)

Maximum Size

Format With Block | Without Block Data Size Calculation
Spanning Spanning
Fixed 32,766 512 Your data + MoD(DS/2)l
Variable 32,765 510 Your data + 2 + MOD(DS/2)1
VEC 32,765 509 Fixed + variable + 2 + MOD(DS/2)1
Stream None 5112 Data + terminator(s)

1.MOD(DS/2) is the remainder aftér the size of your data (DS) in
bytes is divided by 2:

]

e MOD(DS/2) 0 if the data size is an even number of bytes.

e MOD (DS/2)

1 if the data size is an odd number of bytes.

For VFC, DS = fixed + variable

2. Assuming a 1l-byte terminator character; however, 1if the
terminator is CR-LF, then the maximum length without block-spanning

records is 510 bytes. Note that these figures do not include the
terminator characters. :

3.3 FILE DESIGN
For sequential files, the primary design considerations are:

® Record format (see Section 2.4.1 for a description of the
RMS-11 record formats)

e Data storage medium
@ File allocation

e Contigquity

3.3.1 Data Storage Medium

Sequential files can be accessed on both disk and magnetic tape. When
you select the medium for your file, you should consider the
following: :

e Speed of access -- How long can each record operation take?
Tape is significantly slower than disk.

® Frequency of use -- How often do you use the file? If you use
it once a month, a gquarter, and so on, you could store the
file on tape and save your disk for more immediate purposes.

SEQUENTIAL FILE APPLICATIONS

Transportability -- Do you need to use the file on different
operating systems? RSTS/E disk structure is not compatible
with IAS, RSX-11M/M-PLUS, or VAX/VMS, and vice-versa. If you
need to use the file across these systems, you should consider
using a magnetic tape file.

3.3.2 File Allocation
Disk file allocation involves two quantities:

e 1Initial allocation gquantity -- the number of blocks assigned
to a file when you create it.

e Default extension quantity -- the number of blocks added to a
file each time RMS-1l1 automatically extends it.

3.3.2.1 Initial Allocation - Even with sequential files, where a file
extension requires only. an allocation of blocks by the operating
system, total allocation of the file when you create it is much more
efficient.

You calculate the allocation (ALQ), 1in Dblocks, for block-spanning
records as follows:

ALQ = (NRF*RSZ) /512
where:
ALQ is the allocation quantity in blocks

NRF is the largest number of records that will be in the file at one
' time

RSz is the size of the record in bytes

For variable-length or VFC records, use the average record size for
RSZ, including 2 bytes for the count field.

For fixed-length records, use the actual record size for RSZ.

Be sure to round RSZ up to a multiple of 2 to account for word
alignment,

This allocation can be done by RMSDES or by your application program,
depending on the capabilities of your high-level language.

3.3.2.2 Default Extension Quantity - If the file cannot be totally
allocated at creation time, you should establish a reasonable default
extension quantity (DEQ) to minimize the number of (and the time spent
on) file extensions. Even if the file is totally allocated when you
create it, you should establish a reasonable DEQ in case the file gets
bigger than planned. The time required for each file extension is
significant, involving:

e A call to the file control processor

e Possible 1I/0 operations to bring file control processor
routines into memory

SEQUENTIAL FILE APPLICATIONS

e I/0 operations to read and change file directory information
I/0 operations to read and change the disk free-block bit map

A good basis for calculation is the number of records added to the
file in a given period of time, such as a day; use the formula for
allocation quantity in Section 3.3.2.1.

The DEQ can be set by RMSDES or by your application program, depending
on the capabilities of your high-level language. If you do not
specify a DEQ, it will default to zero whether you create the file
with RMSDES or a high-level language. This means that RMS-1l will
extend the file according to the operating system default for file
extensions,

Example: You are inserting 1000 50-byte fixed-length records into a
sequential file. Records do not span blocks; therefore, each block
contains 10 records. The file is currently full; that is, no more
records can be added without an extension.

e If DEQ is zero, RMS-11 extends the file according to operating
system defaults, which are typically only a few blocks.
Therefore, in this example, if the system default is 5 blocks,
RMS-11 extends the file 20 times.

e If DEQ is 1, RMS-11 extends the file for every tenth PUT
operation after the first, for a total of 100 extensions.

e If DEQ is 25, RMS-1ll extends the file 4 times.

e If DEQ is 100 or more, RMS-1ll extends the file only once.

3.3.3 Contiguity

Contiguity c¢an significantly affect performance. Therefore, you
should consider contiguity for a disk sequential file to minimize the
time spent on each I/0 operation.

If the blocks in a file are not contiguous, they may be on different
parts of the disk, and thus require significant head movement to
access the file contents,

Physical contiguity, however, ensures that the file is stored on one
track or, at worst, adjacent tracks. Because the disk can read a
track without moving the heads, file contiguity reduces head movement.
This assumes that no other software is accessing the disk at the same
time.

Contiguity also enhances virtual-to-logical-block mapping (see Chapter
8).

To ensure that the blocks in the file are physically contiguous,
allocate the whole file when you create it (see Section 3.3.2.1) and
specify that the allocation be performed contiguously.

3.4 ACCESS SHARING

Access sharing can be specified for disk sequential files, as
described in the following sections. See Section 2.2.3 for general
information on shared access.

SEQUENTIAL FILE APPLICATIONS

3.4.1 Record Access to Sequential Files

Because of their internal structure, record-structured sequential
files are not read/write sharable in the manner of relative and
indexed files. Thus, a read/write sharing declaration for such a file
is converted internally to a read-only sharing declaration before the
file is processed.

As a result, multiple read-only accessors who have specified
no-sharing, read-only sharing, or read/write sharing can access such a
file concurrently as long as no read/write accessor is present; or a
single accessor who has specified no-sharing, read-only sharing, or
read/write sharing can access such a file as long as no other accessor
of any kind is present. Other combinations are rejected: the access
and sharing declarations are incompatible.

Limited sequential file sharing is possible, however, in the case of a
single read/write accessor in combination with multiple read-only
accessors, when the application programs involved (rather than RMS-11)
can take responsibility for any interlocking required.

In this case, the read-only accessors must specify sharing with
user-provided interlocks to gain access; the sharing declaration of
the single read/write accessor is immaterial. Each read-only accessor
cannot read beyond the logical end-of-file mark that existed at the
time that accessor opened the file, and must recognize that
inconsistent data may be returned if the single read/write accessor
modifies data within the accessible portion of the file.

3.4.2 Block Access to Sequential Files

Sequential files can be read/write shared using block access, but for
those accessors who specify read/write sharing, automatic file
extensions will not occur and the logical end-of-file mark in the file
header will be neither respected nor updated. (Again, this is because
of the internal structure of sequential files.) Such read/write
sharing uses the operating system's block-locking facilities to
coordinate shared access.

Sequential files can also be shared in a noninterlocked manner, with
user-provided interlocks. Because of operating system restrictions,
the single read/write accessor must specify no-sharing or sharing with
user-provided interlocks, and multiple read-only accessors must
specify sharing with user-provided interlocks. These restrictions
also prohibit concurrent access to the file by read/write-sharing
accessors or an accessor who specified read-only sharing and
read/write access.

When no write accessor is present, sequential files can be shared
among multiple read-only accessors who have specified no sharing or
read-only sharing.

3.5 RECORD AND FILE PROCESSING OF SEQUENTIAL FILES

The record and file processing capabilities described in
RSX~-11M/M-PLUS RMS-11: An Introduction are available for sequential
files. This section discuSses the operations and their implementation
and restrictions with sequential files.

SEQUENTIAL FILE APPLICATIONS

3.5.1 Record and Stream Operations

The following record and stream operations can be performed on

sequential files:

CONNECT
DISCONNECT
FIND

FLUSH

GET

PUT

REWIND
TRUNCATE
UPDATE

In all record operations, RMS-1l1l establishes the current
context (if any) and the next record context (if applicable).
record operation fails, RMS-11 normally sets the current
context to none and does not change the next record context.

NOTE

For more information on the RMS-11 error
codes referred to in the following
sections, see the RSX-11M/M-PLUS RMS-11
Macro Programmer's Guide.

3.5.1.1 CONNECT - A CONNECT operation affects the record cont
the access stream as follows:

® Current record -- There is no current record. Any o
requiring a current record fails at this point.

® Next record -- If you did not specify that you were g
append records to the file, the next record is t
record in the file.

I1f you. did specify that you were going to append rec
the file, the next record is the end-of-file.

3.5.1.2 DISCONNECT - A DISCONNECT operation destroys the
record context for the access stream. You cannot resume this
by reconnecting the stream.

3.5.1.3 FIND - To perform a FIND operation on a sequentia

1. Determines the location of the record in the file a
to the specified record access mode:

e In sequential-access mode, location is indicated
next record pointer.

e In key-access mode, location is determined
specified relative record number and match cr
(This access mode is available for fixed-form
sequential files only.)

record
If any
record

ext for
peration

oing to
he first

ords to

current

context

1 ﬁile,

ccording

by the

by the
iterion.
at disk

SEQUENTIAL FILE APPLICATIONS

3.

4.

In RFA-access mode, location 1is determined by the
specified RFA. (This access mode is available for disk
files only.)

Reads the block containing the record, or the first part of
the record if the record spans blocks, from disk into the
task's I/0 buffer, if it is not already in memory. The block
may be in memory if the block was required by a previous
operation.

For disk files, returns the RFA to the program, but does not
transfer the record to the program's user buffer.

Returns the RRN for fixed-format disk sequential files.

If no valid record exists in the 1location specified, the response
depends on the access mode:

In sequential-access mode, the error code is ERSEOF, meaning
that no record was located because there are no more records
in the file.

In RFA-access mode, the error code is either ERSRFA, if the
RFA had an invalid format, or ERSEOF, if the RFA specified a
location beyond the end of the file.

In key-access mode for fixed-format disk sequential files, the
error code is ERSKEY, if the key value had an invalid format,
or ERSEOF, if the key value specified a location beyond the
end of the file.

A FIND operation affects the record context for the access stream as

follows:

For a sequential-access FIND operation:

- Current record is set to value of the record found, that
is, the next record before the FIND operation started.

Example: You have connected a stream to a sequential file
without specifying that records will be appended to the
file (see Section 3.5.1.1). There is no current record,
but the next record is the first record in the file. 1If
you execute a sequential FIND operation, the current record
is set to the first record in the file.

~ Next record is set to the record virtually following the
current record.
Example: From the previous example, the next record is the
second record in the file.

For an RFA-access or key-access FIND operation:

- Current record is set to the record found, that 1is, the
record identified by the RFA or RRN.

- Next record is unchanged.

You use

1.

SEQUENTIAL FILE APPLICATIONS

Example: In the preceding example, you performed a
sequential-access FIND operation after connecting the
stream to the file, You now execute a FIND by RFA. The
current record is set to the record specified, but the next
record is not changed. Therefore, when you perform another
sequential FIND operation, the current record is set to the
second record in the file, not to the record following the
one found by RFA.

a FIND operation instead of a GET operation for two reasons:

It is faster because the record is not moved to the user
buffer. Although the time required to move a record from one
part of memory to another is very short, do not expend it
unnecessarily.

It does not change the next record in RFA or key access mode.
This convention allows you to branch off sequential
processing for updating or deleting, and keep your place in
the file.

use a FIND operation in the following ways:

To skip records in sequential access mode by initiating
successive FIND operations.

To establish a random starting point using RFA or key access
mode. You could then initiate successive GET operations,
where the first operation gets the record found by RFA or by
RRN.

To establish a current record for an UPDATE or TRUNCATE
operation.

To determine whether a record cell specified by RRN exists in
a file (for fixed-format disk sequential files only).

FLUSH - A FLUSH operation does not affect the record context
access stream.

GET - To perform a GET operation on a sequential file,

Determines the location of the record in the file according
to the specified access mode:

o In sequential-access mode, location is indicated by the
next record pointer, if the get operation was not
immediately preceded by a successful FIND operation, or
the current record pointer set by an immediately preceding
successful FIND operation.

e Location is determined by the specified relative record
number and match criterion in key-access mode
(fixed-format disk sequential files only).

e Location is determined by the specified RFA in RFA-access
mode (disk files only).

Reads the block containing the record, or the first part of

the record if the record spans blocks, from disk into the
task's I1/0 buffer, if the block is not already in memory.

3-9

SEQUENTIAL FILE APPLICATIONS

Example: Your records are 50 bytes long. When you read
sequentially through the file, RMS-11 must request a disk I/0O
operation for every tenth GET operation that your program
executes.

3. For disk files, returns the RFA to the program and moves the
record from the I/0 buffer to the specified user buffer in
the program unless the program is operating in locate record
transfer mode (see Section 3.5.2). If the buffer does not
contain the entire record, RMS-11 reads more blocks into the
I/0 buffer and assembles the record in the program's user
buffer, regardless of record transfer mode.

4. Returns the RRN for fixed-format disk sequential files.

If no valid record exists in the location specified, the response
depends on the access mode:

e In sequential-access mode, the error code is ERSEOF, meaning
that no record was located because there are no more records
in the file.

@ In RFA-access mode, the error code is either ERSRFA, if the
RFA had an invalid format, or ERSEQOF, if the RFA specified a
location beyond the end of the file.

e In key-access mode for fixed-format disk sequential files, the
error code is ERSKEY, if the key value had an invalid format,
or ERSEOF, if the key value specified a 1location beyond the
end of the file.

A GET operation affects the current record context for the access
stream as follows:

® Current record is set to the record read.

¢ Next record is set to the record virtually following the
current record.

Example: You have connected a stream to a sequential file without
specifying that records will be appended to the file (see Section
3.5.1.1). There is no current record, but the next record 1is the
first record in the file. If you execute a sequential-access GET
operation, the current record is set to the first record in the file
and the next record is the second record in the file.

3.5.1.6 PUT - To perform a PUT operation on a sequential file,

1. Determines whether the specified access mode is allowed.
Sequential-access mode must be specified unless the file is a
fixed-format disk file; in that case, key-access mode is
allowed. RMS-11 returns the error code ERSRAC if an illegal
access mode is specified.

2. Determines the destination of the record in the file
according to the specified access mode:

¢ In sequential-access mode, the next record pointer
indicates the destination. The destination must be the
end-of-file; if it is not, RMS-11l returns the error code
ERSNEF.

6.
7.

SEQUENTIAL FILE APPLICATIONS

Your program gets to the end of a sequential fil by:

- Specifying that records will be appended to th file
when the program connects the record access stream to
the file (see Section 3.5.1l.1).

- Initiating sequential FIND and/or GET operations until
RMS-11 returns an ERSEOF error code.

e In key-access mode, the specified relative record number
indicates the destination. Note that RMS-11 does not
check the validity of the designated RRN: if the
destination block 1is beyond the current end-of-file,
RMS-11 will extend the file to the destination block.

Reads the destination block in the file into the I/0 buffer,
if the block is not already in memory. The block may be in
memory if it was required by a previous operation.

Moves the record from the user buffer to the task's 1I/0
buffer.

Writes the I/O buffer to disk only if the buffer is full. If
there is no room for the block(s) in the file, RMS-11 extends
the file (see Section 3.3.2) and then writes the buffer to
disk.

For disk files, returns the RFA to the program.

Returns the RRN for fixed-format disk sequential files.

A PUT operation affects the context for the access stream as follows:

For a sequential-access PUT operation:

- Current record -- None. Any operation requiring a current
record fails at this point.

~ Next record -- End-of-file. A sequential FIND or GET
operation fails with error code ERSEOF.

For a key-access PUT operation:

- Current record -- None. Any operation requiring a current
record fails at this point.

~ Next record -- Unchanged.

3.5.1.7 REWIND - A REWIND operation affects the record context for
the access stream as follows:

Current record -- None. Any operation requiring a current
record fails at this point.

Next record -- Set to the first record in the file.

SEQUENTIAL FILE APPLICATIONS

3.5.1.8 TRUNCATE - A TRUNCATE operation declares end-of-file at the
position of the current record. In doing so, the operation
effectively deletes the current record and all records in the
sequential file following that record.

The TRUNCATE operatidn requires a valid current record. It therefore
should follow a successful GET or FIND operation; otherwise, RMS-11
returns the error code ERSCUR.

A TRUNCATE operation affects the context for the access stream as
follows:

e Current record -- None. Any operation requiring a current
record fails at this point.

® Next record -- End-of-file.

After a TRUNCATE operation, you can immediately add records to the
file using PUT operations.

NOTE
The TRUNCATE operation does not reduce
the actual allocated size of a
sequential file on a disk: it merely
specifies a new 1logical end-of-file
mark.

3.5.1.9 UPDATE - In an UPDATE operation, RMS-1l moves the specified
record from the task's user buffer to the I/0 buffer, replacing the
current record set by a previous GET or FIND operation. However,
RMS-11 does not immediately write the buffer to the file. RMS-11
requests the file control processor to write the changed buffer over
its original location on the disk only when the buffer must be
replaced in memory by another operation.

Example: You get a record by RFA and update it. Then, you get
another record by RFA, RMS-11 writes the buffer containing the first
record you updated only when it must replace the data in the buffer to
satisfy the second GET operation.

UPDATE operations have the following restrictions:

o The operation is valid only on disk sequential files. If you
attempt it on magnetic tape files or unit record devices,
RMS-il returns the error code ERSIOP.

® The operation requires a valid current record. It therefore
should follow a successful GET or FIND operation; otherwise,
RMS-11 returns the error ERSCUR.

® The size of the record cannot change during an UPDATE
operation. If it changes, RMS-11 returns the error code
ERSRSZ.

® You cannot update stream records. If you attempt it, RMS-11
returns the error code ERSRFM.

None of these errors affects the original record in the file on disk.

SEQUENTIAL FILE APPLICATIONS

An UPDATE operation affects the context for the access stream as
follows:

Current record -- None. Any operation requiring a current
record fails at this point.

e Next record -- Unchanged.

3.5.2 Record Transfer Modes

You can manipulate records either in the I/0 buffer or in your
program's user Dbuffer. Each of these options is called a record
transfer mode. You can change record transfer mode at run time, even
between record operations.

Figure 3-1 shows the I/0 and user buffers.

|+ NUMBER OF FILES OPENED SIMULTANEOUSLY !
|* BUCKET SIZES !

USER BUFFERS ——j

1/0
BUFFERS
VIRTUAL
MEMORY PROGRAM RMS-11
INTERNAL
CONTROL
STRUCTURES

I"SIZE DEPENDS ON: \

{ * RMS-11 FUNCTIONS USED ;

L+ OVERLAY STRUCTURE USED,

ZK-1174-82

Figure 3-1: RMS-11 Task Structure

3.5.2.1 Move Mode - Move mode requires that each record be copied
between the user and I/0 buffers:

® On GET operations, RMS-11 moves the record from the I/0 buffer
to the user buffer before returning control to your program.

e On PUT and UPDATE operations, your program assembles the
record to be written into the file in the user buffer. During
the operation, RMS-11 moves the data into the I/0 buffer
before updating the file.

Move mode is the default record transfer mode for all programming
languages and all file organizations.

SEQUENTIAL FILE APPLICATIONS

3.5.2.2 Locat Mode -~ Locate mode enables your program to manipulate
records in the 1/0 buffer, eliminating the data transfers between it
and the user buffer. However, when you specify locate mode, RMS-1l1l
uses it only when such usage does not compromise data integrity.
Otherwise, RMS-11 uses move mode. Therefore, your program must still
contain a user buffer.

Example: RMS-11 uses move mode instead of locate mode when records
span buffers in a sequential file.

Example: RMS-11 uses move mode instead of locate mode if you opened

the file indicating that you were going to perform UPDATE operations
on it,

RMS-11's use of move mode instead of locate mode 1is transparent to

your program as long as you use RMS-11 facilities to access the record
data.

For sequential files, your program can both performs both GET and PUT
operations in locate mode. See your high-level language documentation
to determine whether the language supports locate mode and, if it
does, what the programming techniques are.

3.5.3 I/0 Techniques

You can use the following techniques to improve the performance of
record operations.

3.5.3.1 Asynchronous Record Operations - Within each access stream,
your program can perform any record operation either synchronously or
asynchronously. In synchronous operations, RMS-11 returns control to
your program after the operation ends, either successfully or with an
error.,

When you execute an asynchronous operation, RMS-11 may return control
to your program before the operation 1is complete. The program
continues processing while the physical transfer of data between disk
and memory 1is carried out. However, you must not initiate another
record operation on that stream until the first operation ends;
otherwise, RMS-1ll returns the error code ER$SACT. See your high-level
language documentation for asynchronous techniques.

3.5.3.2 Deferred Write - The normal mode of operation for sequential
files 1is similar to operations using deferred write with the other
file organizations (see Chapters 4 and 7). Using this technique for
sequential files does not change or improve performance.

3.5.3.3 Multiple Buffers - The multiple buffer capability is not
available to sequential files.

SEQUENTIAL FILE APPLICATIONS

3.5.3.4 Multiple Access Streams - RMS-11 allows each program to use
only one stream on a sequential file because sequential files are not
formatted to permit simple and economical sharing (see Section 3.4).

3.5.3.5 Multiblock Count - Your task can be set up so that more than
one block from a disk sequential file is read or written at one time.
This multiple-block I/0 can improve processing because it tends to
reduce the number of physical 1I/0 operations. However, it also
increases the size of the task, on a one-for-one basis; that is, for
each increment of the multiblock count (MBC), the I/0 buffer in the
task grows by 512 bytes.

An MBC greater than 1 is therefore useful for sequential processing,
including file population.

Example: You are wusing 50-byte records, During sequential
processing, if the MBC is 1, RMS-1ll requests a disk I/0 operation for
every tenth record operation your program executes, whether the
operations are GET or PUT operations. If you set MBC to 5 for
instance, RMS-1l1 requests a physical I/0 operation for every 50 record
operations.

3.5.4 File and Directory Operations

The following file and directory operations can be performed on
sequential files:

CLOSE
CREATE
DISPLAY
ENTER
ERASE
EXTEND
OPEN
PARSE
REMOVE
RENAME
SEARCH

See your high-level language documentation for a description of the
support provided.

CHAPTER 4

RELATIVE FILE APPLICATIONS

This chapter discusses relative file structure, design, and
processing. Relative file design consists generally of determining
the specific attributes, including record size and format, that will
allow you to store, retrieve, and process your data efficently within
the relative file structure. Your task design, along with your file
design, will determine your record and file processing options,
including record access modes.

4.1 FILE STRUCTURE

Physical Structure -- Relative files contain at 1least one block of
RMS-11 information known as the prologue. The operating system's file
management software stores attributes in the file directory. RMS-11
stores the prologue in VBN 1 -- unless the bucket size is 2, 4, or 8
blocks. In that case, RMS-11 makes the prologue equal to 1 bucket in
size. Data records begin in the block following the prologue.

RMS-11 allocates relative files in bucket increments. The first
bucket begins with the first data block. To support deleted record
control, RMS-11 initializes each bucket (sets all bits to 0) when it
allocates the blocks to the file.

The fixed-length cells are set up in each bucket starting with byte 0
and packed end-to-end, byte-aligned, until no more cells can fit in
the bucket (no padding necessary). Cells cannot span bucket
boundaries, although they can cross block boundaries within multiblock
buckets. The first byte of each cell is used by RMS-11 to provide
deleted record control.

Conceptunal Structure -- RMS-11 stores records 1in a series of
fixed-size cells. Only one record can be put into a cell, but all
cells do not have to contain records. The cell size is based on the
length you specify as the maximum for any record in the file. RMS-11
numbers the cells consecutively from 1 to n, where n indicates the
last cell in the file. A cell number relates its location to the
beginning of the file and is associated with the record in the cell,
if any, as a relative record number.

RMS-11 can access records in a relative file either sequentially or
randomly, both by relative record number (key) and by RFA.

RELATIVE FILE APPLICATIONS

4,2 RECORD SIZE

RMS-11 calculates the number of bytes in each record cell in the file
(CL) of a relative record cell as follows:

CL = 1+RFO+DS+FSZ
where:
1 is a byte for RMS-1ll overhead

RFO is bytes for record format overhead: 0 for fixed; 2 for
variable or VEC

FSZ is the fixed control size for VFC format; 0 for other formats
DS is bytes of data

For variable-length or VFC record format, DS is the maximum record
size set for the file.

Table 4-1 shows the maximum data sizes for records in a relative file,

These are the sizes of your data; they are adjusted for RMS-1l1
restrictions and overhead.

Table 4-1: Relative File Data Sizes (in bytes)

Format Maximum Size Record Cell Size Calculation
' Fixed 16,383 Data size + 1

Variable 16,381 Maximum record size + 3

VEC 16,381 Fixed + variable + 3

4.3 FILE DESIGN
For relative files, the primary design considerations are:

® Record format (See Section 2.4.1 for a description of the
RMS-11 record formats)

® Bucket size
@ File allocation
e Contiguity

e Maximum record number

4,3.1 Bucket Size

Buckets are the I/0 units for relative files. Their size is therefore
critical to the space required by a task and the speed with which the
task performs. Sequential access, especially, benefits when there are
multiple records per bucket. There is, of course, a trade-off: the
larger the bucket size, the larger the task, but the faster the task
reads data sequentially:

Each block added to the bucket size increases the task size by
512 bytes for each access stream.

RELATIVE FILE APPLICATIONS

The speed of an RMS-11 operation is closely proportional to
the number of I/0 operations involved. RMS-1l1 requests an I/O
operation each time it requires a new bucket to locate a
record. Therefore, the more record cells in a bucket, the
fewer I/0 operations RMS-1l needs to read a file sequentially.

However, write sharing a relative file counteracts this
optimization if your program has read-only access to the file.
RMS-11 reads a bucket from disk during each GET operation --
even if the next record is in the bucket in memory -- because
the bucket is not 1locked after each GET operation and a
writing program may have changed the bucket since the record
was last read.

Bucket size can be set by RMSDES or by your application program
depending on the capabilities of your high-level language.

4,3.2 File Allocation
File allocation involves two quantities:

e Initial allocation quantity -- The number of blocks assigned
to a file when you create it

e Default extension quantity -- The number of blocks added to a
file each time RMS-11 automatically extends it

4.3.2.1 Initial Allocation - Total allocation of a file when you
create it is the most efficient technique regardless of file
organization, but with relative files initial allocation becomes most
critical. Each allocation, whether at creation time or during an
extension, requires RMS-11l to initialize the new buckets by setting
all bits to zero. You can avoid time-consuming file extensions during
normal processing by totally allocating the file when you create it or
by explicitly extending the file when it 1is not being used for
processing.

You calculate the allocation (ALQ), in blocks, as follows:

ALQ = PLG+ (NRF/NRBKT) *BKS

where:

PLG is equal\to 1 block or to BKS if BKS is 2, 4, or 8

NRF is equal to the maximum record number (MRN) or to the number of
records that will be written into the file

BKS is the bucket size in blocks

NRBKT is the number of records in a bucket

RELATIVE FILE APPLICATIONS

You calculate NRBKT as follows:

NRBKT

(512*BKS) / (RSZ+RFO)
where:
RSZ 1is the size of the record in bytes:
e Data size for fixed-length records
® Maximum record length for variable-length records

® Size of the fixed-length control area plus the maximum size of
the variable-~length area for VFC records

RFO 1is the record format overhead:

® RFO

1 byte for fixed-length records
® RFO = 3 bytes for variable-length and VFC records

This allocation can be done during file creation by RMSDES or by your
application program, depending on the capabilities of your high-level
language.

The allocation can also be done by using a PUT operation to write the
"last record" into the file first; that is, the record whose relative
record number is equal to the maximum record number - (MRN) . Before
RMS-11 can write this record, it must allocate all record cells from 1
to MRN and initialize the new blocks. After the PUT operation, the
relative file will be completely allocated.

4.3.2.2 Dpefault Extension Quantity - If the file cannot be totally
allocated at creation time, you should establish a reasonable default
extension quantity (DEQ) to minimize the number of (and the time spent
on) file extensions. Even if the file is totally allocated when you
create it, you should establish a reasonable DEQ in case the file must
become bigger than planned.

A good basis for calculation is the number of records that are added
to the end of the file in a given time period, such as a day; use the
formula for allocation quantity in Section 4.3.2.1.

The DEQ for the file can be set by RMSDES or by your application
program, depending on the capabilities of your high-level language.

If you do not specify a DEQ, it defaults to zero. RMS-11 responds to
a DEQ of zero by requesting 4 times the bucket size in blocks from the
file control processor each time it automatically extends the file.

4.3.3 Contiguity

Contiguity can significantly affect performance. Therefore, you
should consider contiguity for a relative file to minimize the time
spent on each I/0 operation. If the blocks in a file are not
contiguous, they may be on different parts of the disk and thus
require significant head movement to access the file contents.

RELATIVE FILE APPLICATIONS

Physical contiguity, however, ensures that the file 1is stored on a
single track or, at worst, adjacent tracks. Because the disk can read
an entire track without moving the heads, file contiguity reduces head
movement. This assumes that no other software is accessing the disk
at the same time.

Contiguity also enhances virtual-to-logical-block mapping (discussed
in Chapter 8).

To ensure that the blocks in the file are physically contiguous,
allocate the whole file when you create it (see Section 4.3.2.1).

4.3.4 Maximum Record Number
The MRN associated with a relative file limits the size of the file.
RMS-11 will not put a record into a file with a relative record number
greater than the assigned MRN. However, if an MRN is not set (that
is, MRN 1is =zero), RMS-11 only checks whether the record number is
greater than zero before attempting to store a record in a relative
file.
MRN determines the maximum useful size of a file because RMS-11
allocates a record cell for each record between relative record number
1 and the highest relative record number used. You can explicitly
make the file larger than this maximum, but RMS-11 will not use the
space. The actual size can be smaller than the size that would be set
if a record with the MRN were written into the file.
You can calculate the file size (FSZ) in blocks from the largest
relative record number actually present in the file:

FSZ = PLG+1+ ((LRN-1)/((BKS*512)/(RSZ+RF0)))

where:

PLG 1is the size of the prologue: BKS if BKS = 2, 4, or 8;
otherwise, 1 :

LRN is the largest RRN actually present in the file
BKS is the bucket size in blocks
RSZ 1is the size of the record in bytes:
e Data size for fixed-length records
e Maximum record length for variable-length records

e Size of the fixed-length control area plus the maximum size of
the variable-length area for VFC records

RFO is the record format overhead:

® RFO

[}

1 byte for fixed-length records

e RFO

3 bytes for variable-length and VFC records

MRN can be set by RMSDES or by your application program, depending on
the capabilities of your high-level language.

RELATIVE FILE APPLICATIONS

4.4 ACCESS SHARING

Access sharing can be specified for relative files as described in the
following sections. See Section 2.2,3 for general information on
shared access.

4.4.1 Record Access to Relative Files

Relative files allow fully interlocked read/write sharing, dependent
upon the compatibility of the access and sharing declarations of
multiple accessors, as follows:

® If you have requested read/write access, your request will be
denied unless all other accessors have allowed read/write
sharing. (Otherwise, your read/write access request will
conflict with the sharing declaration of at least one other
accessor.,)

e If you have not permitted read/write sharing, your request for
read/write access will be denied if any other read/write
accessor is present. (In this case, the read/write accessor
does not meet the requirements of your sharing declaration.)

4.4.2 Block Access to Relative Files

Because block access bypasses the record structure and interlocking
algorithms used with relative files, read/write sharing cannot be
permitted. Any read/write sharing declaration is converted internally
to read-only before the file is processed (this 1is similar to
record-accessed sequential files).

Thus, multiple read-only accessors (regardless of their sharing
declarations) can share relative files concurrently using block
access, as long as no read/write record accessor is present.
Read-only block accessors can share files with read-only record
accessors. In addition, a single read/write accessor can access a
relative file using block access (regardless of sharing declaration)
as long as no other accessor of any kind is present.

Other combinations are rejected: the access and sharing declarations
are incompatible.

4.5 RECORD AND FILE PROCESSING OF RELATIVE FILES

The record and file processing capabilities - described in
RSX~11M/M-PLUS RMS-=11: An Introduction are available for relative
files. This section discusses the operations and their implementation
and restrictions with relative files,.

RELATIVE FILE APPLICATIONS

4.5.1 Record and Stream Operations

The following record and stream operations can be performed on a
relative file:

CONNECT
DELETE
DISCONNECT
FIND

FLUSH

GET

PUT

REWIND
UPDATE

In all record operations, RMS-11 establishes the current record
context (if any) and next record context (if applicable). 1If any
record operation fails, RMS-11 normally sets the current record
context to none and does not change the next record context.

NOTE

For more information on the RMS-11 error
codes referred to in the following
sections, see the RSX-11M/M-PLUS RMS-11
Macro Programmer's Guide.

4.5.1.1 CONNECT - A CONNECT operation affects the current record
context for the access stream as follows:

e Current record -- There is no current record. Any operation
requiring a current record fails at this point.

® Next record -- The next record is the first record cell in the
file.

4.5.1.2 DELETE - In a DELETE operation, RMS-11 flags the current
record cell to indicate that it contains a deleted record. RMS-1l1
does this by setting the RMS-11 control byte in the cell to a certain
value. Then, RMS-11 writes the bucket over its original location on
the disk, unless you have specified deferred write (see Section
4.5.3.2).

A DELETE operation requires a valid current record. Therefore, a
DELETE operation should follow a successful GET or FIND operation;
otherwise, RMS-11l returns the error code ERSCUR. This error does not
affect the original record in the file on disk.

A DELETE operation affects the current record context for ‘the access
stream as follows:

e Current record -- None. Any operation requiring a current
record fails at this point,

® Next record -- Unchanged.

RELATIVE FILE APPLICATIONS

4.5.1.3 DISCONNECT - A DISCONNECT operation destroys the current

record

context for the access stream. You cannot resume this context

by reconnecting the stream.

FIND - To perform a FIND operation on a relative file,

Determines the location of the record in the file according
to the specified access mode:

® In sequential-access mode, location is indicated by the
next record pointer.

® In key-access mode, location 1is determined by the
specified relative record number and match criterion.

® In RFA-access mode, location is determined by the
specified RFA.

Reads the bucket containing the indicated cell from disk into
the task's 1I/0 buffer, if the bucket 1is not already in
memory. The bucket may be in memory if it was required by a
previous operation.

Returns the RFA and the RRN to the program, but does not
transfer the record to the program's user buffer.

If the cell is empty or contains a deleted record, the
response depends on the access mode:

e In sequential-access mode, RMS-11 repeats steps 1 through
3, moving through cells until the MRN is exceeded (ERS$MRN)
or the end of the file is reached (ERSEOF).

® In Kkey-access mode, RMS-11 reacts according to the
specified match criterion:

- On an equal match, RMS-1l1 returns the error code
ERSRNF.

- On a greater-than or greater-than-or-equal match,
RMS-11 internally adds 1 to the relative record number
and repeats steps 1 through 3, until either the MRN is
exceeded (ERSMRN) or the end of the file is reached

(ERSRNF) .
® In RFA-access mode, RMS-11 returns the appropriate error
code:
- ERSRNF -- No valid record has ever existed at the

specified location.

~ - ERS$DEL -- The control byte in the cell indicates that
the record in it was deleted.

A FIND operation affects the record context for the access stream as

follows:

For a sequential-access FIND operation:

- Current record is set to the relative record number of the
record found, that 1is, the next record before the FIND
operation started.

You use

1.

You can

RELATIVE FILE APPLICATIONS

Example: You have connected a stream to a relative file.
There 1is no current record, but the next recordis the
first record in the file. If you execute a
sequential-access FIND operation, the current record is set
to the first record in the file.

- Next record is set to a relative record number 1 higher
than the relative record number for the current record.

Example: From the previous example, the next record is the
second record cell in the file.

For a key-access or RFA-access FIND operation:

- Current record is set to the record found, that 1is, the
record identified by the relative record number or RFA.

- Next record is unchanged.

Example: In the preceding examples, you performed a
sequential-access FIND operation after connecting the
stream to the file. You now execute an RFA-access FIND
operation. The current record is set to the record
specified, but the next record is not changed. Therefore,
when you perform another sequential-access FIND, the search
will begin in the second record cell in the file, not in
the cell following the one found by RFA.

a FIND operation instead of a GET operation for two reasons:

It is faster because the record is not moved to the user
buffer. Although the time required to move a record from one
part of memory to another is very short, there is no use
expending it if you do not need to.

It does not change the next record in key-access mode or
RFA-access mode. This allows you to branch off sequential
processing for purposes of updating or deleting records, and
keep your place.

use a FIND operation in the following ways:

To skip records in sequential-access mode by initiating
successive FIND operations.

To establish a random starting point for sequential processing
using RFA-access mode. You could then initiate successive GET
operations, where the first operation gets the record found by
RFA.

To establish a current record for a DELETE or UPDATE
operation.

To determine the existence of a record by using a random
access mode.

RELATIVE FILE APPLICATIONS

4.5.1.5

FLUSH - A FLUSH operation does not affect the record context

for the access stream.

4.5.1.6

1.

GET - To perform a GET operation on a relative file, RMS-11:

Determines the location of the record in the file according
to the specified access mode:

® In sequential-access mode, location is indicated by: (a)
the next record pointer, if the GET operation was not
immediately preceded by a successful FIND operation; or

(b) the current record pointer set by an immediately
preceding FIND operation.

®¢ In key-access mode, location is determined by the
specified relative record number and match criterion.

® In RFA-access mode, location is determined by specified
RFA.

Reads the bucket containing the indicated cell from disk into
the task's 1I/0 buffer, if the bucket 1is not already in
memory. The bucket may be in memory if it was required by a
previous operation.

Example: Your fixed-length records are 50 bytes 1long;
bucket size is 2 blocks. When you read sequentially through
the file, RMS-11 must request a disk I/0 operation every
twentieth GET operation that your program executes.

NOTE

If you have opened a relative file with read-only
access and read/write sharing declarations, each GET
operation causes an I/0 operation.

Returns the RFA and the RRN to the program and moves the
record from the 1I/0 buffer to the specified user buffer in
the program -- unless the program is operating in 1locate
record transfer mode (see Section 4.5.2.2). :

If the cell is empty or contains a deleted record, the
response depends on the access mode:

® In sequential-access mode, RMS-1ll repeats steps 1 through
3, moving through cells until the MRN is exceeded (ERS$SMRN)
or the end of the file is reached (ERSEOF).

® In Kkey-access mode, RMS-1l1 reacts according to the
specified match criterion:

- On an equal match, RMS-11 returns the error code
ERSRNF.

- On a greater-than or greater-than-or-equal match,
RMS-11 internally adds 1 to the relative record number
and repeats steps 1 through 3, until either the MRN is
exceeded (ERSMRN) or the end of the file is reached
(ERSRNF) .

RELATIVE FILE APPLICATIONS
e In RFA-access mode, RMS-11 returns the appropriate error
code:

- ERSRNF -~ No valid record has ever existed at the
specified location.

- ERSDEL -- The control byte in the cell indicates that
the record in it was deleted.

A GET operation affects the record context for the access stream as

follows:

4.5.1.7

Current record is set to the relative record number of the
record read.

Next record is set to a relative record number 1 higher than
the relative record number for current record.

PUT - To perform a PUT operation on a relative file, RMS-~11:

Determines the destination of the record in the file
according to the specified access mode:

e In sequential-access mode, the next record pointer
indicates the destination.

@ In key-access mode, the specified relative record number
indicates the destination.

Determines whether the bucket containing the indicated cell
is in the file. If it is, RMS-11 goes to the next step. If
it is not, RMS-11 extends the file until it has enough blocks
for all buckets up to and including the required one. Then,
RMS-11 initializes all newly allocated buckets.

Reads the bucket containing the indicated cell from disk into
the task's 1I/0 buffer, if the bucket 1is not already in
memory. The bucket may be in memory if it was required by a
previous operation.

Checks the indicated cell: if it already contains an
existing, valid record, RMS-11 returns error code ERSREX;
otherwise, RMS-11 goes to the next step.

Note that in some cases, you may be able to update an
existing, wvalid record in a cell. See your high-level
language documentation.

Moves the record from the user buffer in the program to the
task's I/0 buffer.

Returns the RFA and the RRN to the program.

Writes the I/0 buffer to disk, unless you have specified
deferred write (see Section 4.5.3.2).

A PUT operation affects the record context for the access stream as

follows:

For a sequential—access PUT operation:

- Current record -- None. Any operation requiring a current
record fails at this point.

RELATIVE FILE APPLICATIONS

- Next record -- The cell with a relative record number 1
higher than the relative record number of the record just
inserted.

e For a key-access PUT operation:

- Current record -- None. Any operation requiring a current
record fails at this point.

- Next record -- Unchanged.

4.5.1.8 REWIND - A REWIND operation sets the context of the access
stream to the beginning of the relative file. 1In doing so, it affects
the record context for the stream as follows:

e Current record -- None. Any operation requiring a current
record fails at this point.

® Next record -- Set to the first record cell in the file.

4.5.1.9 UPDATE - In an UPDATE operation, RMS-11 moves the specified
record from the task's user buffer to the I/0 buffer, replacing the
current record set by a previous GET or FIND operation. Then, RMS-11
writes the Dbucket over its original location on the disk, unless you
have specified deferred write (see Section 4.5.3.2).

An UPDATE operation requires a valid current record. Therefore, an
UPDATE operation should follow a successful GET or FIND operation;
otherwise, RMS-11 returns the error code ERSCUR. This error does not
affect the original record in the file on disk.

An UPDATE operation affects the current record context for the access
stream as follows:

e Current record -- None. Any operation requiring a current
record will fail at this point.

® Next Record -- Unchanged.

4.5.2 Record Transfer Modes

You can manipulate records either in the 1I/0 buffer or in your
program's user buffer. Each of these options is called a record
transfer mode. You can change record transfer mode at run time, even
between record operations. Figure 4-1 illustrates the RMS-1ll task
structure. i

4.5.2.1 Move Mode - Move mode requires that each record be copied
between the user and 1I/0 buffers:

® On GET operations, RMS-11l moves the record from the I/0O buffer
to the user buffer before returning control to your program.

® On PUT and UPDATE operations, your program assembles the
record to be written into the file in the user buffer and,
during the operations, RMS-11 moves the data into the 1/0
buffer before updating the file.

RELATIVE FILE APPLICATIONS

Move mode is the default record transfer mode for all programming
languages and all file organizations.

4.5.2.2 Locate Mode - Locate mode enables your program to manipulate
records in the 1/0 buffer, eliminating the data transfers between it
and the user buffer. However, when you specify locate mode, RMS-11
uses it only when such usage does not compromise data integrity.
Otherwise, RMS-11 uses move mode. Therefore, your program must still
contain a user buffer.

[SIZEDEPENDS ON: T T T 1

|+ NUMBER OF FILES OPENED SIMULTANEOUSLY |
|* BUCKET SIZES :

_____________ 1

USER BUFFERS ﬂ

1/0
BUFFERS

VIRTUAL
MEMORY PROGRAM RMS-11

INTERNAL
CONTROL
STRUCTURES

[sizE DEPENDS ON: |
| « RMS-11 FUNCTIONS USED |
| * OVERLAY STRUCTURE USED)

ZK-1174-82

Figure 4-1: RMS-1ll1 Task Structure

Example: RMS-11 uses move mode instead of locate mode when a relative
file is shared.

Example: RMS-11 uses move mode instead of locate mode if you opened a
file indicating you were going to perform UPDATE operations on it.

RMS-11's use of move mode instead of locate mode is transparent to
your program as long as you use RMS-1l1 facilities to access the record
data.

For relative files, your program can only perform GET operations in
locate mode. See your high-level language documentation to determine
whether the language supports locate mode and, if it does, what the
exact programming techniques are.

RELATIVE FILE APPLICATIONS

4.5.3 I/0 Techniques

You can use the following techniques to improve the performance of
record operations.

4.5.3.1 Asynchronous Record Operations - Within each access stream,
your program can perform any record operation either synchronously or
asynchronously. 1In synchronous operations, RMS-11 returns control to
your program after the operation ends, either successfully or with an
error.

When you execute an asynchronous operation, RMS-11 may return control
to your program before the operation is complete. The program
continues processing while the physical transfer of data between disk
and memory is carried out. However, you must not initiate another
record operation on that stream until the first operation ends;
otherwise, RMS-11 returns the error code ERSACT. See your high-level
language documentation for asynchronous techniques.

4.5.3.2 Deferred Write - Normally, each write-type record operation
(DELETE, UPDATE, and PUT) results in a bucket being written to disk.
This convention emphasizes data integrity: you know that when a
write-type operation has ended successfully, the file reflects that
operation.

However, you can improve the performance of sequential write-type
operations by using deferred write. Basically, deferred write directs
RMS-11 to write a bucket to disk only when RMS-11 must use the 1I/0
buffer for some other purpose.

NOTE

Deferred write, although not illegal, is
essentially invalidated while a relative
file is being shared by multiple tasks
or streams. In that environment, every
write-type operation results in an 1I/0
operation so that:

e The bucket locked by the previous GET
or FIND (for UPDATE and DELETE
operations) or by the PUT operation
can be released.

e The new data 1is available to the
other tasks or streams.

Therefore, if you perform sequential write-type operations on a
nonshared relative file, deferred write improves performance. RMS-11
writes out the buffer only when it must read another bucket to
complete an operation.

Example: Your records are 304 bytes long and the bucket size 1is 3
blocks. During sequential write-type operations, deferred write
causes I/0 operations per bucket to drop from 5 to 1.

Deferred write offers 1little or no benefit to random write-type
operations or read-type operations in any access mode.

RELATIVE FILE APPLICATIONS

4.5.3.3 Multiple Buffers - When you open a relative file, RMS-11
normally allocates 1 bucket-sized I/0 buffer in your task's address
space. RMS-11 uses this buffer during record operations. However,
you can direct RMS-11 to allocate more than the one buffer.

RMS-11 uses any extra buffers to keep, or cache, buckets in memory.
When a record operation requires that a bucket be read from disk,
RMS-11 checks its cache first. RMS-11 does not perform an 1I/0
operation if both of the following are true:

e The requested bucket is already in memory.

e That bucket is still valid, that is, the file is not shared
and/or the bucket has been kept locked.

You do not benefit from multiple buffers during sequential operations.
You can improve performance with multiple buffers during random
operations only if your program accesses the same buckets often.

4.5.3.4 Multiple Access Streams - RMS-11 allows each program to use
multiple streams on a relative file.

4,5.4 File and Directory Operations

The following file and directory operations can be performed on
relative files: :

CLOSE
CREATE
DISPLAY
ENTER
ERASE
EXTEND
OPEN
PARSE
REMOVE
RENAME
SEARCH

See your high-level language documentation for a description of the
support provided.

CHAPTER 5

INDEXED FILE STRUCTURE AND ACCESS

DIGITAL designed the RMS-11 indexed file organization to achieve the
following goals:

Content-addressable record access -- Each record in the file
can be located on the basis of the values in designated
portions of the data, called key fields.

Uniform random access time -- Each record in the file can be
located with approximately the same number of I/0 operations,
regardless of when it was added to the file.

Alternate key capabilities (comply with ANSI COBOL Level 2) --
Each record in the file can be located via more than one key
field.

Very good performance on sequential access by primary key -- A
program can sequentially read a reasonably designed indexed
file by primary key almost as fast as it can sequentially read
a sequential file.

Good performance on sequential access by alternate keys --
Each record in the series can be accessed with (typically) one
to three I/0 operations.

Unique record address for the life of the file (data base key

concept) -- A record in a file can be located via a unique
identifier (record file address) established by the PUT
operation, The record may be deleted, but its unique

identifier is never reused.

Preserve the state of processing despite a system failure --
Normally, each logical write operation results in a physical
transfer of data from memory to disk. Therefore, the file
reflects each record inserted. However, you can override this
mode with deferred write in some cases.

More importantly, RMS-1ll performs record operations so that both of
the following are true:

File corruption is avoided or minimized even if a system
failure occurs during a write-type record operation.

Even if some corruption exists, user data can still be
accessed.
NOTE
You should still reorganize your file if

the system fails during write-type
processing on an RMS-11l indexed file.

5-1

INDEXED FILE STRUCTURE AND ACCESS

5.1 PHYSICAL FILE STRUCTURE
On disk, an indexed file consists of three kinds of blocks:

e Prologue -- RMS-11 information about the file, including
attributes and key and area descriptions

® Index -- Index records for primary and alternate keys pointing
the way to a data record

e Data -- Your data records and index data records

The prologue contains information about the keys and areas of the
file. RMS-11 allocates at least one block for the key descriptors and
at least one block for the area descriptors. RMS-11 uses more blocks
as needed. Size calculations are discussed in Section 6.6.1.

Areas are portions of an indexed file that are treated independently
for initial allocation, extensions, placement, and bucket sizes. Like
subfiles, but invisible to the operating system, areas allow you to
divide indexed files logically into separate units for each index and
for the data records to improve performance; see Section 6.3 for more
information on areas.

In addition, RMS-11 extends the prologue to an integral multiple of
the area 0 Dbucket size, if the area 0 bucket size is 2, 4, or 8
blocks. See Section 6.5 for more information on bucket sizes.

The location of the index and data blocks is up to you:

e If the file is a single area, RMS-11 allocates data and index
blocks in buckets as it needs them; they are therefore
interspersed throughout the file.

e If the index and data are set up 1in separate areas, RMS-11
allocates each type of bucket from the appropriate area; the
index is therefore set apart physically from the data portion
of the fil:.

Figure 5-1 illustrates an indexed file both with and without areas.
RMS-11 formats buckets in an indexed file as it requires them for
record storage. The RMS-11 control bytes are set to their initial

values:

® 14 bytes, beginning with byte 0 of the bucket contain bucket
control information.

e The last byte of the last block duplicates the first byte of
the bucket for checking I/0 completion.

RMS-11 packs index or data records, including record format overhead,
into each bucket, beginning with byte 14, end-to-end and byte-aligned.

Figure 5-2 shows the RMS-11 bucket format.

INDEXED FILE STRUCTURE AND ACCESS

START OF FILE

PROLOGUE

PRIMARY
INDEX

RECORDS

ALTERNATE

INDEX

WITHOUT AREAS WITH AREAS

Pl = PRIMARY INDEX
DR = DATA RECORDS
Al = ALTERNATE INDEX

ZK-1165-82

Figure 5-1: Indexed File with and without Areas

INDEXED FILE STRUCTURE AND ACCESS

BUCKET BOUNDARIES
%\5

RECORDS

l L)
CONTROL FLAGS
LEVEL IN INDEX
VBN OF NEXT BUCKET IN LEVEL

RECORD IDENTIFIER INFORMATION
POINTER TO FREE SPACE IN BUCKET
_ BUCKET ADDRESS SAMPLE
AREA CONTAINING. THIS BUCKET
\ CHECK BYTE EQUALS LAST BYTE—-/

ZK-1160-82

Figure 5-2: Formatted Bucket

5.2 CONCEPTUAL FILE STRUCTURE
No matter how it 1is 1laid out physically, the indexed file |is
conceptually a prologue plus a group of indexes, one per key. Each

index consists of horizontal chains of buckets called levels. Figure
5-3 illustrates this structure as a pyramid.

ROOT LEVEL 2

LEVEL 1

/ 71N 7N

N4 1 AT XNT~AT7 N\ X~ 17 A N[~ 1/ N NT#F 17 N N

LEVEL 0

(VAW AW AW AW W A W W WA W I W W W A W I W W i W O W W W W S W W

BUCKET

—/

2ZK-1190-82

Figure 5-3: Index as a Pyramid

INDEXED FILE STRUCTURE AND ACCESS

The lowest level of an index 1is 1level 0. The 1level number is
incremented for each successive (and smaller) level, that is, level 1,
level 2, and so on. The highest level in an index is a single bucket
called the root; this bucket is the entry point to the index for
random accesses using this key. Each index has at least two levels (0
and 1).

The depth of an index is equal to the level number of the root. An
index depth relates to the time needed to randomly access any record
in the file via that index.

5.2.1 Data

Level 0 of each index is called the data level; it consists of data
buckets. In the primary index, level 0 contains buckets of your data
records. In the alternate indexes, level 0 buckets contain pointers
to your data records.

5.2.1.1 Level 0 of the Primary Index - RMS-11 physically orders data
records by ascending primary key value along the bucket chain. The
records having the lowest primary key value reside in the first bucket
of the 1level and the records with the highest primary key values
reside in the last bucket. RMS-1l preserves this order regardless of
the insertion sequence of the records.

Each bucket in level 0 shares the following properties:

e The last data record in a bucket has an equal or higher key
value than any other record in the bucket.

e The last data record in a bucket has a lower key value than
the first record in the next bucket in the chain.,

Each bucket thus has a high-key value, located in the last record of
the bucket. This concept is the core of RMS-11 index file structure.

NOTE

RMS-11 places records with duplicate key
values next to each other on a first-in,
first-out (FIFO) basis. It these
duplicate records cannot fit in the same
bucket, RMS-11 stores the overflow in a
continuation bucket. Continuation
buckets are extensions of level 0
buckets and, as such, are not indexed.
This extension storage preserves the
high-key concept.

5.2.1.2 Level 0 of an Alternate Index - Level 0, the data level, of
an alternate index contains secondary index data records (SIDRs). A
SIDR consists of two elements:

1. An alternate key value from a data record stored in the
primary data level. The SIDRs in the data level of each
alternate index are stored in ascending order by this key
value.

INDEXED FILE STRUCTURE AND ACCESS

2. One or more pointers to data records in the primary data
level. Multiple pointers occur when you allow duplicates for
the alternate key and records with duplicate values for the
key actually exist in the file.

Figure 5-4 illustrates the SIDR format.

A. DUPLICATES ALLOWED POINTER ARRAY ————»

SIZE
D%POLLCI’\“}TE OF | KEY 477VALUE Z;] VBN é? cen
ARRAY
/ ' 1/ 1/
t L S — t DATA RECORD ID
CONTROL FLAG BYTE
\—POINTER TO PRIMARY —

LEVEL 0

)

B. Nd DUPLICATES ALLOWED

SIZE
OF | KEY VALUE VBN
SIDR
77 7/
Lsxon IDENTIFIER A oara recorn 1o
CONTROL FLAG BYTE
POINTER TO PRIMARY
LEVEL 0

ZK-1152-82

Figure 5-4: Format for Secondary Index Data Record

5.2.2 Indexes

Levels 1 and above in an index are called the index levels; they
consist of index buckets. Index buckets contain index records that
guide RMS-11 through the levels to the data records in primary level
0. An index record consists of two elements:

1. The high-key value of a bucket in the next lower level in the
index. Because RMS-11l arranges these values in ascending
sequence, there is a high-key value for index buckets also.
However, the last high-key value in the last index bucket of
a level is set to the highest possible key value, rather than
the highest key value in the file. The associated pointer
references the last bucket in the next lower level.

2. A pointer to the bucket associated with the high-key value.
Example: The buckets in level 1 of the primary index contain the
high-key values of the data buckets in 1level 0. fThen, level 2
contains the high-key values from level 1 and so on. Figure 5-5 shows
an example of a primary index.
In other words, each bucket on a given 1level 1is represented by an
index record in the next higher level. Thus, the number of buckets
required on each successive level decreases exponentially until the
root bucket is reached.
Example: If an index bucket can hold 10 index records, then:

e If level 0 contains 2000 data buckets:

Level 1 contains 200 index buckets
Level 2 contains 20 index buckets

5-6

INDEXED FILE STRUCTURE AND ACCESS

Level 3 contains 2 index buckets
Level 4 contains 1 index bucket

If 1 v 10 contains 10,000 data buckets:
Level 1 contains 1000 index buckets
Level 2 contains 100 index buckets
Level 3 contains 10 index buckets
Level 4 contains 1 index bucket

L(E‘(’)%T? | [' JoNes | ’6? [MAxIMUM KEY VALUE]|

N / 5
LEVEL 2) [Jones | | L)@ MAXIMUM KEY VALUE I
/ H /

e V- S fom / I’
fa
LEVEL 1 iy l 6@“] b T MAXIMUM KEY VALUﬂl
f u’ ! 7 I

/)

/L
LEVEL 0 | [ABLE ELM AVE. 362] I 59 | JoNES MAIN ST. || % [smiTH HoLT RD 589 NS | I (77 [Yoos FIRST st.mz]J
(v daw, (v lawy RS ZR1151.62

Figure 5-5: Example of a Primary Index

5.2.3 Random Access Using the RMS-11 Indexed File Structure

The following steps show how RMS-11 uses the indexed file structure to

execute

called

1.

a" random access operation. These steps constitute a process

"follow the index."

RMS-~11 examines memory-resident index descriptors to find the
location of the root for the specified index. Note that the
root can be cached (see Section 7.4.3), eliminating the 1I/0
operation to read the root in the next step.

RMS-11 reads the root and scans for the first value greater
than or equal to the key value specified when the operation
was initiated. If all else fails, the search will find the
highest possible key value in the last index record.

RMS-11 reads the bucket indicated by the pointer associated
with the selected key value and scans for the first key value
greater than or equal to the value specified. RMS-1ll repeats
this step through the levels until level 0 is reached.

INDEXED FILE STRUCTURE AND ACCESS

5.3.1 Writing a Record

When your program initiates a PUT operation, RMS-11 moves the data
from the task to the proper bucket in level 0 of the primary index and
updates all indexes involved with the record. This process can be
simple, requiring minimal I/0 operations. It can also be complex,
requiring more procedures and data transfers. The complexity depends
on whether there is enough room for the new record in its data bucket.

5.3.1.1 Simplest Case - In the simplest PUT operation, RMS-11 finds
room 1in the target data bucket to insert the record. To execute the
operation, RMS-11 performs the following steps:

1. Determines the value of the primary key field from the
record.

2. Follows the primary index to the proper level 0 bucket.

3. Reads the level U bucket and sequentially scans for the first
record with a primary key value greater than the specified
value. RMS-11 then establishes a position before that
record, or after the last existing record in the bucket if:

e The key values are equal.

® The first record in the next data bucket has a higher key
value.

4. Compresses deleted records. RMS-1ll can reuse bytes in a
deleted record depending on the record format and whether you
allow duplicates in the primary key field. Section 6.2.5
discusses reusing space from deleted records.

5. Determines whether the record to be inserted fits in the
bucket (in this simplest case, it does).

6. Inserts the record at the established position. No primary
index buckets are updated since no high-key value has
changed.

7. 1If there are alternate keys, updates those indexes, using the
following sequence of steps for each one:

® Follows the alternate index to the proper level 0 bucket.

® Reads the level 0 bucket and sequentially scans for the
key value specified in the record:

- 1If a value higher than the one specified is found,
inserts a SIDR for the record before the SIDR for the
higher value.

- If a match is found, determines whether duplicates are
allowed for the alternate key:

If duplicates are allowed, RMS-11 follows the duplicate
pointer array in the SIDR to the end, then inserts a
pointer to the newly'inserted record. This procedure
preserves the first-in, first-out convention. After
the last alternate key, RMS-11 returns a successful
completion code to the program.

INDEXED FILE STRUCTURE AND ACCESS

If duplicates ar not allowed, RMS-1l returns to level
0 of the primary index, flags the newly inserted record
as deleted, logically removing it, and returns an error
code to the program.

Example: Refer to Figure 5-5 for this example.

RMS-11 examines the record in the user buffer of the record access
stream initiating the PUT operation., The value in the primary key
field is "JACKSON.," RMS-1l locates the primary root and requests the
file control processor to read the bucket into the 1I/0 buffer
associated with the stream. When that I/0 operation completes, RMS-11
scans the bucket, 1looking for a key value equal to or greater than
"JACKSON." It finds "JONES."

RMS-11 requests the bucket indicated by the pointer in the "JONES"
index record. When RMS-11 scans this level 2 bucket, it finds that
"JONES" again ends the search., Following the pointer in this index
record, RMS-1ll requests another bucket. 1Its search of the level 1
bucket ends in another "JONES" index record.

RMS-11 requests the level 0 bucket indicated by this last index
record. It finds that a data record with a primary key value of
"JONES" is the only occupant of the bucket. There are no deleted
records to compress, so RMS-1l writes the "JACKSON" record before the
"JONES" data record, moving the "JACKSON" record down in the bucket.

There are no alternate keys. RMS-1ll returns a successful completion
code to the program.

5.3.1.2 Bucket Splitting - If there is not enough room in the target
data bucket for the record, RMS-11] allocates a new bucket and
reorganizes the records in the old one between the two buckets. This
procedure is called bucket splitting.

Bucket splitting is identical with the simplest case (Section 5.3.1.1)
to step 5 where RMS-1ll determines whether the new record fits in the
bucket. When there is not enough room, RMS-11l does the following:

1. Reads the appropriate area descriptor from the file prologue.
If enough blocks for a bucket are allocated for the area,
RMS-~11 formats the blocks into a bucket and updates the area
descriptor to reflect the new bucket. Otherwise, RMS-11
requests the operating system to allocate enough blocks, and
then formats them into a bucket and updates the area
descriptor.

2. Splits the target bucket at the point where the record should
be inserted. RMS-1l moves the records in the high portion of
the bucket into the new bucket; these records have primary
key values higher than those of the new record.

INDEXED FILE STRUCTURE AND ACCESS

5.3.1.3

NOTE

When RMS-11 moves a record between buckets, it marks
the record's original location with a record
reference vector (RRV). An RRV is a copy of the
record's header (both contain 7 bytes). RRVs
preserve alternate key and RFA access, holding the
original 1location of the record and pointing to its
current location. Only one RRV 1is created for a
record: if the record moves again, RMS-11 updates
the RRV with the record's new location.

Since the original location of a record is filled,
either with the record or a pointer to that record,
RMS-11 does not have to wupdate alternate indexes
every time a record moves, This convention means one
extra I/0 operation may be needed to find or get a
record via an alternate key, but it prevents a
complex and costly index wupdate for each bucket
split.

Inserts the data record in the original target Dbucket. If
the record will not fit, RMS-11 inserts it into the new
bucket. 1If the record will not fit there either, RMS-11 will
create another bucket (see step 1) and put the record there.

Updates the 1level 0 bucket chain to include the new
bucket(s).

Returns to the primary root bucket and follows the index to
the 1level 1 index bucket that points to the data bucket that
split.

Inserts index record(s) for the new data bucket(s). If the
index Dbucket splits, RMS-1l uses a procedure similar to this
to move the index records and update the next higher level of
the index. Splitting can occur all the way to the root where
a new root is created and the file prologue updated.

If there are alternate keys, RMS-11 updates those indexes as

described in step 7 of the simplest case (Section 5.3.1.1).
Bucket splitting can occur in alternate indexes also.

Incremental Reorganization -~ The process: of inserting each

data record where it belongs in level 0 and updating the indexes when
RMS-11 inserts the record is called incremental reorganization of the

file.

Incremental reorganization has the following advantages:

It eliminates reorganization periods where special software
incorporates overflow areas into the main file and that file
is not available for processing

It ensures equal access time to o0ld and new records

It enables performance on sequential access by primary key to
approach the speed of sequential access to a sequential file

INDEXED FILE STRUCTURE AND ACCESS

This process has its costs: additional I/0 operations occur when a
bucket splits. But with good file design and file loading, bucket
splitting (and the time for each bucket split) is minimal. Chapter 6
discusses these considerations in detail.

5.3.2 Getting and/or Finding a Record

To execute a key-access GET or FIND operation, RMS-1ll1 performs the
following steps:

1. Determines from the instruction initiating the operation th
following criteria:

o Key of reference, indicating which index to search and
which key field within the data record to examine

e Value to find
® Match criterion (equal to, greater than, or both)
e Number of characters to match

2. Follows the index to the proper level 0 bucket.

3. Reads the level 0 bucket, sequentially scanning for the first
record with a value in the specified key field that matches
the specified value according to the match criterion. This
search can continue into other buckets:

e If no such record is found, RMS-1l returns an error code.
e If such a record is found, RMS-~1ll:

- Determines which index has been read:

If it is the primary index, RMS-1l1 goes to the next
step.

If it is an alternate index, the record located 1is a
SIDR. RMS-11 follows the SIDR pointer to the primary
level 0 data record.

-~ For a GET operation only, moves the record to the user
buffer associated with the access stream performing the
operation.,

- Sets the current context for the stream performing this
operation. The effect of each record operation on
context is described in Section 7.2,

- Returns a successful completion code.

Example: Refer to Figure 5-5 for this example.

RMS-11 determines the key (and index) of reference and the value to
find ,from the instruction initiating the operation. 1In this case,
they are the primary key (key 0) and "ABI."

INDEXED FILE STRUCTURE AND ACCESS

RMS-11 locates the primary root and requests the file control
processor to read the bucket into an I/0 buffer. RMS-11 sequentially
scans the root for an index record whose key value 1is equal to or
greater than "ABI." It finds "ABRAM."

RMS-~11 requests the bucket indicated by the pointer in the "ABRAM"
index record. When RMS-11 searches this level 2 bucket, it finds an
index record containing the key value "ABNER." Following the pointer
in this index record, RMS-11 requests another bucket. The search of
the level 1 bucket ends in the key value "ABLE."

RMS-11 requests the level 0 bucket indicated by this last index
record. RMS-11 changes its search criteria to that specified in the
initiating instruction: it looks for a record where the first 3 bytes
of the primary key field equal "ABI." Since the only record in the
bucket contains "ABLE" in its primary key field, RMS-11 cannot satisfy
the search requirements. It returns a "record not found"™ error code
to the program.

5.3.3 Updating a Record

RMS-11 requires an UPDATE operation to be preceded by a GET or FIND
operation, although some high-level languages hide this prerequisite.

To execute an UPDATE operation, RMS-11 performs the following steps:
1. Locates the key fields of the revised record in the user
buffer associated with the access stream performing the
operation. RMS-11 compares those key values with the values
in the current record:

e If the primary key value changed, RMS-1ll returns an error
code.

e If an alternate key value changed, RMS-11] checks whether
you allowed changes for that key:

- If not, RMS-11 returns an error code.
- 1If so, RMS-11 continues processing.
2. For each alternate key where the key value changed, RMS-11
performs the following steps to delete the pre-update value

from the alternate index:

® Reads the data bucket containing the current record, if
that bucket is not in memory.

e Saves the pre-update alternate key value from the current
record.

e Follows the index to the 1level 0 bucket that should
contain the SIDR for the pre-update key value.

® Reads the level 0 bucket and sequentially scans for the
pre-update key value:

-~ If a value higher than the one specified is found,
RMS-11 goes to the next alternate index.

INDEXED FILE STRUCTURE AND ACCESS

Example: RMS-11 scans a bucket, searching for a
pre-update key value of "D." It finds a record with a
key value of "E." Since "E" is greater than "D," RMS-11
ends the search and this step in the procedure.

- If a match is found, RMS-11 scans the duplicate pointer
array in the SIDR to the entry for the record being
updated and flags it as deleted.

NOTE

To allow keys to change, RMS-11 requires that you
also allow duplicates. Therefore, if you allow
alternate key values to change, there is a
duplicate pointer array in the SIDR for each key
value. However, you should refer to your
high-level language documentation for specific
information on your compiler's implementation of
this capability.

3. Reads the data bucket containing the current record, if that
bucket is not in memory. RMS-11l replaces the current record
in the I1/0 buffer with the updated version in the |wuser
buffer.

4. Writes the bucket to the file.

5. For each alternate key where the key value changed, RMS-11
performs the following steps to insert the post-update value
in the alternate index:

® Reads the data bucket containing the current record, if
that bucket is not in memory.

® Follows the index to the 1level 0 bucket that should
contain the post-update key value.

® Reads the level 0 bucket and sequentially scans for the
post-update key value:

- If a value higher than the one specified 1is found,
RMS-11 inserts a SIDR for the new record before the
SIDR for the higher value.

- If a match 1is found, RMS-11] follows the duplicate
pointer array in the SIDR to the end, then inserts a
pointer to the new record.

After the last alternate key is updated, RMS-11 returns a
successful completion code to the program.

5.3.4 Deleting a Record

RMS-11 requires a DELETE operation to be preceded by a GET or FIND
operation, although some high-level languages hide this prerequisite.

INDEXED FILE STRUCTURE AND ACCESS

To execute a DELETE operation, RMS-11 performs the following steps:

1.

6.

If there are alternate keys, RMS-11 updates those indexes as
follows, using the same sequence of steps for each:

e Reads the data bucket containing the current record, if
that bucket is not in memory.

@ Follows the index to the 1level 0 bucket that should
contain the SIDR for the key value in the deleted record.

e Reads the level 0 bucket and sequentially scans for the
specified key value:

If a value higher than the one specified is found, RMS-11
goes to the next alternate index, if any.

I1f a match is found, RMS-11 determines whether you have
allowed duplicates:

- 1If so, RMS-11 follows the duplicate pointer array in
the SIDR to the entry for the record being deleted and
flags it as deleted.

- If not, RMS-11 deletes the SIDR.

Reads the data bucket containing the current record, if that
bucket is not in memory. '

Changes the flag byte in the header of the current record to
indicate that the current record is deleted.

Writes the bucket to the file.

If the record has moved, reads the level 0 bucket containing
the RRV. RMS-11 changes the flag byte in the RRV to indicate
that the record is deleted.

Writes the bucket to the file.

RMS-11 does not compress a deleted record until it needs space to

insert

another user data record into the bucket (see Section 5.3.1).

RMS-11 does not compress deleted RRVs.

NOTE

RMS-11 does not modify or reduce any
index structure or allocation during a
DELETE operation.

5.4 PROCEDURES FOR PERFORMING SEQUENTIAL RECORD OPERATIONS

Your program can use sequential access mode to perform the following
record operations:

FIND
GET
PUT

INDEXED FILE STRUCTURE AND ACCESS

During sequential-access GET and FIND operations, RMS-11 does not
usually read an index to locate the specified record. Instead, RMS-11
uses the record context for the stream performing the operation to
identify the proper data bucket.

For FIND operations, RMS-11 uses the next record pointer to identify
the target bucket. For GET operations, RMS-1ll uses the next record
pointer, if the GET operation was not immediately preceded by a
successful FIND operation. The current record pointer is used if the
GET operation was immediately preceded by a successful FIND operation.

Next, RMS-11l requests the file control processor to move the target
bucket into the 1I/0 buffer, if that bucket is not in memory. If it
has requested a SIDR bucket, RMS-11 then follows the appropriate
pointer to the user data record,

During sequential-access PUT operations, RMS-1ll compares the primary
key value of the specified record with the primary key value of the
last record written: .

e If the specified record's primary key value is equal to or
greater than the last record's primary key value, RMS-1l
performs a key-access PUT operation (described in Section
5.3.1).

e If the specified record's primary key value is less than the
last record's primary key value, RMS-1l1 returns an error code
to the program.

5.5 1I/0 COST OF PERFORMING RECORD OPERATIONS

Table 5-1 provides simple algorithms for predicting the number of 1I/0
operations any RMS-11 record operation requires:

® The value n = index depth of the indicated key; all indexes
do not necessarily have the same depth.

® Algorithms do not include 1/0 operations caused by program or
RMS-11 overlays, operating system overhead, oxr by file
extensions (see Chapter 8).

INDEXED FILE STRUCTURE AND ACCESS

Table 5-1: I/0 Cost of Performing Record Operations

Each
Primary Alternate
Record Operation Key Key
Key-~access GET or FIND
Record in original location n+l n+2
RRV in original location (record moved) n+l n+3
Sequential-access GET or FIND 0-22 1-4D
PUT
Simplest case n+2 n+2
Split in data level 2n+6 € 2n+6°C
Bucket split up entire index (n**2+11n+20)/2d (n**2+11n+20)/2d
UPDATE ©
Alternate key value did not change 1 0
Alternate key value changed 1 2(n+2)f
DELETE
Record in original location 1 n+29
RRV in original location (record moved) 3 n+29

ABreaks down to:

0 or 1
0 or 1

I/0 to position to current record
I/0 to locate next record

bBreaks down to:

0 or1l
0 or 1
1l or 2

I/0 to position to SIDR for current record
I/0 to locate SIDR for next record
I/0s to retrieve user data record

CBreaks down to:

n+2
n+l
3

I/0s to read and write the old bucket

I/0s to read and write the level 1 index bucket
I/0s to write the new bucket and update the area
descriptor in the prologue

dBreaks down to:

(n+2)

+(n+l)+n+(n-1)+...+3+2

I/0s to return to the primary root and read and
write updated buckets from level 0 to the root

1/0s for each bucket split (see footnote c)
I/0s to create the new root

€values assume record 1length does not change and cause bucket

3(n+l)

5
splitting.
f

index;

n+2 if either the old or new key value does not belong in the

for example, the field contains the null key value

defined for the key, or a variable-length record does not
contain the whole key field.

9value is different if one of the following is true:

You/specified the "fast delete" option (available in MACRO-11
only) when you initiated the DELETE operation. Then, RMS-11 does
not update alternate indexes in which duplicate keys are allowed.

® RMS-11 has to scan a long duplicate array into one or more
continuation buckets. Then, one I/0 operation is needed for each
additional bucket.

CHAPTER 6

INDEXED FILE DESIGN

Indexed file design ranges from the basic elements of your application
(record definition and key selection) to the structure of the file and
to the methods used to put the data into the file. This range
includes:

1. Record size

2. Key selection

3. Areas

4. Placement control

5. Bucket size

6. Allocation

7. Population techniques

6.1 RECORD SIZE

You can use only fixed- and variable-length records in RMS-11 indexed
files. RMS-1ll calculates length (RL), in bytes, as follows:

\

RL = 7+RF0+DS

where:

7 is bytes for RMS-11 record header

RFO is bytes for record format overhead: 0 for fixed, 2 for variable
DS is bytes of data

Set your record size to reflect application requirements; do not
adjust it to fit bucket size. For instance, if you are using l-block

buckets, you should not, if you can avoid it, set a record 1length so
the records just fit into the buckets:

512 bytes in a block

-15 bytes of indexed file overhead per bucket
497 bytes left for records

-7 bytes for the record header

490 bytes left for the data and record format overhead

6-1

INDEXED FILE DESIGN

This calculation seems ideal at first. However, when the record moves
during a bucket split or RMS-11 deletes the record, and some RMS-11
overhead is left in the bucket, a normal data record cannot fit: the
bucket is essentially useless, with up to 490 bytes of unused space.
If your application requires 490-byte records, you should use them,
keeping the preceding 1limitation in mind and, perhaps, choosing a
different bucket size.
NOTE

Records in an indexed file cannot span

buckets and bucket sizes are limited by

the operating system to 32 blocks.

Therefore, the maximum record size,
including overhead, is 16,369 bytes.

6.2 KEY SELECTION
A file's keys can take up significant space in an indexed file and can
have a significant effect on the number of I/0 operations needed to
access the file. During key selection, you should -consider the
following:

® Number of keys

® Key data type

® Key size

® Position of key in record

® Key characteristics

6.2.1 Number of Keys
You can specify from 1 to 255 keys for an indexed file:

® One primary key that RMS-11 requires for every indexed file

® 254 alternate keys
There are overhead costs in key specification: For each key specified
in an indexed file, RMS-11 builds an index. Since RMS-11 requires a
primary key, you must accept that key's index overhead, but you should
consider the cost before specifying an alternate key for the file:

¢ RMS-11 updates alternate indexes when your program:

~ Puts a new record into the file

- Updates a record in the file and the alternate key values
change

- Deletes an existing record

The time required for this update relates to the number of I/0
operations needed to follow each alternate index from the root
to level 0, to change or insert the SIDR, and to rewrite the
bucket. RMS-11 can require additional time if one or more
buckets in the index split.

6-~2

INDEXED FILE DESIGN

An index takes room in the file. You can estimate the disk
space for an alternate index (see Section 6.6.1).

Whether the cost of each alternate key is bearable depends on your
application, If the primary purpose of the application is to write,
update, or delete records, each alternate key will noticeably burden
the operations; therefore, the number of alternate keys should be
kept to the minimum. Rarely used alternate access paths call for a
separate program that sorts by the desired nonkey field and then
processes the data.

However, if the primary purpose of your application is to get records
from the file, then alternate keys do not burden processing. In fact,
alternate keys give flexibility to information retrieval. However,
the cost of the extra keys 1is Dborne on those few occasions when
records are added to the file.

6.2.2 Key Data Types
Each key in an indexed file can be one of the following data types:

String

2-byte signed integer
4-byte signed integer
2-byte unsigned binary
4-byte unsigned binary
Packed decimal

6.2.2.1 String Type - RMS-1l1 interprets each character of the key in
a byte by its binary contents. Permissible values are not limited to
valid ASCII codes.

Example: The key value "RMS-11" is represented as follows:

7 0
0|1‘011'0‘011|0 MOST SIGNIFICANT BYTE = R
0|1|0I0|1|1|0|1 =M
o 1. 0 1 0 0 1 1] =S8
[N N W N R |
o o0 1 0 1 1 0 1] =-
[M W N SRR B |
0|0|1|1|O|0|0|1 =1
o o 1 1 0 0 0 1] =1
T N NN N T B |

ZK-1191-82

The first (lowest-addressed) byte of the key is the most significant
byte of a string key for collating purposes. RMS-11 compares primary
keys byte-by-byte, first-to-last, when it determines where the record
should be placed in the file.

The maximum key value is all bits in each byte set to 1 (octal 377).
There is a cost in the number of bytes specified as the key 1length.

For example, if you specify a key length of 12, each representation of
the key in the data record and in the index takes 12 bytes.

6-3

INDEXED FILE DESIGN

6.2.2.2 Two-Byte Signed Integer Type - Each key

RMS-11 interprets the data in the following format:

7/

SIGN BIT

requires

LEAST SIGNIFICANT BYTE
MOST SIGNIFICANT BYTE

ZK-1192-82

NOTE

The least significant byte of an integer
or binary key 1is the byte with the
lowest address., Significance increases
with address. Within a byte, the lowest

significant bit is bit 0,

and

significance increases with position.

See your PDP=11 Processor Handbook.

A 2-byte signed integer can represent the decimal values
through +32,767.

Maximum key value is +32,767.

The cost in key size is 2 bytes per representation.

6.2.2.3

RMS-11 interprets the data in the following format:

Four-Byte Signed Integer Type - Each key

1

SIGN BIT

requires

LEAST SIGNIFICANT BYTE

MOST SIGNIFICANT BYTE

ZK-1193-82

2 Dbytes;
-32,768
4 Dbytes;

INDEXED FILE DESIGN

A 4-byte signed integer can represent the decimal values
-2,147,483,648 through +2,147,483,647.

Maximum key value is +2,147,483,647.

The cost in key size is 4 bytes per representation.

6.2.2.4 Two-Byte Unsigned Binary Type - Each key requires 2 bytes;
RMS-11 interprets the data in the following format:

LEAST SIGNIFICANT BYTE
MOST SIGNIFICANT BYTE

ZK-1194-82

A 2-byte unsigned binary value can represent the decimal values 0
through +65,535.

Maximum key value is 65,535.

The cost in key size is 2 bytes per representation.

6.2.2.5 Four-Byte Unsigned Binary Type - Each key requires 4 Dbytes;
RMS-11 interprets the data in the following format:

LEAST SIGNIFICANT BYTE

MOST SIGNIFICANT BYTE

ZK-1195-82

A 4-byte unsigned binary value can represent the decimal values 0
through +4,294,967,295.

Maximum key value is 4,294,967,295.

The cost in key size is 4 bytes per representation.

INDEXED FILE DESIGN

6.2.2.6 Packed Decimal Type - RMS-1ll recognizes 2 decimal

digits

of

the key 1in each byte except the 1last. The key format takes the
following form:
7 0

D1 D2 A

D3 D4 A+t

DI SIGN | A+N-1

ZK-1196-82

where:
A is an address: A, A+l,... are increasing (byte) addresses.

D1-DI are decimal digits: D1l is the most significant digit and DI is
the least significant digit.

SIGN has a value of 10 through

15: + is represented by a 10,
14, or 15; and - is represented by an 11 or 13.

N is the length of the key in bytes (maximum of 16)

I is the length of the digit string, an odd number in the

of 1 through 31, where I =

2N - 1

Maximum key value is 99 in each byte with the sign positive.

6.2.3 Key Size

Keys for indexed files have length

restrictions according to

data types. Table 6-1 lists these restrictions.

Table 6-1: Key Data Types

Data Type

Length (bytes)

String

15-bit signed integer
31-bit signed integer
16-bit unsigned binary
32-bit unsigned binary

packed decimal

1-255
2
4
2
4
1-

16

The cost of each key's size is borne in the data record and in
index: RMS-11l stores an entire key value in each index record.

12,

range

their

the

INDEXED FILE DESIGN

6.2.4 Position of Key in Record
You can locate any key anywhere in the record:
e Alternate keys can precede the primary key.
® Keys can overlap each other. Note, however, that COBOL-81l, in
keeping with the ANSI standard, does not permit more than one

key to start at the same position. The standard calls this
leftmost correspondence.

You benefit from careful placement of keys within the record:

® Deleting a record -- When you allow duplicates in the primary
key of variable-length records, RMS-1ll1 compresses a deleted
record by removing all data except:

- 'The record header
- Enough of the record to contain the primary key

Therefore, you can optimize DELETE operations if you place the
primary key at the beginning of the record. The closer the
key is to the beginning of the record and the shorter the key,
the fewer overhead bytes remain in the file.

However, if you have fixed-length records or do not allow
primary key duplicates, the position of that key in the record
is not significant. See Section 6.2.5.1 for more information
on duplicates.

® Writing a record -- You can optimize PUT operations for
variable-length records, by placing alternate keys at the end
of the record. Then, if no valid data 1is present in an
alternate key field, you can shorten the record to exclude
that field, thus reducing the record space in the data level
as well as eliminating a reference to that record in the
alternate index.

You can segment string keys; all other key data types must be
contiguous bytes. You can specify up to eight segments in one string
key, each segment with its own 1length; the total of the 1lengths
cannot exceed 255 bytes. Note that some high-level languages do not
make this capability available; see your high-level language
documentation.

RMS-11 concatenates the segments you specify before performing any
operations requiring a value for the key. RMS-11 defines a segment by
byte position within the record and length in bytes. Therefore, the
key segments you define with either a MACRO-11 program or RMSDES do
not have to align with the data fields you define within the records:
RMS-11 has no knowledge Jdf the form of such files.

Example: You have an inventory application with a master product
file. Within the product records, you have fields for vendor number,
vendor's part code, and your part number, among others. You can
define the following keys for the file regardless of the placement of
the fields. ‘

Primary key = vendor number + vendor part code
Alternate key 1 vendor number + your part number
Alternate key 2 vendor number

Alternate key 3 your part number

INDEXED FILE DESIGN

For cost, see the preceding considerations about the placement of
within a record, knowing that a key consists of all segments.

6.2.5 Key Characteristics
Key characteristics include:
e Duplicates
e Changes
e Null key
Charactefistics are restricted according to key number:

Characteristics Primary Key (0) Alternate Keys (1+)

Duplicates Allowed Allowed
Changes Not allowed Allowed
Null key Not allowed Allowed

The combination of changes and duplicates is also restricted by
number:

Combination Primary Key (0) Alternate Keys (1+)

CHG+DUP Error Allowed

CHG+NODUP Error Error

NOCHG+DUP Allowed Allowed

NOCHG+NODUP Allowed Allowed

NOTE
COBOL-81 allows the CHG+NODUP

combination for alternate keys. To
enable this option, the COBOL-81 OTS
uses a hidden FIND operation to check on
duplicates each time an alternate Kkey
value changes on an UPDATE operation
(REWRITE in COBOL-81).

6.2.5.1 Duplicates - If duplicates are allowed for a key, more
one record can have the same value in that key field. The over
costs are:

e File space -- Duplicates have little effect on space usage
long as records are not frequently updated with changing
values or deleted. If anything, records with duplicate
values are stored more efficiently than records
nonduplicate values: fewer index records are required
cover data records with duplicate primary keys.

In alternate indexes, one SIDR with one representation of
key value 1is needed to cover multiple data records with
same value in the key field.

® Writing a record -- RMS-11 stores records with duplicate
values for first-in, first-out access. Writing (and updat
records containing duplicate key values takes more time as
number of duplicates builds up.

keys

key

than
head

as
key
key

with

to

the
the

key
ing)
the

INDEXED FILE DESIGN

A PUT operation can fail because-duplicates are not allowed
for one of the keys. If this is the primary key, RMS-11 has
wasted little time since it has performed only the 1I/0
operations to find the previous record with that value in the
key field.

However, if you allowed no duplicates in one of the alternate
keys, RMS-11:

l. Updates the primary index, including the data level,
2. Updates the preceding alternate indexes.

3. Discovers that it cannot insert the record because a
record already exists with that key value.

4. Reverses the actions it has taken, removing all updates
from the indexes it has already rewritten. Entries made
in SIDR duplicate arrays are flagged as deleted and not
compressed out of existence. However, RMS-11 cannot
reverse bucket splits.

5. Returns an error code.

® Deleting a record ~- If you do not allow duplicate values for
the primary key, RMS-11 compresses a deleted record to a
2-byte indicator when it performs a DELETE operation.
However, if vyou allow duplicate values for the primary key,
RMS-11 keeps enough of the record to «contain the entire
primary key:

1. If the format is fixed, the entire record remains in the
file.

2. If the format is variable, enough of a record remains in
place to hold the entire primary key.

e If you do not allow duplicate values for an alternate key,
RMS-11 removes the SIDR when it deletes the data record.
However, if duplicates are allowed, the pointer remains in the
SIDR array with the delete flag set.

e Updating a record -- If you allow duplicate values for the
primary key, the length of a variable record cannot be changed
during an UPDATE operation. In addition, updating 'records
containing duplicate key values takes more time as the number
of duplicates builds up. Finally, the SIDR pointers for
deleted records are flagged as deleted, but not removed from
the duplicate array.

e Summary -- Duplicates are not costly for write-type operations
unless there are too many of them. Pick a key field that
minimizes duplicates.

Example: Fields where there are only two choices for entries,
such as sex, are not good candidates for key fields.

6.2.5.2 Changes - The value of a primary key field cannot change
during an UPDATE operation; however, you can allow the value in any
alternate key field to change if you are willing to allow duplicate
values in that key. :

INDEXED FILE DESIGN

During any UPDATE operation, RMS-11l checks the characteristics of all
keys and compares the new key values (in the record about to be
rewritten) with the old values: if you do not allow changes in a key
field, but changes have been made, RMS-11 immediately terminates the
UPDATE operation with an error code.

Cost: 1If an alternate key value changes during an UPDATE operation,
RMS-11 must trace the old SIDR and delete it, then insert the new one,
starting with the root of the index for both processes. If the data
does not change, however, RMS-11 does not update the alternate index.

6.2.5.3 Null Key - You can specify the null key characteristic for
any alternate key. If RMS-11 finds that an alternate key field is
filled with the null key value specified for that key, it does not
insert an entry into the index for the record being written.

Zero is the null key value for the numeric key data types (integers,
binaries, and packed decimal). The null key character for string keys
can be any octal value (000 through 377) including an ASCII character:
if all bytes in the key field contain this value, the key is
considered null.

Cost: The use of a null key value can reduce the disk space that an

alternate index occupies, but it also precludes accessing those
records not entered in the index via that alternate key.

6.3 AREAS

You should divide an indexed file into areas. An area is a portion of
the file that RMS-1l1 treats as an entity for:

e Initial allocation
e Extensions
® Bucket size
® Placement on disk
Areas allow you to gather logical elements of the file into groups of
continuous ranges of VBNs. These VBNs can be mapped onto a contiguous
set of logical blocks on disk. This tight sequence of VBNs is lost
when RMS-11 extends an area.
NOTE
Unless you completely allocate each area
when you create the indexed file, the
division of the file into areas may not
improve performance.
Areas can be set up for:
e Primary index level 0 (the data records)

e Primary index level 1 (the lowest index level)

® Primary index levels 2 and greater (the rest of the index)

INDEXED FILE DESIGN

Alternate index level 0 (SIDRs)
Alternate index level 1 (the lowest index level)
e Alternate index levels 2 and greater (the rest of the index)

Dividing a file into areas primarily saves I/0O time. As explained in
Section 5.1, in a single-area file, RMS-11 intersperses index and data
buckets: index buckets are scattered among the data buckets. During
each random record access, RMS-11 consults the appropriate index
descriptor in memory and then directs (through the operating system)
the disk head to read the root and levels 2 and greater, level 1, then
the appropriate level 0 bucket. These buckets can be anywhere in the
file, and the disk head can travel large distances several times to
complete one access operation. Figure 6-1 shows an indexed file with
one area. Figure 6-2 shows an example of a single-area indexed file.

BUCKET

NUMBER 1 2 3 4 " K N
ROOT
PRIMARY OF
DATA INDEX DATA DATA PRIMARY| DATA DATA DATA |ee @
INDEX
ZK-1153-82

Figure 6-1: Single-Area Indexed File

ROOT
VBN 17933
\«
LEVEL 2 VBN 305
/
LEVEL 1 VBN 14
/
LEVEL 0 VBN 20433

VBN = VIRTUAL BLOCK NUMBER
ZK-1158-82

Figure 6-2: Example of Single-Area Indexed File

6-11

INDEXED FILE DESIGN

To randomly access a specific record in the file illustrated in Figure
6-2, RMS-11 makes the following I/0 requests:

1. Read VBN 17933
2. Read VBN’305
3. Read VBN 14

4, ﬁead VBN 20433

You can now realize how much the device has to move its read head to
service one random access operation.

A multiarea file, on the other hand, can have all index buckets
allocated contiguously (if enough blocks were initially allocated):
all index information is available in one physical part of the disk.
RMS-11 can then traverse an index with little or no head movement
until it reads the indicated data bucket. In addition, a sequential
read of the file moves the head mechanism smoothly through the
physically contiguous area assigned to the primary index 1level 0.
Figure 6-3 shows an indexed file with two areas.

BUCKET
NUMBER 1 2 3 4 N-1 N

ROOT
PRIMARY |PRIMARY OF PRIMARY
INDEX INDEX |PRIMARY| INDEX
INDEX

L | J

AREA 0 AREA 1

DATA DATA DATA DATA

ZK-1154-82

Figure 6-3: Two-Area Indexed File

To refine your file even more, place the lowest level of each index
(level 1) in an area separate from the rest of the index (levels 2 and
greater).

Figure 6-4 shows an example of a multiarea indexed file.

To randomlyAacceSS a specific record in the file illustrated in Figure
6-4, RMS-11 makes the following I/0 requests:

l. Read VBN 418
2. Read VBN 423
'3. Read VBN 1537
4. Read VBN 14703

You can now realize how much the proper use of areas reduces disk head
movement during a random access operation.

INDEXED FILE DESIGN

ROOT VBN 418
LEVEL 2 ‘ VBN 423
AREA 0
AREA 1
LEVEL 1 VBN 1537
AREA 1
AREA 2
LEVEL 0 VBN 14703

VBN = VIRTUAL BLOCK NUMBER
ZK-1161-82

Figure 6-4: Example of Multi-Area Indexed File

When you specify and preallocate multiple areas, RMS-11 arranges them
in order in the file: area 0 (including the file prologue) in the
first virtual blocks of the file, then area 1, and so on. If you
specify contiguity for the entire file, '‘this control over the
distribution of structural elements of the file is propagated from the
virtual block sequence to the logical block sequence on the disk.

Contiguity is very important to performance. For more information on
contiguity, Section 8.3.

6.4 PLACEMENT CONTROL

Placement control enables you to specify the location on a disk for a
file or the areas of a file. You use placement control for the
following reasons:

® To start a file or area at the first block of a track or
cylinder so that the file or area can reside in one or more
contiguous tracks or cylinders. This effort minimizes head
movement during file access.

INDEXED FILE DESIGN

To place the files used by a single application together on a
disk. This effort reduces I/0 time by minimizing head
movement among the files.

Example: You want to run a general ledger application that
uses several files (an accounts file, a transaction file, and
so on). The application consists of several tasks. So, you
start with an initialized disk and copy the tasks onto it.
Then, you create (and populate) your data files, placing them
near the tasks.

This effort reduces the distance the disk head moves to
service 1/0 operations required by an RMS-11 program:
disk-resident overlays (discussed in Chapter 8) and data file
accesses,

Note, however, you gain more improvement if you eliminate head
contention by placing the individual files on separate disks.

You calculate track and cylinder starting block numbers as follows:

1. Read the documentation that came with your disk drive. Find
and write down the following numbers:

e Number of surfaces on a volume (or pack or disk)

e Number of tracks on a surface

e Number of sectors in a track

NOTE

On most DIGITAL disk drives, a sector equates to a
logical block. For example, the following decimal
numbers apply to an RP06 only:

Number of cylinders per disk = 815
Number of tracks per cylinder = 19
Number of sectors per track = 22

2. Establish the starting logical block number (LBN) for each
track on the disk by writing down the multiples of
sectors-per-track. Since LBNs start with 0, tracks start at
multiples of track length.

Example: From the RP06 specifications, the first 10 tracks
start at LBNs: 0, 22, 44, 66, 88, 110, 132, 154, 176, 198.

3. Multiply sectors-per-track by tracks-per-cylinder to get
sectors-per-cylinder. Establish the starting LBN for each
cylinder on the disk by writing down the multiples of
sectors-per-cylinder.

Example: For an RP06, the first 10 cylinders start at the
following LBNs: 0, 418, 836, 1254, 1672, 2090, 2508, 2926,
3344, 3762,

After you decide where on the disk you want to place your file, you
create the file using RMS-11l placement control. In the process, you
place area 0 (which will position the whole file, if the file is
contiguous) at the location you calculated.

If you are using a high-~level language, you can specify placepent

control by using RMSDES. If you are programming in MACRO-11, you can
specify placement control through the use of allocation XABs.

6-14

INDEXED FILE DESIGN

6.5 BUCKET SIZE

Buckets are the units of access for indexed files. Bucket size is
critical to the virtual address space required by a task and to the
speed with which a task performs. There is, of course, a trade- off:
the 1larger a bucket, the larger the task, but the faster it reads
data:

e The speed of an RMS-ll operation is closely proportional to
the number of I/0 operations involved. For indexed files, the
number of data transfers during a random retrieval operation
is approximately equal to the depth of the index (in most
cases, one more than the depth). That number includes only
the 1I/0 operations directly related to the record operation;
other data transfers can be required to service the operat1on,
including overlays and system overhead (discussed in Chapter
8).

Therefore, the larger the buckets, the shallower the index,
and the faster the random retrieval operation., Without other
considerations, you should pick the largest possible bucket.
The maximum bucket size allowed is 32 blocks.

e The larger the bucket, the more records it can contain, and
sequential access can require fewer I1/0 operations,

However, there are other considerations. RMS-11 requires two 1I/0
buffers, each the size of the 1largest bucket, when it connects a
record access stream to an indexed file. By making bucket size
smaller, you reduce the size of the buffers your task requires.
Depending on the record operations your program requires, that virtual
address space may be better used in overlay structure optimization
(discussed in Section 8.2).

Therefore, you should set bucket size to some lower value that still
allows good performance; a reasonable goal is an index depth of 2 or
3 (root at level 2 or 3), although very large files can require four
levels of index, in addition to the data level (level 0).

Each area can have its own bucket size, but normally you should use
the maximum size for all buckets:

e You should consider more than the size of your data record
(plus the 7-byte header) when you calculate primary data
bucket size: .

- Records that move from one bucket to another leave a 7-byte
pointer.

- Deleted records leave from 2 bytes to enough to hold the
primary key to the whole record.

Therefore, you should consider the predominant activity in the
file:

- If you intend to populate the file and then only read from
it, you do not consider activity overhead. You must
populate the file with records in ascending order by
primary key value (discussed in Section 6.7).

- If you intend to populate the file and then insert and/or
delete a 1lot of records, you should allow £for those
activities in your bucket size calculations.

INDEXED FILE DESIGN

6.5.1 Bucket Size for Primary Index

You can calculate bucket sizes in two steps.

Step 1:

Calculate the following quantities for different bucket sizes (1, 2,
3, and so on):
NIRBK = ((512*BKS)-15)/(PKL+BPL) (Equation la)
NDRBK = ((512*BKS)-15-A0) / (RSZ+RFO0) {Equation 1b)
wHere:
NIRBK "is the number of iﬁdex records per level 1+ index buckets
NDRBK is the number of data records per level 0 bucket
BKS is the bucket size as number of blocks
PKL is the primary key length in bytes
BPL is the bucket pointer length:
BPL is 3 for pointers to the first 65,535 blocks in the
file
BPL . is 4 for pointers to the blocks numbered between
65,536 and (2**24)-1
BPL is 5 for pointers to the blocks numbered between
2*%*%24 and (2*%*32)-1
RSZ is the size of the record:
e data size for fixed-length records
® average record length for variable-length records
RFO is the record format overhead:
' RFO is 7 bytes for fixed-length records
RFO is 9 bytes for variable-length records
AO is activity overhead. 1If any noticeable number of bucket

splits will occur (due to random record insertions or UPDATE

operations that increase record sizes), specify a

value of

at least 7 (more if bucket splits will be common). If

insertion and deletion activity will occur

often,

significantly larger values of AO may be desirable, as well
as occasional file reorganizations to reclaim space and

improve access performance.

INDEXED FILE DESIGN

When you load a file using RMS-11 bucket fill factors, you preallocate

space in ach bucket for future activity. In such a case, Equation la
becomes:

NIRBK = (FF-15)/(PKL+BPL)
and Equation 1lb becomes:

NDRBK = (FF-15)/(RSZ+RFO)
where:

FF is the appropriate fill factor in bytes and has been adjusted to
leave. extra space in each bucket to accommodate future activity
overhead.

Step 2:

Select bucket size for data and index areas where the following
equation is true:

NIRBK**n > NRF/NDRBK (Equation 2)
where:
NRF is the number of data records in the file
n is the depth of the index

This equation portrays the exponential relationship between the number
of data records in a file and the depth of its index. You use the
values for NIRBK and NDRBK you calculated in step 1.

a. Set up a grid (see the example after step 2e).

b. For each value of NIRBK, calculate the left side of Equation
2, for n = 2, 3, and for very large files, 4.

c. For each value of NDRBK, calculate the right side of Equation
2.

d. Where the equation is true, that is, the left side is greater
than or equal to the right side, you have a valid combination
of bucket sizes. The bucket size used to calculate the left
side may be equal to the size used to calculate the right
side, but it does not have to be.

NOTE
You gain no advantage using different index and data
bucket sizes. RMS-1l1l requires two I/0 buffers, both
the size of the largest bucket defined for the file.

In fact, PDP-11 COBOL users must not choose different
index and data bucket sizes.

e. Select one of the valid combinations according to your
application's requirements.

INDEXED FILE DESIGN

Equation 2 is true only for
in
See also Section 6.7.

are inserted
primary key.

NOTE

files where records
order by ascending value of the

® Bucket size is a step function of index depth.
Therefore, intermediate bucket sizes. generally
waste address space.
For example, given a file where:
BKS = 4 —» index depth of 3
BKS = 8 —» index depth of 2
then bucket sizes of 5, 6, and 7 Dblocks would not
normally be used, although you might choose a bucket
size of 5 blocks if future file activity seemed

likely to increase

Example: For a file containing
with a 15-byte primary key, use
in the following grid:

e Calculate values for
1 through 6. Drop
of the result.

® Calculate values for
1 through 6. Drop
of the result.

® Calculate the number of
corresponding to

NIRBK using Equation la and bucket
the remainder;

NDRBK using Equation lb and bucket
the remainder;

bucket sizes 1 through 6.

the index depth otherwise.
50,000 200-byte fixed-length records
the equations in steps 1 and 2 to fill

sizes
use only the integer part

sizes
use only the integer part

level 0 (NRF/NDRBK)
Round the result

data buckets in

up to the nearest integer.

® Calculate NIRBK**2 for the values of NIRBK corresponding to
- bucket sizes 1 through 6. Round the result up to the nearest
integer.

e Calculate NIRBK**3 for the values of NIRBK corresponding to
bucket sizes 1 through 6. Round the result up to the nearest
integer.

BKS 1 2 3 4 5 6
NIRBK 27 56 84 112 141 169
NDRBK 2 4 7 9 12 14
NRF/NDRBK 25000 12500 7143 5556 4167 3572
NIRBK**3 19683 175616 592704 1014049 2803220 4826810
NIRBK**2 729 3136 7056 12544 19881 28561

INDEXED FILE DESIGN

e To determine the combinations of bucket sizes where Equation 2
is true, compare the values in the NIRBK**3 row one at a time
to each of the values in the NRF/NDRBK row. Where the
NIRBK**3 value is greater than or equal to NRF/NDRBK, a valid
bucket size combination exists.

Example: The first NIRBK**3 value is 19683. This is 1less
than 25000, the first NRF/NDRBK value, but it is greater than
12500, the second NRF/NDRBK value. Therefore, index bucket
size of 1 (from NIRBK**3 row) and data bucket size of 2 (from
the NRF/NDRBK row) is a valid combination.

e Compare the values in the NIRBK**2 row one at a time to each
of the values in the NRF/NDRBK row. Where the NIRBK**2 value
is greater than or equal to NRF/NDRBK, a valid bucket size
combination exists.

Example: The first NIRBK**2 value is 729. This is too small
to use, as is the second value in the row. However, the third
value is 7056. This is less than 25000 (the first NRF/NDRBK
value) as well as the next two values, but greater than 5556,
the fourth NRF/NDRBK value. Therefore, index bucket size of 3
(from NIRBK**2 row) and data bucket size of 4 (from the
NRF/NDRBK row) is a valid combination.

As a result of the comparisons in steps 6 and 7 above, Equation 2 is
true in the following cases:

NIRBK**3

DBKS IBKS IOB (bytes)

1 2 2048
2 1 2048
NIRBK**2

DBKS IBKS IOB (bytes)

1 6 6144

2 4 4096

4 3 4096
where:

DBKS is the data bucket size from the NRF/NDRBK row
IBKS is the index bucket size from the NIRBK**n rows

I0B is the maximum I/O space required by the largest bucket size of
the pair

The choice of bucket size pairs depends on what you need to optimize

most in the application: task size or access time. After you choose,
make data and index bucket sizes equal to the larger size selected.

6.5.2 Bucket Sizes for Alternate Indexes

The selection of bucket sizes for alternate indexes follows the same
procedure as that of primary key bucket sizes.

INDEXED FILE DESIGN

Step 1:

The records-per-bucket equations for alternate indexes are:

NIRBK = ((512*BKS)-15)/(AKL+BPL)
and

NDRBK = ((512*BKS)-15)/(AKL+ (DBPL*DF) +4+DO0)
where:

AKL is the alternate key length in bytes
DBPL is the data bucket pointer length:
DBPL is 4 for pointers to the first 65,535 blocks in the file

DBPL is 5 for pointers to the blocks numbered between 65,536
and (2**24)-1

DBPL is 6 for pointers to the blocks numbered between 2**24 and
(2**32)-1

DF is the duplicate factor:
DF is 1 if you allow no duplicates
DF is the average number of records with the same key values
for any key value present in the file
NOTE
The DF factor does not compensate enough if DF is
greater than the number of data records that fit in
a bucket. RMS-11 must then use continuation buckets
to store the records with duplicate values. '
DO is the duplicate overhead:
DO is 0 if you allow no duplicates

DO is 4 if you allow duplicates

No record movement or space/deletion overhead occurs in index buckets.

Step 2:

RMS-11 cannot load buckets in alternate indexes as efficiently as in
the primary index because alternate key values inevitably fall in
random order (unless you use the RMSIFL utility described in the
RSX~11M/M-PLUS RMS~11 Utilities manual). The ideal values resulting
from the equations in Section 6.5.1 must be reduced by a packing
efficiency factor, unless RMSIFL is used to load the file.

Studies have shown that the packing efficiency factor for alternate
keys 1is normally about 0.5. However, this factor applies only to the
lower levels of the index and to the data level, and not to the root.
The packing efficiency of any index's root is always 1.

INDEXED FILE DESIGN
Therefore, the index depth equation for alternate indexes is:
(PF**n)* (NIRBK**n) < NRF/NDRBK
where:
PF is the packing efficiency factor.
Example: Using the file in the primary key example and adding a

10-byte first

alternate key,

allowing no duplicates, the following

grid can be filled in (NRF=50,000 since there is one SIDR per data
record) :

BKS 1 2 3 4 5 6
NIRBK 38 77 117 156 195 235
NDRBK 28 57 85 113 142 170
NRF/NDRBK 1811 892 592 443 354 295
0.125*NIRBK**3 6859 57067 200202 474552 926860 1622240
0.250*NIRBR**2 361 1483 3423 6084 9507 13807
The index depth equation for alternate indexes 1is true in the

following cases:
NIRBK**3
DBKS IBKS

1 1

NIRBK**2
DBKS IBKS

1 3
2 2

I0B (bytes)
1024

IOB (bytes)

3072
2048

Do not choose a bucket size smaller than that selected for the primary
index (Section 6.5.1).

6.5.3 Program Syntax

RMS-11 requires bucket size as a whole number of blocks. However,
some high-level language compilers require or allow you to specify the
bucket size in number of records. This syntax can lead to a different
number of records per bucket than you are counting on.

Example: A BASIC-PLUS-2 program contains the following clause in an
OPEN statement that creates an indexed file:

BUCKETSIZE 5%

INDEXED FILE DESIGN

The record format is fixed; record length is 100 bytes. The compiler
makes the following calculation:

100 bytes for the data

+ 7 bytes for the record header

107 bytes for each record

x5 records specified in a bucket

535 bytes for the records in a bucket
+15 bytes for the bucket overhead

550 bytes required to be in the bucket

A bucket must be a whole number of blocks long, so the compiler rounds
the bucket size to 2 blocks and passes that to RMS-11 to create the
file.

However, 2 blocks contain 1024 bytes; that leaves 1009 bytes for
record storage after the bucket overhead is subtracted. Since each
record is 107 bytes long, the buckets that were originally supposed to
contain only 5 records now can contain 9 (1009/107).

Bucket size can be set by RMSDES or by your application program,
depending on the capabilities of your high-level language.

6.6 FILE ALLOCATION

RMS-11 requests the file control processor to allocate blocks to a
file at three different points in the file's life:

e When the file is created

e When RMS-11 must dynamically extend the file to complete an
operation

e When you explicitly instruct RMS-11 to extend the file
The allocation of blocks to a file takes time, mainly I/0 time as the
operating system performs its function. If RMS-11 has to request an
allocation every time it requires a new bucket, this time can be a
significant factoxr in an application's performance, especially during
file population.

You can help optimize performance by minimizing allocation overhead in
the following areas:

e 1Initial allocation

o Default extension quantity

6.6.1 Initial Allocation

Total allocation of an indexed file when you create it is most
efficient.

INDEXED FILE DESIGN

The total allocation for a file is the sum of the prologue and the
allocations for the different indexes that make up the file; an
index's allocation is the sum of the allocations for all levels in the
index. You should start with the primary level 0 and "build" each
level of each index on paper, as shown in the following steps.

1. Calculate the number of buckets in level 0 (NBK@O):
NBK@O = NRF/NDRBK
where:
NRF is the total number of records in the file

NDRBK is the number of data records in a bucket in 1level 0
(see Section 6.5.1 for the method of determining this
value) '

NOTE

The method described in Section 6.5.1 assumes that
you will put records into the £file in order by
ascending primary key value. However, if you will be
loading the file in random primary key value order,
you should divide the NDRBK value obtained using the
method described in Section 6.5.1 by 2. You will
need twice as many data buckets.

2. Calculate the number of buckets in level 1 (NBK@1):
NBK@1 = NBK@O/NIRBK
where:

NBKQO 1is the number of buckets in level 0 (calculated in
Step 1)

NIRBK 1is the number of index records per bucket in the index
(see Section 6.5.1 for the method of determining this

value)

NOTE

The method described in Section 6.5.1 assumes that
you will put records into the file in order by
ascending primary key value. However, if you will be
loading the file in random primary key value order,
you should divide the NIRBK value obtained using the
method described in Section 6.5.1 by 2 for every
index level but the root. You will need twice as
many index buckets.

3. Calculate the number of buckets in level 2:

NBK@2 = NBK@1l/NIRBK

INDEXED FILE DESIGN
4. Continue this sequence of calculations until you reach the
root level, that is: '
NBK@n = 1 = NBK@(n-1)/NIRBK
where:

NBK@n 1is the number of buckets in the root, which is 1 by
definition :

n is the index depth

5. Calculate the allocation in blocks for each level:

AQRO = NBKQ@O * DBKS
AQ@1 = NBK@l * IBKS
AQ@n = IBKS

where:

AQ@n is the allocation quantity in blocks for level n (0 for
level 0, 1 for level 1, and so on)

DBKS 1is the data bucket size in blocks
IBKS 1is the index bucket size
6. Calculate the allocation for each alternate index as shown in
Steps 1 through 5; see Section 6.5.2, for equations.
NOTE
Alternate indexes are normally populated in random
key value order. Therefore, you should divide the
NDRBK and NIRBK values obtained using the method
described in Section 6.5.2 by 2 except for the root

level.

7. The total allocation quantity for the file (ALQ) is the sum
of the index allocation quantities plus the prologue:

ALQ = PLG + AQPK + AQAKl + ... + AQAKn
where:
n is the last alternate key defined for the file

The prologue of an indexed file can be from 2 to 84 blocks long. The

size is the sum of the key descriptor blocks and the area descriptor
blocks:

® VBN 1 describes the primary key (and contains other attribute
information).

® Each key descriptor block covers up to 5 alternate keys.

® Each area descriptor block covers up to 8 areas.

INDEXED FILE DESIGN

Finally, RMS-11 extends the prologue to an integral multiple of bucket
size if the criteria described in Section 6.5 are met.

Example: Given an indexed file of 100,000 fixed-length user data
records with the following attributes, calculate a reasonable initial
allocation size in blocks:

Data size = 200 bytes

Primary key = 20-byte string; no duplicates allowed

Alternate key = 8-byte packed decimal; no duplicates allowed

Data bucket size = indexed bucket size = 3 blocks

Calculate the primary index first:

l. A0 = 0, so

NDRBK = ((512*%3)-15)/(200+7) = 7 data records per bucket
- NBK@O = NRF/NDRBK = 100000/7 = 14,286 buckets in level 0
2. NIRBK = ((512%#3)-15)/(20+3) = 66 index records per bucket
NBK@1 = NBK@O/NIRBK = 14286/66 = 217 buckets in level 1
3. NBK@2 = NBK@1/NIRBK = 217/66 = 4 buckets in level 2

NOTE

If the number of buckets in the level under the root
is very much less than the number of index records
that fit in a bucket, you may be able to wuse a
smaller bucket size without increasing the index
depth.

4. NBK@3 = NBK@2/NIRBK = 4/66 = 1 bucket in level 3, the root

5. AQ@0 = NBK@O*DBKS

]

14286*3 = 42,858 blocks in level 0

AQ@l = NBKQ@1*IBKS 217*3 = 648 bloéks in leVel 1

AQ@2 = NBK@2*IBKS 4*3

12 blocks in level 2

[}

AQ@3 = NBK@3*IBKS

1*3

3 blocks in level 3
AQPK = 43,521 blogks in the primary index
Now calculate the alternate index (DF=1, DQ=0):
1. NDRBK = ((512*%3)-15)/(8+(4%1)+4)
= 89 data records per bucket

NBK@O = NRF/NDRBK = 100000/89 = 1124*2 = 2,248 buckets in
level 0

The doubling compensates for a packing efficiency of 0.5.

INDEXED FILE DESIGN

2, NIRBK = ((512*3)-15)/(8+3) = 138 index records per bucket
NBK@1 = NBK@O/NIRBK =;l7*2 = 34 buckets in level 1
3. NBK@2 = NBK@1/NIRBK = 1 bucket in level 2, the root
4. AQ@O = NBK@O*BKS = 2248*3 = 6,744 blocks in level 0
AQ@1 = NBKQL*BKS = 34*3 = 102 blocks in level 1
AQ@2 = NBK@2*IBKS = 1*3 = 3 blocks in level 2
AQAK = 6,849 blocks in the alternate index

5. Finally:

ALQ

PLG + AQPK + AQAKl = 3 + 43,518 + 6,849, or

ALQ 50,370 blocks for the whole file
This allocation can be done by RMSDES or by your application program,
depending on the capabilities of your high-level language.

6.6.2 Default Extension Quantity

If the file cannot be totally allocated at creation time, you should
establish a reasonable default extension quantity (DEQ) to minimize
the number of (and the time spent on) file extensions. Even if the
file 1is totally allocated when it is created, you should establish a
reasonable DEQ in case the file gets bigger than planned.

A good basis for calculation is the number of records that are added
to the file in a given period of time, such as a day; use the formula
for allocation quantity in Section 6.6.1. The DEQ should equal a
multiple of the bucket size.

If you do not specify a DEQ, it defaults to zero whether you create
the file with RMSDES or a high-level language. RMS-1ll1l responds to a
DEQ of zero by requesting 4 times the bucket size in blocks from the
file control processor each time it automatically extends the file.

The DEQ for the file can be set by RMSDES or by your application
program, depending on the capabilities of your high-level language.

6.7 POPULATION TECHNIQUES

File population entails a large burst of records written into the file
after it has been created and before it is made available for normal
processing. You can populate a file with the RMSIFL or RMSCNV utility
programs, or with an application program, depending on the
capabilities of your high-level language.

The aim of populating an RMS-11 indexed file is to avoid bucket splits
and record movement during the population and during later use of the
file. The techniques to achieve this goal are:

® Inserting records in ascending order by primary key

® Use of fill numbers

INDEXED FILE DESIGN

6.7.1 Ascending Order by Primary K y

The best way to populate an indexed file is to insert the records in
ascending primary key value order. You do not need to insert the
records all at once. This technique:

e Minimizes population time
® Avoids the creation of RRV records, allowing RMS-11 to f£fill
buckets with data records and thereby find records with the
least access time.
Contrast this technique with records loaded in descending order by
primary key value. In that case, you introduce the packing efficiency
factor p to the primary key equations. Normally, p is 1, when you
insert records in ascending order and the factor drops out of the
equation, as shown here: '
NIRBK**n 2 NRF/NDRBK
But when p < 1, the equation becomes:
(p**n) (NIRBK**n) 2 NRF/NDRBK
Since p is a fraction, the introduction of this factor reduces the
left side of the equation, at times dramatically, thereby potentially
increasing:

e The index depth needed to cover a specific number of data
records

e Frequency of bucket splitting (an important factor in the time
required to populate an indexed file)

As mentioned in Section 6.5.2, alternate indexes are a prime example
of packing inefficiency, a situation avoided only with the RMSIFL
utility. The best general approximation for p in the case of
alternate indexes is 0.5, the value used in Section 6.5.2.

You can populate a file with records in ascending order by primary key
as follows:

e Use the RMSIFL utility. This utility:
- Sorts your input file into ascending order by. the output
file's primary key, if the file is not already sorted that
way

- Transfers the records from the input file to the output
file

RMSIFL uses techniques not available to you to further improve
the population of an indexed file.

@ Use the RMSCNV utility, specifying the mass-insertion mode
(/MA) switch.)

@ Write a MACRO-11 program to populate the file and specify:
- In the FAB, deferred write when you open the file

- In the RAB, when you connect to the file: mass-insertion
mode and sequential access mode

6-27

INDEXED FILE DESIGN

See the RSX-11M/M-PLUS RMS-11 Macro Programmer's Guide for
more information.

Be sure to sort your input records into ascending order by the
indexed file's primary key before you run the program.

6.7.2 Random Insertions after File Population

If you will be inserting records into an indexed file after it is
populated, you should consider ways to optimize these operations:

e If the new records to be inserted span the £full range of
primary key values, you should use a bucket fill size.

e If the inserted records are sorted into ascending order by
primary key value and added at the logical end-of-file, you
should use mass-insertion mode.

6.7.2.1 Bucket Fill Size - You can optimize for ' evenly distributed
random insertions by leaving free space in buckets during the initial
population of the file. To do this, you specify a bucket fill size as
a set -amount of bytes for each area in your file. Normally, RMS-11
ignores this number, but you can direct RMS-11 to obey it: RMS-11
then fills each bucket in the file to the level specified by the
number.

Example: Your bucket size is 2 blocks; you set the bucket fill size
to 768 Dbytes. When you tell RMS-11 to honor the fill size, it only
uses 768 out of 1024 bytes in each bucket -~ the buckets are logically
three-quarters size.

You use the bucket fill size when you populate a file to improve its
performance during' normal operations: 1if free space is available in
every bucket in the file, any record randomly inserted into the file
is likely to fit without causing a bucket split.

The size of the bucket fill size depends on:
® The amount of insertion activity you expect.

Allow room (including record header) for the number of records
you will add to each bucket during normal operations.
Occasional insertions might not warrant the use of bucket fill
sizes, whereas heavy insertion can require room for multiple
additional records in each bucket to optimize, but not
eliminate, bucket splitting activity.

® The type of bucket (data or index) involved.

Because of the difference in record sizes and frequency of
insertion, data and index buckets should normally have
different bucket fill sizes.

Example: The file contains 240-byte fixed-length records with a
primary key field 24 bytes long. To optimize random insertions, the
fill size for data buckets should therefore be at most: bucket length
minus bucket overhead (15) minus record length (240) minus record
overhead (7). This number leaves room for one data record.

This same bucket fill size for index buckets leaves room for 9 index

records. A more reasonable bucket fill size for index buckets is:
bucket length minus bucket overhead minus 2 times 27 bytes. This

6-28

INDEXED FILE DESIGN

number leaves room for 2 index records, where: the primary key length

(24) plus the bucket pointer length (3) equals the index record length
(27) .

See Section 6.5.2 for a more complete discussion.

NOTE

RMS-11 ignores a bucket fill size of
less than 50 percent of the bucket
length and uses the 50 percent figure.

The bucket fill size for a file can be set by RMSDES or by your

application program, depending on the capabilities of your high-level
language.

6.7.2.2 Mass Insertion - You use mass-insertion mode when you have a
series of records to add to an indexed file and:

® You have sorted the records into ascending order by the file's
primary key.

e The lowest key value in the records is greater than the
highest key value in the file; . that is, the records will be
inserted at the logical end-of-file.

While the mass-insertion bit is on, RMS-1ll1 performs a PUT operation
normally (see Section 5.3.1) except that it:

e Does not unlock the primary level 0 data bucket

e Keeps a pointer to the primary level 1 bucket that pointed to
the proper level 0 bucket

These extra steps enable RMS-11 to:

e Write the next record without following the primary index (if
the mass insertion bit is still on).

e Rapidly split the primary level 0 bucket when it is full:
since RMS-11 has a pointer to the primary level 1 bucket that
will contain the index record for the new bucket, it can
update that bucket without following the index.

By using these techniques, RMS-11] can extend the primary level 0
bucket by bucket, packing records into the buckets in the order they
are written. As each bucket becomes full, RMS-11 creates a new one,
beginning with the next record inserted, and notes its existence in
the primary level 1 index bucket.

NOTE

Mass insertion significantly improves
performance for single-key indexed
files. The percentage of improvement
lessens with each additional key defined
in the file.

You can enhance mass insertion performance by using deferred write
(see Section 7.4).

6-29

CHAPTER 7

RECORD AND FILE PROCESSING OF INDEXED FILES

The record and file processing capabilities described in
RSX-11M/M-PLUS RMS=11=: An Introduction are available for indexed
files. This chapter discusses the operations and their implementation
and restrictions with indexed files.

7.1 ACCESS SHARING

Access sharing can be specified for indexed files as described in the
following sections. See Section 2.2.3 for general information on
shared access.

7.1.1 Record Access to Indexed Files

Indexed files allow fully interlocked read/write sharing, dependent
upon the compatibility of the access and sharing declarations of
multiple accessors, as follows:

e If you have requested read/write access, your request will be
denied unless all other accessors have allowed read/write
sharing. (Otherwise, your read/write access request will
conflict with the sharing declaration of at least one other
accessor.)

e If you have not permitted read/write sharing, your request for
read/write access will be denied if any other read/write
accessor is present. (In this case, the read/write accessor
does not meet the requirements of your sharing declaration.)

7.1.2 Block Access to Indexed Files

Because block access bypasses the record structure and interlocking
algorithms used with indexed files, read/write sharing cannot be
permitted. Any read/write sharing declaration is converted internally
to read-only before the file 1is processed (this is similar to
record-accessed sequential files).

Thus, multiple read-only accessors (regardless of their sharing
declarations) can share indexed files concurrently using block access,
as long as no read/write record accessor is present. Read-only block
accessors can share files with read-only record accessors. In
addition, a single read/write accessor can access an indexed file
using block access (regardless of sharing declaration) as long as no
other accessor of any kind is present.

RECORD ANRD FILE PROCESSING OF INDEXED FILES

Other combinations are rejected: the access and sharing declarations
are incompatible.

7.2 RECORD AND STREAM OPERATIONS

The following record and stream operations can be performed on indexed
files, See also the discussions of read- and write-type record
operations in Chapter 5.

CONNECT
DELETE
DISCONNECT
FIND
FLUSH

GET

PUT

REWIND
UPDATE

In all record operations, RMS~1ll establishes the current record (if
any) and next record (if applicable) context. If any record operation
fails, RMS-11 normally sets the current record to none and does not
change the next record.

NOTE

For more information on the RMS-11 error
codes referred to in the following
sections, see the RSX-11M/M-PLUS RMS-11
Macro Programmer's Guide.

7.2.1 CONNECT

A CONNECT operation affects the context for the access stream as
follows:

® Current record -- There is no current record. Any operation
requiring a current record fails at this point.

® Next record -- The next record is the first record in the file
according to the collating sequence of the specified key of
reference,.

Example: 1In an indexed file with multiple keys, the next
record varies by the key specified in the instruction
initiating the CONNECT operation:

- If the primary key is specified, the next record is the
first record 1in primary level 0, the one with the lowest
primary key value in the file.

- If an alternate key 1is specified, the next record is
indicated by the first SIDR in the alternate index's level
0; the record itself can be 1located anywhere in the
primary level 0.

RECORD AND FILE PROCESSING OF INDEXED FILES

7.2.2 DELETE

In a DELETE operation, RMS-11 flags the header of the current record
to indicate that it is a deleted record. The prerequisite GET or FIND
operation brought the bucket containing the record into the 1I/0
buffer.

Then, RMS-11 writes the bucket over its original location on the disk,
unless you specified deferred write (see Section 7.4.2).

A DELETE operation affects the context for the access stream as
follows:

e Current record -- None. Any operation requiring a current
record fails at this point,

e Next record -- Unchanged.

7.2.3 DISCONNECT

A DISCONNECT operation destroys the context for the access stream.
You cannot resume this context by reconnecting the stream.

7.2.4 FIND

Section 5.3.2 describes how RMS-11 performs a Kkey-access FIND
operation. Section 5.4 describes how RMS-11 performs a
sequential-access FIND operation.

If the record does not exist or has been deleted, RMS-1l returns an
error code depending on the access mode:

e In sequential-access mode, the error code is ERSEOF.
e In key-access mode, the error code is ERSRNF.

e In RFA-access mode, the error code is:

- ERSRFA -- no valid record has ever existed at the specified
location.

- ERSDEL -- the record header indicates that the record was
deleted.

A FIND operation affects the context for the access stream as follows:
e For a sequential-access FIND operation:

- Current record -- Is set to the value of the record found.

Example: You have connected a stream to an indexed file,
specifying 0 as the key of reference. There is no current
record, but the next record is the first record in primary
level 0. If you execute a sequential-access FIND
operation, the current record is set to this record.

- Next record -- Is set to the record logically following the
current record in the index of reference.

RECORD AND FILE PROCESSING OF INDEXED FILES

You use

You can

NOTE

RMS-11 enacts this logical sequence only when it
actually accesses the next record:

1. RMS-11 locates the current record, reading a
bucket if necessary.

2. RMS-11 locates the record 1logically following
the current record, reading another bucket if
necessary.

If the indexed file is shared, the actual record in
the next record position can change between the
operation that accesses the current record and the
one that finds the next record.

Example: From the previous example, the next record is the
record in the file with the next higher primary key value.

For a key-access or RFA-access FIND operation:

- Current record -- Is set to the record found, that is, the
record identified by the RFA.

- Next record -- Unchanged.

Example: In the previous examples, you did a
sequential-access FIND operation after connecting the
stream to the file. You now execute an RFA-access FIND
operation. The current record is set to the record
specified, but the next record is not changed. Therefore,
if you do another sequential-access FIND operation, the
current record will be set to the second record in primary
level 0, not the record following the one found by RFA.

a FIND operation instead of a GET operation for two reasons:

It is faster because the record is not moved to the user
buffer. Although the time required to move a record from one
part of memory to another is very short, do not expend it if
you do not need to.

It does not change the next record in key-access mode or
RFA-access mode. This convention allows you to branch off
sequential processing for the purpose of updating or deleting
records, and keep your place.

use a FIND operation in the following ways:

To skip records in sequential access mode by initiating
successive FIND operations.

To establish a current record for a DELETE or UPDATE
operation.

To determine the existence of a record by wusing key-access
mode.

RECORD AND FILE PROCESSING OF INDEXED FILES

7.2.5 FLUSH

A FLUSH operation does not affect the context for the access stream.

7.2.6 GET

Section 5.3.2 describes how RMS-11 performs a key-access GET
operation. Section 5.4 describes how RMS-11 performs a
sequential-access GET operation.

If the record does not exist or has been deleted, RMS-1ll1l returns an
error code depending on the access mode:

e In sequential-access mode, the error code is ERSEOF.
® In key-access mode, the error code is ERSRNF,

® In RFA-access mode, the error code is:

- ERSRFA -~ No valid record has ever existed at the specified
location.
- ERSDEL -- The record header indicates that the record was
i deleted.

A GET operation affects the context for the access stream as follows:
® Current record -- Is set to the value of the record read.
® Next record -- Is set to the record logically following the
current record in the index of reference.
NOTE

RMS-11 enacts this 1logical sequence only when it
actually accesses the next record:

1. RMS-11 1locates the current record, reading a
 bucket if necessary.

2. RMS-11 locates the record logically following the
current record, reading another bucket 1if
necessary.

If the indexed file is shared, the actual record in
the next record position can change between the

operation that accesses the current record and the one
that tinds the next record.

7.2.7 PUT

Section 5.3.1 decribes how RMS-11 performs a key-access PUT operation.

RECORD AND FILE PROCESSING OF INDEXED FILES

A PUT operation affects the context for the access stream as follows:
For a sequential-access PUT operation:

- Current record -- None. Any operation requiring a current
record fails at this point.

- Next record -- Undefined. The record retrieved by a
sequential-access FIND or GET operation at this point is
not specified. '

e For a key-access PUT operation:

- Current record -- None. Any operation requiring a current
record fails at this point.

- Next record -- Unchanged.

7.2.8 REWIND

A REWIND operation sets the context of the access stream to a logical
beginning of the indexed file. In doing so, the operation affects the
context for the stream as follows:

e Current record -- None. Any operation requiring a current
record fails at this point.

® Next record -- 1is set to the first record 'in the file
according to the specified key of reference.

7.2.9 UPDATE

In an UPDATE operation, RMS-11 moves the specified record from the
task's user buffer to the I/0 buffer, replacing the current record set
by the previous GET or FIND operation. Then, RMS-11 writes the bucket
over 1its original location on the disk. Section 5.3.3 describes the
UPDATE operation in detail.

An UPDATE operation requires a valid current record. Therefore, an
UPDATE operation should follow a successful GET or FIND operation;
otherwise, RMS-11 returns the error code ER$CUR. This error does not
affect the original record in the file on disk.

An UPDATE operation affects the context for the access stream as
folows:

e Current record -- None. Any operation requiring a current
record fails at this point.

® Next record -- Unchanged.

7.3 RECORD TRANSFER MODES

You can manipulate records either in the 1I/0 buffer or in your
program's user Dbuffer. Each of these options is called a record
transfer mode. You can change record transfer mode at run time, even
between record operations. Figure 7-1 illustrates the RMS-11 task
structure.

RECORD AND FILE PROCESSING OF INDEXED FILES

[SizE DEPENDS ON: |

|« NUMBER OF FILES OPENED SIMULTANEOUSLY !
« BUCKET SIZES !

— — — — — —— — — — — — —

USER BUFFERS ——\

110
BUFFERS
VIRTUAL
MEMORY PROGRAM RMS-11
INTERNAL
CONTROL
STRUCTURES

l * RMS-11 FUNCTIONS USED
|* OVERLAY STRUCTURE USEEJ

ZK-1174-82

Figure 7-1: RMS-11 Task Structure

7.3.1 Move Mode

Move mode is the default record transfer mode for all programming
languages and all file organizations.

e On GET operations, RMS-1l1 moves the record from the I/O buff r
to the user buffer before returning control to your program.

e On PUT and UPDATE operations, your program assembles th
record to be written into the file in the user buffer, and
during the operation, RMS-11 moves the data into the 1I/0
buffer before updating the file,

7.3.2 Locate Mode

Locate mode enables your program to manipulate records in the 1/0
buffer, eliminating the data transfers between it and the user buffer.
However, when you specify locate mode, RMS-1l uses it only when such
usage does not compromise data integrity. Otherwise, RMS-11 uses move
mode. Therefore, your program must still contain a user buffer.

Example: RMS-11 uses move mode instead of locate mode when an indexed
file is shar-d.

RECORD AND FILE PROCESSING OF INDEXED FILES

Example: RMS-11 uses move mode instead of locate mode if you opened
the file indicating that you were going to perform UPDATE operations
on it.

RMS-11's use of move mode instead of locate mode 1is transparent to
your program as long as you use RMS=1ll facilities to access the record
data.

For indexed files, your program can only perform GET operations in
locate mode. See your high-level language documentation to determine
whether the language supports locate mode and, if it does, what the
exact programming techniques are.

7.4 1I/0 TECHNIQUES

You can use the following techniques to improve the performance of
record operations.

7.4.1 Asynchronous Record Operations

Within each record access stream, your program can perform any record
operation either synchronously or asynchronously. In synchronous
operations, RMS-1l1l returns control to your program after the operation
completes, either successfully or with an error.

When you execute an asynchronous operation, RMS-11 may return control
to your program before the operation 1is complete. The program
continues processing while the physical transfer of data between disk
and memory 1is carried out. However, you must not initiate another
record operation on that stream until the first operation ends;
otherwise, RMS-11 returns the error code ER$SACT. See your high-level
language documentation for asynchronous techniques.

7.4.2 Deferred Write

Normally, each write-type record operation (DELETE, PUT, and UPDATE)
results in a bucket being written to disk. This convention emphasizes
data integrity: you know that when a write-type operation ends
successfully, the file reflects that operation.

However, you can improve the performance of mass-insert sequential (by
primary key) PUT or DELETE operations by - using deferred write.
Basically, deferred write directs RMS-1l to write a bucket out to disk
only when RMS-11 must use the I/0 buffer for some other purpose.

Example: Your records are 114 bytes long and the bucket size is 2
blocks. During sequential write-type operations, deferred write could
cause I/O operations per bucket to drop from 9 to 1.

Deferred write offers 1little or no benefit to random write-type
operations or read-type operations of any mode.

RECORD AND FILE PROCESSING OF INDEXED FILES

NOTE

Deferred write should only be used with
mass-insert PUT operations. Although
not illegal, deferred write is
essentially invalidated while an indexed
file is shared by multiple tasks --
except when you are also wusing mass
insertion mode. In the
non-mass-insertion, write-shared
environment, every write-type operation
results in an I/0 operation so that:

e The bucket locked by the prerequisite
GET or FIND (for UPDATE and DELETE
operations) or by the PUT operation
can be released.

® The new data 1is available to the
other tasks or streams.

7.4.3 Multiple Buffers

‘When vyou open an indexed file, RMS-11] normally sets up two
bucket-sized 1I/0 buffers 1in your task's address space. RMS-1l1l uses
both buffers for record operations. However, you can direct RMS-11 to
use more than the two buffers.

RMS-11 uses any extra buffers to keep, or cache, index root buckets if
either of the following is true:

e The file is shared only by tasks with read-only access.
e The file is not shared.

RMS-11 caches the 1roots as it uses them. Therefore, only keys
specified or implicit in record operations have their index root
buckets cached:

e During normal PUT operations, RMS-11 typically accesses all
indexes in a file. You benefit from root caching only when
the number of extra buffers equals or exceeds the number of
indexes. o

e During mass-insertion mode PUT operations, one extra buffer
provides some benefit, regardless of sharing and number of
indexes. 1If the file is not being shared, you benefit from
root caching only when you provide one more extra buffer than
indexes.

e During GET operations, RMS-11l accesses one index (associated
with the key of reference). You benefit from root caching
when you provide an extra buffer for each different key you
reference.

e During UPDATE and DELETE operations, RMS-11 accesses the
alternate indexes where a SIDR must be inserted or deleted.
You benefit from root caching when you provide an extra buffer
for each alternate index affected.

RECORD AND FILE PROCESSING OF INDEXED FILES

While root caching saves one disk read per index accessed, you may be
able to employ the address space used for the extra buffers more
profitably to optimize RMS-11 overlays (see Chapter 8).

7.4.4 Multiple Access Streams

RMS-11 allows each program to use multiple streams on an indexed file.

7.4.5 Sequentially Reading Write-Shared Files

If your task is trying to read sequentially by primary key an indexed
file that 1is write-shared, you can improve performance by specifying
write-access as well.

Example: Include in your BASIC-PLUS-2 OPEN statement the clauses
ACCESS MODIFY and ALLOW MODIFY.

When there is a possibility that your task will update a record
(established when it opened the file), RMS-11 locks the bucket when
your task gets a record and holds the bucket in the task's I/0 buffer.
If your task then gets records sequentially, RMS-11 finds them in
memory. When a record in a different bucket is specified, RMS-11
unlocks the previous bucket and repeats the procedure with the new
one.

However, if your task opens a file in a read-only and write-sharing
mode, RMS-11 does not retain the lock on the buckets read; RMS-11
reaccesses the file for each subsequent GET operation, although it
does not start at the root and go down the index again.

7.5 FILE AND DIRECTORY OPERATIONS

The following file and directory operations can be performed on
indexed files:

CLOSE
CREATE
DISPLAY
ENTER
ERASE
EXTEND
OPEN
PARSE
REMOVE
RENAME
SEARCH

See your high-level language documentation for a description of the
support provided.

CHAPTER 8

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

Chapter 2 introduced four application design considerations. Two of
those design considerations, sharing and ease of design, were
discussed there. The others, speed and space, were the underlying
concepts for the file and task design discussions in Chapters 4
through 7. They are also the prime considerations for the use of the
techniques discussed in this chapter.

You can optimize the speed of and the space used by your application
by: :

e Improving the structure of each task. This includes:

- The method of combining your program with RMS-11 routines
(discussed in Section 8.1)

- Program development, including the sequence of operations
(discussed in Section 8.2)

e Using all features of the environment in which the task runs.
Especially important is optimizing virtual-to-logical-block
mapping (discussed 1in Section 8.3), but there are other
factors as well (discussed in Section 8.4).

8.1 TASK BUILDING WITH RMS-11 ROUTINES

The software routines that perform the RMS-11l functions are distinct
from your programming language. These routines must be combined with
your program as follows:

1. A compiler or the assembler converts your program to object
code. In the process, the RMS-11 routines that your program
uses are listed as unresolved global references.

2. The task builder combines object modules into an executable
task. It resolves the RMS-11] global references with the
RMS-11 routines in either:

- An object module library named RMSLIB.OLB

- An RMS-11 resident library

You must decide whether RMS-11 is to be overlaid or
nonoverlaid when combined with your program to form a task.
This section should guide your choice.

3. When the task builder is finished} your task is ready to run.

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

Figure 8-1 illustrates this sequence, from source program to object
code to executable task.

SOURCE
PROGRAM

\

COMPILER
or
ASSEMBLER

Y

OBJECT
CODE

RMSRES.STB RMSLIB.OLB

\

TASK
BUILDER

\ RMSRES.LIB

TASK

ZK-1198-82

Figure 8-1: Source-to-Task Sequence

The RMS-11 routines that become part of your task can be overlaid or
nonoverlaid. Overlays are task segments that can run independently;
therefore, they do not have to be available to the task at the same
time and can share address space. When a segment is needed, the
operating system makes it available, replacing (overlaying) a segment
no longer being used. By interchanging its parts, a task can run even
though it is too large to be executed as one piece.

Nonoverlaid RMS-1l: For synchronous operations, the task builder

concatenates the RMS-1l1 routines with your program, that is, without

overlays, if you add the following term to the command line:
,LB:[1,1]RMSLIB/LB

For asynchronous operations, use the following term:
,LB:[1,1]RMSLIB/LB:ROEXEC:RORSET:ROWATB,RMSLIB/LB

The task builder extracts from RMSLIB.OLB only those routines required

by .your program. These routines contribute from 8KB to 44KB to the
task size. Note that if other portions of your task are overlaid, you

8-2

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

can use nonoverlaid RMS-11 only if all references to RMS-11 take place
in the root segment of your task.

Overlaid RMS-11l: If the sum of your program plus RMS-11 code is
greater than 64KB, there 1is not enough user address space for your
task to run without overlays.

NOTE

Although you can overlay segments of
your program, this section is devoted to
the best use of RMS-11 overlays.
Therefore, all references to "overlays"
mean "overlays in RMS-11 routines."

Overlays can take one of two forms:
1. Disk-resident overlays

The overlay segments are part of the task image, and they
remain on disk until they are needed. When a routine is
required, the operating system reads the overlay segment
containing that routine into the task's address space,
replacing a segment no 1longer needed. Section 8.1.1
discusses disk-resident overlays.

2. Memory-resident overlays

The overlay segments are part of a task image maintained
separately in memory. When a routine 1is needed, the
operating system maps the segment into the task's address
space with two of its active page registers (APRs). Section
8.1.2 discusses memory-resident overlays.

Figure 8-2 illustrates nonoverlaid and overlaid (disk resident and
memory resident) task structure.

8.1.1 Disk-Resident Overlays

One disk-resident overlay can address others, which can address
others, and so on. This chain of calls defines the overlay structure
of a task. You describe this structure in a file with overlay
description language (ODL) statements (described in your task builder
manual) .

You must generate an ODL file for each overlaid task and supply it to
the task builder. However, you do not normally create ODL statements
for the RMS-11l portion of your task, but instead refer to the RMS-1l1
ODL files provided on your system. The RMS-11 installation process
provides overlay descriptions in two forms:

® A series of standard ODL files describing disk-resident RMS-11
overlay structures that require differing amounts of task
address space. The larger structures may run faster; you
should use the best one for your application.

® A prototype ODL file you can modify, making overlay segments
larger if there is room in your address space, or eliminating
them if your program does not use those functions.

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

The installation process places these files in account ([1,1] on
logical device LB:. If you are using asynchronous RMS-11 operations,
you must select special RMS-11 modules, as indicated in these files.

A. NONOVERLAID RMS-11

PROGRAM RMS-11

BUFFERS —— l FROM

B. RMS-11 IN DISK-RESIDENT OVERLAYS

o
o
o
T
PROGRAM =
&
s
o«
BUFFERS —— | |
- 10KB |
(CAN BE LARGER WITH
FEWER OVERLAYS)
C. RMS-11 IN MEMORY-RESIDENT OVERLAYS
APR n+1
SHARED
APR n
%%":’;"SDN OVERLAID
PROGRAM SEGMENT
OF SEGMENTS
RMSRES
OF
RMSRES
BUFFERS ——
UNSHARED RMS-11
ZK-1199-82

Figure 8-2: RMS-11 Tasks

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

Each high-level language has its method of generating the ODL file for

your

program and referencing the RMS-11 ODL files. They normally

generate the following hierarchy of files:

program-name .CMD

You supply this indirect file to the task builder. The file
contains the appropriate command lines(s) for the task builder
and references a primary ODL file.

program-name.ODL

This primary ODL file determines the general structure of the
task and references secondary ODL files, including RMS-11 ODL
files, such as a standard file or your modification of the
prototype file.

See your high-level language documentation for more details.

If you
file.

are a MACRO-11 programmer, however, you must write your own ODL
Make sure the file contains the following terms, if you want to

use RMS-11 disk-resident overlays:

The factor names RMSROT and RMSALL in the .ROOT statement.
RMSROT represents a set of concatenated modules that perform
functions common to multiple RMS-11 operations. You must
concatenate RMSROT with your program's root so that it is
memory-resident while the task runs.

An indirect reference to an RMS-11 ODL file, either a standard
file or your customized version of the prototype, in the form:

@file-name

This RMS-11 ODL file resolves the references to RMSROT and
RMSALL. For example:

.ROOT USRROT-RMSROT-USRSEG,RMSALL
USRSEG: .FCTR (USR1,USR2,USR3)
@LB:[1,1]RMS11X

. END

8.1.1.1 ODL Files - DIGITAL provides the following standard ODL

files.

Do not change these files; make a copy in your own directory

if you want to modify one for your own use.

RMS11S.0DL Structured to add about 6.5KB to the task size, this file'

RMS11X.

provides only sequential and relative file organization
routines in 11 overlay segments.

RMS11S.0DL is designed to use minimal virtual address
space for the support provided. Because of this, file
operation performance and performance wkhere GET, PUT,
and/or UPDATE operations on sequential files are
intermixed will be slower than when using other ODL
structures.

ODL Structured to add about 10KB to the task size, this file
provides sequential, relative, and indexed file
organization routines in 35 overlay segments.

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

RMS11X.0ODL is designed to wuse minimal virtual address
space for the support provided. Because of this,
performance for record operations on indexed files will
usually be slower than when using the RMS12X or DAP11lX ODL
structures.

RMS12X.0DL Structured to add about 12KB to the task size, this file
provides sequential, relative, and indexed file
organization routines in 13 overlay segments.

RMS12X.0ODL is designed to offer a good compromise between
performance for record operations on indexed files and use
_of task virtual address space.

DAP11X.ODL Structured to add about 14KB to the task size, this file
provides sequential, relative, indexed, and (on systems
with the required DECnet support) remote access facilities
in 16 overlay segments.

DAP11X.0ODL is designed to wuse minimal virtual address
space for the support provided. For 1local access,
however, it uses the efficient structure contained in
RMS12X.0ODL.

RMS12S.0DL Structured to add about 9KB to the task 'size, this file
provides only sequential and relative file organization
routines in 5 overlay segments.

RMS12S.0DL is designed to offer a good compromise between
performance and use of task virtual address space.

8.1.2 Memory-Resident Overlays

The RMS-11 resident libraries contain RMS-11 routines in re-entrant
executable code. Tasks that wuse RMS-11 can be built with global
references resolved in the resident library RMSRES, if this library is
present in your system.

While it is executing one of these tasks, the operating system uses
two of the task APRs to map references from the task to the resident
library. Therefore, any time the task requires an RMS-11 routine, the
operating system changes the APRs to point to the segments of the
resident library that contain the routines for the operation.

This mnapping is called memory-resident overlaying. Because the
overlay segments are in memory, the operating system does not perform
an I/0O operation to provide the routines (as it does with
disk-resident overlays).

8.1.2.1 Task Building against the RMS-11 Resident Library - You build
tasks, directing the task builder to resolve global references with a
library, with one of the following sequences of commands:

TKB> command-string
TKB> /

ENTER OPTIONS:
TKB> LIBR=RMSRES: RO
TKB> //

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

or, to use RMSRES in a cooperating cluster of libraries that share the
same set of task APRs:

TKB> command-string

TKB> /

ENTER OPTIONS:

TKB> CLSTR=LIB1,LIB2, RMSRES/RO
TKB> //

NOTE

Not all libraries can be clustered with
RMSRES. See vyour high-level language,
FCS-11, or other documentation for
details. Clustering RMSRES may decrease
performance for some applications.

See your task builder manual for a description of the command string.
You must also do one of the following:

e Specify LB:[1,1]RMSRLX.ODL as the RMS-11 secondary ODL file
name in your primary ODL file.

® Merge the contents of RMSRLX.ODL into your own ODL file or
into your task builder command string.

If your system provides the required DECnet support and the RMS-11
library DAPRES, and you want to wuse the RMS-1l1] remote access
facilities, include the entry DAPRES in the task builder CLSTR option
(after the RMSRES entry), as described above, and use
LB:{1,1]1DAPRLX.ODL instead of RMSRLX.ODL.

If you are using asynchronous RMS-11 operations, you must select
special RMS-11 modules, as indicated in RMSRLX.ODL or DAPRLX.ODL.

On RSX-11M-PLUS systems that support supervisor mode, you may instead
choose to wuse RMSRES as a supervisor-mode library. Because this
configuration uses two otherwise idle supervisor-mode APRs to map most
of the RMS-11 code, the impact of the RMS-11 code on your user-mode
virtual address space is reduced to the absolute minimum; there also
may be slight performance advantages over the clustered RMS-11
configuration.

To use RMSRES as a supervisor-mode library, use the following sequence
of commands:

TKB> command-string

TKB> /

ENTER OPTIONS:

TKB> RESSUP=LB: [3,54] RMSRES/SV:0

TKB> //
See your task builder manual for a description of the command string.
You must also include the modules

LB:[1,1]RMSLIB/LB:ROEXSY:ROAUTS:ROIMPA

in the root of your task, using either the task builder command string
or an ODL file.

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

In addition, you should include the module
LB:[1,1]RMSLIB/LB:RMSSYM

if your task requires global definitions of the user-visible RMS-11
symbols. If your task uses asynchronous operations, replace the
module ROEXSY above with ROEXEC. To include remote access (DAP)
support, replace the module ROAUTS above with ROAULS, and include
DAPRES as a LIBR or CLSTR option in the task builder command sequence.
If you are using DAPRES and the RMS-11 asynchronous facilities
together, you must also include

LB:[1,1]SYSLIB/LB:AUTOT
in the task.

If you are using resident libraries, a BPT trap will be generated and
RO will ©contain the value 175744 (the error code ERSLIB). This can
happen if not all segments of the library are installed or if the
version numbers of one or more segments do not match the root sgement,
the RMSDAP code, or the task itself. See your system manager to
properly install the 1library.

8.1.2.2 Using RMS-11 Operations from within Your Own Resident Library

- You can invoke RMS-11 operations from within a resident library if
you task build that 1library to include the module RORMSC from
RMSLIB.OLB and to exclude the following symbols using the task builder
GBLXCL option:

.SAVR1, SRMENT, SRMREM, SRMSEA , SRMERA , SRMOPE,
SRMPAR, $RMCRE, SRMREN, SRMDSP, SRMEXT, SRMCLO,
SRMCON, $RMDIS, SRMGET, $SRMPUT , SRMUPD, $RMDEL,
SRMFIN, SRMTRU, SRMFRE, $SRMREL , SRMFLU, SRMRWI,
$SRMNXT, SRMSPA, SRMREA , SRMWRI , SRMWAI

Such a resident library may be clustered with the RMS-11 resident
libraries only if it contains absolutely no pure or impure data (such
as, RMS-11 structures and call parameter blocks, RMS-11 internal
structures and buffers, file specifications, key or record buffers,
and so on) that RMS-11 needs during its processing. If such a library
is a default member of the cluster and has a non-null root segment, it
must not contain an RMS-1ll1 get-space routine or the completion routine
for any asynchronous RMS-11 operation in its root segment.

When you build tasks that wuse your 1library, vyou include RMS-11
resident library support as described in Section 8.1.2.1.

If instead you want to use RMS-11 disk-resident overlays, you can do
so as described in Section 8.1.1, and must also include ORGS
statements in the task's root segment appropriate to the needs of your
library. To use nonoverlaid RMS-11 routines, you must tailor and
assemble your own copy of the source module LB:[1,1]RORMS1.MAC,
include it 1in the root of your task, and build nonoverlaid RMS-1l1 as
described in Section 8.1.

8.1.2.3

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

NOTE

In RSX-11M-PLUS systems that support
supervisor mode: under no circumstances
can RMS-11 operations be used in a
supervisor-mode resident library.

Deciding Between Types of Overlays - You should normally use

the RMS-11 resident 1libraries whenever possible, for the following

reasons:

Reasons

Program execution speed will typically be faster than with
disk-resident overlaid RMS-11, and nearly as fast as with
nonoverlaid RMS-11.

vVirtual address space required in your program will usually be
less than with nonoverlaid RMS-11, and may be less than with
disk-resident overlaid RMS-11, if you are able to cluster
RMS-11 with other libraries or, on RSX-11M-PLUS systems that
support supervisor mode, use RMSRES as a supervisor-mode
library.

Your tasks will build significantly faster and take up
significantly 1less space on disk than with other RMS-11
configurations.

You will usually not need to rebuild your tasks when
enhancements or corrections to RMS-1l are issued.

Because the RMS-11 resident 1libraries can be shared among
multiple programs, using them will often result in more
efficient use of the system's physical memory.

that you might not use RMS-11 resident libraries include:

Your system manager has not included them in your system,
perhaps because very little system memory is available and
RMS-11 is seldom used.

You require indexed file organization support but your RSX-11M
system manager has chosen the optional version of RMSRES for
RSX-11M that does not include this support.

The special virtual address requirements of your task do not
permit the use of RMS-11 resident libraries.

8.2 PROGRAM DEVELOPMENT

You should consider performance while you are writing an application

program:

Your program's flow of operations can either cooperate with or
fight against the RMS-11 code structure.

Task-building consumes a significant portion of your machine
resources. Minimize that time when you can.

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

8.2.1 Flow of Operations Should Reflect RMS-11 Code Structure

The overlay process causes a significant portion of the I/0 performed
for a program with disk-resident overlays. Using RMSRES, an
RSX-11M-PLUS system may be forced to perform I/0 paging operations to
access RMS-11 code segments 1if physical memory is in short supply.
You should structure the task to maximize the time each segment stays
in memory and thus minimize the number of I/O operations. You do this
by placing similar RMS-11 operations together in your program. This
process also makes you aware of the nature of the operations your
program is performing:

@ File-related operations

File-related operations are generally required at the
beginning and end of processing. Therefore, they are fairly
easy to group.

Example: Open all files that the program uses and set up all
record access streams at the beginning of the program.

Example: Disconnect record access streams and close all the
files at one time, probably at the end of the program.

NOTE

Most high-level languages automatically perform
CONNECT and DISCONNECT operations during the execution
of file open and close statements.

® Record operations

The primary overlay or (on RSX-11M-PLUS systems) paging burden
of your task comes from record operations. However, the
nature of processing often dictates the placement of record
operations in your program. Therefore, the type and sequence
of these operations direct your optimization of the ODL files
(see Section 8.1.1).

Example: If your task uses GET operations to read records
from a sequential file, and then uses PUT operations to write
records to an indexed file, you could reduce the number of
overlays required for those specific operations.

Example: If your task uses GET operations to read records
from an indexed file and UPDATE operations to modify the
records, you should optimize those operations.

Whenever possible, perform operations on only one type of file
organization at a time.

8.2.2 Task Builder Considerations

The task builder contructs a task and ensures that the task's
overlays, if any, work properly. To do this, the task builder must
know the task's overlay structure if you use disk-resident overlays:
you supply this information by means of an ODL file.

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

To reduce the time that the task builder needs to build your task, you
can reduce the number of overlays in the task (see Section 8.1l.1).
Each overlay adds time to task building because it requires that a
symbol table be built and then resolved.

NOTE

If you use memory-resident overlays
(resident library), you reduce task
builder overhead needed to process
overlay segments.

You can also reduce task building time by not requesting a map. If
you really need a map for debugging, specify a short one (the
default).

Note that the use of overlaid I- and D-space segments can increase
task building time.

8.3 VIRTUAL-TO-LOGICAL-BLOCK MAPPING

When RMS-11 issues a data transfer request, it specifies a starting
virtual block number (VBN) and the size of the request in bytes to the
operating system. The system maps the VBN onto a logical block number
(LBN) that it must use to find the block on disk. To do this, the
system uses a set of retrieval pointers, called a window, to the file.
The operating system creates a window in its part of memory by reading
the first set of pointers from disk when a task opens a file. These
pointers specify blocks on disk, and from the structure and content of
the pointers for a file, the system equates virtual blocks to logical
blocks.

8.3.1 Retrieval Pointers on Disk

The file directory contains the retrieval pointers for a file. The
representation depends on your operating system.

The file control processor stores retrieval pointers in a file header,
using enough file headers to cover the file. A file header can
contain up to 102 pointers. Each pointer consists of:

e The number of blocks the pointer maps
e The LBN where the group of blocks starts
The largest group of blocks that can be covered by one pointer is 256

blocks. Therefore, one file header can map a maximum of 26,112
logical blocks.

8.3.2 Retrieval Pointers in Memory

The operating system keeps one window in memory for each file. If
that window does not contain the retrieval pointer that covers the
virtual block requested by RMS-11, the system must bring more pointers
into memory in a process called window turning.

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

Window turning normally requires an I/O operation. The operating
system builds file control block (FCBs) in memory when a task opens a
file. An FCB contains information about one file header, including
the range of virtual blocks covered by the header's retrieval
pointers. Whenever the system has to turn a window, it consults the
FCBs for the file to determine which file header contains the
appropriate retrieval pointer. The file control processor then reads
that block from disk, requiring only one I/O operation (unless the
software needs one or possibly two overlays).

Example: An evaluation of one application revealed that window
turning during record operations accounted for nearly 30 percent of
the I/0 operations. : ,

8.3.3 Optimizing Window Turning
When you reduce window turning, you improve performance.

You can reduce the I/0 operations associated with window turning by
increasing a window size, maximizing contiguity, wusing areas in
indexed files, or increasing the size of the F11ACP.

Increase Window Size: Use one of the following methods to increase
the number of retrieval pointers the system keeps in memory for the
file:

® Initialize the disk volume that will contain the RMS-11 file
with a window size greater than the default of seven pointers
per window. See your system documentation for initialization
procedures.

e Mount the volume containing the RMS-11 file wusing the /WIN
switch to specify a window size greater than the volume
default. See your system documentation for volume mounting
procedures.

e Use a MACRO-11 subroutine that sets the RTV field in the FAB
for the file. See the RSX-11M/M-PLUS RMS-11 Macro
Programmer's Guide.

In each of these methods, you can specify a number of window pointers,
as follows:

e If you specify a -1, the system tries to make the window large
‘enough to map the entire file, using up to 81 retrieval
pointers.

e If you specify a positive number of pointers, the system uses
that number, up to a maximum of 127 pointers in each window.

The initialization and mount methods apply to all files on a disk.
These methods cause the system to use more executive memory than when
you set window size for an individual file in a program.

Maximize Contiguity: To maximize contiguity, you should make the file
contiguous or, if that is not possible, reduce the number of extents
in the file, making each extent as large as possible.

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

One retrieval pointer in memory can map up to 65,536 logical blocks.
When the file control processor reads a pointer from the header, the
software determines whether the extent mapped by the pointer is
logically contiguous with the extent covered by the preceding pointer
in the window. 1If it is, the file control processor adds the extent
size to the size field of the pointer in the window, then it reads the
next pointer. If the two extents are not contiguous, it adds the new
pointer to the window. This compaction extends across file headers.

In this way, any file can be mapped with a default window if the file

is sufficiently contiguous.

Use Areas in Indexed Files: Areas localize successive block requests
and reduce window turning.

Increase the Size of the F11lACP: The large version of the F11ACP does
not require overlays of its own routines to perform window turning,
whereas the small version does.

8.4 OTHER OPTIMIZATIONS
You can improve the environment in which your RMS-11 task runs by:
e Allocating more resources to the task

e Improving disk usage

8.4.1 Allocating More Resources to the Task

You can improve the performance of a task by giving it more of the
system to use, more CPU time, more memory, and so on. You take those
resources away from other jobs, unless the system 1is not wused to
capacity.

The techniques for allocating system resources vary by operating
system. Each of the following techniques affects system throughput by
changing the number of I/0 operations your task requires to complete
its work.

e Priorities

® Checkpointing

e Round-robin scheduling

e Swapping

8.4.2 Disk Usage

You should consider the devices that store your data and task images
when you are optimizing the performance of an application. Efforts at
improving disk usage often result in significant increases in
performance.

Use the fastest disk drives available because the physical 1/0
operation causes the most significant portion of I/0 time.

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

Minimize I/O request overhead:

- Reduce 1I/0 reqdest queues, using private packs if
necessary.

- Use a disk that has exclusive use of its disk controller.
If other disks must share the controller, a disk driver
that supports "overlapped seeks" is desirable.

If your system has multiple disk drives which are not heavily
used by other people, spread an application's files, including
disk-resident overlaid tasks, across the devices. Thus, while
a Jjob runs, one disk device does not access more than one
file. You can also put data files on a disk device other than
the one containing a disk-resident overlaid task image.

If you are using the resident library, and not overlays, you
do not consider the task file, unless your code or your
language run-time facilities are overlaid.

Combine free blocks on a disk into one contiguous group using
the DSC utility. By eliminating fragmentation, you are
increasing the chances that file extents are contiguous, even
if they are not requested that way. The more contiguous the
file, the fewer the disk head moves required to access it.

FILE SPECIFICATION PARSING

The directory specification can take either of the following forms:
[group ,member]

or
<group ,member>

Note that the delimiting characters ([] or <>) and the comma (,) must
appear as shown. The group and member subelements each consist of a
1-to-3 digit octal number in the range of 0 to 377 octal. In
situations where wildcarding is permitted, you can substitute a single
asterisk (*) character for the group and/or member subelement to
indicate that all such subelements are acceptable.

You can explicitly request the current default directory by specifying
[1] or <> as the directory specification.

For example:

[27,36] and <027,036> Are equivalent

[27,*] Indicates all members in group 27

[1] Indicates the current default directory

For compatibility with other systems, RMS-11 access methods can
process directory specifications of the "named" directory format.
However, this format does not conform to RSX-11M/M-PLUS file

specification conventions and, in general, named directories cannot be
processed by RSX-11M/M-PLUS software.

A.l1.3 Name

The name element of the file specification provides the name by which
the file 1is known in the directory. The name specification is a
0-to-9 character alphanumeric string. RMS-~11 will convert lowercase
alphabetic characters to uppercase before passing them to the
operating system. In situations where wildcarding is permitted, you
can substitute asterisk (*) and percent (%) characters in this string:
the asterisk character matches any string (including the null string),
and the percent character matches any single character.

For example:

MyFile Will be interpreted as MYFILE

* Will match all names

My*1le Will match all names beginning with MY and ending in LE
my Will match all names containing MY

33my* Will match all names containing MY as the third and fourth
characters

Will be interpreted as the null name of 0 length

APPENDIX A

FILE SPECIFICATION PARSING

A.l STANDARD FILE SPECIFICATION SYNTAX

A full file specification consists of the following elements, in the
order listed:

device
directory
name

type
version

A.l.1 Device

The device element of the file specification names the device on which
the file resides. For unit-record devices, such as terminals and
lineprinters, this 1is the only significant element in the file
specification.

The device specification consists of 2 alphabetic characters
specifying the device name, followed by 0 to 3 octal numeric
characters specifying the device unit number, followed by a colon (:).
If you use lowercase characters to specify the device name, RMS-11
will convert them to uppercase before passing them to the operating
system. The device unit number must not exceed 377 octal; if no unit
number is given, RMS-11 will specify unit number 0.

Note that RSX-11M/M-PLUS systems allow definition of logical device
names that conform to the above description. RMS-1ll1l processes such
logical device names as well as physical device names.

For example:

db2: and DB02: Are equivalent

SY: and sy00: Are equivalent

A.1.2 Directory

The directory element of the file specification names the directory
through which the file can be found on the device. For ANSI magnetic
tape files, this element is not significant (see Section A.2).

FILE SPECIFICATION PARSING

A.l.4 Type

The type element of the file specification is the type by which the
file 1is known in the directory. The type specification consists of a
period (.) followed by a 0-to-3 character alphanumeric string. RMS-11
will convert lowercase alphabetic characters to uppercase before
passing them to the operating system. In situations where wildcarding
is permitted, you can substitute asterisk (*) and percent (%)
characters in this string. The asterisk character matches any string
(including the null string) and the percent character matches any
single character.

For example:

.dat Will be interpreted as .DAT

. * Will be interpreted as all types

.da* Will be ‘interpreted all types beginning with DA

LB * Will be interpreted all types except the null type

. Will be interpreted as the null type

A.l1.5 Version

The version element of the file specification provides the version
number by which the file is known in the directory. The version
specification consists of a semicolon (;) followed by a 0-to-5 digit
octal number in the range of 0 to 77777 octal. In situations where
wildcarding is permitted, you can substitute a single asterisk (*)
character for the octal number to indicate that all versions are
acceptable. 1In situations where you are specifying a file that
already exists, you can substitute the two characters "-1" for the
octal number to specify the lowest-numbered version of the file that
is known to the directory.

You can specify a version number of 0 or the null version to indicate
either of the following:

1. The highest-numbered version of the file that is known to the
directory, when the file already exists

2. A version number one greater than the highest-numbered
version of the file (if any) known to the directory, when you
are creating a new directory entry (with the CREATE or ENTER
operation, or with the RENAME operation, using the new file
name)

For example:

;5 and ;0005 Are equivalent

Had Indicates all versions
;-1 Indicates the lowest-numbered version
; Indicates the null version; this is equivalent to ;0

For compatibility with other systems, BRMS-11 access methods can
process version specifications beginning with a period (.) instead of
a semicolon (;) when the presence of a type specification eliminates
ambiguity. However, this format does not conform to RSX-11M/M-PLUS

A-3

FILE SPECIFICATION PARSING

file specification conventions and, in general, version specifications
of this form cannot be processed by RSX-11M/M-PLUS software.

NOTE

When performing ERASE, RENAME, or REMOVE
operations within a wildcard loop whose
file specification contains ;0 (or the
null version) or ;-1 as the version and
contains wildcards in the name or type,
the behavior of the loop after the first
such operation in any directory will
depend upon the ordering of the versions
in that directory. This is Dbecause
entries in the directory are deleted
during the loop's operation, while the
determination of the highest- or
lowest-numbered version of a given file
must be made during each pass through
the loop.

In addition, the addition of entries to
a directory during a wildcard loop may
result in encountering these new entries
during subsequent iterations of the
loop.

Examples of a full file specification follow:
LB:[1,1]RMSLIB.OLB;1
LB:[1l,*]RMS*.*;0 The highest-numbered version of each entry on

logical device LB: in group 1 with a name that
begins with "RMS"

A.,2 ANSI MAGNETIC TAPE FILE SPECIFICATION SYNTAX

The file specification format specific to magnetic tapes consists of
the following elements, in the order listed:

device
directory
quoted-string
version

A.2.1 Device

The device element is the same as described in Section A.l.1l. The
device must be a magnetic tape device.

A.2.2 Directory

The directory element is the same as described in Section A.l1.1. This
element has no meaning for ANSI magnetic tape files, and will be
ignored if present.

FILE SPECIFICATION PARSING

A.2.3 Quoted String

RMS-11 treats a quoted string as a unit representing both the name and
type elements of a standard file specification. This mechanism is
used to allow expression of tape file names up to 17 characters in
length which include the full set of ANSI "a" characters (some of
which would otherwise be ignored or treated as element delimiters in a
standard file specification).

You specify an ANSI name by enclosing the name in quotation characters
("name") . If the name itself contains full quotation characters ("),
you must also precede each such character with an additional full
quotation (") character. RMS-11 will convert any lowercase alphabetic
characters to uppercase, strip the full-quotation characters that you
have added, and pass the result to the operating system without
further modification (including ANSI "a" characters such as SPACE).

‘"For example:
"My File" Will be interpreted as MY FILE

"""pon't Panic""™" Will be interpreted as "DON'T PANIC"

A.2.4 Version

The version element of a magnetic tape file specification 1is as
described in Section A.l.l1. A version specification of ;0, ;-1, or
the null version will be interpreted as any version for magnetic tape
files. An example of an ANSI magnetic tape file specification
follows:

MMl:"John's file" Specifies any version of JOHN'S FILE on device MMl:

The standard file specification format described in Section A.l.l1 can
also be wused with magnetic tapes; this 1is usually desirable to
promote file transport to nontape devices and file accessibility by
the widest possible range of software. See. Appendix G of the
IAS/RSX-11 1/0 Operations Reference Manual for additional information
concerning the use of names in ANSI magnetic tape files.

A.3 GENERATION OF A FULL FILE SPECIFICATION

When you specify the target file for an RMS-11 operation, RMS-11
generates a full file specification in the following manner:

1. RMS-11 parses the file name string to determine which
elements are present. You need not provide a full file
specification in the file name string; however, any elements
present must be syntactically correct and in the proper
order. RMS-1ll ignores any NULL, SPACE, or TAB characters
that may be present in the string unless they occur within an
ANSI magnetic tape quoted-string name.

2. RMS-11 parses the default name string to determine which
elements are present. You need not provide a full file
specification in the default name string; however, any
elements present must be syntactically correct and in the
proper order. RMS-11 ignores any NULL, SPACE, or TAB
characters that may be present in the string unless they
occur within an ANSI magnetic tape quoted-string name.

FILE SPECIFICATION PARSING

3.

If the file name string does not provide a full file
specification, RMS-1l1l obtains missing elements from the
default name string; if any elements are absent in the
result of this merge, RMS-1ll1l provides default values for them
as follows:

- device -- defaulted to the device to which the specified
logical channel 1is currently assigned; 1if the specified
logical channel is not assigned to any device, defaulted
to SY:

- directofy -- defaulted to the current directory
- name, tYpe, version -- defaulted to null

If you have asked RMS-11 to use information from the NAM
block, RMS-11 uses this information to override elements in
the full file specification obtained above. This mechanism
is described in Chapter 3 of the RSX-11M/M-PLUS RMS-11 Macro
Programmer's Guide.

APPENDIX B

REMOTE FILE AND RECORD ACCESS VIA DECNET

If suitable DECnet facilities exist on your system and on the target
system, RMS-11 will allow file and record access to files residing on
other network nodes. Note, however, that these nodes must include an
RMS-1l1l-based file access listener (FAL); see Section B.2.

-For most purposes, remote access is indistinguishable from 1local
access, although performance may not be equivalent. The following
general limitations apply:

e RMS-11l generally does not support remote functions (for
example, to a VAX-11l node) that are not supported locally.

e Certain RMS-11 functions (wildcard support; the PARSE,
SEARCH, ENTER, REMOVE, and RENAME operations; and
transmission of device, directory, and file identifiers) are
not supported by the data access protocol (DAP), and thus
cannot be executed remotely.

® Certain FALs do not support the full set of RMS-11 functions
expressible via DAP, and thus further limit remote access.
For example, the current RSTS/E RMS-11 FAL does not support
record access .to indexed files.

e High-level languages may not allow expression of the file
specification required to establish contact with a remote
node.

To operate upon a remote file, you must include the RMS-11 remote
access code when you build your task, and your program must include a
node specification for the remote file. To include the remote access
code, you must 1link your program with the RMSDAP modules either by
using the disk-resident overlaid version (see Section 8.1.1) or by
referencing the DAPRES resident library (see Section 8.1.2).

NOTE

RMS-11 uses the file access block (FAB)
logical channel number as the link-id
for remote access. Users performing
. remote access external to RMS-11 should
be careful not to use the same link-ids.

REMOTE FILE AND RECORD ACCESS VIA DECNET

B.l1 REMOTE NODE SPECIFICATION

You must include a remote note specification at the beginning of the
file name string or the default name string you provide to an OPEN,
CREATE, or ERASE operation. In addition, your file name string and
default name string must conform to the DIGITAL Command Language (DCL)
file specification syntax rules, and the file specification that
results from merging the file name string and default name string must
conform to the file specification conventions of the target node as
well.

In general, a full remote file specification consists of the following
elements, in the order (and with the delimiters) given:

node::device: [directory]name.type;version

Elements beyond the node element must conform to the conventions of
the target node, as well as to DCL syntax. If the file name string
does not provide all six elements, RMS-1l1 obtains missing elements
from the default name string. Elements that are still missing after
this merge are defaulted according to the conventions of the target
system.

An alternative remote file specification format is:
node: :"quotedstring"

where quotedstring is any file specification that conforms to target
system conventions. For example, this provides a means of passing
certain RSTS/E logical names ($, %, and so on) that do not conform to
DCL conventions.

If the quoted string itself contains any quotation mark "
characters, you must insert an additional quotation mark character
before each; these additional quotation mark characters will be
stripped from the string when the string is passed to the target
system. Any elements not present in the quoted string will be
defaulted according to target system conventions.

RMS-11 treats specifications of this format as complete, indivisible
specifications. If one occurs in the file name string, no elements
from the default name string will be used; if one occurs in the
default name string, it will be ignored unless the file name string is
empty.

The node element takes the form:
node"user password"::

where node is the destination node name and "user password™ is an
optional access control string containing 1login information (user
identifier and password, separated by a space character) that meets
target system login conventions.

If the 1login information 1is provided, the device and directory
defaults and access privileges of the remote account are acquired.
Otherwise, the device and directory defaults and access privileges of
the default DECnet account on the target system are acquired.

REMOTE FILE AND RECORD ACCESS VIA DECNET

B.2 REMOTE ACCESS ENVIRONMENTS

RMS-ll-based FALs are currently available on VAX/VMS, RSTS/E, and
RSX-11M/M-PLUS systems.

The version of DAP that you use must be at least Version 5.6 or
greater. This means that you must have at least DECnet/E Version 2.0,
DECnet for RSX-11M Version 3.1, DECnet for RSX-11M-PLUS Version 1.1,
or DECnet/VAX Version 2.0.

B.3 REMOTE ACCESS POOL CONSIDERATIONS

Remote block access, unlike local block access, requires an internal
I1/0 buffer for record operations, as well as for the initial OPEN or
CREATE operation. This buffer is reserved to the file while the file
is open, and must be 548 bytes in size.

Similarly, for sequential files with a specified maximum record size
(or actual largest record) greater than 476 bytes, an internal 1I/0
buffer 36 bytes larger than this maximum is required while the file is
open. For record-accessed relative and indexed files, an internal I/O
buffer equal to the bucket size is required while the file 1is open.
Other pool requirements are equal to or less than those for local
access.

Access, 1-7
block, 1-20, 3-6
random; 1-7, 1-9
to indexed files, 5-7, 5-9
See also Access modes
See also Shared access
sequential, 1-7 to 1-8
to indexed files, 5-16
Access control, 1-9
Access declarations, 2-6
indexed files, 7-1
read-only, 2-6
read/write, 2-6
relative files, 4-6
sequential files, 3-6
Access modes
block, 1-20, 3-6
FIND operation
indexed files, 7-3
relative files, 4-8
sequential files, 3-7
GET operation
indexed files, 7-5
relative files, 4-10
sequential files, 3-9
PUT operation
indexed files, 7-6
relative files, 4-11
sequential files, 3-10
random
by key, 1-12
by RFA, 1-12
by VBN, 1-20
record, 1-12
See also Random access
See also Sequential access
sequential
blocks, 1-20
records, 1-12
Access sharing
See Shared access
Access streams, 1-15
multiple, 2-17
and shared access,
2-9 to 2=10
indexed files, 7-10
relative files, 4-15
sequential files, 3-15
Active page registers
See APRs
Address
record, 1-9
See also RFA
Allocation, 1-19
indexed files, 6-22
DEQ, 6-26
initial, 6-22
relative files, 4-3
DEQ, 4-4

INDEX

initial, 4-3
sequential files, 3-4
DEQ, 3-4
initial, 3-4
Alternate indexes
See Indexes
Alternate keys, 1-7, 1-11
Applications, 1-13
optimization, 2-11
See also Designing applications
APRs, 8-3
and memory-resident overlays,
8-6
supervisor mode, 8-7
Areas, 6-10, 8-13
contiguity, 6-13
definition, 5-2
multiarea indexed files, 6-12
single-area indexed files,
6-11
Asynchronous operations, 8-2,
8-4, 8-7 to 8-8
I/0 techniques, 2-17
indexed files, 7-8
relative files, 4-14
sequential files, 3-14
Attributes, 1-2, 1-18
block spanning, 1-19
bucket size, 1-19
contiguity, 1-19
file allocation, 1-19
file organization, 1-18
file specification, 1-18
keys, 1-19
medium, 1-18
MRN, 1-19
placement control, 1-19
protection, 1-18
record format, 1-18
record size, 1-18
record-output handling, 1-19

Backing up files, 1-10, 1-12
Binary keys
2-byte unsigned, 6-5
4-byte unsigned, 6-5
Block access, 1-20, 3-6
remote, B-3
see also Shared access
Block spanning, 1-19, 3-1
variable length records, 2-16
Blocks, 1-16
See also Control blocks
spanning, 1-16, 3-1
Bucket fill size .
populating indexed files, 6-28
Bucket format
indexed files, 5-2
Bucket locking

Index-~1

INDEX

and shared access, 2-8 Contiguity, 1-19, 8-12
FIND operation, 2-8 indexed files, 6-13
GET operation, 2-8 relative files, 4-4
Bucket size sequential files, 3-5
calculation Continuation buckets, 5-5
alternate indexes, 6-19 Control blocks, 1-14, 2-2
primary index, 6-16 Converting files, 1-10, 1-12
indexed files, 6-15 CREATE operation, 1-18 :
prologue, 5-2 and shared access, 2-6
relative files, 4-2 file versions, A-3
Bucket splitting, 5-11 remote access, B-2 to B-3
RRV, 5-12 Creating files, 1-10, 1-12
Buckets Current record
continuation, 5-5 See Context
high-key value, 5-5 to 5-6 ~ Cylinder
I/0 units, 1l-16 See Placement control
index, 5-6
relative files, 4-1 ‘ DAP (data access protocol)
size, 1-19 See DECnet
Buffers DAPRES
cache, 4-15 remote access code, B-1l
1/0, 1-14 remote access support, 8-7
size, 2-5 Data access protocol (DAP)
multiple, 2-18, 3-14, 4-15 See DECnet
user, 1-14 Data storage
Building tasks, 1-13 and file organization, 2-5
See also Task builder Data types
keys, 6-3
Cache, 4-15 2-byte unsigned binary, 6-5
indexed files, 7-9 2-byte-signed integer, 6-4
Cells 4-byte signed integer, 6-4
relative files, 4-1 4-byte unsigned binary, 6-5
sequential files, 3-2 and segmenting, 6-7
Changeable keys, 6-S packed decimal, 6-6
CLOSE operation, 1-18 string, 6-3
Clustered libraries, 8-7 to 8-9 DCL, B-2
Compatibility DECnet, 8-6 to 8-8, B-1
file specification, A-2, A-4 and CREATE operations,
Compilers B-2 to B-3
See High-level languages and ENTER operations, B-1
Compressing deleted records, and ERASE operations, B-2
5-10, 5-16, 6-7, 6=9 and file organization, B-3
CONNECT operation, 1-15 and OPEN operations,
indexed files, 7-2 B-2 to B-3
relative files, 4-7 and PARSE operations, B-1
sequential files, 3-7 and REMOVE operations, B-1
Context, 1-9, 1-15 and RENAME operations, B-1
CONNECT operation, 3-7, 4-7, and SEARCH operations, B-1
7-2 block access, B-3
current record, 1-9, 1-15 DAPRES resident library, B-1
DELETE operation, 4-7, 7-3 disk-resident overlaid code,
DISCONNECT operation, 3-7, 4-8 B-1
FIND operation, 3-8, 4-8, 7-3 FALs
FLUSH operation, 3-9, 4-10, on different systems, B-3
7-5 file specification, B-2
GET operation, 3-10, 4-11, 7-5 defaults, B-2
next record, 1-9, 1-15 node, B-2
PUT operation, 3-11, 4-11, 7-6 quoted string, B-2
REWIND operation, 3-11, 4-12, I/0 buffers, B-3
7-6 indexed files, B-3
TRUNCATE operation, 3-12 relative files, B-3
UPDATE operation, 3-13, 4-12, sequential files, B-3
7-6 limitations on functions, B-1

Index-2

Default extension quant1ty
See DEQ

Defaults, 2-2
compilers, 2-2
DEQ, 4-4

"file specification, A-6, B-2

operating system, 2-2
DEQ, 3-5
RMS-11, 2-2
Deferred write, 2-17, 6-27
and mass insertion, 6-29
indexed files, 7-8
relative files, 4-14
sequential files, 3-14
DELETE operation, 1-15
and key position, 6-7
and shared access, 2-6

compressing records, 5- 10,

5-16, 6-7, 6-9
deferred write, 7-9
duplicate keys, 6~9

indexed files, 5-15, 7-3,

optimizing, 6-7
relative files, 4-7
Depth
indexed files, 5-5
DEQ
default S
indexed files, 6-26
relative files, 4-4
sequential files, 3-5
indexed files, 6-26
relative files, 4-%
sequential files, 3-4

Designing applications, 2-1

considerations, 2-3
ease of design, 2-10
shared access, 2-5
space, 2-4, 8-1
speed, 2-3, 8-1

when to design, 2-2

Designing files, 1-10, 1-12

indexed, 6-1

relative, 4-2

See also Indexed file
organization

See also Relative f11e
organization

See also Sequential file
organization

sequential, 3-3

Devices
and record formats, 2-15
disk, 1-12

file specification, A-1, A-4

magnetic tape, 1-12

See also Medium
DIGITAL Command Language

See DCL)
Directory

default, A-6

file specification, A-1, A-4

Directory operations, 1-17

INDEX

See also Operations
DISCONNECT operation, 1-15

indexed files, 7-3

relative files, 4-8

sequential files, 3-7
Disk

See Medium

Disk-resident overlays, 1-13,

8-3, 8-8 to 8-9
remote access code, B-1
DISPLAY operation, 1-18

Displaying files, 1-10, 1-12

Duplicate keys, 6-8

End-of-block indicators
sequential files, 3-2
End-of-file
sequential files, 3-2
ENTER operation, 1-17
file versions, A-3
ENTER operations
remote access, B-1l
ERSACT
asynchronous operations,
3-14, 4-14, 7-8
ERSCUR
DELETE operation, 4-7
TRUNCATE operation, 3-12
UPDATE operation, 3-12,
7-6
ERSDEL
FIND operation, 4-8, 7-3
GET operation, 4-11, 7-5
ERSEOF
FIND operation, 3-8, 4-8,

GET operation, 3-10, 4-10,

PUT operation, 3-11
ERSIOP

UPDATE operation, 3-12
ERSKEY

FIND operation, 3-8

GET operation, 3-10
ERSLIB

and resident libraries,
ERSMRN

FIND operation, 4-8

GET operation, 4-10
ERSNEF

PUT operatlon, 3-10
ERSRAC

PUT operat1on, 3-10
ERSREX .

PUT operation, 4-11
ERSRFA

FIND operation, 3-8, 7-3

GET operation, 3-10, 7-5
ERSRFM)

UPDATE operation, 3-12
ERSRLK

and shared access, 2-10
ERSRNF

FIND operation, 4-8, 7-3

GET operation, 4-10 to 4-11,

Index-3

7-5
ERSRSZ :
UPDATE operation, 3-12
ERASE operation, 1-18
remote access, B-2
wildcard loops, A-4

Error codes, 3-7, 4-7, 7-2
ERSACT, 3-14, 4-14, 7-8
ERSCUR, 3-12, 4-7, 4-12, 7-6
ERSDEL, 4-8, 4-11, 7-3, 7-5
ERSEOF, 3-8, 3-10 to 3-11,

4-8, 4-10, 7-3, 7-5)
ERSIOP, 3-12
ERSKEY, 3-8, 3-10
ERSLIB, 8-8 i
ERSMRN, 4-8, 4-10
ERSNEF, 3-10
ERSRAC, 3-10
ERSREX, 4-11
ER$RFA, 3-8, 3-10, 7-3, 7-5
ERSRFM, 3-12
ERSRLK, 2-10
ERSRNF, 4-8, 4-10 to 4-11,
7-3, 7-5 :
ERSRSZ, 3-12

EXTEND operation, 1-18
and shared access, 2-6

F11ACP, 8-13

FALs, B-1
RSTS/E, B-1, B-3
RSX-11M/M-PLUS, B-3
VAX/VMS, B-3

FCBs, 8-12
sequential file compatibility,
3-2
File access listener
See FAL

File allocation
See Allocation
File control blocks
See FCBs
File control processor, 1-16
retrieval pointers, 8-11
window turning, 8-12
File name Co
default, A-6
file specifiedtion, A-2
File operations, 1-18
See also Operations
File organizations, 1l-11,
and data storage, 2-5
and file design, 2-11
and optimizations, 8-10
and record formats, 1-20, 2-15
and standard ODL files, 8-5
indexed, 1-5, 1-11
relative, 1-4, 1-11
See also Indexed file
organization
See also Relative file
organization

1-18

INDEX

See also Sequential file
organization
selection, 2-11
sequential, 1-3, 1-11
File sharing
See Shared access
File specification, 1-18 t
default name string,
A-5 to A-6
defaults, A-6
directory, A-6
name, A-6
node, B-2
type, A-6
version, A-6
file name string, A-5
magtape, A-4 to A-5
device, A-4
directory, A-4
quoted string, A-5
version, A-5
NAM block, A-6
node, B-2
quoted string, B-2
remote, B-2
standard, A-1l
device, A-1
directory, A-1
name, A-2
type, A-3
version, A-3
wildcards, A-2 to A-3
File structure
See structure
File type, A-3
default, A-6
File version, A-3, A-5
default, A-6
Files, 1-2
attributes, 1-2
backing up, 1-10, 1-12
converting, 1-10, 1-12
creating, 1-10, 1-12
designing, 1-10, 1-12
displaying, 1-10, 1-12
loading, 1-10, 1-12
maintaining, 1-10, 1-12
processing, 1-16
restoring, 1-10, 1-12
See also Indexed file
organization
See also Relative file
organization
See also Sequential file
organization
FIND operation, 1-15
and bucket locking, 2-8
and shared access, 2-6,
and stream records, 2-16
deferred write, 7-9
indexed files, 7-3
key access, 7-3

random by key, 5-13

Index-4

c 1-19

2-10

RFA access, 7-3
sequential access, 5-17, 7-3
key access, 1-16
relative files, 4-8
key access, 4-8
RFA access, 4-8
sequential access, 4-8
RFA access, l1-16
sequential access, 1-16
sequential files, 3-7
key access, 3-7
RFA access, 3-7
sequential ‘access, 3-7
Fixed-length record format,
1-11, 2-15
FLUSH operation, 1-15
indexed files, 7-5
relative files, 4-10
sequential files, 3-9
Formats
See Record formats
Four-byte signed integer keys,
6-4
Four-byte unsigned binary keys,
6-5
FREE operation, 1-15
and shared access, 2-10

GET operation, 1-15
and bucket locking, 2-8
and ODLs, 8-5
and shared access, 2-6, 2-10
and stream records,
2-16 to 2-17
deferred write, 7-9
indexed files, 7-5, 7-9
key access, 7-5
random by key, 5-13
RFA access, 7-5
sequential access, 5-17, 7-5
key access, 1-16
locate mode, 3-14
indexed files, 7-8
relative files, 4-13
move mode
indexed files, 7-7
relative files, 4-12
sequential files, 3-13
relative files, 4-10
key access, 4-10
RFA access, 4-10
sequential access, 4-10
RFA access, 1-16
sequential access, 1-16
sequential files, 3-9
key access, 3-9
RFA access, 3-9
sequential access, 3-9

High-key value
buckets, 5-5 to 5-6

High-level languages
access streams, 1-15

INDEX

and asynchronous operations,
3-14

and file design, 1-~19

and ODL files, 8-5

and remote access, B-1l

and shared access, 2-7

asynchronous operations, 4-14

bucket fill size, 6-29

bucket size, 4-3, 6-21

defaults, 2-2

DEQ, 3-5, 4-4, 6-26

file and directory operations,
3-15, 4-15, 7-10

file operations, 8-10

initial allocation, 3-4, 4-4,
6-26

key characteristics, 6-8

keys, 6-7

locate mode, 3-14, 4-13

MRN, 4-5

placement control, 6-14

populating files, 6-26

restrictions, 1-13, 1-15, 2-1

1/0
and performance, 2-3
and record operations, 5-17
paging operations, 8-10
window turning, 8-11
I/0 buffers, 1-14
application design, 2-5
remote access, B-3
indexed files, B-3
relative files, B-3
sequential files, B-3
I1/0 techniques, 2-17
asynchronous operations, 2-17
deferred write, 2-17
indexed files, 7-8
asynchronous operations, 7-8
deferred write, 7-8
multiple access streams,
7-10
multiple buffers, 7-9
sequential reads, 7-10
mass insertion, 2-18
MBC, 2-17
multiple access streams, 2-17
multiple buffers, 2-18
relative files, 4-14
asynchronous operations,
4-14
deferred write, 4-14
multiple access streams,
4-15
multiple buffers, 4-15
sequential files, 3-14
asynchronous operations,
3-14
deferred write, 3-14
MBC, 3-15
multiple access streams,
3-15

Index-5

INDEX

multiple buffers, 3-14 data level, 5-5
I/0 units, 1-14 ' keys, 1-5,:-6-2
blocks, 1-16 changeable, 6-9
buckets, 1-16 characteristics, 6-8
Incremental reorganization, 5-12 data types, 6-3
Index buckets, 5-6 ~ duplicates, 6-8
Index recorxds, 5-6 null, 6-10
Indexed file organization, 1-5 number of, 6-2
access declarations, 7-1 position, 6-7
allocation, 6-22 size, 6-6
DEQ, 6-26 level O :
initial, calculation, 6-22 alternate indexes, 5-5
alternate keys, 1-11 primary indexes, 5-5
and remote access, B-3 locate mode, 7-7
areas, 5-2, 6-10 mass insertion, 6-28 to 6-29
multiarea files, 6-12 move mode, 7-7
single-area files, 6-11 multiple access streams, 7-10
asynchronous operations, 7-8 multiple buffers, 7-9
bucket fill size, 6-28 placement control, 6-13
bucket format, 5-2 populating files, 6-26
bucket size, 6-15 primary key order, 6-27
calculation, alternate indexes, random insertions, 6-28
6-19 primary keys, 1-11
calculation, primary index, prologue, 5-2
6-16 PUT operation, 6-7, 7-5, 7-7,
prologue, 5-2 7-9
bucket splitting, 5-11 duplicate keys, 6-9
compressing deleted records, mass insertion, 7-9
5-10, 5-16, 6-7, 6-9 random by key, 5-10
CONNECT operation, 7-2 random access, 5-7, 6-12-
contiguity, 6-13 record operations, 7-2
data records, 5-2 random access, 5-9
deferred write, 6-27, 7-8 sequential access, 5-16
DELETE operation, 5-15, 6-7, record transfer modes, 7-6
7-3, 7-9 locate mode, 7-7
duplicate keys, 6-9 move mode, 7-7
depth, 5-5 REWIND operation, 7-6
design, 5-1, 6-1 root, 1-7, 5-5
allocation, 6-22 search times, 5-8
areas, 6-10 See also Indexes
bucket size, 6-15 sequential reads, 7-10
keys, 6-2 shared access, 7-1
placement control, 6-13 block access, 7-1
populating files, 6-26 record access, 7-1
record format, 6-1 sharing declarations, 7-1
record size, 6-1 stream operations, 7-2
directory operations, 7-10 structure
DISCONNECT operation, 7-3 conceptual, 5-4
file operations, 7-10 physical, 5-2
FIND operation, 7-3, 7-9 UPDATE operation, 5-14,
random by key, 5-13 7-6 to 7-9
sequential access, 5-17 changeable keys, 6-10
FLUSH operation, 7-5 duplicate keys, 6-9
GET operation, 7-5, 7-7 to 7-9 Indexes, 5-2
random by key, 5-13 alternate)
sequential access, 5-17 bucket size calculation,
I1/0 techniques, 7-8. 6-19
incremental reorganization, level 0, 5-5
5-12 SIDRs, 5-5
index buckets, 5-6 depth, 5-5
index levels, 5-4, 5-6 levels, 5-4, 5-6
index records, 5-2, 5-6 data, 5-5
indexes primary

Index-6

bucket size calculation,
6~-16
level 0, 5-5
root, 5-5
Initial allocation
indexed files, 6-22
relative files, 4-3
sequential files, 3-4
Integer keys
2-byte signed, 6-4
4-byte signed, 6-4

Key access

to indexed files, 5-7, 5-9

to relative files, 4-1

to sequential files, 3-2

Keys, 1-5, 1-19, 6-2

alternate, 1-7, 1-11

characteristics, 6-8
changeable, 6-9
duplicates, 6-8
null, 6-10

data types, 6-3
2-byte signed integer, 6-4

. 2-byte unsigned binary, 6-5
4-byte signed integer, 6-4
4-byte unsigned binary, 6-5
packed decimal, 6-6
string, 6-3

number of, 6-2

position, 6-7

primary, 1-7, 1l-11

segmented, 6-7

size, 6-6

LBN, 8-11
See also Placement control
Levels
indexed files, 5-4
data, 5-5
level 0, alternate indexes,
5-5 :
level 0, primary indexes,
5-5
Libraries
clustered, 8-7 to 8-9
object module, 8-1
resident, 8-1, 8-8
RMSRES, 8-6, 8-9
supervisor mode, 8-9
Loading files, 1-10, 1-12
Locate mode
indexed files, 7-7
relative files, 4-13
sequential files, 3-14
Logical block number
See LBN

MACRO-11, 1-13
and ODL files, 8-5
key segments, 6-7
placement control, 6-14
populating files, 6-27

INDEX

Magtape
See Medium
Maintaining files, 1-10, 1-12
backing up files, 1-10, 1-12
converting files, 1-10, 1-12
designing and creating files,
1-10, 1-12
displaying files, 1-10, 1-12
loading files, 1-10, 1-12
restoring files, 1-10, 1-12
Mass insertion, 2-18, 6-28, 7-9
populating indexed files, 6-29
Match criteria
random access, 5-13
Maximum record number
See MRN
MBC, 2-17
sequential files, 3-15
Medium
and I/0 time, 2-3
and record formats and
file organizations, 1-20
and variable-length format,
2-15
disk, 1-18
file specification, A-1l
retrieval pointers, 8-11
usage, 8-13
magtape, 1-18
file specification,
A-4 to A-5
placement control, 6-13
sequential files, 3-3
Memory-resident overlays, 1-13,
8-3, 8-6
Modes
See Access modes
See Record transfer modes
Move mode -
indexed files, 7-7
relative files, 4-12
sequential files, 3-13
MRN, 1-19
relative files, 4-4 to 4-5
Multiblock count
See MBC
Multiple access streams
and shared access, 2-9 to 2-10
I/0 techniques, 2-17
indexed files, 7-10
relative files, 4-15
sequential files, 3-15
Multiple buffers, 2-18
indexed files, 7-9
relative files, 4-15
sequential files, 3-14

NAM block
file specification, A-6
Name
file, aA-2
default, A-6
Next record

Index-7

INDEX

See Context DISCONNECT, 1-15
No sharing indexed files, 7-3
sharing declaration, 2-7 . relative files, 4-8
Node sequential files, 3-7
remote file specification, B-2 DISPLAY, 1-18
Nonoverlaid routines, 1-13, ENTER, 1-17
8-2, 8-8 to 8-9 file versions, A-3
Null keys, 6-10 remote access, B-1
ERASE, 1-18
Object code remote access, B-2
assembling, 1-13, 8-1 , wildcard operations, A-4
compiling, 1-13, 8-1 EXTEND, 1-18
Object module libraries, 8-1 and shared access, 2-6
ODL, 8-3 i file, 1-18
ODL files indexed files, 7-10
DAPRLX, 8-7 : optimizations, 8-10
prototype, 8-3 relative files, 4-15
RMSRLX, 8-7 . sequential files, 3-15
standard, 8-3, 8-5 FIND, 1-15
DAPl1X, 8-6 and bucket locking, 2-8
RMS11S, 8-5 and shared access, 2-6, 2-10
RMS11X, 8-5 and stream records, 2-16
RMS12X, 8- deferred write, 7-9
OPEN operation, 1-18 indexed files, 5-13, 5-17,
remote access, B-2 to B-3 7-3
Operating systems, 1-13 key access, 1-16
allocating system resources, relative files, 4-8
8-13 RFA access, 1-16
block locking, 3-6 sequential access, 1-16
compatibility, 3-4 sequential files, 3-7
defaults, 2-2 FLUSH, 1-15
DEQ, 3-5 indexed files, 7-5
FALs, B-3 relative files, 4-10
protection codes sequential files, 3-9
and shared access, 2-5 FREE, 1-15
remote access and shared access, 2-10
RSTS/E, B-3 GET, 1-15
RSX-11M/M-PLUS, B-3 and bucket locking, 2-8
VAX/VMS, B-1, B-3 and ODLs, 8-5
Operations and shared access, 2-6, 2-10
asynchronous, 2-17, 3-14, and stream records,
4-14, 7-8, 8-2, 8-4, 2-16 to 2-17
8-7 to 8-8 deferred write, 7-9
CLOSE, 1-18 indexed files, 5-13, 5-17,
CONNECT, 1-15 7-5
indexed files, 7-2 key access, 1-16
relative files, 4-7 locate mode, 3-14, 4-13, 7-8
sequential files, 3-7 move mode, 3-13, 4-12, 7-7
CREATE, 1-18 relative files, 4-10
and shared access, 2-6 RFA access, 1-16
file versions, A-3 sequential access, 1-16
remote access, B-2 to B-3 sequential files, 3-9
DELETE, 1-15 OPEN, 1-18
and key position, 6-7 remote access, B-2 to B-3
and shared access, 2-6 optimizations, 8-10
deferred write, 7-9 PARSE, 1-17
duplicate keys, 6-9 remote access, B-1l
indexed files, 5-15, 7-3 PUT, 1-15
relative files, 4-7 and key position, 6-7
directory, 1-17 and ODLs, 8-5
indexed files, 7-10 and shared access, 2-6
relative files, 4-15 and stream records, 2-17
sequential files, 3-15 deferred write, 7-9

Index-8

duplicate keys, 6-9
indexed files, 5-10, 5-17,
7-5, 7-9

initial allocation, 4-4

key access, 1l-16

locate mode, 3-14

mass insertion, 7-9

move mode, 3-13, 4-12, 7-7

relative files, 4-11

sequential access, 1-16

sequential files, 3-10
record, 1-10, 1-15

and I/0 costs, 5-17

and indexed files, 5-9, 5-16

indexed files, 7-2

optimizations, 8-10

relative files, 4-7

sequential files, 3-7
REMOVE, 1-17

remote access, B-1

wildcard operations, A-4
RENAME, 1-17

file versions, A-3

remote access, B-1

wildcard operations, A-4
REWIND, 1-15

indexed files, 7-6

relative files, 4-12

sequential files, 3-11
SEARCH, 1-17

remote access, B-1
stream, 1-15

indexed files, 7-2

relative files, 4-7

sequential files, 3-7
synchronous, 8-2
TRUNCATE, 1-15

and shared access, 2-6

sequential files, 3-12
UPDATE, 1-15

and ODLs, 8-5

and record size, 2-16

and shared access, 2-6, 2-10

and stream records, 2-17

changeable keys, 6-10

deferred write, 7-9

duplicate keys, 6-9

indexed files, 5-14, 7-6

move mode, 3-13 to 3-14,

4-12 to 4-13, 7-7 to 7-8

relative files, 4-12

sequential files, 3-12
WAIT, 1-15
WRITE

and shared access, 2-6

Optimizations

allocating system resources,
8-13

application design, 2-11

DELETE operation, 6-7

disk usage, 8-13

operations, 8-10

overlays, 8-1

INDEX

program development, 8-9
PUT operation, 6-7
task building, 8-10

virtual-to-logical block mapping,

8-11

window turning, 8-12
Organizations

See File organizations
Overlay description language

See ODL
Overlays, 8-2

and disk usage, 8-14

disk-resident, 1-13, 8-3,

8-8 to 8-9
memory-resident, 1-13, 8-3,
8-6

Packed decimal keys, 6-6
Paging, 8-10
PARSE operation, 1-17 -
PARSE operations

remote access, B-1
Performance

See Speed
Placement control, 1-17, 1-19

calculating starting LBN, 6-14

cylinder, 6-13 to 6-14
indexed files, 6-13
sector, 6-14
track, 6-13 to 6-14
Populating indexed files, 6-26
primary key order, 6-27
random insertions, 6-28
bucket fill size, 6-28
mass insertion, 6-29
Primary indexes
See Indexes
Primary keys, 1-7, l-11
Processing blocks, 1-20
Processing files, 1-16
indexed files, 7-10
relative files, 4-15
sequential files, 3-15
Processing records, 1-10, 1-15
indexed files, 7-2
relative files, 4-7
sequential files, 3-7
Program development
optimizing, 8-9
Prologue, 1-19
indexed files, 5-2
bucket size, 5-2
relative files, 4-1
Protection, 1-18
Prototype ODL files, 8-3
PUT operation, 1-15
and key position, 6-7
and ODLs, 8-5
and shared access, 2-6
and stream records, 2-17
deferred write, 7-9
duplicate keys, 6-9
indexed files, 7-5, 7-9

Index-9

" INDEX

key access, 5-10, 7-6
mass insertion, 7-9
sequential access, 5-17, 7-6
initial allocation, 4-4
key access, 1-16
locate mode, 3-14
move mode
indexed files, 7-7
relative files, 4-12
sequential files, 3-13
optimizing, 6-7
relative files, 4-11
key access, 4-11
sequential access, 4-11
sequential access, 1-16
sequential files, 3-10
key access, 3-10
sequential access, 3-10

Quoted string
file specification, A-5
remote file specification, B-2

Random access, 1-7, 1-9
by key, 1-12
FIND, 1-16
GET, 1-16
PUT, 1-16
by RFA, 1-12
FIND, 1-16
GET, 1-16
by VBN, 1-20
match criteria, 5-13
to indexed files, 5-7, 5-9,
6-12
to relative files, 4-1
to sequential files, 3-2
Read-only
access declaration, 2-6
sharing declaration, 2-7
Read/write
access declaration, 2-6
sharing declaration, 2-7
Record access, 1-12
See also Shared access
Record access modes
See Access modes
Record file address
See RFA
Record formats, 1-11, 1-18
and file organizations, 1-20,
2-15
fixed length, 1-11, 2-15
indexed files, 6-1
relative files, 4-2
sequential files, 3-3
stream, 1-11, 2-16
undefined, 1-11, 2-17
variable length, 1-11, 2-15
and medium, 2-15
VFC, 1-11, 2-16
Record operations, 1-15
See also Operations

Record reference vector
See RRV
Record size, 1-18
indexed files, 6-1
relative files, 4-2
sequential files, 3-2
UPDATE operation, 2-16
Record transfer modes
indexed files, 7-6
relative files, 4-12
sequential files, 3-13
Record-output handling, 1-19
Records, 1l-1
data, 5-2
index, 5-2, 5-6
processing, 1-15
See also Record formats
Relative file organization,
1-4, 1-11
access declarations, 4-6
allocation
DEQ, 4-4
initial, 4-3
and remote access, B-3
asynchronous operations, 4-14
buckets, 4-1
cells, 4-1
CONNECT operation, 4-7
contiguity, 4-4
deferred write, 4-14
DELETE operation, 4-7
design, 4-1
allocation, 4-3
bucket size, 4-2
MRN, 4-5
record format, 4-2
directory operations, 4-15
DISCONNECT operation, 4-8
file operations, 4-15
FIND opgeration, 4-8
FLUSH operation, 4-10
GET operation, 4-10,
4-12 to 4-13
I/0 techniques, 4-14
MRN, 4-4
multiple access streams, 4-15
multiple buffers, 4-15
prologue, 4-1
PUT operation, 4-11 to 4-12
random access
by key, 4-1
by RFA, 4-1
record operations, 4-7
record size, 4-2
record transfer modes, 4-12
move mode, 4-12
REWIND operation, 4-12
sequential access, 4-1
shared access, 4-6
block access, 4-6
record access, 4-6
sharing declarations, 4-6
stream operations, 4-7

Index-10

structure, 4-1
conceptual, 4-1
physical, 4-1
UPDATE operation, 4-12 to 4-13
Relative record number
See RRN
REMOVE operation, 1-17
wildcard loops, A-4
REMOVE operations '
remote access, B-1
RENAME operation, 1-17
file versions, A-3
wildcard loops, A-4
RENAME operations
remote access, B-1l
Resident libraries, 8-1, 8-8
RMSRES, 8-6, 8-9
Restoring files, 1-10, 1-12
Retrieval pointers, 8-11
in memory, 8-11
on disk, 8-11
REWIND operation, 1-15
indexed files, 7-6
relative files, 4-12
sequential files, 3-11
RFA, 1-12
relative files, 4-1
sequential files, 3-2
RFA access
to relative files, 4-1
to sequential files, 3-2
RMS-11 defaults, 2-2 '
RMS-11 File Back-Up Utility
See RMSBCK
RMS-11 File Conversion Utility
See RMSCNV
RMS~-11 File Design Utility
See RMSDES
RMS-11 File Display Utility
See RMSDSP
RMS-11 File Restoration Utility
See RMSRST
RMS-11 Indexed File Load Utility
See RMSIFL
RMS-11 resident library
See RMSRES
RMSBCK, 1-12
RMSCNV, 1-12
populating files, 6-26 to 6-27
RMSDES, 1-12, 1-18
bucket fill size, 6-29
bucket size, 6-22
relative files, 4-3
DEQ, 3-5, 4-4, 6-26
initial allocation, 3-4, 4-4,
6-26
key segments, 6-7
MRN, 4-5
placement control, 6-14
RMSDSP, 1-12, 1-19
RMSIFL, 1-12
populating files, 6-26 to 6-27
RMSRES

INDEX

and I/0 paging operations,
8-10
and overlays, 8-6
clustered, 8-7
overlays, 8-9
supervisor mode, 8-7
task building, 8-6
RMSRST, 1-12
Root, 1-7
indexed files, 5-5
RRN
relative files, 4-1
sequential files, 3-2
RRV, 5-12, 5-16
RSTS/E
remote access, B-3
RSX-11M/M-PLUS
remote access, B-3

SEARCH operation, 1-17
SEARCH operations
remote access, B-1l
Search times
indexed files, 5-8
Seconday index data records
See SIDR
Sector
See Placement control
Segmented keys, 6-7
Sequential access, 1-7 to 1-8
FIND, 1-16
GET, 1-16
PUT, 1-16
to blocks, 1-20
to indexed files, 5-16
to records, 1l-12
to relative files, 4-1
to sequential files, 3-2
Sequential file organization,
7 1-3, 1-11
access declarations, 3~6
allocation
DEQ, 3-4
initial, 3-4
and remote access, B-3
asynchronous operations, 3-14
cells, 3-2
CONNECT operation, 3-7
deferred write, 3-14
design, 3-1
allocation, 3-4
contiguity, 3-5
medium, 3-3
record format, 3-3
directory operations, 3-15
DISCONNECT operation, 3-7
end-of-block indicators, 3-2
end-of-file, 3-2
FCS-11 compatibility, 3-2
file operations, 3-15
FIND operation, 3-7
FLUSH operation, 3-9
GET operation, 3-9,

Index-11

3-13 to 3-14
I1/0 techniques, 3-14
MBC, 3-15
multiple access streams, 3-15
multiple buffers, 3-14
PUT operation, 3-10, 3-13
random access
by key, 3-2
by RFA, 3-2
record operations, 3-7
record size, 3-2
record transfer modes, 3-13
locate mode, 3-14, 4-13
move mode, 3-13 to 3-14
REWIND operation, 3-11
sequential access, 3-2
shared access, 3-5
block access, 3-6
record access, 3-6
record structured files, 3-6
with undefined records, 3-6
sharing declarations, 3-6
stream operations, 3-7
structure, 3-1
conceptual, 3-2
physical, 3-1
TRUNCATE operation, 3-12
UPDATE operation, 3-12 to 3-14
user-provided interlocks, 3-6
Shared acgess, 1-17
access declarations, 2-6
read-only, 2-6
read/write, 2-6
and high-level languages, 2-7

INDEX

no sharing, 2-7
read-only, 2-7
read/write, 2-7
relative files, 4-6
sequential files, 3-6
user-provided interlocks, 2-7
SIDR, 5-5, 7-9
changeable keys, 6-10
duplicate keys, 6-8 to 6-9
Space
application design consideration,
2-4, 8-1
data storage, 2-5
I1/0 buffer size, 2-5
task size, 2-5
Spanning blocks, 1-16, 1-19, 3-1
variable length records, 2-16
Speed
application design consideration,
2-3, 8-1
Standard ODL files, 8-3, 8-5
and file organization, 8-5
DAP11X, 8-6
RMS11S, 8-5
RMS11Xx, 8-5
RMS12X, 8-6
Stream operations, 1-15
See also Operations
Stream record format, 1-11, 2-16
terminators, 2-16
Streams
See Access streams
String keys, 6-3
segmented, 6-7

application design consideration,Structure

2-5
bucket locking, 2-8
deferred write

to relative files, 4-14
multiple access streams,

2-9 to 2-10
programming considerations,
2-10

‘sharing declarations, 2-7
no sharing, 2-7
read-only, 2-7
read/write, 2-7
user-provided interlocks,
2-7
system protection codes, 2-5
to indexed files, 7-1
block access, 7-1
record access, 7-1
to relative files, 4-6
block access, 4-6
record access, 4-6
to sequential files, 3-5
record structured, 3-6
with undefined records, 3-6
Sharing
See Shared access
Sharing declarations, 2-7
indexed files, 7-1

indexed files
conceptual, 5-4
physical, 5-2
relative files, 4-1
conceptual, 4-1
physical, 4-1
sequential files, 3-1
conceptual, 3-2
physical, 3-1
Supervisor mode, 8-7, 8-9
Synchronous operations, 8-2

Task
executable, 8-1
size, 2-5
structure, 1-13
Task builder, 1-13
and optimizations, 8-10
and overlay structure, 8-10
and remote access code, B-1l
and RMS-11 routines, 8-1
and RMSRES, 8-6
Terminals, A-1
Terminators
stream records, 2-16
Track
See Placement control
TRUNCATE operation, 1-15

Index-12

and shared access, 2-6
sequential files, 3-12
Two-byte signed integer keys,
6-4
Two-byte unsigned binary keys,
6-5
Type
file, A-3

Undefined record format, 1-11,
2-17
Unit-record devices, A-1
UPDATE operation, 1-15
and ODLs, 8-5
and record size, 2-16
and shared access, 2-6, 2-10
and stream records, 2-17
changeable keys, 6-10
deferred write, 7-9
duplicate keys, 6-9
indexed files, 5-14, 7-6, 7-9
move mode, 3-14
indexed files, 7-7 to 7-8
relative files, 4-12 to 4-13
sequential files, 3-13
relative files, 4-12
sequential files, 3~12
User buffers, 1-14
User-provided interlocks, 3-6
sharing declaration, 2-7
Utilities, 1-12, 2-11
RMSBCK, 1-12
RMSCNV, 1-12
populating files,
6-26 to 6-27
RMSDES, 1-12, 1-18
bucket £ill size, 6-29
bucket size, 4-3, 6-22
DEQ' 3"5, 4-4' 6"26
initial allocation, 3-4,
4-4, 6-26
key segments, 6-7
MRN, 4-5
placement control, 6-14
RMSDSP, 1-12, 1-19
RMSIFL, 1-12
populating files,
6-26 to 6-27
RMSRST, 1-12

Variable with fixed control
See VFC
Variable-length record format,
1-11, 2-15
and medium, 2-15
VAX/VMS
remote access, B-1, B-3
VBN, 8-11
access, 1-20
areas, 6-10
Version
file, A-3, A-5
default, A-6

INDEX

VFC record format, 1-11, 2-16
Virtual block number

See VBN
Virtual-to-logical block mapping

optimizations, 8-11

WAIT operation, 1-15
Wildcards
file specification, A-2 to A-3
loops, A-4
Windows, 8-11
turning, 8-11
areas, 8-13
contiguity, 8-12
F11ACP size, 8-13
optimizations, 8-12
window size, 8-12
WRITE operation
and shared access, 2-6

Index~-13

RSX-11M/M-PLUS
RMS-11 User’s Guide
AA-L669A-TC

READER’S COMMENTS
NOTE: This form is for document comments only. DIGITAL will use comments submitted on ‘this form at the

company’s discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer
Other (please specify)

ubogoooo

Name Date

Organization

Street

City State___ Zip Code
or Country

— — — Do Not Tear - Fold Here and Tape — — — — — — — — - e ——

No Postage

; Necessary
if Mailed in the
L United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD

NASHUA, NEW HAMPSHIRE 03061

— — — DoNotTear-FoldHere — — — — — — — — — — — — =~ — — — — =— — — - =

